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Using spin-dynamics techniques we have performed large-scale computer simulations of the dynamic be-
havior of the classical three componentXY model ~i.e., the anisotropic limit of an easy-plane Heisenberg
ferromagnet!, on square lattices of size up to 1922, for several temperatures below, at, and aboveTKT . The
temporal evolution of spin configurations was determined numerically from coupled equations of motion for
individual spins by a fourth-order predictor-corrector method, with initial spin configurations generated by a
hybrid Monte Carlo algorithm. The neutron-scattering functionS(q,v) was calculated from the resultant
space-time displaced spin-spin correlation function. Pronounced spin-wave peaks were found both in the
in-plane and the out-of-plane scattering function over a wide range of temperatures. The in-plane scattering
function Sxx also has a large number of clear but weak additional peaks, which we interpret to come from
two-spin-wave scattering. In addition, we observed a small central peak inSxx, even at temperatures well
below the phase transition. We used dynamic finite-size scaling theory to extract the dynamic critical exponent
z. We findz51.00~4! for all T<TKT , in excellent agreement with theoretical predictions, although the shape
of S(q,v) is not well described by current theory.@S0163-1829~96!00442-0#

I. INTRODUCTION

The two-dimensionalXY model is one of the ‘‘special’’
models of magnetism. It undergoes an unusual phase transi-
tion to a state with bound, topological excitations~vortex
pairs! but no long-range order.1 The ~three component! XY
model may be viewed as a special case of the anisotropic
Heisenberg model in which the coupling between thez com-
ponents of spins vanishes. It has static properties which are
similar to those of the ‘‘plane rotator’’ model, in which the
spins have only two components. The static properties of
both models have been determined by numerical
simulation2–4 and found to be consistent with the predictions
of the Kosterlitz-Thouless theory. For example, the suscep-
tibility shows an essential singularity instead of a power-law
divergence, and computer simulations show that vortex pairs
unbind atTKT . The model is critical, i.e., it has infinite cor-
relation lengthj, at all temperaturesT<TKT . The spin-spin
correlation function decays algebraically with distance for all
T<TKT , but with a powerh which varies with temperature.

The dynamic behavior of the model should be governed
by the dynamic critical exponentz, which describes the di-
vergent behavior of the relevant time scale,5 i.e., t}jz for all
T<TKT . Recently, finite-size scaling for critical dynamics in
the neutron-scattering function has been developed,6 and
successfully applied to the study of a three-dimensional
Heisenberg ferromagnet. TheXY model has true dynamics
which can be determined by integrating the equations of mo-
tion for each spin; its critical dynamics has been studied
theoretically7–10 with different predictions for the nature of
the neutron-scattering function. In contrast, the ‘‘plane rota-
tor’’ model does not possess equations of motion; it has only
stochastic, i.e., purely relaxational time dependence, which

has also been examined by Monte Carlo simulation.4 Note,
however, thatdifferentdynamic exponents are expected for
stochastic and for true dynamics.5

In this paper we present the first large scale simulation
study of the true dynamic behavior of theXY model. Great
care was taken to ensure that statistical as well as systematic
errors were both well understood and quite small. An earlier,
much less complete study11 indicated a rich structure in the
neutron-scattering function which was not adequately de-
scribed by theory. Our model is defined by the Hamiltonian

H52J(
NN

~Si
xSj

x1Si
ySj

y!, ~1!

where Si is a three-componentclassical vector of length
unity and the sum is over all nearest-neighbor pairs. The
equation of motion of each spin is11

d

dt
Si5Si3Heff , ~2!

where

Heff52J(
NN

~Sj
xêx1Sj

yêy!, ~3!

and êx and êy are unit vectors in thex and y directions,
respectively. Equation~2! represents a set of coupled equa-
tions and can be integrated numerically.@The plane rotator
model has a Hamiltonian of the same form as Eq.~1!, but
since the vectors have onlytwo components, an equation of
motion cannot be defined in the same way as for theXY
model.#
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In Sec. II we define the neutron-scattering function, pro-
vide dynamic finite-size scaling equations, and summarize
analytical results. Section III describes the details of our
simulations. We present our data and subsequent analysis in
Sec. IV, and draw conclusions in Sec. V.

The results of our dynamic study prompted us to reexam-
ine the static properties of the model. In order to obtain more
reliable values for the critical temperature and the static criti-
cal exponenth, we carried out static Monte Carlo simula-
tions; our results are presented in the Appendix.

II. BACKGROUND

A. Neutron-scattering function S„q,v…

The neutron-scattering functionS(q,v) ~also called the
dynamic structure factor! is an experimental observable and
is fundamental to the study of spin dynamics. It is defined6

for momentum transferq and frequency transferv as the
space-time Fourier transform

Skk~q,v!5(
r ,r8

eiq•~r2r8!E
2`

1`

eivtCkk~r2r 8,t !
dt

2p
~4!

of the space-displaced, time-displaced spin-spin correlation
function

Ckk~r2r 8,t2t8!5^Sr
k~ t !Sr8

k
~ t8!&, ~5!

wherek5x, y, or z is the spin component, displacementr is
in units of lattice spacings, and the angle brackets^•••& de-
note the thermal ensemble average. Note that in the two-
dimensional XY model, ^Sr

k(t)&[0 for all components
k5x,y,z. The equations of motion~2! are time-reversal in-
variant, thereforeCkk~r2r 8, t2t8! is symmetric int and t8,
andS(q,v) is real valued.

The neutron-scattering function generally depends on the
correlation lengthj and may be written in the form12

Sj
kk~q,v!5

1

vm
kk~q,j!

Sj
kk~q! f kkS v

vm
kk~q,j!

, q,j D , ~6!

whereSj
kk~q! is the total intensity given by

Sj
kk~q!5E

2`

`

Sj
kk~q,v!dv, ~7!

and f kk is a normalized shape function,*2`
` f kk~x, q, j!dx51.

The characteristic frequencyvm
kk~q,j! is a median frequency

determined by the constraint

1

2
Sj
kk~q!5E

2vm
kk

vm
kk

Sj
kk~q,v!dv. ~8!

In dynamic scaling theory it is assumed that the median fre-
quencyvm

kk~q,j! is a homogeneous function ofq andj, i.e.,

vm
kk~q,j!5qz

kk
Vkk~qj!, ~9!

wherezkk is the dynamic critical exponent andVkk is another
shape function, and that the functionf kk depends only on the
product of qj but not on q and j separately. Therefore
Sj
kk~q,v! as given in Eq.~6! simplifies to

Sj
kk~q,v!5

1

vm
kk~qj!

