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We propose a generalization of the quantum Monte Carlo loop algorithm to thet-J model by a mapping to
three coupled six-vertex models. The autocorrelation times are reduced by orders of magnitude compared to
the conventional local algorithms. The method is completely ergodic and can be formulated directly in con-
tinuous time. We introduce improved estimators for simulations with a local sign problem. Some first results
of finite-temperature simulations are presented for at-J chain, a frustrated Heisenberg chain, andt-J ladder
models.@S0163-1829~98!08331-3#
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I. INTRODUCTION

Quantum Monte Carlo~QMC! methods are a powerfu
tool for the investigation of strongly interacting system
They are easy to generalize and can therefore be applie
almost any model. In addition, they can be used for la
systems and give unbiased results that are exact within g
statistical errors. They are thus an ideal tool for numeri
simulations of complex systems. A major problem, howev
is that the results are not useful if the statistical errors
come too large. This happens in many interesting ca
Classical local update Monte Carlo~MC! simulations near
second-order phase transitions suffer from ‘‘critical slowi
down:’’ the autocorrelation time and with it the statistic
errors diverge at the critical point. This problem has be
solved for many classical spin systems by cluster algorith
which construct global updates of large clusters instead
performing local spin flips.

Recently a generalization of these cluster methods
quantum spin systems, the loop algorithm, has b
developed.1–8 For a review see Ref. 9. This method can so
the problem of critical slowing down also for QMC simula
tions. It has made it possible to investigate phase transit
in quantum spin systems,10–20 far beyond the possibilities o
previous MC techniques.

The loop algorithm can be generalized to particle mod
The original loop method1,2 can be applied directly to har
core bosons and to spinless fermions.4 A Hubbard model can
be simulated by coupling two spinless fermion systems.5 One
problem in QMC simulations of the Hubbard model is th
its dominant energy scale is the Coulomb repulsionU@t,
while the interesting low-lying excitations are at a mu
PRB 580163-1829/98/58~8!/4304~16!/$15.00
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smaller energy scaleJ54t2/U!U. To investigate the low-
energy properties it is thus of advantage to simulate the
fective low energy Hamiltonian, thet-J model. Previous
finite-temperature simulations for thet-J model have been
carried out both in a determinantal formulation21 in two di-
mensions, which suffered from serious sign problems a
metastability, and in the worldline formulation in one dime
sion, with standard MC updates.22 As we will show explic-
itly later, such standard MC simulations suffer from stro
autocorrelations, which seriously limit the accessible syst
sizes and temperatures. They are also nonergodic, and
the determinantal simulations have to be extrapolated to c
tinuous imaginary time.

In the present paper we present a loop algorithm for
t-J model ~for any dimension!, which overcomes these au
tocorrelation problems and has additional advantages suc
complete ergodicity, the existence of improved estimato
which further reduce the error of measured quantities by
plicitly averaging over many configurations, and the pos
bility of directly taking the continuous time limit. Some o
our results have already been presented in Refs. 23 and
The loop updating method has also been used for the si
lation of the two-dimensional~2D! t-J model in the low hole
density and smallJ/t limit in Ref. 25. However, this pape
uses a different representation of thet-J model and unfortu-
nately they do not explain the technical details of their alg
rithm.

Quantum Monte Carlo simulations of fermionic models
of frustrated spin systems nearly always suffer from
‘‘negative sign problem.’’ In order to perform QMC simula
tions we first have to map the quantum system to a class
one. This mapping can introduce negative weights, wh
4304 © 1998 The American Physical Society
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cause cancellation effects. The statistical error for a gi
amount of computational effort can then increase expon
tially with system size and inverse temperature. This
verely restricts simulations of higher-dimensional fermion
models. By combining loop updates with improved estim
tors we can reduce the variance of the observables and
lessen the sign problem.

This paper is organized as follows. First we review t
worldline QMC algorithm and the standard loop algorith
for a Heisenberg chain. In Sec. III we describe the loop
gorithm for thet-J model. The use of improved estimators
discussed in Sec. IV. Finally in Sec. V we discuss the p
formance of the new algorithm and show some first res
obtained for at-J chain, a frustrated Heisenberg chain, a
t-J ladder models. In the Appendix we discuss the conti
ous time version of our method.

II. BACKGROUND MATERIALS

To establish notation and formal background we brie
describe the worldline representation and the standard
algorithm. We refer to the literature for more detailed d
scriptions of the worldline representation26 and the loop
algorithm.1,3,7,9 As an example, we take the 1D Heisenbe
antiferromagnet. The Hamiltonian is defined by

HH5(
i 51

L

H ~ i !5(
i 51

L

JSW i•SW i 11 , ~1!

whereSW i denotes a spin-1/2 operator on sitei , J.0 for the
antiferromagnet, and the periodic boundary conditionSW L11

5SW 1 is adopted.

A. Worldline representation

We use the Trotter-Suzuki decomposition27 and a path-
integral formulation in imaginary time. The HamiltonianH
is decomposed into two termsH5Heven1Hodd, each of
which is easy to diagonalize. Then

Z5Tr e2bH5 lim
M→`

Tr@~e2Dt~Heven1Hodd!!M#

5Tr@~e2DtHevene2DtHodd!M#1O~Dt2!

5 (
i 1 , . . . ,i 2M

^ i 1ue2DtHevenu i 2M&

3^ i 2Mue2DtHoddu i 2M21&•••^ i 3ue2DtHevenu i 2&

3^ i 2ue2DtHoddu i 1&1O~Dt2!, ~2!

whereDt5b/M , andM is called the Trotter number. Th
summation with respect tou i k& is taken over complete ortho
normal sets of states.

We may consider Eq.~2! as the evolution of the initia
stateu i 1& in imaginary time with one application of the tim
evolution operator within a time stepDt. The partition func-
tion Z in Eq. ~2! is also formally the partition function of a
(d11)-dimensional classical system. The systematic erro
order Dt2 due to the finite time step approximation can
extrapolated toDt2→0 by fitting to a polynomial inDt2.
n
n-
-

-
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The loop algorithm can also be formulated directly in t
continuous time limitDt→0.16 This will be discussed in
Appendix A.

The decomposition of the Hamiltonian has to be chos
according to the problem. For our 1D system with on
nearest-neighbor interaction we take Heven/odd

5( i even/oddH
( i ), leading to a checkerboard structure

shown in Fig. 1. The Hamiltonian acts only on the shad
plaquettesp in Fig. 1, each of which contributes a factorwp
to the matrix elements in Eq.~2!, i.e.,

Z5 (
i 1 , . . . ,i 2M

)
p

wp[(
$C%

W~C!. ~3!

For the Heisenberg model we expand the statesu i k& in an
Sz eigenbase. EachH ( i )5SW i•SW i 11 conserves magnetization
Therefore there are only six nonvanishing matrix eleme
for each shaded plaquette, which can be represented by
and dashed lines connecting up and down spins, respecti
as shown in Fig. 2. Thus the sum in Eq.~3! is taken over
configurationsC[$u i k&% of continuous worldlines. One ex-
ample is shown in Fig. 1. Note thatC can be identified with
a set of binary variablesSi

z561/2, each defined on a site i
the checkerboard, with the restriction due to the magnet
tion conservation. It is convenient to defineCp as the local
state of a given shaded plaquettep, namely, a set of four
binary variables at its four corners. The configurationC is

FIG. 1. Example of a world line configuration of the Heisenbe
model with the checkerboard decomposition. The imaginary timt
runs along the vertical axis, and the real space direction along
horizontal axis. The solid lines represent up-spins, the dashed

down spins. The shaded plaquettes show the application ofe2DtH( i )
.

FIG. 2. The six allowed plaquette states of the Heisenb
model that fulfill the magnetization-conservation condition. T
second row shows the weights of the plaquettes for the Hamilton
~Eq. 1!. The solid lines connect two sites occupied by up spins,
the dashed ones connect down spins.~We have assumed a bipartit
lattice and rotated the spin-operatorsSx,y→2Sx,y to make the
weight of the last two plaquettes positive.!
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then identified with the union of the plaquette states. Acco
ingly, wp in Eq. ~3! can be written asw(Cp).

Thermal averages of observablesO can be written in a
similar way as

^O&5
1

Z(
$C%

W~C!O~C!, ~4!

whereO(C) is the value of the observable in the configur
tion C.

