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Critical dynamics in the two-dimensional classicalXY model: A spin-dynamics study
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Using spin-dynamics techniques we have performed large-scale computer simulations of the dynamic be-
havior of the classical three componeX¥ model (i.e., the anisotropic limit of an easy-plane Heisenberg
ferromagnet on square lattices of size up to £92or several temperatures below, at, and ab®ye. The
temporal evolution of spin configurations was determined numerically from coupled equations of motion for
individual spins by a fourth-order predictor-corrector method, with initial spin configurations generated by a
hybrid Monte Carlo algorithm. The neutron-scattering funct®(m,») was calculated from the resultant
space-time displaced spin-spin correlation function. Pronounced spin-wave peaks were found both in the
in-plane and the out-of-plane scattering function over a wide range of temperatures. The in-plane scattering
function S** also has a large number of clear but weak additional peaks, which we interpret to come from
two-spin-wave scattering. In addition, we observed a small central pe&k*jreven at temperatures well
below the phase transition. We used dynamic finite-size scaling theory to extract the dynamic critical exponent
z. We findz=1.004) for all T<Tgr, in excellent agreement with theoretical predictions, although the shape
of S(qg,w) is not well described by current theofyf50163-182806)00442-0

I. INTRODUCTION has also been examined by Monte Carlo simulatidiote,
however, thadifferentdynamic exponents are expected for
The two-dimensionaKY model is one of the “special”  stochastic and for true dynamits.
models of magnetism. It undergoes an unusual phase transi- In this paper we present the first large scale simulation
tion to a state with bound, topological excitationsrtex  study of the true dynamic behavior of theé¥ model. Great
pairg but no long-range ordérThe (three componeptXy  care was taken to ensure that statistical as well as systematic
model may be viewed as a special case of the anisotropITors were both well unde_rst(_)od and q_wte small. An_ earlier,
Heisenberg model in which the coupling betweenziwm- much less com.plete stuﬂymdlcgted a rich structure in the
ponents of spins vanishes. It has static properties which afeéutron-scattering function which was not adequately de-
similar to those of the “plane rotator” model, in which the scribed by theory. Our model is defined by the Hamiltonian
spins have only two components. The static properties of
both models have been determined by numerical —_ XX | QY
simulatiorf~*and found to be consistent with the predictions " ‘]NEN (SS+S5)), @)
of the Kosterlitz-Thouless theory. For example, the suscep-
tibility shows an essential singularity instead of a power-lawwhere S is a three-componentlassical vector of length
divergence, and computer simulations show that vortex pairdnity and the sum is over all nearest-neighbor pairs. The
unbind atTy;. The model is critical, i.e., it has infinite cor- €quation of motion of each spin'fs
relation length&, at all temperature$<T;. The spin-spin
correlation function decays algebraically with distance for all
T<Tyr, but with a powery which varies with temperature.
The dynamic behavior of the model should be governed
by the dynamic critical exponemt which describes the di- where
vergent behavior of the relevant time scaiee., 7<& for all
T<Tgr. Recently, finite-size scaling for critical dynamics in
the neutron-scattering function has been develSpadd
successfully applied to the study of a three-dimensional
Heisenberg ferromagnet. TReY model has true dynamics and g, and éy are unit vectors in the andy directions,
which can be determined by integrating the equations of morespectively. Equatio2) represents a set of coupled equa-
tion for each spin; its critical dynamics has been studiedions and can be integrated numericallf The plane rotator
theoretically ~1° with different predictions for the nature of model has a Hamiltonian of the same form as Ekj, but
the neutron-scattering function. In contrast, the “plane rotasince the vectors have ontwo componentsan equation of
tor” model does not possess equations of motion; it has onlynotion cannot be defined in the same way as for Xhé
stochastic, i.e., purely relaxational time dependence, whicimodel]

d
gt S=S%Het, @

Hefr= —JNZN (S8+9/8), ©
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In Sec. Il we define the neutron-scattering function, pro- " 1 » " )
vide dynamic finite-size scaling equations, and summarize S (g, )= T Se(a)f oqe)” aé|. (10
analytical results. Section Il describes the details of our m m
simulations. We present our data and subsequent analysis in Note that thez component of the magnetization is con-

Sec. IV, and draw conclusions in Sec. V. served during the time evolution. Thus the neutron-scatterin
The results of our dynamic study prompted us to reexams 9 ' 9

ine the static properties of the model. In order to obtain moretunCtlon S¢(q.w) can be regrouped in terms of symmetry

L3 )
reliable values for the critical temperature and the static criti—'m0 the out-of-plane componeft“and the in-plane compo

) X ; nent
cal exponenty, we carried out static Monte Carlo simula-

tions; our results are presented in the Appendix. S’gx(q,w)zsgy(q,w), (1)

Il. BACKGROUND with different physical behaviol(As reported in Secs. IV C
and IV D, we find that for the two different components the

) . exponentz is the same, but the scaling functiofsand f
The neutron-scattering functio®(q,») (also called the (jffer.)

dynamic structure factpiis an experimental observable and

is fundamental to the study of spin dynamics. It is deffhed

for momentum transfeg and frequency transfe® as the

space-time Fourier transform At the critical temperaturd r and below, theX'Y model

is expected to be critical, with infinite correlation lengtbn

this region the dynamic critical exponenttan be extracted

by using the dynamic finite-size scaling theory developed by

Chen and Landaf.

of the space-displaced, time-displaced spin-spin correlation These authors also introduced a frequency resolution

function function in order to smoothen the effects of finite length of

time integration, which was not necessary for most of the

Ck"(r—r’,t—t’)z(S'ﬁ(t)S'f,(t’)), (5) analyses in our study because of much longer integration

times (see Sec. I). Their dynamic finite-size scaling

relation§ can then be simplified to

A. Neutron-scattering function S(q, )

B. Dynamic finite-size scaling

SRCRAEDY eiq-u—r')J*

r,r’

w dt
iwt~KK y 7
et C(r—r’t) pye 4)

0

wherek=x, y, or z is the spin component, displacemeris
in units of lattice spacings, and the angle brackets de-

note the thermal ensemble average. Note that in the two- (g, w) »
dimensional XY model, (SK(t))=0 for all components 2 =G"(wL?" qL) (12)
k=Xx,y,z. The equations of motiof2) are time-reversal in- L= (@)

variant, therefore&C¥(r—r’, t—t’) is symmetric int andt’,
and S(q, ) is real valued.
The neutron-scattering function generally depends on the

