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We present results for the zero- and finite-temperature Drude wBigFt and for the Meissner fraction of
the attractive and the repulsive Hubbard model, as well as for the model with next-nearest-neighbor repulsion.
They are based on quantum Monte Carlo studies and on the Bethe ansatz. We show that the Drude weight is
well defined as an extrapolation on the imaginary frequency axis, even for finite temperature. The temperature,
filling, and system size dependenceldfs obtained. We find counterexamples to a conjectured connection of
dissipationless transport and integrability of lattice modg$€163-182¢08)07548-1

[. INTRODUCTION We investigate the one-dimensional Hubbard model on a
ring of L sites threaded by a fluxd. The Hamiltonian is
An ideal conductor is characterized at zero temperature by

a nonvanishing Drude weigh in the real part of the con- o N
ductivity, HH(‘I’):_tiE (cf Cirroe P04l ) ¢, eetin)
,T

Re{o(w)}=Dd(w)+ O'reg(w)a 1)
. | U nigng;, @3)
as first introduced by Kohn in the context of the Mott [

transition® For finite temperature, the Drude weigbt(T) o .
can be introduced by a formal extension of Ej: wherec,c' are annihilation and creation operators, and the

Peierls phased(x;,0)= /> "*A(z,w)dz in general is a
Re{o(w,T)}=D(T) (@) + oreg(@,T). ) . - i
function of position and frequency. We skt c, and the

A superconductor is characterized by an additional quantityattice spacing to unity, and we specify energies in units of
probing the Meissner effect, the superfluid denSiffhere  We use periodic boundary conditiong, | ,=Cj .
are similar transport quantities for spin degrees of freedlom. The Drude weight of the one-dimensional Hubbard model
Recently there has been a great deal of interest in transt zero temperature has been investigated in several papers,
port properties at finite temperature, and especially in théncluding studies of the scaling behavior Bfat half-filling
Drude weight, since the highz materials exhibit an unusual by Stafford, Millis, and Shastry,close to half-filling by
low-frequency behavior of the optical conductivity in the Stafford and Millid® and by Fyeet al!! For arbitrary filling,
underdoped regim&Based on analytical and numerical re- results were given by SchulZ,and by Fyeet al. with the
sults, a very interesting possible connection between the in-anczos method for small systeffflsRomer and Punnoosé
tegrability of a lattice model and its finite-temperature Drudecomputed both Drude weight and spin stiffness. Some re-
weight has been proposed, conjecturifghat an integrable lated properties of charge and spin currents at finite tempera-
system is characterized by a finite Drude wei@htT>0) ture were recently computed by Peres, Sacramento, and
#0 whenD(T=0)#0, and remains an ideal insulab(T  Carmeld* in a perturbation theory based on the Bethe an-
>0)=0 whenD(T=0)=0, whereas a nonintegrable systemsatz. For the limil.— o, expressions for the Drude weight

should exhibit a vanishing Drude weight Bt-0. based on the Bethe ansatz at finite temperature were very
The results of our finite-temperature quantum Monterecently given by Fujimoto and Kawakarfi.
Carlo simulations do not confirm such a connection in the In Sec. Il we discuss representations of the finite-

repulsive Hubbard model with and without next-nearesttemperature Drude weight, and show that it can be obtained
neighbor interaction. We also show that the Drude weighby an extrapolation purely in imaginary frequencies. In Sec.
can be extracted directly by an extrapolation of the currentill we briefly review the conjectured connection to integra-
current correlations on Matsubara frequencies, even at finitbility. In Sec. IV we compute the filling dependence of
temperature, thus avoiding an analytic continuation to reaD(T=0) at zero temperature via the Bethe ansatz equations,
frequencies. and use these equations to give an approximatidd(fb) at
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half-filling for low temperature and small system sizes. In Ill. CONNECTION TO INTEGRABILITY
Sec. V we present a systematic quantum Monte Carlo study
of the finite temperature Drude weight in the Hubbard o . : S o9
model, both repulsive and attractive. Results for a closel)y a:‘uoensiiﬁig drlzgl'gur;eoddglcc%rg'g? teCJn?/aF;Sézs?czllIgi/?/tr;qut;)uns;sli:;r:
related property, the Meissner fraction, are presented in Sed 9 ’ g

