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Abstract. A review of the current theoretical knowledge on coupled quantum
chains is given, with emphasis on numerical results. These systems occur in the
same materials as high Tc superconductors. They allow the study of the dimen-
sional crossover from 1 to 2 dimensions. The behavior of coupled chains, even
at isotropic couplings, can be understood in the rung-picture, i.e. the case of
large perpendicular couplings. Undoped systems correspond to the Heisenberg
spin 1

2
antiferromagnet, and are well understood. They possess a finite spin

gap for an even number of coupled chains, and are gapless otherwise. Doped
systems are much more difficult to investigate, and only systems with two and
three coupled chains have been partially studied.

1 Introduction

Coupled Quantum Chains, also called ladder systems, have been the topic
of a lot of recent experimental and theoretical research. This paper presents
an overview of the current theoretical understanding of their static behavior,
concentrating mainly on numerical studies. It does not attempt to fully cover
the literature on the subject. For an excellent review including experimental
findings, see [1].

There are several reasons for the theoretical interest in ladder systems.
First, real ladder materials do exist, mostly in compounds related to High Tem-
perature Superconductors. Second, ladder systems provide a good way to study
the dimensional crossover from 1 to 2 dimensions; this will hopefully also lead
to a better understanding of high Tc superconductivity. Third, coupled chains
are much easier to investigate, especially numerically, than two-dimensional
systems, and one can make use of the extensive knowledge about single chains.
Fourth, there is a very interesting analogue of the Haldane conjecture of single
chain fame (see below).

The main messages of this paper: The intuitively easy rung picture (J⊥ ≫
J) appears to be valid even at isotropic couplings J⊥ = J . For undoped spin-1

2

ladders, there is no spin gap when the number of chains is odd, and a finite
spin gap when the number of chains is even. Doped ladders are not yet well
understood.
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In the next chapter we give a brief overview of real ladder-materials. The
focus of chapter 3 are undoped systems. Doped systems correspond to the tJ
and the Hubbard model, reviewed in chapter 4. The paper finishes with a
summary.

2 Real ladder materials

(V O)2P2O7 is a 2-chain material that has been known for some years. Most
other real ladder materials are derived from high Tc superconducters. The series
SrCunO2n−1 exhibits n = 2, 3, ... coupled chains, and there are n = 4, 5, ...
coupled chains in (La2CuO4)n−2La2CuO7. Fig. 1 shows how these materials
are structured. In (a) the two-dimensional precursor is shown, with Cu atoms
at solid dots and oxygen atoms at intersections of solid lines. Line defects like
in (b) and (c) isolate finite ladders from each other. The coupling between
copper atoms across the defect is weak because it involves a 90 degree angle
at the oxygen and is frustrated. From this structure it also follows that the
ladder materials should have more or less isotropic couplings.

Experimentally these materials are rather difficult to produce. For a re-
view of experimental findings see [2]. Most experiments have been limited to
undoped materials. Recently, doped 2-chain materials have also been produced
and analyzed [2].

y

x 2-leg-ladder 3-leg-ladder

(a) (b) (c)

zzc zzc zzc zzc

Figure 1: Schematic structure of the CuO planes in ladders derived from high Tc

materials. The ladders are separated by linelike defects. (From [11]).
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3 Undoped ladders: Heisenberg model

The undoped precursors of high Tc materials are well described by the spin- 1

2

antiferromagnetic Heisenberg model. Thus this model should also be appropri-
ate for ladder materials. Its Hamiltonian is

H = J
∑

‖

~Si
~Sj + J⊥

∑

⊥

~Si
~Sj , (1)

where J and J⊥ are the couplings parallel and perpendicular to the chain
direction, as denoted in fig. 2.

J

J⊥

Figure 2: Schematic structure of a 2-chain ladder, with two couplings J⊥ and J .

Both the single chain and the fully two-dimensional model on the square
lattice are well understood. The single chain is exactly solvable by Bethe
ansatz. It has no energy gap, and no long range order. The two-dimensional
model has been extensively studied both by analytical methods (mapping to
a nonlinear sigma model) and by numerical studies. There is now little doubt
that it also has no energy gap, but long range order. Recent numerical studies
of the 2d Heisenberg antiferromagnet [3], using the loop algorithm (see below),
were able to make contact with chiral perturbation theory and to determine
the free constants in the latter to very high precision.