[replacing a factow in front of SK(q,w)], and

kk _  kk _ -k
correlation lengthé and may be written in the forth on(g,L)=wn(qL)=L"*"0"(qL), (13
1 w analogous to Eq€9) and (10).
S, 0)= D S‘gk(q)fkk(—k—k(—), q,g), (6) We see that two different ways emerge to test dynamic
on(0:¢ om(9,§ scaling and to estimate the dynamic critical exponeznt
Wheresgk(q) is the total intensity given by Firstly, from Eq.(13), z is given by the slope of a graph of

In w,, versus InL at fixed value ofgL. Secondly, Eq(12)
o implies that for correctly chosenand at fixed value ofjL,
Sta) = f S0, 0)do, (7)  graphs of[SKX(q,w)/L?SkX(q)] versus wL? should all fall
o onto the same curve for different lattice sizes. Both proce-
andf¥*is a normalized shape functiofi"..f<(x, g, &dx=1. dures will only be valid for sufficiently large lattice size.
The characteristic frequeneyX(q,£) is a median frequency
determined by the constraint C. Analytical results

1 Kk The dynamics of two-dimensional ferromagnets with
> S‘gk(q)z fwmkks‘gk(q,w)dw, (8) easy-plang a§y7mmetry, specifically ma/ m_odel, were ana-
~om lyzed by Villain’ and by Moussa and Villailt The in-plane

In dynamic scaling theory it is assumed that the median fre§catter|ng function was found to havesdunction spin-wave

quencym‘r‘n"(q,g) is a homogeneous function gfand, i.e., peak at low temperature, and a spin-wave peak of the form

0,6 =704 q8), 9 SX(qyw)~ W (14)
q

wherez¥ is the dynamic critical exponent af® is another

shape function, and that the functi6ff depends only on the close toT,;. Here 7(T) is the critical exponent describing
product of g¢ but not onq and & separately. Therefore the decay of the static spin-spin correlation functiand we
St4(q,w) as given in Eq(6) simplifies to now expecty=1/4 atTyr).
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Nelson and Fishértreated the classicalY model in a Ty, vortex-antivortex pairs unbind, and their diffusion leads
fixed length hydrodynamic description fai<Tyr, without  to a strong central peak (g, w).
vortex contributions. They obtained the transverse spin-spin Mertens and co-worket3'® calculated S(q,») above

correlation function, Tkt , assuming an ideal dilute gas of unbound vortices mov-
ing in the presence of renormalized spin waves, and screened
CX(r )~ i P C_t by the remaining vortex-antivortex pairs. They found a
' r7 o)’ Lorentzian central peak fd8**,
32
1 y<1 yé
={ S(qg,w)~ , 22
P (y+ W=D,y 19 (@)™ o L+ (G ) 2
for r,ct>1 andct#r, wherec is the spin-wave velocity. and a Gaussian central peak &,
The Fourier transform of Eq15) has the form _
nu —o
1 ) S*(d, @)~ % e (/v (23
Sxx(q,(x))’\’ 3= v C_ , (16) o
q q where y=1/2/7u/¢, u is the rms vortex velocity¢ the cor-
where the scaling functio behaves like relation length, and1v~(2§)‘2 the free vortex density; and
they compared their results to numerical simulatidase
1 below).
W(y)~ Ty 17
around the spin-wave peak, and D. Previous numerical work
x 7—3 Gerling and Landal carried out spin-dynamics simula-
S™(q,0)~w (18 tions on theXY model with L<204 and found both spin-
for large values ofv/cq. wave peaks and a central peak. The resolution was too lim-

Nelson and Fisher also predicted that the dynamic criticaited, however, to allow quantitative comparison with theory

exponentz, Eq. (9), which is expectetito be z=d/2 for ~ Or to extract an estimate for the dynamic exponent.
d>2,is Mertens and co-worket3!® performed spin-dynamics

simulations, with fixed system size=100 and very low
z=1 for d=2. (190  statistics(three starting configurationat T=0.5 andT=1.1.
Below T, they observed only spin-wave peaks in b&H
andS*% aboveT, they saw a strong central peak and a weak
spin-wave peak 8%, and vice versa irs*% The width and
intensity of the central peaks were compatible with Egg)
and (23).

Note that the valug=1 and alinear dispersion relatiorare
also implicit in the argumend/cq of the scaling function?
in Eq. (16). Finally, both Villain and Nelson and Fisher
predicted a very narrows function) spin-wave peak in the
H ZZ —
OUtMoc]:rglargi Jﬁtrll;tl?\/lrgné?é;j ngi(rqés, and Gealviave per- Other Iearlier ggﬁgqerical work on dynamical behavior has
formed a low-temperature calculation which includes the een exploratory:
contribution of out-of-plane fluctuations to the in-plane cor- _
relation functions. They worked in the harmonic spin-wave E. Experiments

approximation which is justifiable for large spgnand there- The closest physical realizations of ti& model are ma-

fore also for our classical spins, and they used a projectioferials with very large anisotropy, more generally described

operator technique. They found a spin-wave peak similar tgyy strongly anisotropic Heisenberg models. Several experi-

that of Nelson and Fisher, ments have studied the dynamics of such matetisSlike

Rb,CrCl,, K,CuF,, and CoCJ.

_y . In a recent study on stage-2 CoQhtercalated graphite,

e <[l o<, Wiesler, Zabel, and Shapitofound four temperature re-
(20 gimes with different behavior. There are indications of a

where = w/(cq). In addition to the spin-wave peak, they Kosterlitz-ThoulesgKT) transition at a temperatureT,,,

found a logarithmically diverging central peak, i.e., a signalthough some properties disagree with KT predictions. Be-
at very smallw, which diverges like tween temperature3, and T,, they observed spin-wave

peaks. It is not clear whether the central peak is present

- 1 . there. (In this temperature region the long-range part of the

S (q,w)~am+(less divergent terms  (21)  gcattering function shows true two-dimensional character,
whereas folT<T,, three-dimensional correlations develop.

Of course, a central peak at small temperature can also b&bove T, the in-plane scattering function showed the ex-
caused by other mechanisms, for example vortex pairs difpected central peak, and the out-of-plane function exhibited
fusing like a dilute pair of soliton¥’ damped spin waves.