If the weight of a configurationW(C) can take negative
values, one has to use its absolute valueuW(C)u to construct
the probabilities for the Markov chain of a MC procedu
~see below!, since these probabilities need to be positi
Expectation values are then given by

^O&5

(
$C%

W~C!O~C!

Z
5

(
$C%

uW~C!u sign~C!O~C!

(
$C%

uW~C!u sign~C!

5

(
$C%

uW~C!u sign~C!O~C!

(
$C%

uW~C!u

(
$C%

uW~C!u sign~C!

(
$C%

uW~C!u

5
^sign•O& uWu

^sign& uWu
, ~5!

where sign(C) stands for the sign ofW(C), and ^•••& uWu
denotes expectation values with respect to the absolute v
of the weightW.

In many cases, a ‘‘sign problem’’ now stems from the fa
that the average sign,̂sign& uWu , may decay exponentially
with increasing system size and inverse temperatureb. For
fixed computational effort this then leads to an exponen
blow up of the errors.

B. Local worldline algorithms

The thermal averages, Eqs.~4,5!, can be taken by MC
importance sampling. One constructs a sequence~Markov
chain! of configurationsC ( i ) such that in the limit of infi-
nitely many configurations their distribution agrees with t
correct Boltzmann distributionp(C ( i ))5W(C ( i ))/Z.

This can be achieved by satisfying two conditions: erg
icity of the Markov chain, and detailed balance

p~C→C8!

p~C8→C!
5

W~C8!

W~C! , ~6!

wherep(C→C8) is the probability of choosing the configu
ration C8 as the next configuration in the Markov chai
when the current configuration isC.

Then the thermal expectation value Eq.~4! of an observ-
ableO can be estimated by averaging the value of the
servable in the configurationsC ( i ):
-

-

.

lue

t

l

-

-

^O&5 lim
N→`

Ō, Ō5
1

N(
i

N

O~C ~ i !!. ~7!

In cases with a sign problem the averages in Eq.~5! are done
separately for the numerator and for the denominator:

Ō5

1

N(
i 51

N

~sign•O! uWu
~ i !

1

N(
i 5N

n

~sign! uWu
~ i !

. ~8!

In standard local algorithms an update from one confi
rationC to the next one is done by proposing a new config
ration C8 that differs fromC by a smalllocal change of the
worldlines. The candidateC8 is accepted with a probability
that satisfies detailed balance, e.g., the Metrop
probability28

p~C→C8!5minS 1,
W~C8!

W~C! D , ~9!

or the heatbath probability

p~C→C8!5
W~C8!

W~C!1W~C8!
; ~10!

otherwise the configurationC is kept.
There are two major problems with local updates: Fir

consecutive configurations are strongly correlated. It ta
on average a numbert of updates to arrive at a statisticall
independent configuration. Thisautocorrelation time t,
which depends on the measured quantityO, typically in-
creases quadratically with spatial correlation lengthj and
inverse energy gapD21 ~respectively, system sizeL and
inverse temperatureb whenj.L or D21.b). To achieve a
desired statistical accuracy, the MC simulation has to
lengthened by a factort, which can easily reach orders o
106 and larger in practical cases.

Secondly, in contrast to classical MC simulations, loc
updates arenot ergodicfor world-line algorithms in general
since local updates only cannot change the number of wo
lines nor their winding numbers in the simulation. For e
ample, when applied to the Heisenberg model, the total m
netization and the spatial winding number remain consta
Many quantities of physical interest, like the superfluid de
sity, are then very difficult to estimate. In addition, it wa
pointed out7 that a complicated quantity exists that does n
vary in conventional local updates for theXYZ model. To
make the conventional algorithm ergodic, therefore, we u
ally have to include somead hocglobal updates, which tend
to make the resulting code rather cumbersome. Also, the
ceptance rate of suchad hoc global updates is often very
small, which is another cause of long autocorrelation tim

C. Loop algorithm for the Heisenberg model

Both kinds of difficulties are overcome in the loop alg
rithm, which achieves large nonlocal configuration chang
in one stochastic update. Autocorrelation times for the lo
algorithm are found to be orders of magnitude smaller th
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those for the conventional algorithm. In addition, it does n
suffer from the above-mentioned ergodicity problems, a
can be formulated directly in continuous time.16

In the loop algorithm, each update consists of two ste
both stochastic. In the first step, the current worldline c
figuration C is mapped with a probabilityp(C→G) to a
graph configurationG. G5$Gp% consists of local graph seg
mentsGp defined on the plaquettesp, which combine to
form a set of closed loops. In the second step, the confi
ration of loops is mapped with a probabilityp(G→C8) to a
new worldline configurationC8.

Let us explain the simple case of the Heisenberg mo
Two observations are important:~1! Since the worldlines are
continuous, the difference between two arbitrary worldli
configurations~in the sense of an exclusive-or!, i.e., thelo-
cation of spin flipsin any allowed update of a configuratio
is located on a set of closed loops. These are the loops
will construct. Flipping all the spins on a closed loop will b
called a loop flip. In Fig. 3 we show an example for a loo
update step for the Heisenberg model.~2! Since the Hamil-
tonian acts locally, the partition functionZ in Eq. ~3! is a
product of plaquette terms. We can therefore fulfill detai
balance separately for each plaquette, provided the gl
constraint of closed loops is satisfied.

By inspecting the six allowed local statesCp on a
plaquette~Fig. 2!, we see that for each plaquette, spin fli
must occur onpairs of sites, not on single spins, in order
arrive at another allowed local state. We connect the pair
sites on which spins are to be flipped together by solid lin
these are loop segments. Since there are several pos
pairings of sites, the lines can, in principle, run horizonta
vertically, or diagonally. Also, all four sites can be flippe
simultaneously without violating the restriction. The symb
Gp stands for the two loop segments on plaquettep. We will
speak ofGp as the graph on plaquettep. The union G
5øpGp constitutes a complete graph configurationG. We
call the graphGp in which all four spins are grouped to
gether the ‘‘freezing’’ graph, since~without symmetry break-
ing field! the flip of all four spins will leave the plaquett
weight wp invariant. For a given plaquette configurationCp

FIG. 3. Example of a loop-update step for the Heisenberg mo
~anisotropic case, which has finite probability for diagonal gra
segments!. On the left~a! we show an initial configurationC of up
spins~dashed lines! and down spins~solid lines! which is mapped
to a configurationG of loops in the middle figure~b!. Some of these
loops are selected~with probability 1/2! to be flipped, i.e., the spins
along these loops change direction. We denote the loops that w
flipped by dashed lines, the unchanged loops by solid lines.
figure on the right~c! shows the spin configuration after the loo
flips.
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only certain graphsGp are possible, namely, those for whic
an update along connected points leads to another allo
plaquette configurationCp8 @i.e., w(Cp8)Þ0#. We define a
function D(Gp ,Cp) so that it takes the value 1 whenGp is
allowed for a givenCp and the value 0 otherwise. It is show
in Fig. 4. Each spin belongs to two interacting plaquettes
belongs to one loop segment on each of these plaque
except for the ‘‘freezing’’ graph, in which all four sites ar
connected. SpecifyingGp on each interacting plaquette ind
vidually will thus automatically lead to an overall configur
tion of closed loops. Therefore, we only need to specify
probabilitiesp(Cp→Gp) andp(Gp→Cp8) for each interacting
plaquette individually. If we additionally have ‘‘freezing’
graphsGp on some of the plaquettes, then the loops pass
through these plaquettes have to be flipped together. T
are ‘‘frozen’’ into one loop cluster. This freezing is problem
atic if it occurs too often since then the whole lattice mig
just ‘‘freeze’’ and no change of weight is done by the upda
Thus we want to avoid unnecessary freezing.