Sj
kk~q! f kkS v

vm
kk~qj!

, qj D . ~10!

Note that thez component of the magnetization is con-
served during the time evolution. Thus the neutron-scattering
function Sj

kk~q,v! can be regrouped in terms of symmetry
into the out-of-plane componentSzz and the in-plane compo-
nent

Sj
xx~q,v!5Sj

yy~q,v!, ~11!

with different physical behavior.~As reported in Secs. IV C
and IV D, we find that for the two different components the
exponentz is the same, but the scaling functionsV and f
differ.!

B. Dynamic finite-size scaling

At the critical temperatureTKT and below, theXY model
is expected to be critical, with infinite correlation lengthj. In
this region the dynamic critical exponentz can be extracted
by using the dynamic finite-size scaling theory developed by
Chen and Landau.6

These authors also introduced a frequency resolution
function in order to smoothen the effects of finite length of
time integration, which was not necessary for most of the
analyses in our study because of much longer integration
times ~see Sec. III!. Their dynamic finite-size scaling
relations6 can then be simplified to

SL
kk~q,v!

LzSL
kk~q!

5Gkk~vLz
kk
,qL! ~12!

@replacing a factorv in front of SL
kk(q,v)#, and

vm
kk~q,L ![vm

kk~qL!5L2zkkVkk~qL!, ~13!

analogous to Eqs.~9! and ~10!.
We see that two different ways emerge to test dynamic

scaling and to estimate the dynamic critical exponentz:
Firstly, from Eq.~13!, z is given by the slope of a graph of
ln vm versus lnL at fixed value ofqL. Secondly, Eq.~12!
implies that for correctly chosenz and at fixed value ofqL,
graphs of @SL

kk~q,v!/LzSL
kk~q!# versusvLz should all fall

onto the same curve for different lattice sizes. Both proce-
dures will only be valid for sufficiently large lattice size.

C. Analytical results

The dynamics of two-dimensional ferromagnets with
easy-plane asymmetry, specifically theXY model, were ana-
lyzed by Villain7 and by Moussa and Villain.13 The in-plane
scattering function was found to have ad function spin-wave
peak at low temperature, and a spin-wave peak of the form

Sxx~q,v!;
1

uv2vqu12h/2 ~14!

close toTKT . Hereh(T) is the critical exponent describing
the decay of the static spin-spin correlation function~and we
now expecth51/4 atTKT!.
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Nelson and Fisher8 treated the classicalXY model in a
fixed length hydrodynamic description forT<TKT , without
vortex contributions. They obtained the transverse spin-spin
correlation function,

Cxx~r ,t !;
1

r h FhS ctr D ,
Fh~y!5 H 1,~y1Ay221!2h,

y,1
y.1 ~15!

for r ,ct@1 and ctÞr , wherec is the spin-wave velocity.
The Fourier transform of Eq.~15! has the form

Sxx~q,v!;
1

q32h CS v

cqD , ~16!

where the scaling functionC behaves like

C~y!;
1

u12y2u12h ~17!

around the spin-wave peak, and

Sxx~q,v!;vh23 ~18!

for large values ofv/cq.
Nelson and Fisher also predicted that the dynamic critical

exponentz, Eq. ~9!, which is expected5 to be z5d/2 for
d.2, is

z51 for d<2. ~19!

Note that the valuez51 and alinear dispersion relationare
also implicit in the argumentv/cq of the scaling functionC
in Eq. ~16!. Finally, both Villain and Nelson and Fisher
predicted a very narrow~d function! spin-wave peak in the
out-of-plane functionSzz, atv5cq.

More recently, Menezes, Pires, and Gouveˆa9 have per-
formed a low-temperature calculation which includes the
contribution of out-of-plane fluctuations to the in-plane cor-
relation functions. They worked in the harmonic spin-wave
approximation which is justifiable for large spins and there-
fore also for our classical spins, and they used a projection
operator technique. They found a spin-wave peak similar to
that of Nelson and Fisher,

Sxx~q,v!;h2
1

q3uv̂uu12v̂2u
, if He21/h!k!p and

e21/h!u12v̂2u!p,
~20!

where v̂5v/(cq). In addition to the spin-wave peak, they
found a logarithmically diverging central peak, i.e., a signal
at very smallv, which diverges like

Sxx~q,v!;
1

q

1

lnuv̂u
1~ less divergent terms!. ~21!

Of course, a central peak at small temperature can also be
caused by other mechanisms, for example vortex pairs dif-
fusing like a dilute pair of solitons.10

The dynamic behavior of theXYmodel is differentabove
TKT . For a phase transition of the Kosterlitz-Thouless type,
the spin stiffness should drop discontinuously to zero atTKT ,
i.e., the spin-wave peak is predicted to disappear.8,14 Above

TKT , vortex-antivortex pairs unbind, and their diffusion leads
to a strong central peak inS(q,v).

Mertens and co-workers15,16 calculatedS(q,v) above
TKT , assuming an ideal dilute gas of unbound vortices mov-
ing in the presence of renormalized spin waves, and screened
by the remaining vortex-antivortex pairs. They found a
Lorentzian central peak forSxx,

Sxx~q,v!;
g3j2

~v21g2@11~jq!2# !2
, ~22!

and a Gaussian central peak forSzz,

Sxx~q,v!;
nvū

q3
e2~v/ ūq!2, ~23!

whereg51/2Apū/j, ū is the rms vortex velocity,j the cor-
relation length, andnv;~2j!22 the free vortex density; and
they compared their results to numerical simulations~see
below!.

D. Previous numerical work

Gerling and Landau11 carried out spin-dynamics simula-
tions on theXY model with L<204 and found both spin-
wave peaks and a central peak. The resolution was too lim-
ited, however, to allow quantitative comparison with theory
or to extract an estimate for the dynamic exponent.

Mertens and co-workers15,16 performed spin-dynamics
simulations, with fixed system sizeL5100 and very low
statistics~three starting configurations! atT50.5 andT51.1.
Below Tc they observed only spin-wave peaks in bothSxx

andSzz; aboveTc they saw a strong central peak and a weak
spin-wave peak inSxx, and vice versa inSzz. The width and
intensity of the central peaks were compatible with Eqs.~22!
and ~23!.

Other earlier numerical work on dynamical behavior has
been exploratory.17,18

E. Experiments

The closest physical realizations of theXYmodel are ma-
terials with very large anisotropy, more generally described
by strongly anisotropic Heisenberg models. Several experi-
ments have studied the dynamics of such materials,19,20 like
Rb2CrCl4, K2CuF4, and CoCl2.