The dimensional crossover from 1 to 2 dimensions in the Heisenberg model
is expected to be far from smooth: Both the single chain and the two dimen-
sional model are gapless. Yet ladders of even width are expected to have an
energy gap, whereas those of odd width are again expected to be gapless. This
expectation is based on the simple picture of largely independent rungs in the
limit J⊥ ≫ J , which is described in the next section. An open question is
whether for very small J⊥ there is qualitatively different behavior, i.e. a phase
transition at finite J⊥ from an ungapped to a gapped phase. From existing
studies (perturbative as well as numerical) there is no indication for such a
phase transition.

The spin-gap behavior is analoguous [4] to that of single spin chains of
spin S: when S is half-integer, the latter are known by the Lieb-Shultz-Mattis
theorem [5] to be gapless. (A similar proof for odd-width ladders was recently
given in [6].) When S is integer, the famous Haldane conjecture [7] predicts a
spin gap of order exp(−πS). If the coupling J⊥ between chains in spin ladders
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were ferromagnetic, then in the limit (−J⊥) ≫ J the n-chain ladder could
be mapped to a single chain of spin S = 1

2
n. However, since J⊥ is actually

antiferromagnetic, the relation is not so simple. A possible mapping from
antiferromagnetic to ferromagnetic J⊥ is described in section 3.2.

Coupled Heisenberg chains have been extensively studied in the past few
years, both analytically and numerically. For an overview of this work, see [1].
In this paper, we shall focus on some selected recent studies.

3.1 Rung picture

The qualitative behavior of spin ladders can be well understood by studying the
case J⊥ ≫ J , as advocated by Dagotto, Rice, and collaborators. The resulting
picture remains useful in the isotropic case, and even for J⊥ < J .

Let us explain the case of 2 coupled chains. When J⊥ ≫ J , the rungs of
the ladder become approximately independent. The groundstate then consists
of spin singletts on the rungs (ky = 0, where y is the direction of the rung).
The first excited state is that with a single triplett (ky = π) on one of the
rungs, commonly called a “magnon”. It behaves like a hard core boson. The
dispersion relation is

ǫk = J⊥ + J cos kx , (2)

and there is a finite gap
∆ ≈ J⊥ − J . (3)

The higher excited states then form a continuum of states. For J⊥ ≫ J the
dispersion (2) of the three one-magnon branches does not overlap that of the
two-magnon continuum. For J⊥ = J the one-magnon branches are still largely
separate from the continuum.

For three coupled chains the rung ground state at large J⊥/J will be a dou-
blet, like in a single chain. These doublets are weakly coupled by J , leading to
a gapless phase, similarly as for single chains. For a recent proof of gaplessness
see [6].

3.2 Are the two-chain ladder and the S = 1 chain in the

same phase ?

The fact that the spin gap of n coupled spin-1

2
chains behaves in qualitatively

the same way as that of a single spin S = 1

2
n chain would be very natural for

ferro-magnetically coupled chains at −J⊥ ≫ J , since then the spins on each
rung would combine to an effective single spin of size S = 1

2
n.

Could it be that the antiferromagnetically coupled ladders (J⊥ > 0) and
the ferromagentically coupled ones (J⊥ < 0) are in the same phase ? Then
there should be a continuous path in parameter space from J⊥ > 0 to J⊥ < 0
which does not go through a phase transition.
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For the case of 2 coupled chains, White has given strong arguments in a
recent paper [8] that this is indeed the case. Note that the obvious path of
just varying J⊥ does pass through a transition, since at J⊥ = 0 the chains are
decoupled and thus gapless, i.e. in a different universality class than the two
coupled chains.

White takes the case J⊥ = J and introduces an additional coupling of
strength J2 between sites (i, 1) and (i + 1, 2) (i = 1, 2, 3, ...). When J2 = 0,
the original antiferromagnetically coupled chains are recovered. When J2 ≪ 0,
then sites (i, 1) and (i + 1, 2) are strongly coupled ferromagnetically, so that
the spins there will effectively form a single spin of size S = 1

2
· 2.