We may construct loop algorithms such that loops
flipped with probability 1/2 when there is no symmet
breaking field, as is the case with generalXYZquantum spin
systems without magnetic field. To include a symme
breaking field, we factorize the local Boltzmann weight
the form

uw~Cp!u5w0~Cp!wasymm~Cp!, ~11!

wherew0(Cp) is used for defining the probability of choos
ing Gp , whereaswasymm(Cp) is taken into account in term
of the flipping probability of the loop. The weightw0(Cp)
needs to be invariant9 under flip of all four spins at the
plaquette p. Using this factorization, the probability
p(Cp→Gp) is constructed as follows. First wechoose
weightsv(Gp) for all graphsGp such that

(
Gp

v~Gp!D~Gp ,Cp!5w0~Cp!. ~12!

el
h

be
e

FIG. 4. Plaquette configurationsCp and graphsGp for the anti-
ferromagnetic Heisenberg model. The upper part of the figure sp
fies the graphsGp and one solutionv(Gp) of Eq. ~12! for their
weights. There is a free parametere in this solution. Ife is chosen
to be zero, no freezing and no diagonal graph segments will oc
The third row shows the continuous time limit ofv(Gp) ~see Ap-
pendix A!. The lower part of the figure shows the spin configur
tionsCp and their weights, and the functionD(Gp ,Cp), which speci-
fies whether a configurationCp and a graphGp are compatible.
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One solution to this set of equations is shown in Fig. 4.~The
solution is in general not unique; depending onH, it may
also not exist.! Then, detailed balance for the overall upda
C→C8 is fulfilled by

p~Cp→Gp!5
v~Gp!D~Gp ,Cp!

w0~Cp!
;

p~G→C8!5

)
p

wasymm~Cp8!D~Gp ,Cp8!

)
p

wasymm~Cp!1)
p

wasymm~Cp8!

, ~13!

as can be checked easily. In general,p(G→C8) needs to
satisfy detailed balance with respect to the weig
)pwasymm(Cp8)D(Gp ,Cp8). Here we have chosen a heatba
probability like Eq.~10!.

The construction of the loops can be performed in a m
ticluster scheme. In this case, a graphGp is chosen on all
plaquettesp, and we obtain a unique partitioning of the la
tice into nl loops l i . Then we attempt to flip all loopsl i
according to Eq.~13!. We can also use a single-clust
variant.29 We can think of this variant as picking a sing
clusterl i of the above partitioning with a probabilityp(u l i u)
according to the size of the loopu l i u5(site (t, j )P l i

1. This loop

is then flipped with respect to weightsw̃5)pP l i
wasymm(Cp)

and Eq.~9!, which means that we will always flip that loop
w̃51 for all plaquettes. In an implementation of this alg
rithm we construct this single loop by picking randomly a
site of the lattice and building a single loop by choosi
graphsGp only on the plaquettes along the path. Hence
need an effort only proportional to the lengthu l i u.

III. LOOP ALGORITHM FOR THE t-J MODEL

The t-J model is defined by the Hamiltonian

H52t(
^ i , j &

(
s

@~12nj ,2s!cj ,s
† ci ,s~12ni ,2s!1H.c.#

1J(
^ i , j &

~SW iSW j2
1
4 ninj !, ~14!

whereci ,s
† creates a spin-1/2 fermion withz component of

spin s at site i , ni ,s5ci ,s
† ci ,s and ni5(sni ,s and H.c. the

Hermitian conjugate. The projection operators (12nj ,2s)
prohibit double occupancy of a site. The brackets^ i , j & de-
note nearest neighbor pairs. Thet-J model can be repre
sented in a worldline formulation22 in terms of variables tha
take three possible values, 0,11, and21, representing a
hole, an up spin, and a down spin, respectively. The ma
elements for the 15 different plaquettes with nonzero wei
are given in Fig. 5. There are several sources of nega
signs in the overall weightW(C)5uW(C)usign(C) of a con-
figuration. For thet-J model they all stem from anticom
mutation of fermion operators. One example is the sign
the third line of Fig. 5. The overall sign can be decompos
as

sign~C!5~21!nperm~bc!
nbound, ~15!
t

l-

e

ix
t
e

n
d

wherenperm is the number of permutations of fermion world
lines, bc511 for periodic andbc521 for antiperiodic
boundary conditions, andnbound is the number of particles
hopping across the boundary. For constructing loops we
use the absolute value of the weight, Eq.~11!. The sign will
be taken into account in the MC simulation according to E
~8!. It will also play a role for the improved estimator
treated in Sec. IV.

In the last section, we have seen how a loop algorithm
constructed for a model with binary variables. In order
construct a loop algorithm for thet-J model we now reduce
the problem with trivariate variables into three subproble
with binary variables. To this end, we divide a MC step in
three substeps. In substep I, variables with the value
namely, holes, are left unaffected~inactive! while attempts
are made to flip all the variables with values11 and 21
~active variables!. Similarly, in the second and the third sub
steps, we keep variables with the values11 and21, respec-
tively, unaffected. Therefore, we deal with a binary proble
in each substep. To each of these binary problems, we a
the idea of the loop algorithm. We denote as ‘‘acti
plaquettes’’ those on which all four variables are active.
the active plaquettes, the resulting algorithm for substep
identical to the loop algorithm for theS51/2 antiferromag-
netic Heisenberg model, while the algorithm for substeps
and III turns out to be the loop algorithm for theS51/2 XY
model ~which is the same as that for free fermions!, as we
will see below. The flipping probabilities of the loops are
course affected by the inactive plaquettes.

Since we have three different binary problems, we nee
construct three loop algorithms with the second and the th
ones being transformable into one another simply by in
changing the roles of the values11 and21. The detailed
balance condition holds for each of the three subste
whereas ergodicity is achieved by the combination of the
We have ample freedom in choosing a set of graphs
graph weights. It is, however, advantageous for compu
tional simplicity and the reduction of autocorrelation times
choose a scheme such that the resulting loops may be flip
independently in a multicluster variant~for a different choice
see Ref. 24!. Therefore, we must have weightswasymm(Cp)
[1 on the active plaquettes, i.e., those where two loops m
be flipped. This can be achieved by letting the loop upda
deal only with the active plaquettes. The weights of the ot
plaquettes are put into the global weight functionwasymm:

FIG. 5. The 15 different plaquettesCp with nonvanishing weight
w(Cp) for the t-J model. Up spins are denoted by a solid line, dow
spins by a broken line. The sign ofw(Cp) will be taken into account
according to Eq.~8!.
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w0~Cp!5H w~Cp! if all four variables on the plaquette are active

1 otherwise,

wasymm~Cp!5H 1 if all four variables on the plaquette are active

w~Cp! otherwise.
~16!

In this case we can flip all loops independently with the flipping probability for a loopl i ,

pflip~ l i !5

)
pP loop l i

wasymm~Cp8!

)
pP loop l i

wasymm~Cp!1 )
pP loop l i

wasymm~Cp8!

, ~17!
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whereCp8 denotes the plaquette state after the flipping.
Let us consider now in detail the probabilities in the

gorithm for substep I in which variables with the value
~holes! are inactive and kept unaffected. The algorithm
equivalent to the one for theS51/2 antiferromagnetic iso
tropic Heisenberg model as far as the plaquettes with o
active variables are concerned. As for the plaquettes w
inactive variables, a unique graph is assigned to each of t
such that active variables, if any, are connected to each o
~see lower part of Fig. 6!. It is easy to verify that the graph
weightsv(Gp) shown in Fig. 6 satisfy the weight equatio
~12!. In this algorithm, the weightswasymm(Cp) remain un-
changed upon flipping of a loop because of the sp
inversion symmetry of the Hamiltonian. Thus we obtain
loop flipping probability of 1/2.

Next, we consider the algorithm for substep II~or equiva-
lently substep III!, where all down spins are kept unchange
This time, the algorithm on the active plaquettes is equi
lent to the one for theS51/2 XY model ~since that is the
same as the algorithm for free fermions9! rather than that for

FIG. 6. Plaquette configurationsCp and graphsGp for substep I
~flip spin up↔ spin down! of the t-J model. The upper part of the
figure specifies the graphsGp and the freezingless solutionv(Gp)
of Eq. ~12!. The lower part of the figure shows the spin configu
tionsCp and their weights, and the functionD(Gp ,Cp), which speci-
fies whether a configurationCp and a graphGp are compatible. The
first six configurationsCp and the solutionv(Gp) restricted to these
configurations correspond to the case of the antiferromagn
Heisenberg model. The open circles in the diagrams in the top
represent active variables whereas solid circles stand for inac
ones.~For the plaquette configurationsCp in brackets, the corre-
sponding graphGp given in the figure has to be flipped spatially!
ly
th
m
er

-

.
-

the antiferromagnetic Heisenberg model. Again, a uniq
graph is assigned to each plaquette with inactive variab
such that any active variables are connected. The gr
weightsv(Gp) are shown in Fig. 7. Contrary to substep I, w
have to calculate the flipping probabilities of the loops a
cording to Eq.~17!, since there is no symmetry similar to th
spin-inversion symmetry in the first algorithm.