In a recent study on stage-2 CoCl2 intercalated graphite,
Wiesler, Zabel, and Shapiro19 found four temperature re-
gimes with different behavior. There are indications of a
Kosterlitz-Thouless~KT! transition at a temperature ‘‘Tu ,’’
though some properties disagree with KT predictions. Be-
tween temperaturesTl and Tu , they observed spin-wave
peaks. It is not clear whether the central peak is present
there. ~In this temperature region the long-range part of the
scattering function shows true two-dimensional character,
whereas forT,Tl , three-dimensional correlations develop.!
Above Tu , the in-plane scattering function showed the ex-
pected central peak, and the out-of-plane function exhibited
damped spin waves.

In experimentally available materials both defects and the
effects of residual three-dimensional couplings limit the ef-
fective size of the two-dimensional KT-like system to
Lexp5O~100! lattice spacings.21,19 Remarkably, this size is
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similar to the lattice sizes of the present numerical study. For
further discussion and an extensive listing of relevant litera-
ture, see the recent overview contained in Ref. 19.

III. SIMULATIONS

We have studied the two-dimensional classicalXYmodel
with Hamiltonian given in Eq.~1! on L3L lattices with pe-
riodic boundary conditions for 16<L<192, at temperatures
T50.4, 0.6, 0.7, 0.725, and 0.8 in units ofJ/kB . Most of
these temperatures are in the critical region
T&TKT50.700~5! ~see the Appendix!.

Equilibrium configurations were created at each tempera-
ture using a Monte Carlo method which combined cluster
updates of thex and y spin components~using the Wolff
embedding method22,23! with vectorized Metropolis and
over-relaxation24 spin reorientations. After each single-
cluster update, two Metropolis and eight over-relaxation
sweeps were performed. Use of the cluster algorithm was
important, since critical slowing down was severe for most
of our simulations; the inclusion of cluster flipping reduced
Monte Carlo autocorrelation times atL5192 andT50.6
from more than 300 to about three hybrid sweeps, while
requiring only a factor of 2 more CPU time per sweep. We
performed 200 hybrid sweeps between equilibrium configu-
rations, and discarded the first 5000 hybrid sweeps for equili-
bration.

Between 500 and 1200 equilibrium configurations were
generated for each lattice size and temperature. We found
this many configurations to be necessary in order to suffi-
ciently reduce statistical errors in the resulting neutron-
scattering function. The error bars in our figures represent the
statistical errors for averages over the equilibrium configura-
tions, drawn from the canonical ensemble.

Starting with each equilibrium configuration, the time de-
pendence of the spins was determined from the coupled set
of equations of motion, Eq.~2!, and was integrated numeri-
cally using a vectorized fourth-order predictor-corrector
method,6 with a time step size ofdt50.01J21. The maxi-
mum integration time was generallytmax5400J21; a few
runs were also performed for lattice size 2563256 with
tmax5800J21 and produced the same physical results.

The time-displaced, space-displaced spin-spin correlation
functionsC~r2r 8,t2t8!, Eq. ~5!, were measured for each
time integration, with

0<t8<0.1tmax and 0<~ t2t8!<tcutoff[0.9tmax,
~24!

and were then averaged. By Fourier transformation in space
and in time, Eq.~4!, we obtained the neutron-scattering func-
tion S(q,v). The time integration in Eq.~4! was performed
using Simpson’s rule, with a time step of 0.1J, which has
been shown6 to be sufficiently small.

To reduce memory and computer time requirements, we
restricted ourselves to momentaq5~q,0! and ~0,q!, with q
determined by the periodic boundary conditions,

q5nq
2p

L
, nq51,2,...,L, ~25!

and data from these two spatially equivalent directions were
averaged together to further enhance the statistical accuracy.

We used fast-Fourier transforms to increase the efficiency of
the program in calculating correlation functions.

The frequency resolutionDv of our results is determined
by the time integration cutofftcutoff50.9tmax, see Eq.~24!,
which will introduce oscillations of period 2p/tcutoff into
S(q,v). Since we observed very sharp spin-wave peaks~see
Sec. IV A!, we chose to integrate the equations of motion to
very large times. We usedtmax5200J21 for L<96, and
tmax5400J21 for L>128. A theoreticald function in fre-
quency will then become a widened peak with a width at half
maximum of

Dv'1.2
p

tcutoff
5 H0.021J,0.010J,

L<96
L>128 ~26!

in the simulation data. To smoothen the oscillations, previ-
ous spin-dynamics studies11,6 have employed a frequency
resolution function, replacing

Ckk~r ,t ! by Ckk~r ,t !expS 2
1

2
~ tdv!2D ~27!

to computeS(q,v). Because of the large values oftmax in
our study, we achieved a very small frequency resolution
Dv, and the oscillations were not noticeable for most of our
data. We therefore did not generally use a frequency resolu-
tion function and could significantly simplify the analysis of
our data.

The numerical integration of the equations of motion can
potentially become unstable at very large integration times.
We checked that for our calculations, in which we integrate
to much larger times than previous studies, we do not en-
counter this problem. We verified that the constants of mo-
tion ~energy and magnetization inz direction! do remain
constant, with a relative variation of less than 331026. We
also verified that the neutron-scattering function remains vir-
tually unchanged when an additional integration of length
t5200J21 is performed from each equilibrium configuration
before starting to calculate time-displaced spin-spin correla-
tion functions. All simulations were carried out using highly
vectorized programs on the Cray C90 at the Pittsburgh Su-
percomputing Center.

IV. RESULTS

We now present our results for the dynamic structure fac-
tor S(q,v), its dependence on temperature, frequency, mo-
mentum, and lattice size, and we analyze its dynamic scaling
behavior. With few exceptions we have analyzed the data
without the use of a frequency resolution function Eq.
~27!. ~The effects of such a function, and of integrating to
shorter maximum times are described together with initial
results in Ref. 25.!

In order to investigate theXY model in the critical phase,
we chose several temperaturesT<TKT , including the best
previous estimate ofTKT'0.725J/kB ,

2 and one temperature
well above the transition,T50.8J/kB . The results of our
analysis prompted us to perform additional static Monte
Carlo studies, which are described in the Appendix. They
provided an improved estimate ofTKT50.700~5!J/kB . In or-
der to elucidate the situation closer to the transition, we per-

54 12 305CRITICAL DYNAMICS IN THE TWO-DIMENSIONAL . . .



formed additional~but less extensive! spin-dynamics simula-
tions atT50.700J/kB .