The dynamic behavior of th&Y model is differenabove In experimentally available materials both defects and the
Tkt For a phase transition of the Kosterlitz-Thouless typegeffects of residual three-dimensional couplings limit the ef-
the spin stiffness should drop discontinuously to zer,at,  fective size of the two-dimensional KT-like system to
i.e., the spin-wave peak is predicted to disapféambove  L,=0(100 lattice spacing$™'® Remarkably, this size is

- ) 1 _ [eVr<k<#w and
S(q,w)~ 7 Flalli=a7" if
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similar to the lattice sizes of the present numerical study. FoWe used fast-Fourier transforms to increase the efficiency of
further discussion and an extensive listing of relevant literathe program in calculating correlation functions.

ture, see the recent overview contained in Ref. 19. The frequency resolutioAw of our results is determined
by the time integration cutoft,,;#=0.% . S€e Eq.(24),
ll. SIMULATIONS which will introduce oscillations of period &t iNto

; . , S(g,w). Since we observed very sharp spin-wave pdake
We have studied the two-dimensional classikal model  sec. |V A), we chose to integrate the equations of motion to
with Hamiltonian given in Eq(1) on L XL lattices with pe- very large times. We usedmax=200J’1 for L<96, and
flodic boundary conditions for 2L =192, at temperatures ta=40Q0 "1 for L=128. A theoreticals function in fre-
T=0.4, 0.6, 0.7, 0.725, and 0.8 in units dfkg. Most of  quency will then become a widened peak with a width at half
these temperatures are in the critical regionmaximum of
T=Tkr=0.7005) (see the Appendijx

Equilibrium configurations were created at each tempera- - 0021 L<96
ture using a Monte Carlo method which combined cluster Aw~1.2t—=[0'01m’ L>128 (26)
updates of thex andy spin componentsusing the Wolff cutoff ' ' -

. '2 . . .
embedding methdd™) with vectorized Metropolis and e simulation data. To smoothen the oscillations, previ-

olvert-relaxa(ljtlc;ﬁ tspm N:etorlen':atlonsd Aﬁﬁ{ each Ismglfe— ous spin-dynamics studi#€ have employed a frequency
cluster update, two Metropolis and eight over-relaxation gy tion function, replacing

sweeps were performed. Use of the cluster algorithm was
important, since critical slowing down was severe for most 1
of our simulations; the inclusion of cluster flipping reduced Ck(r,t) by Ckk(r,t)exr< —— (tgw)Z) 27
Monte Carlo autocorrelation times &t=192 and T=0.6 2

from more than 300 to about three hybrid sweeps, Whilet N B fthe | | .
requiring only a factor of 2 more CPU time per sweep. We'© ¢0MPU eS(q,»). Because of the large values gf,, in

performed 200 hybrid sweeps between equilibrium configu®U’ Study, we achieved a very small frequency resolution

rations, and discarded the first 5000 hybrid sweeps for equili—A“" and the oscillations were not noticeable for most of our
bration. data. We therefore did not generally use a frequency resolu-

Between 500 and 1200 equilibrium configurations weretio? ;‘;?;tion and could significantly simplify the analysis of

generated for each lattice size and temperature. We found S . . .

this many configurations to be necessary in order to suffi- The_ humerical integration of the equations of motion can
ciently reduce statistical errors in the resulting neutronp(y[em'alIIy become unstable at very large integration times.
scattering function. The error bars in our figures represent th
statistical errors for averages over the equilibrium configura
tions, drawn from the canonical ensemble.

g\/e checked that for our calculations, in which we integrate
to much larger times than previous studies, we do not en-
counter this problem. We verified that the constants of mo-
Starting with each equilibrium configuration, the time de-tion (energy and magnenza.\thn in direction) do _rﬁemam
pendence of the spins was determined from the coupled s& nstan;,_wnh a relative variation Of. less th‘mm ’ We .
of equations of motion, Eq2), and was integrated numeri- also verified that the neutron-sca}t_tenng_functlor_1 remains vir-
cally using a vectorized fourth-order predictor-correctortually ugclzhanged when an addmonal_ llnt.egranon_of Ier_lgth
method® with a time step size oft=0.01"1. The maxi- t=200J is performed from leach .equmbrlum_conf|_gurat|on
mum integration time was generally,,,=4000"% a few before stgrtlng to clalculaf[e tlme—dlsplaqed spin-spin cgrrela-
runs were also performed for lattice size 25856 with tion fu_nctlons. All simulations were carried out using highly
t,.,=80001 and produced the same physical results. vectorized programs on the Cray C90 at the Pittsburgh Su-

The time-displaced, space-displaced spin-spin correlatioR€recomputing Center.
functions C(r—r',t—t’), Eq. (5), were measured for each
time integration, with IV. RESULTS

O=<t'=0.1tpx and Os(t—t")<teuo=0.%max, We now present our results for the dynamic structure fac-
(24)  tor S(q,w), its dependence on temperature, frequency, mo-

mentum, and lattice size, and we analyze its dynamic scaling

and were then averaged. By Fourier transformatio_n in SPaCehavior. With few exceptions we have analyzed the data
and in time, Eq(4), we obtained the neutron-scattering func-Without the use of a frequency resolution function Eq.

tion §(q, ). The time integration in Eq4) was performed (27). (The effects of such a function, and of integrating to

Ezlenr? SShl(r)nv\p/)??% nl:)serlsJLeﬁLi(\;/ivelt:tlast:‘?aell step of 0,which has shorter maximum times are described together with initial
y : results in Ref. 25.

To reduce memory and computer time requirements, we d : : h del in the critical oh
restricted ourselves to momenta=(q,0) and (0q), with g In order to investigate thXY mode |r}t ec.rmca phase,
' T we chose several temperaturés< T, including the best