: “*@rthogonal ensemble distributidh It can be shown for lat-
\S/Ie,car:;::lwe studyD(T) in the extended Hubbard model in tice models which are solvable by the Bethe ansatz that the

eigenvalues are Poisson distributéddence the Hubbard
model Eq.(3) is integrable. In Sec. VII we will study the
Il. DRUDE WEIGHT extended Hubbard-model with nearest-neighbor repulsion,
which is non-integrabl&®
Based on analytical and numerical results, Zotos and
4) co-workers~® conjectured a very interesting connection be-
tween the integrability of a lattice model and its finite-
temperature Drude weight, stating that for a one-dimensional

A model is usually called integrable if the energy eigen-

Applying a Kramers-Kronig relation to E@2) results in

D(T)=awlim[wIm{o(w,T)}].

w—0

Using linear response, the Drude weight is givefi by model the finite temperature Drude weight in the thermody-
namic limit i’ (1) nonzero for an integrable system when it

D(T) is nonzero aff =0, (2) zero for an integrable system when it

7 =— (k) —Re[A(0,0—0)} (5) is zero atT=0, and(3) zero for a nonintegrable system.

Conjecture(2) is different from the original suggestidof a
direct equivalence between integrability and finite Drude
. - ) ) 27 "7 weight atT>0 in one-dimensional systems. It was motivated
site andA (g, w) is the current-current correlation function in by an explicit example in which the authors computed the
frequency space(see the Appendix for detajlsThere are by de weight for a one-dimensional model of interacting
two different ways to obtain the Drude weight from the termions in the insulating regime with a “Mott-Hubbard”

imaginary_ freque_ncy _correlation function. One can performgap, and found a vanishing Drude value in the insulating
an analytic continuation of the data to real frequency W'thregime even at high temperatures.

at ®=0, where(k,) denotes the average kinetic energy per

the maximum entropy method to obtain Ivfw)/w, and Note that there is no rigorous proof of a connection be-
then use thé-sum rule tween integrability and a finite Drude weight. However, sub-
ject to some assumptions, Zotos, Naef, and Prelovs
_ _(k 2 (= d ImA(w) 5 showed in their most recent papé¢hat the Drude weight is
el — (k) — 7)o T @ ©) fin(i)te wdhenever there exists an operafosuch thatf A,H]
=0 an

Alternatively, one can work entirely on the imaginary fre-
guency axis: The analytical continuation of the current- . B{jA)?
current correlation functior\, given in Eq.(A4), is valid in lim L /a2
the continuous upper plane, including the imaginary axis at Lo = (A%)
frequencies different from the Matsubara frequencies. One
can therefore take the limib— 0 for A either along the real Thus a weaker condition than integrability might suffice to
axis, or purely on the imaginary axis, even at finite temperamake the Drude weight finite.
ture. The latter version eliminates the need for an analytic
continuation(e.g., via maximum entropyfrom data on the
imaginary Matsubara frequencies onto real frequencies. InlV- ZERO AND LOW TEMPERATURE: BETHE ANSATZ

the present paper we employed this procedure. We have veri- \ye employ the Bethe ansatz equations for the Hubbard
fied that it produces results compatible with those using thengdel, first obtained by Lieb und Wu in 1963to calculate

#0. 9)

f-sum rule, but with smaller errors. D(T) and its filling dependence exactly at zero temperature,
The generahzgpon ob to finite temperatures can also be gpq to provide an approximation f&x(T) at low finite tem-
achieved by defining perature. As was shown by Shastry and Sutherfarttie

Hubbard model with twisted periodic boundary conditions
T« € PEn G2E (D)
DM=¢ > Z  a0r

n

: 7
=040 V(... r+Lx, .. )=exdi¢]¥(...r,...) (10

where Z=tre A" is the partition function. In the limifl

—.0, this immediately reduces to Kohn’s Drude weight can be solved with an appropriate ansatz for the wave func-

tion. Here p=eL ® is the overall phase aquired along the
chain of lengthL.?! The Bethe ansatz equations derived by

2
D(T=0)= K LO((D) ®) Shastry and Sutherland are
L o2 y
®=0,9=0
. . . . M
The equivalence of Eqs5) and (7) within perturbation Lkn:277|n+¢+22 arctafid(A; —sink,)/U], (11)
theory is shown in the Appendix. j=1 !
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FIG. 1. Scaling dependence &f(T=0) at U=4 and half-
filling.