A. Spin-wave peak

Figure 1 shows the temperature dependence ofS(q,v) as
a function ofv, for lattice sizeL5128 and fixed small mo-
mentumq5p/48 @i.e., nq52 in Eq. ~25!#. Here, as in other
results which we shall show, the error bars are determined
from the statistical variation of results obtained from differ-
ent initial spin states. The in-plane componentSxx, Fig. 1~a!,
exhibits a very strong and moderately sharp spin-wave peak
at temperaturesT&TKT . Even at the lowest temperature,
however, the width of the peak is larger than the minimum
value Eq.~26! due to finite cutoff time. The position of the
peak moves towards lowerv as the temperature increases,
and the peak broadens slightly. Just above the transition, at
T50.725, there is still both a strong spin-wave peak and a
sizeable central peak inSxx. At higher temperature, the spin-
wave peak disappears completely~for this low momentum!
and only a large central peak remains. Note that from KT
theory1 one would expect complete disappearance of a spin-
wave peak at allT.TKT .

There is sizeable additional structure inSxx away from the
spin-wave peak at temperatures up toTKT . We will discuss
this structure in the following subsection.

The out-of-plane componentSzz, shown in Fig. 1~b!, is
two orders of magnitude weaker than the in-plane compo-
nent. It exhibits a very sharp spin-wave peak forT<TKT ,
whose width is limited by ourv resolution. The finite time
cutoff Eq. ~26! produces very noticeable oscillations in
S(q,v). ~The magnitude of these oscillations is minute
compared to the intensity of the spin-wave peaks inSxx.! The
oscillations can be smoothened by convolutingS(q,v) with
a Gaussian resolution function in frequency, as is shown in
the inset. No central peaks are visible inSzz at T<TKT . At
T50.725, the peak inSzz is still present, with a larger width
similar to that inSxx. In contrast toSxx, there is a clear, but
weak, spin-wave peak inSzz even atT50.8.TKT and small
momentum. It is of similar intensity as the peak at lower
temperatures.~See also Sec. II E.!

Figure 2 shows the lattice size dependence ofS(q,v), at
fixed momentumq5p/16. Below the transition, Fig. 2~a!,
the intensity of the spin-wave peak depends strongly on lat-
tice size, whereas its position is constant.~The out-of-plane
componentSzz is dominated by finite time cutoff effects for
T,TKT , and we do not show it here!. Just above the tran-
sition, atT50.725, the spin-wave peak inSxx appears to gain
intensity slightly asL increases, whereas neither its central
peak nor the spin-wave peak inSzz show any finite-size ef-
fects. At higher temperature, Figs. 2~d! and 2~e!, there is no
visible lattice size dependence in eitherSxx or Szz. Notice the
two different vertical scales forSxx andSzz. Data taken for
L516 andL532 exhibit such strong finite-size rounding that
we have chosen not to show the data here.

In Fig. 3 we show the momentum dependence ofS(q,w).
Figures 3~a! and 3~b! display the behavior atT50.725,
which is qualitatively similar to that at lower temperatures.
The position of the spin-wave peak is the same forSxx and
Szz and is proportional to momentum for smallq. As q in-
creases, the peak broadens, and becomes less intense, yet it
remains well defined. The additional structure inSzz is
strongly momentum dependent, as will be discussed below.

For the zz component, both the total intensity and the
relative loss of intensity with increasing momentum are
much smaller. Ourv resolution dominates the width of the
spin-wave peak inSzz only at the smallestq ~which also
appears in Fig. 1!; it is not dominant at higher momenta or
for Sxx. We conclude thatSzz has the expectedd-function
form only for very small momentum. ~Higher-order pertur-
bation theory also predicts a finite width.26! As shown in
Fig. 3~c!, the intensity of the spin-wave peak decreases much
more rapidly forSxx than forSzz with increasingq; the in-
tensities cross each other well before the zone edge is
reached. This behavior is similar at other temperatures. We
also note that at all temperatures the total intensitySzz(q)
~not shown! is constant withq, whereasSxx(q) decreases~as
qh22! and crossesSzz(q) at a slightly larger momentum
q'1.522.

Well above the transition, atT50.8, Fig. 3~d!, Sxx has no
noticeable spin-wave peak at small momentum. The strong
central peak rapidly loses intensity with increasing momen-
tum. In marked contrast, the behavior ofSzz @Fig. 3~e!# is
very similar to that at lower temperatures, with clear but

FIG. 1. Temperature dependence of the neutron-scattering func-
tion S(q,v) as a function of frequencyv. The transition tempera-
ture is TKT;0.700~5!. Lattice sizeL5128 and momentumq52
32p/L5p/32 in all cases. ~a! xx component. ~b! zz
component. The inset shows the data atT50.6, smoothened with a
resolution function, Eq.~27!, with dv50.015.
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broadened spin-wave peaks. Notice that there is now nonzero
intensity at smallv in Szz. Remarkably, at very large mo-
menta spin waves appear inSxx even forT50.8 @Fig. 3~f!#,
so that both a central peak and a spin-wave peak are present.
Note that the vertical scale in Fig. 3~f! is 100 times smaller
than in Fig. 3~d!. There is no noticeable lattice size depen-
dence here.

Figure 4 shows the positionvp of the spin-wave peak as a
function of momentum. The expected linear portion of the
dispersion curve extends to rather large momenta. With in-
creasing temperature, the spin-wave velocity]vp/]q , which
is proportional to the spin-wave stiffness, decreases slowly

and approximately linearly, as shown in the inset, and theo-
retically expected for smallT.14,27 At T<TKT , vp is the
same forSxx and forSzz, as expected by theory.7,8 At T50.8
on the other hand, we can only plot the position of the re-
sidual peak inSzz, becauseSxx has dropped sharply to zero
here, as expected for a KT transition.

B. Additional structure in Sxx„q,v…

If we expand the vertical scale in plots ofSxx(q,v), we
find that the in-plane componentSxx(q,v) shows rich struc-
ture in addition to the spin-wave peak. Note that the intensity

FIG. 2. Lattice size dependence ofS(q,v), at fixed momentumq5p/16. ~a! T50.6, xx component,~b! T50.725,xx component,~c!
T50.725,zz component,~d! T50.8, xx component,~e! T50.8, zz component.
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of this structure is typically 1022 of the maximum. It is vis-
ible at all temperaturesT&TKT . At the lowest temperature,
the absolute intensity of this structure is low, but the relative
intensity is quite high@see also, Fig. 11~a!#. At higher tem-
perature, the structure becomes rather smeared. No such
structure can be found inSzz(q,v). The locations of addi-
tional maxima inSxx are essentially unchanged withL when
nq5qL/~2p! is held fixed. Figures 5~b! and 5~c! show, on a
logarithmic scale, that for odd values ofnq there are strik-
ingly regular pronounced peaks atv5vp/nq,3vp/nq, . . ., and
for evennq such peaks appear atv50.2vp/nq, 4vp/nq, . . . .