determined by the periodic boundary conditions, previous estimate of «1~0.728)/kg,“ and one temperature
om well above the transitionT=0.8/kg. The results of our
q=an, ng=1.2,...L, (25 analysis prompted us to perform additional static Monte
Carlo studies, which are described in the Appendix. They
and data from these two spatially equivalent directions wergrovided an improved estimate df;=0.7005)J/kg . In or-
averaged together to further enhance the statistical accuraager to elucidate the situation closer to the transition, we per-
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There is sizeable additional structure3f away from the
spin-wave peak at temperatures uplig, . We will discuss
this structure in the following subsection.
The out-of-plane componer@? shown in Fig. 1b), is
two orders of magnitude weaker than the in-plane compo-
nent. It exhibits a very sharp spin-wave peak o€ T+,
whose width is limited by ou resolution. The finite time
cutoff Eq. (26) produces very noticeable oscillations in
S(q,w). (The magnitude of these oscillations is minute
compared to the intensity of the spin-wave peakS'th) The
oscillations can be smoothened by convolut®(g], ») with
a Gaussian resolution function in frequency, as is shown in
the inset. No central peaks are visibleSff at T<Tyr. At
T=0.725, the peak ii8** is still present, with a larger width
similar to that inS*. In contrast toS**, there is a clear, but
- T - - ' weak, spin-wave peak i8°* even atT =0.8> Ty and small
momentum. It is of similar intensity as the peak at lower
temperatures(See also Sec. Il E.
Figure 2 shows the lattice size dependenc&(af, ), at
fixed momentumg=/16. Below the transition, Fig. (8),
the intensity of the spin-wave peak depends strongly on lat-
tice size, whereas its position is constanThe out-of-plane
componentS*? is dominated by finite time cutoff effects for
T<Tkr, and we do not show it here Just above the tran-
sition, atT=0.725, the spin-wave peak 8* appears to gain
intensity slightly asl increases, whereas neither its central
peak nor the spin-wave peak 8 show any finite-size ef-
fects. At higher temperature, Figs(d2 and Ze), there is no
visible lattice size dependence in eitl&f or S*%. Notice the
two different vertical scales fo8* and S*% Data taken for
L =16 andL =32 exhibit such strong finite-size rounding that
FIG. 1. Temperature dependence of the neutron-scattering fungye have chosen not to show the data here.
tion S(g,w) as a function of frequency. The transition tempera- In Fig. 3 we show the momentum dependenc&(@f,w).
ture is Tx7~0.7005). Lattice sizeL=128 and momentung=2 Figures 3a) and 3b) display the behavior af=0.725,
X2m/L=ml32 in all cases. (@ xx component. (b) 2z  \hich is qualitatively similar to that at lower temperatures.
component. Thg inset shows _the datd at0.6, smoothened witha  The position of the spin-wave peak is the same S8t and
resolution function, Eq(27), with 6w=0.015. S*Z and is proportional to momentum for small As q in-
creases, the peak broadens, and becomes less intense, yet it
formed additionalbut less extensiyespin-dynamics simula- remains well defined. The additional structure $3* is
tions atT=0.70Q/kg . strongly momentum dependent, as will be discussed below.
For the zz component, both the total intensity and the
relative loss of intensity with increasing momentum are
much smaller. Oumw resolution dominates the width of the
Figure 1 shows the temperature dependenc®ofw) as  spin-wave peak ir5*” only at the smallest] (which also
a function ofw, for lattice sizelL =128 and fixed small mo- appears in Fig. &t it is not dominant at higher momenta or
mentumg=/48 [i.e., n;=2 in Eq.(25)]. Here, as in other for S*. We conclude thaB** has the expected-function
results which we shall show, the error bars are determinetbrm only for very small momentum. (Higher-order pertur-
from the statistical variation of results obtained from differ- bation theory also predicts a finite widtf). As shown in
ent initial spin states. The in-plane compon&iit, Fig. 1(a), Fig. 3(c), the intensity of the spin-wave peak decreases much
exhibits a very strong and moderately sharp spin-wave peataore rapidly forS* than for S?* with increasingg; the in-
at temperatureS <Tyr. Even at the lowest temperature, tensities cross each other well before the zone edge is
however, the width of the peak is larger than the minimumreached. This behavior is similar at other temperatures. We
value Eq.(26) due to finite cutoff time. The position of the also note that at all temperatures the total intenSft¥(q)
peak moves towards lowes as the temperature increases, (not shown is constant withg, whereasS™(q) decreaseas
and the peak broadens slightly. Just above the transition, &’ 2 and crossesS?(q) at a slightly larger momentum
T=0.725, there is still both a strong spin-wave peak and &~1.5—2.
sizeable central peak ®*. At higher temperature, the spin-  Well above the transition, &= 0.8, Fig. 3d), S has no
wave peak disappears completéfgr this low momenturh  noticeable spin-wave peak at small momentum. The strong
and only a large central peak remains. Note that from KTcentral peak rapidly loses intensity with increasing momen-
theory* one would expect complete disappearance of a spintum. In marked contrast, the behavior 8 [Fig. 3e)] is
wave peak at all>Tyr. very similar to that at lower temperatures, with clear but

400
5%(q,0)
300

200 |-

100 P&

A. Spin-wave peak
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100 u T T T 50 T T T T
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40 T T T T 1.0 T T T T
xx L=192 i zz
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20 | L=192 ¢ (¢) T=0.725
5%(q.0) L=06 R s~
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w/J

FIG. 2. Lattice size dependence $fq, ), at fixed momentung==/16. (a) T=0.6,xx component(b) T=0.725,xx component(c)
T=0.725,zz component(d) T=0.8,xx component(e) T=0.8,zz component.

broadened spin-wave peaks. Notice that there is now nonzeand approximately linearly, as shown in the inset, and theo-
intensity at smallw in S?2 Remarkably, at very large mo- retically expected for small.**?” At T<Ty+, w, is the
menta spin waves appear 8* even forT=0.8[Fig. 3(f)],  same forS* and forS*? as expected by theo”f At T=0.8

so that both a central peak and a spin-wave peak are present the other hand, we can only plot the position of the re-
Note that the vertical scale in Fig(f3is 100 times smaller sidual peak inS*? becauses™ has dropped sharply to zero
than in Fig. 3d). There is no noticeable lattice size depen-here, as expected for a KT transition.

dence here.