In contrast to the conventional local-update worldline
gorithm, simulations can be performed in either the cano
cal or the grand canonical ensemble, with either constan
variable magnetization in the present method. A change
the particle number or the magnetization results from loo
that wrap around the lattice in temporal direction one
more times. If the particle number or the magnetizati
should be fixed, we can simply disallow flipping these loo
without violating the detailed balance condition. Since t
loop algorithm is no longer restricted to the subspace o
constant spatial winding number, a negative sign may app
also for the 1Dt-J model. However, here the sign problem
not really a difficulty because it becomes less significant
the system size becomes larger. It can also be avoided if
chooses the subspace of constant winding number.

-

tic
w
ve

FIG. 7. Plaquette configurationsCp and graphsGp for substep
III ~flip spin up↔ hole! of the t-J model. The solution for substep
II is equivalent. The upper part of the figure specifies the graphsGp

and the freezingless solutionv(Gp) of Eq. ~12!. The first six con-
figurationsCp and the solutionv(Gp) restricted to these configura
tions correspond to theXY model ~free hardcore bosons!. See also
Fig. 6.
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IV. IMPROVED ESTIMATORS

Let us now discuss ‘‘improved estimators.’’30 They re-
duce the error of measured quantities by implicitly averag
over many configurations. In a MC simulation we constru
with the loop algorithm, a series ofi 51, . . . ,N configura-
tions C ( i ). In the first step of each loop update we define
graphG( i ) that consists of a setL ( i ) of n( i ) loops. From this

graph we can reach any member of a setG ( i ) of 2n( i )
world-

line configurations by flipping a subset of the loops. T
probability p(C8) for each of the configurationsC8PG ( i ) is
determined by the loop flip probabilitiespflip . In the second
step one configurationC ( i 11) will then be chosen randomly
according to these probabilities.

An improved estimatorOimpr for the expectation value
Eq. ~7! can be constructed by averaging over the value

each of the 2n
( i )

statesC8PG ( i ) that can be reached from th
stateC ( i ), instead of measuring only the value in one st
C ( i ):

^O&5^Oimpr&, Oimpr5 (
C8PG~ i !

O~C8!p~C8!,

Ōimpr5
1

N(
i 51

N

Oimpr , ~18!

where the probabilityp(C8) of the configurationC8 can be
calculated as a product of the loop flip probabilitiespflip .
~Actually, we can choose some probabilitypflip8 here that is
different from the flip probability used in the MC updates;
just needs to satisfy the same detailed balance requireme
pflip . Thus there is actually a large variety of improved es
mators available.!

To really gain an improvement we need to calculate

average over 2n
( i )

states in a time comparable to the tim
needed for a single measurement. Fortunately that is
sible. Particularly simple improved estimators can often
found in the case thatpflip5 1

2 for all loops. In that case the
above estimate simplifies to

Ōimpr5(
i 51

N

22n~ i !

(
C8PG~ i !

O~C8!, ~19!

as all of the states inG ( i ) now have the same probabilit

22n( i )
.

Even if the loop flip probabilities are not all equal, we c
still choose apflip8 such that some loops havepflip8 5 1

2 , while
the other loops are fixed in a certain state. There are m
possibilities to do that. We have chosen to fix the state o
loop with a probability of

pfix5u2pflip21u. ~20!

If pflip, 1
2 , the loop is fixed with probabilitypfix in the old

state and ifpflip. 1
2 in the flipped state. The spins on th

fixed loops are treated just as the inactive spins. The rem
ing setF8( i ) of n8( i )<n( i ) loops can then be flipped with new
probabilitiespflip8 5 1

2 .
g
,
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A. Simulations without sign problem

Let us show two examples of improved estimators for
simple case of substep I of thet-J algorithm ~or for the
Heisenberg antiferromagnet!. We provide a more detailed
discussion in Appendix B. From Eqs.~18! and ~B4!, the
improved estimator~multiplied by 4 for convenience! for the
spin-correlation function at momentump is

Oimpr[4~Sr ,t
z Sr8,t8

z
! impr

5H 0 if the spins are on different loops

1 if the spins are on the same loop.
~21!

Remarkably, the locations of the loops thus correspo
to the spin-spin correlation function. The potential gain fro
using improved estimators is easy to see in this case.Oimpr
takes only the values 0 and 1. Yet it has the same expecta
value as the unimproved estimatorO[4Sr ,t

z Sr8,t8
z

561.
When ^O& is small @e.g., ^O&;exp(2r/j) at larger #, then
the variance ofO is

^O 2&2^O&2512^O&2'1, ~22!

whereas the variance ofOimpr is

^O impr
2 &2^Oimpr&

25^Oimpr&2^O impr&
2'^Oimpr&[^O&!1.

~23!

For a given distancer , the gain from using the improved
estimator appears largest at small correlation lengthj,
whereas the gain from reducing autocorrelations with
loop algorithm is largest at largej. Using the improved es-
timator can therefore reduce the variance, and thus the c
puter time required for a given accuracy, by a large fac
The nonimproved estimator may, however, have a sizea
amount of self-averaging from summing over all lattice sit
which can cancel part of this gain.

An especially simple estimator can also be derived for
uniform magnetic susceptibility ^x&5g2mB

2b/
V^(1/DM( r ,tSr ,t

z )2& by using

(
t

1

DM(
r

Sr ,t
z 5 (

~ loopsl !
(

[ ~r ,t!in l ]

1

DM
Sr ,t

z 5
1

2 (
loopsl

wt~ l !,

~24!

which giveŝ x&5^x impr& simply as the the sum of the squa
of the temporal winding numberswt( l ) of the loopsl :

x impr5
g2mB

2b

4V (
loopsl

wt~ l !2. ~25!

HereV is the number of spins in the lattice,D is the number
of terms in the Trotter decomposition (D52 for a nearest-
neighbor chain! andM is the number of Trotter time slices
Thus VDM is the total number of spins in the classical (d
11)-dimensional lattice. In the single cluster variant, t
sum over the loops in Eq.~25! is also calculated stochast
cally. Since there we pick a single loopl with a probability
u l u/(VDM) proportional to its sizeu l u, we have to compen-
sate for this extra factor and obtain
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TABLE I. Assignment of signssCp ,Gp
(p) for substep I of thet-J model~or for the Heisenberg

model, when the bipartite transformation is not done!. The values ofsCp ,Gp
(p) for the plaquettes

not in the table are all equal to 1.
rg

m

r

ary
ht.
as

ice.
d

^x&5
g2mB

2b

4 K DM

u l u
wt~ l !2L . ~26!

The improved estimators for more general spin and cha
correlations are derived in Appendix B.

B. Simulations with a sign problem

In the case of simulations with a negative sign proble
expectation values have to be computed according to Eq.~8!.
Improved estimators can again help here, as they reduce
variance, and thus the error of the sign.

Let us restrict ourselves to the case of thet-J model on a
single chain, for which

sign~C!5~bc!
nx@~21!Ntot21#nx~21!Nneg, ~27!
we

c
in
-

ig

ng
n

gn
e

,

the

or to ~possibly frustrated! spin models on any lattice, fo
which

sign~C!5~21!Nneg. ~28!

Here bc511 for periodic andbc521 for antiperiodic
boundary conditions,Ntot is the total particle number,nx de-
notes the number of particles hopping across the bound
andNneg are the number of plaquettes with negative weig
In the canonical ensemble, we can decompose the sign

sign~C!5 )
plaquettesp

s~Cp!, ~29!

where the product extends over all plaquettes of the latt
Whenbc(21)N tot21521, the sign of a plaquette is define
as
s~Cp!5H 21 if for the t2J model eitherw~Cp!,0 or a particle hops across the border, but not both,

21 if for a spin modelw~Cp!,0

1 otherwise

~30!
ial
hese
e

ne
ts

te

rom
p
e
m
ns
fore
to satisfy Eq.~29!. @Whenbc(21)N tot2151 it can be defined
similarly.#

Improved estimators can be formulated for the sign if
can express it as a product of signs of the loops:

sign~C ~ i !!5s0 )
l PL~ i !

sign~ l !, ~31!

wheres0 is the sign of the plaquettes that contain only ina
tive spins. We consider only the case where the flipp
probabilities are allpflip51/2, since especially simple im
proved estimators are available there:

@sign~C ~ i !!# impr5s0•22n~ i !