At large nq , Fig. 5~d!, individual peaks cannot be distin-
guished; insteadSxx is nearly constant below the spin-wave
peak there.@In Figs. 5~b! and 5~c!, the data have been
smoothened slightly with a resolution function Eq.~27! with
dv50.01, in order to reduce the wiggles and allow general
features to be identified.# In addition to the regularly spaced
pronounced peaks, there is further ‘‘fine structure’’ inSxx,
clearly visible in Fig. 5~a!. In the course of our study, the
additional structure became clearer as the statistical quality
of the data improved; it is apparent that the structure is not
statistical noise. Very close to the spin-wave peak, part of the

FIG. 3. Momentum dependence ofS(q,v) at fixed lattice sizeL5192. ~a! T50.725,xx component,~b! T50.725,zz component,~c!
T50.7, height of spin-wave peak as function ofq ~at L5128!, ~d! T50.8, xx component,~e! T50.8, zz component,~f! T50.8, xx
component at largeq.
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additional structure may be due to the finite-time cutoff in
our time integration; but most of the observed structure must
be due to different reasons.

One simple explanation for the observed rich structure,
which is consistent with the data but for which we have no
rigorous theory, is that of multi-spin-wave effects. Of these,
two-spin-wave processes are likely to be the most important.
Thus, at a given total momentumq we can have either a
single spin-wave excitation of momentumq, or two spin
waves for which the sum or difference of momenta equalsq.
The result will then be both a single-spin-wave peak at a
characteristic frequencyvp(q) as well as additional sum and
difference peaks due to the two-spin-wave processes.

Of particular interest is the case when the two spin waves
have momentaq1 andq2 that are collinear, so thatq5q11q2
is a scalar equation. Since the momenta are discrete on a
finite lattice, qi5nqi(2p/L), this implies nq5nq11nq2.
With a linear dispersion relationv5cq, the difference of the
two spin-wave frequencies is thenv5(2nq12nq)c(2p/L),
i.e., just the series of additional peaks that are visible in Figs.
5~b! and 5~c!.

Using the measured dispersion relation~Fig. 4!, we have
calculated the frequencies of two-spin-wave excitations con-
sisting of the most likely individual spin waves, i.e., those
with smallest individual momenta. For the case ofnq53 and
T50.6, these locations are marked in Fig. 5~e!. They are
identified by the coordinatesnq1 of one of the spin waves in
reciprocal space; the sum of the two spin-wave momenta
must equalq5~332p/L,0!. The locations of the resultant
excitations agree extremely well with the positions of the
small peaks inS(q,v), but we have no way of comparing
intensities.

The presence of distinct small peaks atv50, 2vp/nq,
4vp/nq, . . . for evennq at T,TKT complicates the identifi-
cation of a possible central peak. Interpolating the intensities
for odd values ofnq ~which do notshow peaks atv50! to

obtain estimates for evennq , we conclude that there is in-
deed extra intensity atv50 which is not attributable to two-
spin-wave processes.

C. Finite-size scaling of characteristic frequencyvm

Equation ~8! defines the characteristic frequencyvm of
the whole spectrum ofS(q,v). When there is only a single
spin-wave peak, thenvm coincides with the spin-wave fre-
quencyvp . This is the case atT50.4, where all frequencies
coincide ~within error bars!, v p

xx5v m
xx5v p

zz5v m
zz. Closer

to the transition, intensity betweenv50 and the spin-wave
peak grows; therefore the characteristic frequencyvm

xx be-
comes smaller than the spin-wave frequencyvp . Their dif-
ference is thus a measure of the relative weight of non-
single-spin-wave contributions toS(q,v). Figure 6~a! shows
the situation atTKT , whereS

xx exhibits large non-single-
spin-wave contributions andv m

xx,v p
xx.

Above the transition,vm
xx is no longer linear in momen-

tum for smallq, as shown in Fig. 6~b!, and differs strongly
from thezz component. The latter still has both a spin-wave
peak that is linear in momentum, as well as intensity at small
v, so thatvm

zz is smaller thanv p
zz.

The central question ofcritical dynamics is that of scal-
ing, i.e., whether data from lattices of different size match
when properly scaled. As mentioned in Sec. II~2.2!B, we
can test scaling and extract the dynamic critical exponentz
in two ways, by analyzing the characteristic frequencyvm ,
or by looking atS(q,v) itself.

We concentrate on the dynamic critical behavior of our
model atT<TKT , the critical region, in which the correlation
length in an infinite system is divergent. The relevant length
scale on a finite lattice is therefore the lattice sizeL, and we
expect scaling for suitable functions ofqL, as described in
Sec. II B. From the analytical results we expect the dynamic
critical exponent to bez51 @Eq. ~19!#.

In Figs. 7~a! and 7~b! we showv m
xxLz as a function ofqL,

for z51.00 and at temperaturesT<TKT . From Eq.~13! we
expect the data to fall on a single curve if scaling holds. This
is indeed exactly the observed behavior at all temperatures
T<TKT . The asymptotic behavior for largeL is strictly lin-
ear,vmL

z;qL; i.e., for z51, vm;q. For each finite lattice
size the dispersion curve flattens whenq becomes large.
Therefore asL increases, the data in Fig. 7 start to move
away from the asymptotic behavior at progressively larger
values ofqL. We have also analyzed the scaling behavior for
different values ofz, e.g.,z51.10~not shown in the figures!.
In that case the data for differentL diverge from each other
immediately; they do not fall onto a common line even at the
smallest momenta.