Figure 4 shows the positioa, of the spin-wave peak as a
function of momentum. The expected linear portion of the
dispersion curve extends to rather large momenta. With in- If we expand the vertical scale in plots 6f%(q,w), we
creasing temperature, the spin-wave velodidy,/d,, which  find that the in-plane componeBt*(q,w) shows rich struc-
is proportional to the spin-wave stiffness, decreases slowlyure in addition to the spin-wave peak. Note that the intensity

B. Additional structure in S**(q, w)
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600 | i
$%q.0) g=271/96 (a) T=0.725
500 F 8| sY g

g=2m/96 (b) T=0.725
SI,[
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(c) T=0.7

100 peak height |
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0.1 1.0

600 T T
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0 'SA4a0000000e:
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S$7(q,w) 1 (e) T=0.8
1 Sll

xx

FIG. 3. Momentum dependence $fq,w) at fixed lattice size&.=192. (a) T=0.725,xx component(b) T=0.725,zz component(c)
T=0.7, height of spin-wave peak as function gf(at L=128), (d) T=0.8, xx component,(e) T=0.8, zz component,(f) T=0.8, xx

component at largqg.

of this structure is typically 107 of the maximum. It is vis-

ible at all temperature$<Tyy. At the lowest temperature,

At large ny, Fig. 5d), individual peaks cannot be distin-
guished; instea®** is nearly constant below the spin-wave

the absolute intensity of this structure is low, but the relativepeak there.[In Figs. §b) and Hc), the data have been

intensity is quite higHsee also, Fig. 1&)]. At higher tem-

smoothened slightly with a resolution function E87) with

perature, the structure becomes rather smeared. No suédw=0.01, in order to reduce the wiggles and allow general

structure can be found i8°4(q,w). The locations of addi-
tional maxima inS** are essentially unchanged withwhen
ng=qL/(2m) is held fixed. Figures (®) and §c) show, on a
logarithmic scale, that for odd values of; there are strik-
ingly regular pronounced peaksat w/ng,3wy/Ng, - .., and
for evenn, such peaks appear at=0.2w,/ng, 4wp/Ng, ... .

features to be identifieflin addition to the regularly spaced
pronounced peaks, there is further “fine structure” S¥,
clearly visible in Fig. %a). In the course of our study, the
additional structure became clearer as the statistical quality
of the data improved; it is apparent that the structure is not
statistical noise. Very close to the spin-wave peak, part of the
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4 . . . obtain estimates for evem,, we conclude that there is in-
deed extra intensity ab=0 which is not attributable to two-

® T=04 spin-wave processes.

P T=0.6
T=0.725
8r T=0.8
C. Finite-size scaling of characteristic frequencywy,

Equation (8) defines the characteristic frequeney, of
18 F — the whole spectrum o0$(q, ). When there is only a single
dw/ dq spin-wave peak, them,, coincides with the spin-wave fre-
] quencyw, . This is the case ak=0.4, where all frequencies
1| 14y 1 A coincide (within error bar$, o "= n'=w*=wy. Closer
12 ) to the transition, intensity betwean=0 and the spin-wave
04 06 7 08 peak grows; therefore the characteristic frequency be-
comes smaller than the spin-wave frequeagy Their dif-
0 1 2 3 ference is thus a measure of the relative weight of non-
q single-spin-wave contributions ®8(q, ). Figure §a) shows
the situation atTy;, where S exhibits large non-single-
FIG. 4. Dispersion relation: spin-wave frequene§* against  spin-wave contributions and ﬁf<w>‘§x,
momentum, at =192 and four different temperatures. Note thatfor ~ Apove the transitionw X is no longer linear in momen-
_T=0.8 only §** has_a noticeable §pin-wave peQ{f.does not. The  tym for smallg, as shown in Fig. @), and differs strongly
;:fgt shows the spin-wave velocity/dq as a function of tempera-  4m the 7z component. The latter still has both a spin-wave
' peak that is linear in momentum, as well as intensity at small
, SO thatw 7y is smaller tharw?.
additional structure may be due to the finite-time cutoff in  The central question ddritical dynamics is that of scal-
our time integration; but most of the observed structure musing, i.e., whether data from lattices of different size match
be due to different reasons. when properly scaled. As mentioned in Sec(2PR)B, we
One simple explanation for the observed rich structurecan test scaling and extract the dynamic critical expozent
which is consistent with the data but for which we have noin two ways, by analyzing the characteristic frequengy,
rigorous theory, is that of multi-spin-wave effects. Of these,or by looking atS(q, w) itself.
two-spin-wave processes are likely to be the most important. We concentrate on the dynamic critical behavior of our
Thus, at a given total momentum we can have either a model atT<Tyy, the critical region, in which the correlation
single spin-wave excitation of momentum) or two spin  length in an infinite system is divergent. The relevant length
waves for which the sum or difference of momenta eqgals Scale on a finite lattice is therefore the lattice dizeand we
The result will then be both a single-spin-wave peak at e&€Xpect scaling for suitable functions gt as described in
characteristic frequenay,(q) as well as additional sum and Sec. Il B. From the analytical results we expect the dynamic
difference peaks due to the two-spin-wave processes. critical exponent to be=1 [Eq. (19)]. _
Of particular interest is the case when the two spin waves !N Figs. 7@ and 7b) we showw iYL* as a function ofjL,
have momenta; andg, that are collinear, so thag=gq; + g, for z=1.00 and at temperatur@s<Tyr. From Eq.(13) we

is a scalar equation. Since the momenta are discrete on expect the data to fall on a single curve if scaling holds. This
finite lattice, g;=ng (277/L), this implies ng=n, +n is indeed exactly the observed behavior at all temperatures
1 | q; ! q qq aqy°

With a_Iinear dispersion .relaf[iom= cq, the difference of the Z;ch;LZT j] g Laslyén ’pftg;t I;::bf, hzxfiqfoéé?fg:éi ?it:ifél)(altlgce
two spin-wave frequencies is them=(2nq1—nq)c(27-r/L), size the dispersion curve flattens whgnbecomes large.
i.e., just the series of additional peakS that are visible in Figg{'herefore ad increases] the data in F|g 7 start to move
5(b) and Fc). away from the asymptotic behavior at progressively larger
Using the measured dispersion relatigig. 4), we have  yalues ofqL. We have also analyzed the scaling behavior for
calculated the frequencies of two-spin-wave excitations congifferent values o, e.g.,z=1.10(not shown in the figures
sisting of the most likely individual spin waves, i.e., those|n that case the data for differentdiverge from each other
with smallest individual momenta. For the caseng=3 and  jmmediately; they do not fall onto a common line even at the
T=0.6, these locations are marked in Fige)5 They are  smallest momenta.
identified by the COOrdinateSql of one of the Spin waves in The Sca”ng curves forwi(nx at all three temperatures
reciprocal space; the sum of the two spin-wave momentd <Ty are very similar, with variation only in their slope. In
must equalq=(3x2#/L,0). The locations of the resultant contrast, we do not observe similar scaling behavioe
excitations agree extremely well with the positions of theat T=0.8 above the transitiotnot shown in the figurgs
small peaks inS(q,w), but we have no way of comparing Analyzing the out-of-plane characteristic frequens§f,
intensities. we found that(for q+0) it has the same scaling behavior as
The presence of distinct small peaks @t0, 2w,/n,,  the in-plane component. At=0.4 the data forw{y and wpy’
4wylng, ... for evenng at T<Tyy complicates the identifi- are indistinguishable. When intensity below the spin-wave
cation of a possible central peak. Interpolating the intensitiepeak grows inS™ at largerT, the scaling curve fow} has
for odd values of, (which do notshow peaks ai=0) to  a smaller slope thaw?;. Interestingly, aff =0.8, above the
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FIG. 5. High-resolution study of the “fine structure” i8*(q,w) for T=0.6,L=192. (a) ng=4. Note that the maximum value of the
spin-wave peak is=160, (b) log plot of S**(q,w) at small odd values ofiy; the data are smoothened, wilw=0.01, (c) log plot of
S(q,w) at small even values of, ; the data are smoothened, with=0.01,(d) S”(q,w) atq=m/2, () ny=3. Vertical arrows show the
location of two-spin-wave peaks formed by spin waves of small momefgjx#(27/L ).