)
l PL~ i !

@sign~ l !1sign~ l̄ !#.

~32!

This estimator is zero if at least one loop changes its s
when it is flipped. Again this is a very simple estimator.

The signs of the loops are constructed in the followi
way: If a plaquette contains only inactive spins, its sign co
tributes tos0. If only one loop threads the plaquette, the si
-
g

n

-

of the plaquette is assigned to that loop. The only nontriv
case is where two loops thread a plaquette. We denote t
loops by ‘‘1’’ and ‘‘2.’’ In that case the sign of the plaquett
s(Cp) has to be divided into two partss(Cp)
5sCp ,Gp

(1)•sCp ,Gp
(2), depending on the graphGp chosen

for the plaquette. This must be done in such a way that if o
or both of the loops are flipped, the produc

sCp ,Gp
(1̄)•sCp ,Gp

(2), sCp ,Gp
(1)•sCp ,Gp

(2̄), and

sCp ,Gp
(1̄)•sCp ,Gp

(2̄) are equal to the sign of the plaquet

with the spins on the corresponding loops flipped.~The bars
denote flipped spins on that part of the plaquette.! In Table I
we show a solution forsCp ,Gp

(p) for substep I. In the grand

canonical ensemble we get additional sign changes f
changes ofNtot in Eq. ~27!. They can be assigned to the loo
whose flip causesNtot to change. Overall, an assignment lik
Eq. ~32! is possible for all three steps of the loop algorith
for the 1D t-J model. For frustrated spin problems, sig
appear only in single-plaquette weights and can there
always be assigned similar to Table I.
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If we consider different geometries for thet-J model,
such as ladder systems or higher dimensional lattices,
sign(C) gets additional contributions from winding of fe
mion worldlines inside the boundaries. In this case we
still use the improved estimators constructed above for
updates of substep I, since the corresponding spin flips
not change the fermion winding number. In substeps II a
III more complicated improved estimators can be co
structed, at least for summing measurements over som
the possible loop flips. However, it is probably sufficient
have an improved estimator for one of the substeps, in o
to already obtain most of the possible reduction in varianc

In a similar way we can also measure equal time partic
particle and spin-spin correlations, the magnetic suscept
ity and other observables. As an example we present
improved estimator for the uniform susceptibility in subst
I of the algorithm ~or for pure spin models!. If no loop
changes the sign of configurationC( i ) upon flipping, then we
have

~sign•x! impr
~ i ! 5

g2mB
2b

4V
sign~C ~ i !! (

loopsl PL ~ i !
wt~ l !2. ~33!

If exactly two loops land l 8 change the sign, it is

~sign•x! impr
~ i ! 5

g2mB
2b

2V
sign~C ~ i !!wt~ l !wt~ l 8!, ~34!

and it is zero if one or more than two loops change the s
As this improved estimator requires one to know the s
change of a set of loops~all those whose flip is considered i
constructing the improved estimator!, a multi cluster algo-
rithm is advantageous. The improved estimators for m
general correlation functions are derived in Appendix B.

V. RESULTS

We will now discuss the performance of the new alg
rithm by comparing the errors and autocorrelation times
the local update method and the loop update with and w
out improved estimators. We will consider four examples
singlet-J chain, two coupledt-J chains, and three couple
t-J chains~these are the first MC simulations for couple
t-J chains!, and a frustrated Heisenberg model on a sin
chain.

A. Autocorrelation times

We have determined the integrated autocorrelation tim
t int
O of our new algorithm applied to at-J chain. Let us first

give the details on how we have calculated these times.
O ( i ) be the estimate of the observableO in the i th step of
our MC procedure. It can be either the simple estimator
the improved estimator. As usual, we estimate the value
an observableO by Eq.~7! as an average over theseN mea-
surements.@We do the same for the nominator or denomin
tor of Eq. ~8!.# The error of the estimate iss/AN21, where

s252t int
O ~O 22Ō2!. ~35!

The autocorrelation timet int
O is given by the autocorrelation

function G(t),
en

n
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-

G~ t !5
^O ~ t01t !O ~ t0!&2^O ~ t01t !&•^O ~ t0!&

^O ~ t0!O ~ t0!&2^O ~ t0!&•^O ~ t0!&
, ~36!

as

t int
O5 1

2 1(
t51

`

G~ t !. ~37!

In the MC simulation, we have calculatedt int
O by grouping

the N measurements inton bins of lengthl 5N/n and com-
puting the bin averagesOb( l )51/l ( j 5(b21)l 11

bl O ( j ), b
51, . . . ,n. Then we have calculated the variance of the
averagesOb̄( l ) of bin lengthsl :

s~ l !25
1

n21(
b51

n

@Ob~ l !2Ō#2 ~38!

and the autocorrelation time can be estimated as31

t int
O ~ l !5

ls~ l !2

2s~1!2
, ~39!

the expectation value of which becomes equal tot int given
by Eq. ~37! in the limit of l→`. As a function of increasing
bin length l , t int

O ( l ) is generally a nondecreasing functio
When statistical independence is approached, the incr
ceases and the expectation value oft int

O ( l ) approaches a con
stant value.~Note that with a finite numberN of measure-
ments, the estimate fort int

O will fluctuate increasingly whenl
is increased.! The asymptotic constant value was our es
mate fort int

O . We have taken bin lengthsl 51,2,4,8, . . . .
For a comparison of the autocorrelation timest int

O we also
need to give our definitions of ‘‘one MC step’’ for bot
algorithms. In the conventional plaquette flip algorithm, t
lattice is subdivided into four sublattices, which allow th
simultaneous modification of all sites of the sublattice. In
single MC step we sequentially attempted to update all s
of a sublattice, which is generally called one ‘‘sweep’’ ov
the lattice. For one sweep with the loop-algorithm, we cho
one of the three steps I, II, and III at random and cho
graphsGp for all plaquettes. This results in a complete d
composition of the lattice into loops. We then attempted
flip each loop. All our simulations were done in the cano
cal ensemble. In general we have performedM52.53106

MC steps for the loop algorithm andM5303106 to 70
3106 MC steps for the plaquette flip algorithm. Despi
these very long simulation times we found cases~only for
the conventional algorithm!, wheret int

O ( l ) keeps increasing
as a function of the bin sizel . In these cases we tookt int

O ( l )
as a lower bound for Eq.~37! with the largestl where a
statistically reliable estimate is still possible.

Since the value oft int
O depends strongly on the observab

O, we have calculatedt int for the internal energy, the stati
charge-charge correlations

Sc~k!5
1

L(
j ,m

L

eik~ j 2m!^~nj ,↑1nj ,↓!~nm,↑1nm,↓!&, ~40!

and the spin-spin correlations
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FIG. 8. Integrated autocorrelation timest int for the one-dimensionalt-J model at quarter-band filling on a lattice ofL516 sites with
Dtt50.25, andL564 sites withDtt50.125. The results of the plaquette flip algorithm is shown with open symbols, the results of the
algorithm with filled symbols. For the loop algorithm we took antiperiodic boundary conditions, for the plaquette flip algorithm we u
zero-winding boundary condition.~a! showst int for the internal energy,~b! for charge-charge correlationsSc at k5kF5p/4 and~c! spin-spin
correlationsSs at k5kF . The arrows denote measurements wheret int is only a lower bound, see text for details. The loop algorithm ga
orders of magnitude in computational effort over the traditional plaquette flip algorithm, with increasing gains at low temperatures
large systems.
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Ss~k!5
4

L(
j ,m

L

eik~ j 2m!^Sj
zSm

z &. ~41!

In Fig. 8 we showt int
O as a function of the inverse tem

peratureb for a singlet-J chain. We have performed simu
lations on a smaller lattice, withL516 sites andDtt50.25
and on a larger lattice withL564 sites andDtt50.125. All
measurements have been performed at quarter-band fi
and for ratios ofJ/t51 and 2.