N
22, arctafi4(A;—sink,)/U]
n=1

M

=2md;+22, arctafi2(A;—Aj)/U],
1#]

12

whereN is the total number of electronB] is the number of

electrons with spin down); are parameters associated with

the spin dynamics, and the quantum numbersndJ,, char-

acterize charge and spin excitations. The quantum numbe

have to be chosen such tH&? 1, is an integer or half-
integer ifM is even or odd, respectively,, is an integer or
half-integer ifN—M is odd or even, respectively, dl}(n

=1,...N) [al J,(m=1,...M)] are different from each

other, and
(13

l<(L=1)/2, |In/<(N—=M)/2.

The
by??

E=-2>, cogk,). (14)

Following Ref. 9, we then calculate the Drude weight from

Eq. (7) as

a2 dk,
% +sin nF

D=2me?L >, I cosk,
n $=0
(15
A. Zero temperature
At half-filling and zero temperaturthe asymptotid- de-
pendence of the Drude weight is
D(L;T=0)=—(—1)"?C(U)LY2exd —L/{(U)]
(16)

(L even, as was shown by Stafford and Milt8 The corre-
lation length{ is defined by Eq(16). For L—o the Drude
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FIG. 2. The Drude weight aU=4 and quarter fiIIingv:%
scales toward a finite valu®(L=«)/(2e?)=1.29. The inset
shows the scaling dependencgD(L=o%)—D(L)]/(2€?)
=L"11exd —Lx0.04(1)] on a logarithmic scalgat L mod
4=0).

ready discussed in Refs. 9 and 11. We find that the effective
correlation lengthy~4.25 at the system sizes of Fig. 1 is
slightly larger than the valug=4.06 atU =4 found numeri-
cally in Ref. 9.

Away from half-fillingthe Hubbard model describes an
ideal metal, with a finite Drude weight &t—o~. We show
the system size dependence at quarter filling in Fig. 2. We
fhd that thelL dependence is very similar to the half-filled
case, shifted byp(L=«). Even though Eq(16) was only
derived for the half-filled case, it fits the approachD@L
=) very well, albeit with a different exponent farand a
very large value of/, as shown in the inset of Fig. 2.

We determined the complete filling dependence of the
Drude weight by solving the Bethe ansatz equations numeri-
cally for system sizes up tb=80, and extrapolating to an

energy of a state with given quantum numbers is givefyfinite system size using EGL6). The results are shown in

Fig. 3. As expected, the Drude weight vanishesifer0 (no
electrongandv=1 (L electron$. For small system sizes up
to L=12 the filling dependence was already reported by Fye
et al. using Lanczos techniqué$ Solving the Bethe ansatz
equations enables us to access much larger systemo
L=380), and thus to obtain a better extrapolation to the ther-
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weight in Eq.(16) vanishes, indicating the finite charge gap

at half-filling. We show results for half-filling in Fig. 1. For

FIG. 3. The filling dependence @f atU =4 andT=0, extrapo-

L mod4=0 the ring becomes paramagnetic. This was aldated to an infinite system size.
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modynamic limit. The Drude weight for fixed system size 10 [
L=100 was also obtained by Rer and Punnoosg,and e
our results agree.

B. Partial Drude weight at finite temperature
1072

Dfr:p]el (Lﬁ )/(2?2)

We now turn to finite temperatures and half-filling.
Whereas ground-state properties depending only on the en- 10-3F
ergy can be calculated easily using the Bethe ansatz equation
Eq. (11), dynamical properties are much harder to determine
via the usual Bethe ansatz. One recent method ey 10-5]
Kltimper, and Suzuki reduces the problem to finding the so-
lution of two coupled nonlinear integral equaticiisdere we m o o m < o
will be content with a much simpler procedure to calculate system size L
the spin triplet contribution to the finite temperature Drude _ _ 4 _
weight at halffiling. We neglect excitations across the FIG- 4. Scaling behavior ob'"”'*\(T) as a function ofL. for
charge gap. As we will see, this approximation is valid forfinite temperatures and =4, »=1.
small values oL T/U, i.e., for low temperatures and not too . )
large systems. Wher?riolrgltya(ﬁ) is a furjctlo_n of the temperature. The results

Low-energy excitations are described by variations of thd®" D" are shown in Fig. 4, and the fitted parametars

quantum numbers around the ground-state configuration. W&"d ¢ in Table 1.

chooseN mod 4= 2, at which the ground state is a singi@t. We conclude that in the thermodynamic lirhit>, trip-
As excitations around this state we consider spin—triplefet excitations do not contribute to the Drude weight. This

states, withM =N/2—1: that is, we consider th=1 and also remains true for higher spin excitations.
S,=—1 excitations. To include singlet excitations one hasto FOr the 3 range Stl{(jl'ed' the exponebt=0.336-0.005
refer to the general Bethe ansatz equations introduced H§d the length scale ~=4.17+0.01 are independent of
Takahash?* with a phase included as in Ref. 14. The gen-fémperature. They differ somewhat in value from #e0
eralized equations describing all four branches of singlet angeSult for the complete Drude weigh(T =0) [see Eq(16)
triplet excitationgthe aforementioned ones and ®e 1 and ~ and Fig. 1. The amplitudea(B) of D™'*** is precisely linear
S,=0 excitation$ are given in Ref. 25. in g for the 8 range studied.