transition, not only are there spin-wave peaks presestin We see that at all temperaturés Ty the data do indeed
but w?? also shows the same scaling behavior as below théall onto a single line within error bars, when we choose
transition, withz=1.0. z=1.00. This is not only true for the spin-wave peak itself,

but for the whole range ofsL*. Only the data from very
small lattices(not shown heredeviate systematically. Even
at T=0.725 the data scale quite well for the valued_ofor

If dynamic finite-size scaling holds, then the scaledwhich we have data. The correlation lengthTat0.725 is
neutron-scattering function itself should fall onto a singlestill very large(see appendix deviations from scaling could
curve for sufficiently large lattices. Corresponding to Eq.presumably be seen if data for much larger lattices were
(12), Fig. 8 showsS*(q,w)/[L*S(q)] versuswL?. available.

D. Finite-size scaling ofS(q, )
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FIG. 6. Characteristic frequenay,, and spin-wave frequency
wp for S*andS? atL=128. (a) T=0.7,(b) T=0.8; (there is no
xx-spin-wave frequencwy* here.

FIG. 7. Finite-size scaling of the characteristic frequency;
wL? is plotted againstL, for z=1.00. (a) T=0.4,(b) T=0.7.

mum integration times. AT=0.7, the spin-wave peak i&*

Note that scaling withwL? implies that at fixedgL and . . .
d P & ghas become wider, and we do observe scaling, as shown in

for large lattices the spin-wave peak is very narrow in unit c "
of . Its width is therefore very sensitive to the time cutoff in ©19: 8(F)- o .
the spin-dynamics integration, and we had to use the ver Above the phase transition, the relevant length scale is the

long-time integrations described in Sec. Il in order to obtain o.rrelatlon lengthé, not t_h(_a Iatyce sizd.. We saw earlier
asymptotic results [Figs. 2d) and Ze)] that finite-size effects are already small

The finite-size scaling behavior is very sensitive to varia-for our lattice sizes. Yet, sgrprisingly, there is Sca”.”.g”"e

tions inz. As an example, Fig.(8) shows that al =0.4 the behavior for small momenta i&* even above the transition,

data do not scale when choosizg1.05, even upon exclud- &S Shown in Fig. &). Note that, at constami, , the horizon-
tal scalewL is proportional tow/q. The data do not scale

ing all lattice sized.<96. Using similar plots, we obtain ) )
9 9 P when differentn, are compared. At large momenta, a spin-

z=0.992) at T=0.4, wave peak is visibl¢see also Fig. @)]. For the out-of-plane
component??[Fig. 9b)], the spin-wave heights do not obey
z=1.002) at T=0.6, the scaling equation, Eq12).
z=1.006) atT=0.7, E. Tests of Nelson-Fisher scaling form; largew behavior
z=1.023) at T=0.725. (29) Nelson and Fish&predicted the scaling form E¢L6) for

S*(q,w):

(The relatively large error fof =0.7 is a consequence of the
limited amount of data available at this temperaturdt is
remarkable that the dynamic critical exponent is the same
across this range of temperatures, whereas the static expo-
nent » varies strongly, from#7=0.0822) at T=0.4 to This provides an explicit opportunity to compare data at dif-
7=0.2476) at T=0.7 (see the Appendix ferent temperatures and at different valuesngf Equation

The zz component ofS(q,w) is extremely narrow at (16) implies the finite-size scaling equatigh2) used in the
T=0.4 andT=0.6, and cannot show scaling given our maxi- previous section, witlz=1:

()~ s W[ 2
> lea)t
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FIG. 8. Finite-size scaling of the neutron-scattering func&t S(q,»)/[L?S(q)] is shown versus.L?, with constaning=qL/27=2.

The critical exponent ig=1.00 in(a)—(d) and(f).
son,(f) T=0.7,zz component.

S(q,w) 1 ¥ (w/cq)
LS%(q) cql [¥(w/cq)d(w/cq)

—f(qL,wL).
(29

It also implies

S*q,w) ¥ (w/cq) o
°4 5% q) ‘f\wwcq)d(w/cq)‘f(E) (30

(& T=0.4,(b) T=0.6,(c) T=0.7,(d) T=0.725,(e) T=0.4, withz=1.05 for compari-

for large enough lattice sizds, for which Eq.(16) is valid.

[Note that whem,=qL/27 is constant, the argumenig.
in Eq. (29) and w/cq in Eq. (30) are equivalent.

In Fig. 10@ we use Eq.(30) to compare the in-plane
scattering functior8** at different temperatures, for constant
ny=2. The same data appear unscaled in Fg), and with
dynamic finite-size scaling in Fig. 8. Obviously, E§O) is
not satisfied: the scattering function at different temperatures
within the KT phase does not scale to the same shiafe
cq). This is also the case at other valuesngf
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: T=04
0.06 sob 4 5%(q.0) (a) |
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FIG. 9. Finite-size scaling plot &(q, ) for T=0.8, with con- FIG. 10. Tests of the Nelson-Fisher scaling form, Bdy). (a)

stantng=qL/27=2. (a) S, (b) §% Different temperaturegb) Different values ofny .

out-of-plane correlation§** (not shown also decay with a
power law with momentum-dependent exponents.
Equation(16) also implies

Different values ofn, are compared in Fig. 1D), at
T=0.7. Again, the data doot scale. Moreover, the depen-
dence of the spin-wave peak @ is not monotonous: for
increasingn, the peak height first grows, is approximately »
constant forn,=3...8, and then shrinks. As, becomes q3"’S""(q,w)=\P(a). (32)
large, there is growing intensity below the spin-wave peak
[see also Fig. @)]. Note that Eqs(16) and(30) are at odds  |n Fig. 12 we use Eq(31) to compare data for different
with the fact that the additional peaks we observedi  momentaq, at the KT phase transition temperature, using
(Sec. IV B) have positions which do depend op. The data  ;)=0.25 and constant, . Here the data do scale. This scaling
in Fig. 10b) have been obtained with constant time cutoffis aiso implied by dynamic finite-size scaling, FigcB to-
teuor=360. The picture is virtually unchanged when datagether with a functional dependen8&(q)~q” 2 Note that

With teye~1/cq (@nd teyr sufficiently large are used. A for constant. [instead of constant,], we obtain a nonscal-
similar comparison at other temperatules Ty shows still  jng picture indistinguishable from Fig. {8).

stronger deviations from scaling.