For the loop algorithm we obtained values oft int between
one and 15 for all observables and all parameter values.
pecially, there is no significant increase oft int with increas-
ing b. This is in contrast to the conventional algorithm
wheret int is between 100 and 1000 for the internal ener
but even larger than 10 000 for the spin-spin correlatio
We have to point out here that the values oft int for the larger
lattice with the conventional algorithm are most likely po
lower bounds of the real autocorrelation timest int , since we
have not been able to reach a plateau fort int( l ) in these
cases. Obviously the loop algorithm is especially effective
reducing the autocorrelation times for the spin-spin corre
tions. Thus our new algorithm for thet-J model works suc-
ng

s-

,
s.

n
-

cessfully, saving orders of magnitude in computation
effort.

B. Improved estimators

Next we show some results and the effect of improv
estimators for thet-J chain, obtained with the multicluste
algorithm. The results of the measurements can be see
Table II. We have considered different correlation functio
such as the spin-spin and charge-charge correlations. Fo
observed quantities, the variance is reduced with the ap
cation of improved estimators. The variance of the improv
measurements is up to a factor of 1.7 smaller than with
the use of improved measurements. Note that in the un
proved measurements, we have measured the correla
functions from each lattice site. Thus here we can have la
self-averaging when summing the correlation measurem
over the large lattice, which cancels part of the gain fro
improved estimators.

In order to investigate the improved estimators for sim
lations with a sign problem, we have simulated a sim
frustrated spin system, namely, the Heisenberg chain w
nearest- and next-nearest-neighbor interactions. With the
tations of Eq.~1! the Hamiltonian reads
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TABLE II. Results for thet-J chain: Comparison of improved (I ) and unimproved (U) measurements for the single chaint-J model.
The measured quantities are the internal energye, the charge-charge correlationsSc(k5p/4), the spin-spin correlationsSs(k5p/4), and the
real-space spin-spin correlations atr 5L/8 and r 5L/4. We have considered a system with periodic boundary conditions and 64 siJ
5t, bJ516, Dtt50.125. The number of particlesnp are 32 and 48. For comparison, we show in the last two rows the results fo
Heisenberg chain of the same length~hb!, at bJ516. We performed 100 000 updates for each simulation.

Model Alg. e Error ScS k5
p

4 D Error SsS k5
p

4 D Error ^SiSi 1(L/8)& Error ^SiSi 1(L/4)& Error

np532 U -0.75295 0.000292 0.28284 0.00053 0.78092 0.00202 0.00533 0.00015 0.00088 0.
np532 I -0.75254 0.000277 0.28238 0.00045 0.78012 0.00161 0.00535 0.00012 0.00086 0.
np548 U -0.81528 0.000322 0.23708 0.00066 0.71221 0.00096 0.01046 0.00029 0.00220 0.
np548 I -0.81563 0.000288 0.23636 0.00056 0.71135 0.00072 0.01078 0.00022 0.00230 0.
hb U -1.38017 0.00046 0.67635 0.00151 0.04659 0.00064 0.00761 0.00
hb I -1.37965 0.00037 0.67480 0.00105 0.04739 0.00053 0.00797 0.00
m
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HJJ85(
i

~JSW i•SW i 111J8SW i•SW i 12!. ~42!

We have implemented this model by the continuous ti
loop algorithm. For this model we have to use a finite pro
ability e for diagonal graph segments, which implies a fin
probability for freezing~see Fig. 4!; otherwise the algorithm
is not ergodic~and no negative sign will appear!. The sign
problem is very severe here. Even with a relatively we
frustrating coupling ofJ510J8 we have obtained̂ sign&
50.005460.0007 forbJ50.1 on 20 sites. Note that we ar
able to reliably measure a sign this small. In Table III w
show the results for improved and unimproved measu
ments of the sign, for different values of the freezing factoe
and temperatures ofT/J50.1 andT/J50.2. The errors and
the improvement due to the improved estimators depend
the value of the freezing factore, in this case the optima
value ise'0.2. The improved estimators perform better
the sign decreases, and the ratio of the errors of the impro
and the conventional measurements increases as the tem
ture is lowered. Note that the factor of the improvement
1.75 leads to a reduction of a factor three in CPU time.
e
-

k

-

on

s
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f

C. Two-leg t-J ladder

As an example of the loop algorithm for thet-J model
beyond a single chain, we show the results of a calcula
for the magnetic susceptibility of thet-J ladder.32 In Fig. 9,
we show a graphical representation.

These are the first QMC calculations fort-J ladder sys-
tems. For the Trotter-Suzuki breakup, we have split
Hamiltonian into bond terms, so that again we obtained
model on a checkerboardlikeplaquettelattice, and our loop
algorithm could be applied unchanged. We have perform
simulations with two holes andJ85t854J54t, whereJ8
andt8 are the interactions on each rung, andJ andt are those
along the legs. This parameter regime is dominated by
strong coupling limitJ8@J,t. In this limit, we have a simple
and intuitive picture, following Refs. 33,34. The undop
ladder consists of weakly coupled singlet pairs formed on
rungs@Fig. 10~a!#. A single hole doped in such a ladder wi
stay in either a bonding or antibonding orbital on a run
while the rest of the system will remain unchanged@Fig.
10~b!#. The energy of the lower-lying bonding orbital i
given to first order by the cost of breaking a bondJ8 and a
kinetic energy gain oft8 along the rung andt along the
of the

d the
TABLE III. Results for the frustrated Heisenberg chain. Improved and unimproved measurements
sign for theJ-J8 Heisenberg model on 20 sites forJ510J8 for different values of the freezing ratioe and
bJ50.1 andbJ50.2. In the last column, we show the ratio of the errors between the improved an
unimproved errors.

T/J e Improved sign Error Unimproved sign Error Ratio

0.1 0.1 0.00587 0.00109 0.00651 0.00162 1.48622
0.1 0.2 0.00535 0.00075 0.00570 0.00133 1.76066
0.1 0.3 0.00581 0.00084 0.00536 0.00146 1.74388
0.1 0.4 0.00479 0.00084 0.00379 0.00134 1.60041
0.1 0.5 0.00444 0.00105 0.00390 0.00148 1.41069
0.1 0.7 0.00614 0.00223 0.00638 0.00263 1.17623
0.2 0.1 0.08953 0.00201 0.08985 0.00243 1.20779
0.2 0.2 0.08681 0.00151 0.08632 0.00195 1.29734
0.2 0.3 0.08933 0.00152 0.08886 0.00202 1.32511
0.2 0.4 0.08387 0.00166 0.08250 0.00222 1.33664
0.2 0.5 0.08564 0.00219 0.08465 0.00256 1.16866
0.2 0.7 0.08290 0.00372 0.08259 0.00400 1.07410
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ladder direction. Two holes on the same rung also break
bondJ8, but their kinetic energy gain is only of the order
4t2/J8 @Fig. 10~c!#.

Hence the total energy of two unpaired holes in the lad
is of the order ofE(0)12J822t822t @Fig. 10~d!#, while
two holes bound on a single rung have an energy ofE(0)
1J8 in first order, whereE(0) is the energy of the corre
sponding Heisenberg ladder. We can therefore expect
the two holes in the parameter region considered in
simulation remain unpaired and thus two of the rungs w
stay in a doublet state. The low-temperature Curie law
then given byx52@s(s11)/3T#. In Fig. 11 we show our
results, which are in excellent agreement with the expec
limit of 4Tx/site51/16 for two unpaired holes and 16 rung
asT→0. A more physically realistic parameter region isJ8
5J5t/35t8/3. Then two holes form a bound state in the
ground state@Fig. 10~d!#. Unfortunately the sign problem i
much worse in this region.

D. Three-leg t-J ladder

Several studies show that the ladders with an even n
ber of legs behave completely differently than those with
odd number of legs.33,35,36In this paragraph we will concen
trate on the three-legt-J-ladder. The couplings along th
legs (t, J) and the couplings perpendicular to it (t8, J8) are
assumed to be equal:t5t8 andJ5J8.

At low hole doping, the three-leg ladder consists of tw
components: a conducting Luttinger liquid in the chan
with odd parity under reflection about the center leg, co
isting with an insulating~i.e., undoped! spin liquid phase in

FIG. 9. Schematic picture of thet-J ladder with two legs andL
rungs. The couplings along the rung areJ8 and t8, those along the
ladder direction areJ and t.
ne

r

at
is
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the two even-parity channels.36 At small doping, all holes
enter the Luttinger liquid and repel each other, while the s
liquid remains undoped.