In a numerical investigation of this model with the density matrix renor-
malization group, White varied the strength of J2 while measuring the spin
gap. The gap varied only slightly, giving no indication of a phase transition.
Thus the gapped phases of two ferromagnetically and two antiferromagneti-
cally coupled chains may indeed be the same. Note however that compared to
two antiferromagnetically coupled chains, the modified chain with −J2 ≫ J
possesses two additional spins at the ends of the chain, which are coupled only
with J⊥ and J .

3.3 Numerical results: DMRG

In DMRG, the lowest states (i.e. zero temperature) of a finite system are
iteratively computed while increasing the system size. Isotropically coupled
chains were studied by White, Noack, and Scalapino [9], for up to n = 4
coupled chains and chain lengths of 24 at n = 4. By finite size analysis of the
results they do indeed find a spin gap consistent with zero for n = 1 and n = 3.
For the even width ladders they obtain gaps

∆ = 0.504J for 2 chains, ∆ = 0.190J for 4 chains, (4)

directly from the energy differences of the lowest lying states. (The ladder
length at n = 4 is rather small, so that the extrapolation to L = ∞ might be
biased.)

3.4 Numerical results: Quantum Monte Carlo

Detailed results for the thermodynamics of large ladder systems up to 6 chains
wide and 100 sites long have been obtained at low temperatures by Frischmuth,
Ammon, and Troyer [10, 11]. We shall describe this work in some detail here.
It has recently been confirmed and extended [12]. Other Quantum Monte Carlo
studies have been performed by Hatano et al. [13] and by Sandvik et al. [14],
the latter including dynamics.

The Quantum Monte Carlo studies [10, 12] were made possible by means of
the “loop algorithm” [15], which shall be described briefly now. It is a quan-
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tum Monte Carlo method in the worldline formulation that employs nonlocal
changes of worldline configurations and thereby overcomes autocorrelations.
Because the Hamiltonian preserves total Sz and couples only locally, all world-
lines and all possible changes of worldlines (present ↔ not present, i.e. spin up
↔ spin down) are located on closed loops, as exemplified in fig. 3. These loops
are constructed by stochastic local choices of direction, so that no acceptance
steps with global weights occur. As a consequence the method is ergodic, for
example in total magnetization and in worldline winding number.

| i  >1

1 2 3 4 5 6 7=1

| i  >

| i  >

| i  >

| i  >1

2

3

4

τ

Figure 3: Example of a loop-configuration in the Heisenberg model. The loops
connect sites where spins will be flipped together. ([11]).

A further advantage is the existence of “Improved Estimators”, which are
measurements that average implicitely over 2nl worldline configurations, where
nl is the number of loops constructed during an update. Thus these improved
estimators can have drastically reduced statistical errors. For example, the
uniform spin susceptibility can be written

χ ∼ 〈
∑

ij

Sz
i Sz

j

︸ ︷︷ ︸

noisy

〉 = 〈
(
∑

loops α
∑

sites in α Sz
)2

〉 = 1

4
〈

∑

loops α

W 2
α

︸ ︷︷ ︸

stable

〉 , (5)

where Wα is the ‘winding number’ of loop number α in temporal direction.

The elimination of autocorrelations and the use of improved estimators
together resulted in a gain of computer time in [10] of more than 5 orders of
magnitude, compared to the standard local worldline QMC method. (For a
different good Monte Carlo method, see [14]). This made it possible to go to
very large systems of up to 6 chains of length 100, at very low temperatures,
down to T/J = 0.02 (βJ = 50).

Fig. 4 compares the QMC results for the susceptibility of a single chain with
the exact Bethe ansatz result showing that the Monte Carlo calculations are
indeed reliable.