For large frequenciesS(q,w) appears to be independent
of lattice size. We shov&™ on a log-log scale in Fig. 11,
with data scaled similarly as in Fig. 10. Nelson and Fiher In Fig. 13 we compare our results with theoretical predic-
predict thatS™ is also independent of momentum and fol- tions for the shape &**(q, ). We show data at =0.7, for
lows a power laww™*, with p=3—7 [Eqg. (18)]. We see L=128 andg=/32, normalized according to E¢30), and
somewhat different behavior, which is determined mainly bywe compare with predictions using=1/4, similarly normal-
ng. For ng=2, Fig. 1Xa), the data can be fitted with ized.
p=3.0(1) at all temperatures. Note the sizeable structure at The predictions by Nelson and Fisher and by Villain both
low T. For largerng, Fig. 11b), p increases. There is also have a pole at the spin-wave pefkgs. (14) and (17)], as
noticeable curvature im, with largerp at higherw; p also ~ shown in the figure. In order to compare better with our data
increases slightly with temperature. The exponents in Figwhich have been obtained with a time integration of finite
11(b) range from 3.71) at ny=4 to 5.42) at n,=24. The length, we also tried to convolute the predictions with the

F. Line shapes
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FIG. 11. Large frequency behavior 8%, plotted on a log-log
scale in Nelson-Fisher scaling form, H46). The data are smooth-
ened, with dw=0.015. (a) Different temperatures(b) Different

values ofng.
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FIG. 13. Comparison of the line shape $f(q,w) with theo-
retical predictions. Data are &t=Ty, L =128, andy= /32 (thick
line), and are normalized according to E§0). The two thin lines
represent the predictions by Nelson and Fisher, (E6). (continu-
ous line and by Villain, Eq.(14) (dashed ling both with =0.25.
The thick dashed line is obtained by a fit to the data wittadrnoc
function related to the Nelson-Fisher forfeee text The inset
shows the data and predictions on a log-log plot that includes large
values ofw.

Fourier transform of a finite-time cutoff at,,+=360. The
resulting functions(not shown exhibit very strong oscilla-
tions [size=0(0.5], and a spin-wave peak that is much
higher(about 3.7 and more narrow than that of the data. We
conclude thaS™(q,t) decays much faster in time than pre-
dicted. As mentioned before, the rich structureSti(q, )
below and above the spin-wave peak that was described in
Sec. IV B had not been predicted, except fgsmall central
peak, Eq.(21), foreseen by Menezes, Pires, and Gaire

Since the Nelson-Fisher prediction does not agree well
with the data at the spin-wave peak, we tried to find a func-
tional form which does fit these data reasonably well and
should thus be an approximation to the actual form, so that
our data can more easily be compared to the results of future
theoretical calculations. We found that a modified form of
Eq. (30) works well, namely a widening of Eq30) with a
Gaussian resolution function E7), with éw a free param-
eter. Around the spin-wave peak we obtained fairly good
agreement with oufunconvoluted data, as shown by the
thick dashed line in Fig. 13, which usé®=0.01. However,
different values ofSw in the modified function are necessary
to describe the data at different. The modified function
can of course not describe the additional structure in
S*(q,w), including the central peak.

The large frequency behaviaf the data is shown in the
inset in Fig. 13. The prediction by Nelson and Fisher agrees
with the data at large frequencies qualitatively. However, as
described in Sec. IV E, a fit t8*%(q, ) for largew results in
a different power-law exponent than predicted. Not surpris-
ingly, at large frequencies the prediction by Villain, intended
for the spin-wave peak divergence, does not describe the data
correctly. We conclude that below and above the transition,
the actual line shape is quite different from the predicted

FIG. 12. Test of the Nelson-Fisher scaling form, for different forms, with a much wider spin-wave peak, and a lot of ad-

lattice sized..

ditional structure.
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Above the transitionthe theoretical predictions Eq2)
and(23) do nX?(t describe the (_jata well elyher. Eor the in-plane cm L -\\--...:__\_____‘0.26
componentS*™* we see two different regimes ia. At small
w, it is compatible with a Lorentzian-like peak(w?+a) ~°, r P——
but with an exponenb that is momentum dependefe.g., 0.25
b~1.1(1) at q=7/48, b~0.432) at q=/16]. At large w, “*‘*-\“‘“—‘..‘,.,__
S** decays with a power law-w~ ¢, with c=3.2(2) for small sl
momenta[see Fig. 14a)]. The out-of-plane componer®*
does not show the predicted central peak at all; instead it
exhibits a spin-wave peak.

T‘l =
0.26
0.25
0.24
We have performed the first high precision study of the 0.01 01 L !
dynamic critical behavior of th&XY model, at five different
tgmperatures below, at, and abolegr , 9” square Ia_tt_tlces of FIG. 14. Finite-size scaling plot of the static correlation function
size up to 19X192. We have determined the critical tem- cxxy 4t T=0.7~T,;, using three different estimates for
perature to bel' =0.700(5))/kg . Starting from about 1000
equilibrium configurations generated by an efficient Montegy,qy will thus serve to stimulate further effort in this area.
Carlo procedure at each temperature and lattice size, we have
integrated the equations of motion of the spins to very large
times, t,,,=400 J1, and measured space-displaced, time-

displaced correlation functions to compute the neutron- We are indebted to Kun Chen for the initial version of the
scattering functiors(q, o). spin-dynamics program, and to Alex Bunker for helpful dis-
At temperatures up tdyr, S(q,w) exhibits very strong cussions. We would like to thank the Pittsburgh Supercom-
and sharp spin-wave peaks in the in-plane compo&ht  puter Center for its support; all of our computer simulations
As T increases, they widen slightly and move to lowebut  were carried out on the Cray C90 at Pittsburgh. This research

remain pronounced even just aboligr . For increasing mo-  was supported in part by NSF Grant No. DMR-9405018.
mentum they broaden and rapidly lose intensity. Well above

Ty7, the spin-wave peak disappears3ff, as expected, and
we observe a large central peak instead.