The scaling curves forvm
xx at all three temperatures

T<TKT are very similar, with variation only in their slope. In
contrast, we do not observe similar scaling behavior invm

xx

at T50.8 above the transition~not shown in the figures!.
Analyzing the out-of-plane characteristic frequencyvm

zz,
we found that~for qÞ0! it has the same scaling behavior as
the in-plane component. AtT50.4 the data forvm

zz andvm
xx

are indistinguishable. When intensity below the spin-wave
peak grows inSxx at largerT, the scaling curve forvm

xx has
a smaller slope thanvm

zz. Interestingly, atT50.8, above the

FIG. 4. Dispersion relation: spin-wave frequencyv p
xx against

momentum, atL5192 and four different temperatures. Note that for
T50.8 onlySzz has a noticeable spin-wave peak,Sxx does not. The
inset shows the spin-wave velocity]v/]q as a function of tempera-
ture.
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transition, not only are there spin-wave peaks present inSzz,
but vm

zz also shows the same scaling behavior as below the
transition, withz51.0.

D. Finite-size scaling ofS„q,v…

If dynamic finite-size scaling holds, then the scaled
neutron-scattering function itself should fall onto a single
curve for sufficiently large lattices. Corresponding to Eq.
~12!, Fig. 8 showsSxx(q,v)/[LzS(q)] versusvLz.

We see that at all temperaturesT&TKT the data do indeed
fall onto a single line within error bars, when we choose
z51.00. This is not only true for the spin-wave peak itself,
but for the whole range ofvLz. Only the data from very
small lattices~not shown here! deviate systematically. Even
at T50.725 the data scale quite well for the values ofL for
which we have data. The correlation length atT50.725 is
still very large~see appendix!; deviations from scaling could
presumably be seen if data for much larger lattices were
available.

FIG. 5. High-resolution study of the ‘‘fine structure’’ inSxx(q,v) for T50.6,L5192. ~a! nq54. Note that the maximum value of the
spin-wave peak is'160, ~b! log plot of Sxx(q,v) at small odd values ofnq ; the data are smoothened, withdv50.01, ~c! log plot of
Sxx(q,v) at small even values ofnq ; the data are smoothened, withdv50.01,~d! Sxx(q,v) at q5p/2, ~e! nq53. Vertical arrows show the
location of two-spin-wave peaks formed by spin waves of small momentumuqu,4~2p/L!.
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Note that scaling withvLz implies that at fixedqL and
for large lattices the spin-wave peak is very narrow in units
of v. Its width is therefore very sensitive to the time cutoff in
the spin-dynamics integration, and we had to use the very
long-time integrations described in Sec. III in order to obtain
asymptotic results.

The finite-size scaling behavior is very sensitive to varia-
tions inz. As an example, Fig. 8~e! shows that atT50.4 the
data do not scale when choosingz51.05, even upon exclud-
ing all lattice sizesL,96. Using similar plots, we obtain

z50.99~2! at T50.4,

z51.00~2! at T50.6,

z51.00~6! at T50.7,

z51.02~3! at T50.725. ~28!

~The relatively large error forT50.7 is a consequence of the
limited amount of data available at this temperature.! It is
remarkable that the dynamic critical exponent is the same
across this range of temperatures, whereas the static expo-
nent h varies strongly, fromh50.082~2! at T50.4 to
h50.247~6! at T50.7 ~see the Appendix!.

The zz component ofS(q,v) is extremely narrow at
T50.4 andT50.6, and cannot show scaling given our maxi-

mum integration times. AtT50.7, the spin-wave peak inSzz

has become wider, and we do observe scaling, as shown in
Fig. 8~f!.

Above the phase transition, the relevant length scale is the
correlation lengthj, not the lattice sizeL. We saw earlier
@Figs. 2~d! and 2~e!# that finite-size effects are already small
for our lattice sizes. Yet, surprisingly, there is scalinglike
behavior for small momenta inSxx even above the transition,
as shown in Fig. 9~a!. Note that, at constantnq , the horizon-
tal scalevL is proportional tov/q. The data do not scale
when differentnq are compared. At large momenta, a spin-
wave peak is visible@see also Fig. 3~f!#. For the out-of-plane
componentSzz @Fig. 9~b!#, the spin-wave heights do not obey
the scaling equation, Eq.~12!.

E. Tests of Nelson-Fisher scaling form; largev behavior

Nelson and Fisher8 predicted the scaling form Eq.~16! for
Sxx(q,v):

Sxx~q,v!;
1

q32h CS v

cqD .
This provides an explicit opportunity to compare data at dif-
ferent temperatures and at different values ofnq . Equation
~16! implies the finite-size scaling equation~12! used in the
previous section, withz51:

FIG. 6. Characteristic frequencyvm and spin-wave frequency
vp for S

xx andSzz, atL5128. ~a! T50.7, ~b! T50.8; ~there is no
xx-spin-wave frequencyv p

xx here!.

FIG. 7. Finite-size scaling of the characteristic frequency;
v m

xxLz is plotted againstqL, for z51.00. ~a! T50.4, ~b! T50.7.
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Sxx~q,v!

LSxx~q!
5

1

cqL

C~v/cq!

*C~v/cq!d~v/cq!
5 f ~qL,vL !.

~29!

It also implies

cq
Sxx~q,v!

Sxx~q!
5

C~v/cq!

*C~v/cq!d~v/cq!
5 f S v

cqD ~30!

for large enough lattice sizesL, for which Eq.~16! is valid.
@Note that whennq5qL/2p is constant, the argumentsvL

in Eq. ~29! andv/cq in Eq. ~30! are equivalent.#
In Fig. 10~a! we use Eq.~30! to compare the in-plane

scattering functionSxx at different temperatures, for constant
nq52. The same data appear unscaled in Fig. 1~a!, and with
dynamic finite-size scaling in Fig. 8. Obviously, Eq.~30! is
not satisfied: the scattering function at different temperatures
within the KT phase does not scale to the same shapeC~v/
cq!. This is also the case at other values ofnq .

FIG. 8. Finite-size scaling of the neutron-scattering functionSxx; S(q,v)/[LzS(q)] is shown versusvLz, with constantnq[qL/2p52.
The critical exponent isz51.00 in ~a!–~d! and~f!. ~a! T50.4, ~b! T50.6, ~c! T50.7, ~d! T50.725,~e! T50.4, withz51.05 for compari-
son,~f! T50.7, zz component.
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Different values ofnq are compared in Fig. 10~b!, at
T50.7. Again, the data donot scale. Moreover, the depen-
dence of the spin-wave peak onnq is not monotonous: for
increasingnq the peak height first grows, is approximately
constant fornq53 . . .8, and then shrinks. Asnq becomes
large, there is growing intensity below the spin-wave peak
@see also Fig. 5~d!#. Note that Eqs.~16! and~30! are at odds
with the fact that the additional peaks we observed inSxx

~Sec. IV B! have positions which do depend onnq . The data
in Fig. 10~b! have been obtained with constant time cutoff
tcutoff5360. The picture is virtually unchanged when data
with tcutoff;1/cq ~and tcutoff sufficiently large! are used. A
similar comparison at other temperaturesT<TKT shows still
stronger deviations from scaling.

