Comment on “Quantum Monte Carlo Evidence for Superconductivity in the Three-Band Hubbard Model in Two Dimensions”

In a recent Letter, Kuroki and Aoki [1] presented quantum Monte Carlo (QMC) results for pairing correlations in the three-band Hubbard model, which describes the Cu-$d_{x^2-y^2}$ and O-$p_{x,y}$ orbitals present in the CuO$_2$ planes of high-T_c materials. In this Comment we concentrate on the parameter set $U_d = 3.2t_{pd}, \Delta = 2.7t_{pd}, t_{pp} = -0.4t_{pd}$. For this parameter choice, Kuroki and Aoki see a maximal increase in the $d_{x^2-y^2}$ pairing correlations which they associate with a signature of off-diagonal long-range order (ODLRO). We argue that:

(i) The above parameter set is not appropriate for the description of high-T_c materials since it does not satisfy the minimal requirement of a charge-transfer gap at half-filling. To illustrate this point, we have calculated with QMC methods the average hole number as a function of the chemical potential: $\langle n \rangle(\mu)$. Our results, which are plotted in Fig. 1, show a vanishingly small charge-transfer gap (i.e., $\Delta_{ct} < 0.07t_{pd}$). In contrast, for a physical parameter set [2], one obtains a sizable charge-transfer gap which is detectable from the plateau in the $\langle n \rangle(\mu)$ curve (see inset, Fig. 1). For the latter parameter set, a number of normal state properties were shown to successfully reproduce experimental data [3]. However, despite intensive numerical efforts, no ODLRO was unambiguously detected [4].

(ii) The observed increase in the $d_{x^2-y^2}$ channel (Fig. 2 in Ref. [1]) is dominantly produced by the pair-field correlations without the vertex part [5]. To prove this point we have calculated the pair-field correlations in the d-wave channel summed over distances r with $|r_x|, |r_y| < R$ [$S_d(R)$] (see Fig. 2(a)). As in Ref. [1], an increase as a function of R can be seen. However, the vertex contribution to the pair-field correlations, which is the relevant quantity, is an order of magnitude smaller and shows—within our numerical accuracy—no significant increase as a function of R [see Fig. 2(b)]. Hence the claim of evidence of ODLRO is not justified.

We acknowledge support from FORSUPRA II, BMBF (05605WWA6), DFG (Ha 1537/12-1), HLRZ, and SNSF (8220-042824).

H. Endres, W. Hanke, H. G. Evertz, and F. F. Assaad

1Physikalisches Institut
Universität Würzburg
97074 Würzburg, Germany

2Department of Physics
University of California, Santa Barbara
Santa Barbara, California 93106-9530

Received 18 September 1996

PACS numbers: 74.25.Dw, 74.20.Mn