The ground state energies of isotropic ladders are given in table 1. They are
obtained by extrapolating the Monte Carlo results to zero temperature. One
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Figure 4: Comparison of QMC with exact results from Bethe ansatz, for a single
isotropic chain. (Adapted from [11].)

sees clearly that the ground state energy is a smooth function of the ladder
width, in contrast to the spin gap.

number of legs E reference value
1 -0.4432(1) -0.44315... (Bethe)
2 -0.5780(2) -0.578
3 -0.6006(3) -
4 -0.6187(3) -
5 -0.6278(4) -
6 -0.635(1) -

2D lattice -0.6693(1)

Table 1: Ground state energies per site for ladders of different widths. ([10].)

The central result is obtained from the spin susceptibility, shown in fig.
5. Both subfigures depict the same data, plotted in (a) against temperature,
and in (b) against inverse temperature. The behavior at large temperatures is
well described by series expansion. One clearly sees the qualitative difference
between ladders of even and of odd width. When there is a gap, then in the
limit T → 0 the susceptibility should behave like

χ
T→0
−→

e−∆/T

T
1

2

. (6)

(Here a plausible form [16] for the dispersion relation has been assumed to
obtain the power law exponent). On the log-log-plot of fig. 5(b), eq. (6) results
in straight lines at large Jβ, which are clearly visible in the figure. A fit to
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Figure 5: Uniform susceptibility for ladders of different width. Top: χ against tem-

perature ([10]). Bottom: The same data, with T
1

2 χ plotted logarithmically against
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their slope gives the gap

∆ =







0.51(1) , 2 legs
0.17(1) , 4 legs
0.05(1) , 6 legs

(7)

(with very conservative error bars).

Without a gap, one expects

χ
T→0
−→ const (8)

In fig. 5(b), the ladders of odd width still show a slight slope of approximately
0.005J , which is of the expected magnitude of a finite size effect for ladders of
length 100. We can thus conclude that the ladders of odd width are indeed
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gapless. Note that the asymptotic T → 0 behavior is reached, as expected, at
progressively smaller temperatures of order ∆ as the gap decreases.

Further analysis of the ladder systems [11] shows that those of width 2
can be described by a single-magnon picture (as in the rung-picture), even at
J⊥ = J . Ladders of width 4 can be mapped to two 2-leg-ladders, with one
bonding and one anti-bonding branch. The gapless 3 and 5-leg ladders can
be mapped approximately to a single chain at an effective coupling Jeff at
low temperatures. The susceptibility appears to depend smoothly on J⊥/J for
J⊥ > J . The question whether there is a phase transition at small J⊥ was not
addressed in [10, 11].

Comparison of the susceptibility to experimental data gives slightly varying
results for J . For two-leg ladders, the experimentally measured value ∆ ≈
420K gives J ≈ 840K from eq. (7). For three-leg ladders a fit to data from
Sr2Cu3O5 results in J ≈ 1100K. The differences in J may be caused by the
effects of residual interactions between different ladders.

In summary, the expected dependence of the gap on ladder width is indeed
clearly seen, with gaps in ladders of even width, and gapless behavior in lad-
ders of odd width. Note also that the gaps in eq. (7) are consistent with an
exponential decrease with number n of chains, which would be similar to the
Haldane behavior ∆ ∼ e−πS for single chains of spin S. Eq. (7) does not look
like the 1/n behavior which had been suggested before [9].

4 Doped ladders: tJ model

Doped ladders, i.e. the ladder versions of high temperature superconductors,
are especially interesting. Unfortunately, they are very difficult to study both
experimentally and theoretically. On the numerical side the results come mostly
from exact diagonalization studies of rather small systems of size e.g. 10 × 2
[19, 20, 21, 22] The relevant models for doped ladders are the tJ and the
Hubbard model.

Let us describe the basic issues for the case of the tJ model. Its Hamiltonian
is

H = −
∑

<ij>,σ tij(c
+
iσcjσ + h.c.) (tij = t, t⊥)

+
∑

<ij> Jij(~Si
~Sj −

1

4
ninj) (Jij = J, J⊥) .

(9)

At each site there is either an electron of spin up or of spin down, or a hole.
At half filling (nondoped case), the tJ model reduces to the Heisenberg model.

A single chain in the tJ model is known to be a so called Tomonaga-
Luttinger liquid (see below), which has no spin gap, no charge gap, and spin-
charge separation.