For large frequencies, S(q,v) appears to be independent
of lattice size. We showSxx on a log-log scale in Fig. 11,
with data scaled similarly as in Fig. 10. Nelson and Fisher8

predict thatSxx is also independent of momentum and fol-
lows a power lawv2r, with r532h @Eq. ~18!#. We see
somewhat different behavior, which is determined mainly by
nq . For nq52, Fig. 11~a!, the data can be fitted with
r53.0~1! at all temperatures. Note the sizeable structure at
low T. For largernq , Fig. 11~b!, r increases. There is also
noticeable curvature inv, with largerr at higherv; r also
increases slightly with temperature. The exponents in Fig.
11~b! range from 3.7~1! at nq54 to 5.4~2! at nq524. The

out-of-plane correlationsSzz ~not shown! also decay with a
power law with momentum-dependent exponents.

Equation~16! also implies

q32hSxx~q,v!5CS v

cqD . ~31!

In Fig. 12 we use Eq.~31! to compare data for different
momentaq, at the KT phase transition temperature, using
h50.25 and constantnq . Here the data do scale. This scaling
is also implied by dynamic finite-size scaling, Fig. 8~c!, to-
gether with a functional dependenceSxx(q);qh22. Note that
for constantL @instead of constantnq#, we obtain a nonscal-
ing picture indistinguishable from Fig. 10~b!.

F. Line shapes

In Fig. 13 we compare our results with theoretical predic-
tions for the shape ofSxx(q,v). We show data atT50.7, for
L5128 andq5p/32, normalized according to Eq.~30!, and
we compare with predictions usingh51/4, similarly normal-
ized.

The predictions by Nelson and Fisher and by Villain both
have a pole at the spin-wave peak@Eqs. ~14! and ~17!#, as
shown in the figure. In order to compare better with our data
which have been obtained with a time integration of finite
length, we also tried to convolute the predictions with the

FIG. 9. Finite-size scaling plot ofS(q,v) for T50.8, with con-
stantnq[qL/2p52. ~a! Sxx, ~b! Szz.

FIG. 10. Tests of the Nelson-Fisher scaling form, Eq.~16!. ~a!
Different temperatures,~b! Different values ofnq .
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Fourier transform of a finite-time cutoff attcutoff5360. The
resulting functions~not shown! exhibit very strong oscilla-
tions @size5O~0.5!#, and a spin-wave peak that is much
higher~about 3.7! and more narrow than that of the data. We
conclude thatSxx(q,t) decays much faster in time than pre-
dicted. As mentioned before, the rich structure inSxx(q,v)
below and above the spin-wave peak that was described in
Sec. IV B had not been predicted, except for a~small! central
peak, Eq.~21!, foreseen by Menezes, Pires, and Gouveˆa.9

Since the Nelson-Fisher prediction does not agree well
with the data at the spin-wave peak, we tried to find a func-
tional form which does fit these data reasonably well and
should thus be an approximation to the actual form, so that
our data can more easily be compared to the results of future
theoretical calculations. We found that a modified form of
Eq. ~30! works well, namely a widening of Eq.~30! with a
Gaussian resolution function Eq.~27!, with dv a free param-
eter. Around the spin-wave peak we obtained fairly good
agreement with our~unconvoluted! data, as shown by the
thick dashed line in Fig. 13, which usesdv50.01. However,
different values ofdv in the modified function are necessary
to describe the data at differentnq . The modified function
can of course not describe the additional structure in
Sxx(q,v), including the central peak.

The large frequency behaviorof the data is shown in the
inset in Fig. 13. The prediction by Nelson and Fisher agrees
with the data at large frequencies qualitatively. However, as
described in Sec. IV E, a fit toSxx(q,v) for largev results in
a different power-law exponent than predicted. Not surpris-
ingly, at large frequencies the prediction by Villain, intended
for the spin-wave peak divergence, does not describe the data
correctly. We conclude that below and above the transition,
the actual line shape is quite different from the predicted
forms, with a much wider spin-wave peak, and a lot of ad-
ditional structure.

FIG. 11. Large frequency behavior ofSxx, plotted on a log-log
scale in Nelson-Fisher scaling form, Eq.~16!. The data are smooth-
ened, withdv50.015. ~a! Different temperatures,~b! Different
values ofnq .

FIG. 12. Test of the Nelson-Fisher scaling form, for different
lattice sizesL.

FIG. 13. Comparison of the line shape ofSxx(q,v) with theo-
retical predictions. Data are atT5TKT , L5128, andq5p/32 ~thick
line!, and are normalized according to Eq.~30!. The two thin lines
represent the predictions by Nelson and Fisher, Eq.~16! ~continu-
ous line! and by Villain, Eq.~14! ~dashed line!, both withh50.25.
The thick dashed line is obtained by a fit to the data with anad hoc
function related to the Nelson-Fisher form~see text!. The inset
shows the data and predictions on a log-log plot that includes large
values ofv.
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Above the transition, the theoretical predictions Eqs.~22!
and~23! do not describe the data well either. For the in-plane
componentSxx we see two different regimes inv. At small
v, it is compatible with a Lorentzian-like peak;(v21a)2b,
but with an exponentb that is momentum dependent@e.g.,
b'1.1~1! at q5p/48, b'0.43~2! at q5p/16#. At large v,
Sxx decays with a power law;v2c, with c53.2~2! for small
momenta@see Fig. 11~a!#. The out-of-plane componentSzz

does not show the predicted central peak at all; instead it
exhibits a spin-wave peak.

V. CONCLUSIONS

We have performed the first high precision study of the
dynamic critical behavior of theXY model, at five different
temperatures below, at, and aboveTKT , on square lattices of
size up to 1923192. We have determined the critical tem-
perature to beT50.700(5)J/kB . Starting from about 1000
equilibrium configurations generated by an efficient Monte
Carlo procedure at each temperature and lattice size, we have
integrated the equations of motion of the spins to very large
times, tmax5400 J21, and measured space-displaced, time-
displaced correlation functions to compute the neutron-
scattering functionS(q,v).

At temperatures up toTKT , S(q,v) exhibits very strong
and sharp spin-wave peaks in the in-plane componentSxx.
As T increases, they widen slightly and move to lowerv, but
remain pronounced even just aboveTKT . For increasing mo-
mentum they broaden and rapidly lose intensity. Well above
TKT , the spin-wave peak disappears inS

xx, as expected, and
we observe a large central peak instead.