In addition to the spin-wave peak, the in-plane component The determination of the transition temperatureXi-
S exhibits a rich structure of small intensity, which we like systems has been notoriously diffictit The best previ-
interpret to come from two-spin-wave processes. Furthereus estimatefor T, for the model considered here was
more, S shows a clear central peak, even beldy;, Tyr=0.725-0.010, estimated from the onset of vortex-pair
which becomes very pronounced towards the critical temunbinding, which is a procedure that is quite difficult to ap-
perature. Neither this strong central peak nor the additiongbly with high precision. The results of our high-resolution
structure are predicted by existing analytical calculations. spin-dynamics study af=0.725 prompted us to perform a

The out-of-plane componest” is much weaker tha8*, more accurate determination g, using the powerful hy-
except for largeg. It displays a sharp spin-wave peak at all brid Monte Carlo algorithm described in Sec. IIl.

V. CONCLUSIONS

ACKNOWLEDGMENTS

APPENDIX: STATIC CRITICAL BEHAVIOR

temperatures, even abovigr. The peak widens with in- We carried out a set of static Monte Carlo simulations,
creasing temperature, and only at IGws it consistent with ~ with lattice sizesL=64, 128, and 256, and 40 000 hybrid
a &function shape. Monte Carlo sweeps in each run. We then analyzed the static

We measure the dispersion relation, i.e., the position otorrelations C(r)=1/2(S*(0)S*(r) +<(0)S(r)) in three
the spin-wave peak as a function of momentum, to be lineadifferent ways:(i) using finite-size scalingdji) with a fit to a
to high accuracy. Its slope, the spin-wave velocity, decreasgsower-law decay, angii) with a fit to the free lattice propa-
with increasing temperature approximately linearly, as exgator. The results of all three methods are in excellent agree-
pected from approximate analytical results at sriall ment.

Examining dynamic finite-size scaling, we show that both  The finite-size scaling ansatz for the correlation function
the characteristic frequency,, and the neutron-scattering is?®
function §(q, w) itself scale very well for all<Tyr, with a

dynamic critical exponent af=1.004) that does not depend el T
on temperature, whereas the static exponentvaries C(r,L)=r 7fl L™, |, (A1)
strongly.

The shape of the scaling function is not well describedwheret is the reduced temperature<(|1—T/T,|), andv the
around the spin-wave peak by the available theoretical prezorrelation length exponent. Since our model is critical
dictions, nor is the shape of the scattering function above théhroughout the KT phase, we hate0 for all T< Ty . With
transition, and the additional structure had not been predictethe correct value ofy, the data for different lattice sizes
at all. The data which we have presented here are of suffshould therefore coalesce on a plot@r)L” versusr/L.
ciently high quality that meaningful comparison with theory Figure 14 shows such plots @=0.7, for =0.24, 0.25, and
and experiment is possible. We hope that this spin-dynamic8.26. Choosingy=0.25 results in very good scaling over the



12 316 HANS GERD EVERTZ AND D. P. LANDAU 54

whole range of distances At lower temperatures, scaling of fication. Assuming that logarithmic corrections are indeed
similar quality is achieved with smaller values g@f At a  negligible, we obtain as our combined results from all three
slightly higher temperature of =0.71, however, we ob- methods

served only mediocre scaling, with an effectiyef 0.291),

but with small systematic deviations from scaling already 7=0.0822) at T=0.4,
visible. At T=0.725, the deviations from scaling are stronger
still. 7=0.1535) at T=0.6,
Independent estimates of were obtained from simple _ _
power-law fits C(r,L)~r~7, for lattice sizeL=256, and 7=0.2476) at T=0.7. (Ad)

' max=20. The results fom depend only very little on the fit We note that the expected linear dependence oh T be-
range, and agree within error bars with those from finite-sizéow T, does not seem to be satisfied at these temperatures
scaling. in our model.

A simple power-law ansatz ignores the fact t@4t,L) is Both from assumingy=1/4 atT,;,* and from the differ-
actually periodic ir with periodL. The full functional form  ent qualitative behavior o€(r,L) for T=0.710, we con-

can be deduced from the fact that within the KT phase, thelude that the Kosterlitz-Thouless transition temperature is
model is thougHt?®® to behave like a free field theory, for

which the exact finite lattice propagat¢orrelation func- Tkr=0.7005)J/Kg . (AS5)

. . “ ” 129
tion) at an effective “temperature” ¥fis This estimate is slightly below the value frémvhich we had

C(r,L)=exg — #I'(r,L)], (A2) used at the start of the spin-dynamics study, and clearly be-
_ low the estimate of Ref. 30.

with Slightly above the KT transition, at=0.725, the dy-
I(r.L) namic behavior oS(q,g)) in our _study resembles that 8k

' (whereas aff=0.8 it is very different. This may be ex-
L—1 plained by looking at the correlation lengths: The correlation
> 1—cograx(2m/L)] function atT=0.725 can be fitted by an Ornstein-Zernike
=0 4-2 cogqy(2@/L)]—2 cogqy(27/L)] form

(A3)

2,1/

We also used this functional form to fit(r,L). The results L(r)~r~*% (A6)
for different lattice sizes and different fit rangésp to  with a value of§&=0(400). Since this correlation length is
r=_L/2 and excluding <5) agreed with each other and with larger than the lattice sizes we have used in our study, a
the results from finite-size scaling. The quality of fits wasbehavior resembling the KT phagehere =) is not sur-
very good for allT<0.70, whereas for larger temperatures prising. A similar (approximatg fit at T=0.8, on the other
(T=0.71 and aboveit deteriorated strongly, and the results hand, givesé=0(10), much smaller than our lattice sizes.
became lattice size dependent. After our work was completed, we received a paper by Cuc-

We have found no evidence for logarithmic corrections. Itcoli, Tognetti, and Vai#l with a Monte Carlo study of the
is possible that small corrections are present and introduce satics of our model. Their results are in excellent agreement
subtle bias. In this case our results fpwould need modi-  with ours.

N

™
=72
Lq
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