The energy gapD between the odd-parity channel and t
even-parity spin liquid states have been calculated by e
diagonalization of very small ladders of only 336 sites in
Ref. 36. Using the QMC loop algorithm we are able to es
mate the energy gapD between odd and even-parity cha
nels for much larger ladders. We have considered three
t-J ladders of 3340 sites doped with one hole. We hav
assumed periodic boundary conditions along the ladder
setJ/t50.5. With this choice of parameters, we reach te
peratures down tobt57. Below this temperature the sign
smaller than 0.01. Note that the sign of the MC simulatio
of theset-J ladders is not sensitive to the length of the la
der, but only to their width, the number of doped holes, a

FIG. 10. Graphical representation of the low-lying states of
t-J ladder in the strong coupling limitJ8@J,t. ~a! The undoped
case with a ground-state energyE(0). ~b! A single hole goes either
into the bonding or antibonding orbital, the energy of the ladd
with a hole in a bonding orbital isE(0)1J82t82t in first order.
~c! Two holes on a single rung, withE(0)1J8 in first order.~d!
Two holes on different rungs, with an energyE(0)12J822t8
22t.
wn
FIG. 11. t-J ladder:~a! Magnetic susceptibility of thet-J ladder withJ85t854J54t and two holes on 16 rungs, for temperatures do
to T5t8/16 compared to the undoped case (np532). ~b! average sign for the doped case.
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the fractionJ/t. In the temperature range considered, fini
size effects forL>40 are negligible.

Figure 12 shows the probabilityncenter leg of the single
hole to be located on the center leg of the three-leg ladder
high temperatures the hole is uniformly distributed over
ladder. Therefore the densityncenter legis equal to 1/3. At zero
temperature, however, the hole is in the lowest state of
odd-parity channel and is dominantly on one of the ou
legs. The densityncenter legat T50 is onlyncenter leg'0.2 for a
338 ladder.37

At very low, but finite temperatures other states with t
hole in the odd-parity channel also have nonvanish
weight in the thermal average. As these states all have
parity, the densityncenter legis suppressed and clearly small
than 1/3. Figure 12 shows that at higher temperaturesT
.t/7, ncenter legis larger than 1/3. This is caused by admixtu
of higher-lying even-parity channel states. The sharp drop
ncenter legbelow T/t50.5 shows the decreasing weight of th
even-parity channel states asT is lowered. The gapD can be
estimated from the MC data using a simple two-band lo
energy model.

The two lowest-lying bands of a 338 ladder doped with
one hole are shown in Fig. 5 of Ref. 36. The states belong
to the lowest-~second-lowest! lying band are of odd~even!
parity. These two bands approximately have cosine fo
and can be seen as Bloch waves of two different transv
wave functionsf trans

odd and f trans
even in a first approximation.

Then the probability of the hole to be located on the cen
leg for all states in the odd~even! parity band is constan
~independent of the wave vectork) and equal to a value
ncenter

odd (ncenter
even ) which is determined only byf trans

odd (f trans
even).

From the exact diagonalization of a 338 ladder one see
that the approximation of ak independentncenter

odd (ncenter
even ) is

valid within 10%, and one gets an estimate:ncenter
odd '0.2 and

ncenter
even '0.45.37 Since this situation is not supposed to chan

qualitatively as the length of the ladder gets longer, the lo
temperature behavior ofncenter legcan be described by thi

FIG. 12. Temperature dependence of the probability of the h
to be located on the center legncenter legof a three-legt-J ladder
doped with one hole. The filled circles are the QMC loop data fo
3340 cluster and the zero-temperature value~diamond! is calcu-
lated for a 338 cluster using exact diagonalization~Ref. 37!. The
dashed line shows the fit calculated by a low-energy two-b
model.
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two-band model also in the case of a long ladder. Theref
considering the density of states, the expectation value
ncenter legcan be calculated as a function of the temperaturT
and compared to the MC results. From this one can ge
estimate of the gapD between the odd and even parity ba
in a long ladder:

D'0.25~5!t50.5~1!J ~J/t50.5!. ~43!

This fit is shown in Fig. 12 and is reasonable at low tempe
tures only. At higher temperatures other bands have to
considered too. For this fit of the low-energy model results
the MC data all other parameters (ncenter

odd , ncenter
even and the

bandwidths of the two bands! are assumed to be equal
those of a 338 ladder. But even if these paramaters a
varied in a physically reasonable range, the gapD hardly
changes. The value obtained forD @Eq. 43!# is bigger than
that of the 336 ladder, obtained by exact diagonalizatio
(D50.15t).36 This difference may result either from stron
finite-size effects in the small clusters or from the fact th
the low-energy model described above is not so precis
the temperature range where it was used for fitting the M
results.

VI. CONCLUSIONS

In this paper we have introduced a loop algorithm f
simulations oft-J type models and discussed the use of i
proved estimators, especially the use of improved estima
for models with a sign problem.

We found many significant improvements for the loo
algorithm compared to previous local updating MC alg
rithms. The loop algorithm is fully ergodic for any geomet
of the lattice, without the introduction of any additional u
dating procedure. With the loop algorithm it is possible
perform simulations in the canonical or grand canonical
semble, with fixed~constant winding number! or free mag-
netization in a natural way.

The most important improvement of the loop algorithm
certainly the great reduction of the autocorrelation timet.
We have shown examples in Sec. V, where for the para
eters studied, the reduction is up to four orders of magnitu
This gain will increase further for larger systems and low
temperatures. This huge reduction of the autocorrela
times allows to study much bigger systems at much low
temperatures than before with the same amount of comp
time.

The loop algorithm for thet-J model can also be ex
tended to various other models. Different additional ter
can be incorporated easily into an overall flipping probabil
of the loops. For some new terms it might be favorable
change the weightsv(Gp). The loop algorithm is easily
adapted to other lattice geometries. This can be done sim
by changing the underlying geometry of the lattice in t
simulation and introducing corresponding additional terms
the Trotter decomposition.

With the loop algorithm it is also possible to perfor
simulations in the continuous time limitDt→0 ~see Appen-
dix A!. Therefore, we can eliminate the errors due to
finite time stepsDt without making simulations for differen
values ofDt and extrapolating toDt50 afterwards. Again
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we can save a large amount of computer time compare
discrete time simulations.

The use of improved estimators further reduces the v
ance of measured quantities. The introduction of improv
estimators also for models with a sign problem allows
investigation of many new systems with this method, e
frustrated spin problems. We have presentedt-J ladders and
a frustrated Heisenberg model as examples. The reductio
the variance by the improved estimators depends very m
on the model and the observable under consideration. Fo
systems we have studied here, the improved estima
helped to reduce the variance of the observables by a
one-third.

Although we can simulate much bigger systems mu
faster than before with these new techniques, the sign p
lem still remains and limits the application of the loop alg
rithm to systems where the negative sign problem is not
severe. We have shown examples oft-J ladder systems in
Sec. V. Despite this drawback for higher-dimensional f
mion systems, many new problems that are far beyond
scope of previous local MC techniques can be tackled du
the advantages of these new simulation techniques.
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APPENDIX A: LOOP ALGORITHM
IN CONTINUOUS IMAGINARY TIME

In this appendix we briefly review the main idea behi
the continuous time formulation of the loop algorithm16 and
how it can be used for thet-J model. The continuous time
version depends on the fact that the loop algorithm is w
defined even in the limitDt→0. All the probabilities for
choosing graphsGp have well-defined values in this limit.

Note that forDt→0 the frequency of a worldline hoppin
from one site to another tends to afinite limit, because the
number of time slices where such a hop can occur is pro
tional toDt21, and the hopping probabilities are of the ord
O(Dt). In the continuous time formulation a configuration
therefore best specified through the time valuest i at which
the spin configuration changes, as well as the initial confi
ration at the timet50. This way of specifying the configu
ration reduces the memory requirements by about an orde
magnitude compared to a discrete time implementation
typical value ofDt.

We now describe the continuous time limit of the loo
construction. In the discrete time implementation we lo
over all time slices and decide the graph segments for e
plaquette on this time slice.