Experimentally, 2-chain ladders appear to have a spin gap even when doped.
The most interesting theoretical issues are to understand this behavior and to
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see whether there is a tendency towards superconductivity upon doping.

4.1 Luttinger Liquids

Single chains in the tJ and in the Hubbard model are “Tomonaga-Luttinger
Liquids” [17], exhibiting spin-charge separation. Two universality classes are
important here. (Actually they are groups of universality classes, since they
depend on a parameter Kρ). In the Tomonaga-Luttinger liquid (TL), both spin
and charge are gapless. In the Luther-Emery liquid (LE), only the charge mode
is gapless. In both cases, correlations decay with a component that behaves
like a power law in inverse distance 1/r, with an exponent that depends on
the single parameter Kρ. These exponents are given in table 2. Note that
at large distances, pairing correlations dominate when Kρ > 1. (However, in
a 1-dimensional system at finite temperature there cannot be true long range
order. The ladder systems are also 1-dimensional because of their finite width.)
Numerical data even on relatively small systems can give information about Kρ

by utilizing conformal field theory.

The case of two coupled Luttinger liquids has been investigated by Schulz
[18]. The results are given as “2LL” in table 2. Now both spin and charge
modes are massive, and again superconducting correlations are expected to
dominate when Kρ > 1.

TL LE 2LL

2kf SDW 1 + Kρ exponential exponential
2kf CDW 1 + Kρ Kρ exponential
Singlett pairing 1 + 1

Kρ

1

Kρ

Triplett pairing 1 + 1

Kρ
exponential

d-wave pairing 1

Kρ

4kf CDW 4Kρ 4Kρ Kρ

Table 2: Correlation exponents. (For “2LL”, the transverse momentum is π).

4.2 tJ model: Rung picture

The rung picture, i.e. the case J⊥ ≫ J , can also be used to understand
coupled tJ-chains [21]. Let us consider the rung picture for 2 coupled chains.
In the exact-diagonalization studies described later, the rung picture appears to
survive to the case of isotropic coupling (with bound pairs becoming spatially
more extended).

In case of half filling, we have the Heisenberg spin model discussed before.
If to this we add a single hole, it will behave like a quasiparticle with both spin
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and charge. When we add 2 holes, they can either locate on the same rung,
or on different rungs. In the ground state, they will be on a single rung to
minimize the number of broken rungs of energy cost J⊥− t− t⊥. Their binding
energy corresponds to breaking another rung, i.e.

Ebinding ≈ J⊥ − t − t⊥ . (10)

For energies below Ebinding we should then expect hole pairs, behaving like
hard core bosons with weak attractive interactions ∼ J , and thus dominant
pair correlations, which are “d-wave-like” because of momentum π in rung-
direction.

Spin excitations are then gapped. They can either consist of broken pairs of
holes with energy Ebinding, or spin-magnons like in the Heisenberg model, with
energy ∼ J⊥. Since Ebinding < J⊥, a jump in the gap can be expected between
half filling and finite doping. Charge excitations correspond to coherent motion
of bound hole pairs and should be gapless. Gapped spin and gapless charge
modes are reminiscent of the Luther-Emery liquid.

4.3 tJ model: some results from exact diagonalization

A tentative phase diagram of two coupled tJ chains has been given by Poilblanc
et al. [20], for the isotropic case J⊥ = J , t⊥ = t. At J/t < 2 and fillings between
about 1

2
and 1, they do indeed see a phase that resembles the prediction from the

rung picture: there is a spin gap, no charge gap, and d-wave like hole pairing.
At large J/t > 4 they see phase separation between holes and electrons for all
fillings. Phase separation minimizes the antiferromagnetic energy. For J/t < 2
and filling below 1

2
, the system appears to behave like a Tomonaga-Luttinger

liquid, with no gap. At very small filling and 2 < J/t < 4 there is another
phase, with a spin gap and electron pairs.

Interestingly, two coupled chains may behave very differently, depending on
whether each single chain is integrable or non-integrable. Mila and Poilblanc
[23] claim that at the integrable points J/t = 0 and J/t = 2, and only there,
hopping between the chains is “coherent”, i.e. it has a periodic component in
its time-dependence. This is an area of intense current research.