In addition to the spin-wave peak, the in-plane component
Sxx exhibits a rich structure of small intensity, which we
interpret to come from two-spin-wave processes. Further-
more, Sxx shows a clear central peak, even belowTKT ,
which becomes very pronounced towards the critical tem-
perature. Neither this strong central peak nor the additional
structure are predicted by existing analytical calculations.

The out-of-plane componentSzz is much weaker thanSxx,
except for largeq. It displays a sharp spin-wave peak at all
temperatures, even aboveTKT . The peak widens with in-
creasing temperature, and only at lowT is it consistent with
a d-function shape.

We measure the dispersion relation, i.e., the position of
the spin-wave peak as a function of momentum, to be linear
to high accuracy. Its slope, the spin-wave velocity, decreases
with increasing temperature approximately linearly, as ex-
pected from approximate analytical results at smallT.

Examining dynamic finite-size scaling, we show that both
the characteristic frequencyvm and the neutron-scattering
functionS(q,v) itself scale very well for allT<TKT , with a
dynamic critical exponent ofz51.00~4! that does not depend
on temperature, whereas the static exponenth varies
strongly.

The shape of the scaling function is not well described
around the spin-wave peak by the available theoretical pre-
dictions, nor is the shape of the scattering function above the
transition, and the additional structure had not been predicted
at all. The data which we have presented here are of suffi-
ciently high quality that meaningful comparison with theory
and experiment is possible. We hope that this spin-dynamics

study will thus serve to stimulate further effort in this area.
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APPENDIX: STATIC CRITICAL BEHAVIOR

The determination of the transition temperature inXY-
like systems has been notoriously difficult.2,3 The best previ-
ous estimate2 for TKT for the model considered here was
TKT50.72560.010, estimated from the onset of vortex-pair
unbinding, which is a procedure that is quite difficult to ap-
ply with high precision. The results of our high-resolution
spin-dynamics study atT50.725 prompted us to perform a
more accurate determination ofTKT , using the powerful hy-
brid Monte Carlo algorithm described in Sec. III.

We carried out a set of static Monte Carlo simulations,
with lattice sizesL564, 128, and 256, and 40 000 hybrid
Monte Carlo sweeps in each run. We then analyzed the static
correlationsC(r )51/2̂ Sx(0)Sx(r )1Sy(0)Sy(r )& in three
different ways:~i! using finite-size scaling,~ii ! with a fit to a
power-law decay, and~iii ! with a fit to the free lattice propa-
gator. The results of all three methods are in excellent agree-
ment.

The finite-size scaling ansatz for the correlation function
is28

C~r ,L !5r2h f S t̂L1/n, rL D , ~A1!

wheret̂ is the reduced temperature (t̂5u12T/Tcu), andn the
correlation length exponent. Since our model is critical
throughout the KT phase, we havet̂50 for all T<TKT . With
the correct value ofh, the data for different lattice sizes
should therefore coalesce on a plot ofC(r )Lh versusr /L.
Figure 14 shows such plots atT50.7, forh50.24, 0.25, and
0.26. Choosingh50.25 results in very good scaling over the

FIG. 14. Finite-size scaling plot of the static correlation function
Cxx(r ) at T50.7'TKT , using three different estimates forh.
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whole range of distancesr . At lower temperatures, scaling of
similar quality is achieved with smaller values ofh. At a
slightly higher temperature ofT50.71, however, we ob-
served only mediocre scaling, with an effectiveh of 0.29~1!,
but with small systematic deviations from scaling already
visible. AtT50.725, the deviations from scaling are stronger
still.

Independent estimates ofh were obtained from simple
power-law fitsC(r ,L);r2h, for lattice sizeL5256, and
rmax<20. The results forh depend only very little on the fit
range, and agree within error bars with those from finite-size
scaling.

A simple power-law ansatz ignores the fact thatC(r ,L) is
actually periodic inr with periodL. The full functional form
can be deduced from the fact that within the KT phase, the
model is thought1,29 to behave like a free field theory, for
which the exact finite lattice propagator~correlation func-
tion! at an effective ‘‘temperature’’ 1/h is29

C~r ,L !5exp@2hG~r ,L !#, ~A2!

with

G~r ,L !

5
2p

L2 (
qx ,qy50

L21
12cos@rqx~2p/L !#

422 cos@qx~2p/L !#22 cos@qy~2p/L !#
.

~A3!

We also used this functional form to fitC(r ,L). The results
for different lattice sizes and different fit ranges~up to
r5L/2 and excludingr,5! agreed with each other and with
the results from finite-size scaling. The quality of fits was
very good for allT<0.70, whereas for larger temperatures
~T50.71 and above! it deteriorated strongly, and the results
became lattice size dependent.

We have found no evidence for logarithmic corrections. It
is possible that small corrections are present and introduce a
subtle bias. In this case our results forh would need modi-

fication. Assuming that logarithmic corrections are indeed
negligible, we obtain as our combined results from all three
methods

h50.082~2! at T50.4,

h50.153~5! at T50.6,

h50.247~6! at T50.7. ~A4!

We note that the expected linear dependence ofh on T be-
low TKT does not seem to be satisfied at these temperatures
in our model.

Both from assumingh51/4 atTKT ,
1 and from the differ-

ent qualitative behavior ofC(r ,L) for T>0.710, we con-
clude that the Kosterlitz-Thouless transition temperature is

TKT50.700~5!J/kB . ~A5!

This estimate is slightly below the value from2 which we had
used at the start of the spin-dynamics study, and clearly be-
low the estimate of Ref. 30.

Slightly above the KT transition, atT50.725, the dy-
namic behavior ofS(q,v) in our study resembles that atTKT
~whereas atT50.8 it is very different!. This may be ex-
plained by looking at the correlation lengths: The correlation
function atT50.725 can be fitted by an Ornstein-Zernike
form

G~r !;r21/2e2r /j ~A6!

with a value ofj5O~400!. Since this correlation length is
larger than the lattice sizes we have used in our study, a
behavior resembling the KT phase~wherej5`! is not sur-
prising. A similar ~approximate! fit at T50.8, on the other
hand, givesj5O~10!, much smaller than our lattice sizes.
After our work was completed, we received a paper by Cuc-
coli, Tognetti, and Vaia31 with a Monte Carlo study of the
statics of our model. Their results are in excellent agreement
with ours.
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