In the continuous time limit we need a new procedu
We note that the probability for having a graph segment t
forces the loop to ‘‘jump’’ to another site is proportional
the infinitesimal time step dt: p5ldt. The probability for
continuing straight on is 12O(dt), on the other hand. The
to
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situation is therefore equivalent to a radioactive decay p
cess with ‘‘decay constant’’l. This decay constant depend
on the spin configuration and can change only at the t
stepst i where there is a change in the configuration. W
have listed the decay constants in Figs. 4, 6, and 7 toge
with the probabilities for finiteDt.

Instead of deciding at each infinitesimal time stept
whether or not the loop ‘‘decays’’~i.e., jumps! to another
site with probability dt we calculate a ‘‘decay time’’ after
which the loop ‘‘decays’’ to a neighboring site. As the dec
processes to the various neighbors of a site are indepen
we can calculate independent decay times for each of th
‘‘decay channels.’’ A special case is the finite number
time points where a world line jumps to a neighbor. The
are treated like in the discrete time algorithm. There the lo
has to jump to the neighboring site. This is called a ‘‘forc
decay’’ in Ref. 16.

The loop flip probabilities also have a well-defined co
tinuous time limit. In substep I they are always 1/2, whi
holds even in the continuous time case. The only nontriv
probabilities are in steps II and III. There are two contrib
tions from the weightswasymm(Cp). The forced decays con
tribute ratios such as

wasymm~Cp!/wasymm~Cp̄!5 lim
Dt→0

eDtJ/2sh~DtJ/2!

sh~Dtt !
5

J

2t

~A1!

or the inverse of it. For straight worldlines between two d
cays att1 and t2 the product over all infinitesimal weight
has to be considered. The continuous time limit is

lim
M→`

)
j 50

~t22t1 /b!M

wasymmS CpS t11 j
b

M D D . ~A2!

In particular

lim
M→`

)
i 50

~t22t1 /b!M

chS t
b

M D51 ~A3!

lim
M→`

)
i 50

~t22t1 /b!M

eJ~b/2M !chS J
b

2M D5eJ~t22t1!/2. ~A4!

Thus the forced decays contribute terms likeJ/2t or 2t/J and
the straight pieces just contribute the classical Ising weig
of the worldline segments.

While this continuous time algorithm is more complex
implement than the discrete time version, it has two sign
cant advantages. One advantage, mentioned already abo
that the memory requirements are reduced by up to an o
of magnitude, depending on the implementation. This is c
cial if one wants to simulate huge systems, where mem
constraints become the restricting factor.

The main advantage is, however, that in the continu
time algorithm there is no systematic error associated wit
finite time stepDt. In the discrete time algorithm this sys
tematic error could be controlled by simulating for seve
values of the time stepDt and then extrapolating toDt50.
In our experience this need to run several simulations ma
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TABLE IV. Improved estimators forspin correlationsin the t-J model and in pure spin models, for simulations with a sign proble
from Eqs.~B6,B7! in the casepflip51/2.

Only loop l changes sign Both loops change sign Any other loop changes sig

Step I or pure spin models
Both spins active
Spins on different loops 0 sign(C)ss8 0
Spins on same loop 0 — 0
One or both spins inactive 0 — 0
Step II and III
Both spins active

Spins on different loops 6
1
4sign~C!~s6

1
4 ! sign~C!~s6

1
4 !(s86

1
4 ) 0

Spins on same loop sign~C!@6
1
2 ~s1s8!2

1
8 # — 0

Spin s8 inactive 6sign~C!~s6
1
4 !s8 — 0
in
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the discrete algorithm about a factor 4–8 slower, depend
on the hardware platform and implementation.

APPENDIX B: IMPROVED ESTIMATORS
FOR CORRELATION FUNCTIONS

In this appendix we show improved estimators for char
and spin-correlation functions. First we consider the sp
correlation function̂ Sr ,t

z Sr8,t8
z & between two spins at sitesr

and r 8 and at imaginary timest and t8, respectively. The
improved estimator is

(
CPG~ i !

Sr ,t
z ~C!Sr8,t8

z
~C!p~C!. ~B1!

As each spin can be on one loop only, this sum can
simplified substantially. If the two spins are ondifferent
loops it is

@~12pflip!s1pflips̄#@~12pflip8 !s81pflip8 s̄8#, ~B2!

wheres is the value of theSr ,t
z in the original stateC ( i ), and

s̄ the value in a state where the loop containing the spi
flipped. The flip probability of this loop is given bypflip .
Similarly the primed symbols refer to the other spin. If bo
spins are on thesameloop it is

@~12pflip!ss81pflips̄s̄8# ~B3!
g

-
-

e

is

The equation for the cases where one or both spins have
fixed, either because they are inactive in thet-J model algo-
rithm or because the loop has been fixed, are straightforw

Let us now make the above estimators more specific
the case of a pure spin Hamiltonian and in substep I of
t-J algorithm we havepflip5 1

2 and s̄52s. In this case the
improved estimators are very simple, namely,

~Sr ,t
z Sr8,t8

z
! impr5H 0 if the spins are on different loops

ss8 if the spins are on the same loop.
~B4!

@Moreover, for the Heisenberg antiferromagnet, we haves
51(2)s8 when the spins are located on the same~differ-
ent! sublattice~s!.# For substeps II and III of the algorithm th
estimators are slightly different. There the flipping probab
ties are not equal, ands̄56 1

2 2s, as we change up~down!
spins into holes and vice versa. In this case the impro
estimators Eqs.~B2,B3! look more complex but can be sim
plified by fixing some loops so that the remaining flippin
probabilities are allpflip51/2. The spins on the fixed loop
are treated just as inactive spins.

Similar improved estimators can be used for char
charge correlations

(
CPG~ i !

nr ,t~C!nr8,t8~C!p~C! ~B5!
e

sign
TABLE V. Improved estimators forcharge correlationsin substeps II and III of thet-J model algorithm,
for simulations with a sign problem, from Eqs.~B6,B7!, for the casepflip51/2. ~The improved estimators ar
trivial for substep I.!

Only loop l changes sign Both loops change sign Any other loop changes

Both spins active

Spins on different loops sign~C! 1
2 ~n2

1
2 ! sign~C!(n2

1
2 )~n82

1
2 ! 0

Spins on same loop sign~C! 1
2 ~n1n821! — 0

Spin n8 inactive sign~C!~n2
1
2 !n8 — 0
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with a suitable reassignment of ‘‘s.’’ They are trivial for
substep I or pure spin models, since then only spin deg
of freedom are changed. For steps II and III the occupa
numbern changes ton̄512n, because these steps exchan
a hole with an up or down spin. We see that the calcula
of improved estimators of correlation functions can be p
formed with effort similar to that for the nonimproved es
mators.

For simulations with a sign problem similar improved e
timators can be derived. For the two-site spin or char
correlation functions two different cases have to be dis
guished: Both spins are on the same loopl , or they are on
two different loopsl , l 8. If they are on the same loop, th
improved estimator is

$@12pflip~ l !#sign~ l !ss81pflip~ l !sign~ l̄ !s̄s̄8%3s0

3 )
loopsiÞ l

$@12pflip~ i !#sign~ i !1pflip~ i !sign~ ī !%. ~B6!

In the second case it is
.

h

es
n
e
n
-

-
-
-

@~12pflip~ l !!sign~ l !s1pflip~ l !sign~ l̄ !s̄#

3@~12pflip~ l 8!!sign~ l 8!s81pflip~ l 8!sign~ l 8̄!s̄8#

3s03 )
loops iÞ l ,l 8

$@12pflip~ i !#sign~ i !1pflip~ i !sign~ ī !%.

~B7!

In simulations with a sign problem it is of advantage to ha
all flipping probabilitiespflip( i )51/2. Then the last term in
the Eqs.~B6! and ~B7!, the product) i$@12pflip( i )#sign(i )
1pflip( i )sign(ī )%, vanishes if one of the loops changes
sign, which makes the estimators simple. If no loops
their sign, the improved estimators are equivalent to
above ones@Eqs. ~B2,B3!#. The only other two cases wit
nonzero improved estimators occur if one or both of
loops going through the spins under consideration cha
their sign. These improved estimators are presented in Ta
IV and V.
ys.
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