4.4 Hubbard model

The Hubbard model is a somewhat more realistic description of the doped
systems, since it allows two electrons of opposite spin to occupy the same site.
Its Hamiltonian is

H = −
∑

<ij>,σ

tij(c
+
i,σcj + h.c.) + U

∑

i

ni↑ni↓ . (11)
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For this model there exist both weak coupling renormalization group studies
and numerical results [24, 25, 26, 27]. At half filling, the dynamical properties
have also been investigated [28], with results consistent with a rung picture.

The main features of the phase diagram can most easily be understood
from the U = 0 case [25], i.e. the free case. Then there are a bonding and an
antibonding band, with dispersion

ǫk = −(2t cos k + t⊥ cos k⊥), k⊥ = 0, π . (12)

For t⊥ < 2t the two bands overlap. When some interaction is switched on,
there should be Umklapp scattering, producing a Luther-Emery like phase with
a spin gap. For t⊥ > 2t the bands are completely separate, and one expects a
Tomonaga-Luttinger liquid, without any gap. Thus the simple phase diagram
of fig. 6 is obtained.

Figure 6: Phase structure for two coupled Hubbard chains at U = 0. In the shaded
area, both the binding and the antibinding band are occupied. On the dashed line,
the lower band is 1

2
filled. (t⊥ is given in units of t). ([25]).

Balents and Fisher [29] have studied two coupled Hubbard chains by weak
coupling renormalization group for infinitesimally small positive U . The re-
sulting phase diagram is shown in fig. 7. Its main structures are very similar
to the U = 0 case in fig. 6. The phases are denoted as CnSm, meaning that
there are n gapless charge modes and m gapless spin modes. The C1S1 phase
(no gaps) is like a Tomonaga-Luttinger liquid. C2S2 is the analogue of a Fermi
liquid. In the C1S0 phase, there is a spin gap but no charge gap, and d-wave
like pairing. Overall the phase diagram exhibits a very rich structure. It is
predicted [29] to become even richer as U becomes larger, and remains to be
confirmed by independent means.

Noack et al. [24, 25] investigated two coupled Hubbard ladders at strong
coupling U = 8 by means of DMRG, on systems of size 2 × 8 up to 2 ×
64. Surprisingly, at the couplings investigated they find behavior consistent
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Figure 7: Phase diagram of two coupled Hubbard chains at infinitesimal U . ([29]).

with Balents and Fisher, specifically a C1S0 phase which is Luther-Emery like,
showing a spin-gap and d-wave like singlett pairs of holes.

For three coupled chains, there is a weak coupling renormalization group
calculation by Arrigoni [30], similar to that of Balents and Fisher. The resulting
phase diagram, shown in fig. 8, again has a very rich structure of phases. It
remains a challenge to verify this structure by other methods.
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C0S0

C1S2 C0S1
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Figure 8: Phase diagram of three coupled Hubbard chains at infinitesimal U . ([30]).
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5 Conclusions

Systems of coupled quantum chains, also called ladder systems, are related to
the high Tc superconducting materials. They show a very rich and interesting
structure, and allow to study the dimensional crossover from one to two dimen-
sions. Much of their behavior can be understood even for the isotropic case in
a simple rung picture obtained at large transverse coupling.

Undoped ladders can be described by the Heisenberg spin 1

2
antiferromag-

net, and are rather well understood. For an odd number of coupled chains,
they have no spin gap; for an even number of coupled chains, they have a fi-
nite gap, which decreases with increasing number of chains. It can be related
to the Haldane gap of single spin-S chains. Numerical studies of ladders, in-
cluding Quantum Monte Carlo studies of up to 6 coupled chains at very low
temperature, confirm the expectation and match well to experiment.

Doped ladders may be described by the tJ or the Hubbard model. They
are far less well understood, both analytically and numerically. They possess
a very rich phase diagram, which includes phases with d-wave like pairing
that might evolve into superconducting phases as the number of chains goes
to infinity. The phase diagrams proposed from weak coupling renormalization
group remain to be explored by other methods.
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