Due to the charge gap at half-filling, there are no low-
lying charge exitations. The charge quantum numbgrs a(p)=(30.911+0.007 —(0.237 71 0.000 09 5.
therefore remain unchanged from the ground state. For the (19)

spin quantum numbers, from EQL3) with M=N/2—1, we  Thjs is surprising, since it resembles the high-temperature

obtain that behavior generally expected of the complete Drude weéight.
We found that the interaction dependencé®dfP'®! for a

given temperature and system size can be approximated by

® 0 % @
TTT™™

10—4 L

N
3l=7 17 _
DRl (y)~U ~dexgd — fU], (20)
and theJ;’s are now half-integers. Thus there a2+ 1
possible values for tht =N/2—1 spin quantum numbers. Recently we received a paper by Fujimoto and

All possibilities to distribute the);’s according t0 EQ(17)  yo\aramfS with exact expressions for the Drude weight at
that differ from the ground-state constellation describe XFinite temperature in the limit —c, based on the Bethe
cited states. These are the lowest possible excitations. In ag- '

dition. there i inalet itation. d e it nsatz. The Drude weight is finite at finite temperature, in
tion, ther€ IS a singlet excrlation, degenerate in energy wi r?agreement with our results. The authors computed the lead-
the three triplet excitation® This singlet excitation also

ing contributions to DL =00, T) explicitly at small tempera-

contains two holes in the spin quantum numbers compareﬂlres, which at half-filing are, as expected, proportional to

with the ground-state constellation. It is described by com—qu_AMHIBl whereA , is the Mott-Hubbard gap.

plex quantum numbers. Due to the degeneracy, its contribu- Since the quantitP™P'et( . L) vanishes exponentially as

tion just multiplies the partition function by a constant factor. ; - ) .
The quantityD"P1et( .1 ) calculated via Eq(15) using only L —oo, the spin contributions to the Drude weight considered

the triplet spin excitations is of course only part of the Drude
weight, but as we will see it should be a good approximatio
for small temperatures and small system sizes.

For the temperature and system size dependence of

where the parametedsandf depend on system size.

TABLE |. Parameters andc obtained by fitting the curves in
"Fig. 4 to Eq.(18).

triolet ' > ) o Inverse temperature a c
D''PY(gB,L) (atL mod 4=2) we find again a relation simi-
lar to theT=0 result of Stafford and Millig? Eq. (16): B=60 16.65-0.16 0.2406:0.0003
B=80 11.9G:0.11 0.2406:0.0003
Dtriplet(lg L) B=100 7.143-0.068 0.2406:0.0003
——————=a(B)L exd —cL], (18 B=120 2.3790.023 0.2408:0.0003

2e?
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FIG. 5. Fit of A(0,iw,), at the nonzero Matsubara frequencies, FIG. 6. The Drude weight g8=8, U=4, andv=1 is nonzero
for L=32, U=4, u=2.2, and 8=10, plotted vsn. The cross in the thermodynamic limiL—c. The form of the interpolating
marks the extrapolated value at=0. function is motivated by th& =0 Bethe ansatz results.

here should dominate over the charge excitations for MeSO§d determine the constardsb,c,d.e, and f by a y? fit
copic systems witfg>1 (so that higher excitations are sup- tig ansatz fits the data very well. Figure 5 shows an ex-

pressedl and ample of our fit. We find that the third term in E23),
e/(w|2+f2), and often also the second term, do not contrib-
cL<pU, (21 ute significantly, indicating that Eq23) is a good approxi-
mation. However, it should be noted that the constants
i.e., for low temperature$ and small values of T/U. ande are not identical to the differences of the energy eigen-

values ofH appearing inA (0,iw,), since they result from a
. fit to a truncated series. We have verified that our procedure
V. FINITE TEMPERATURE: QMC RESULTS to calculate the Drude weight produces results compatible

In this section we present our results for the Drude weightith those using thd-sum rule[Eq. (6)], but with smaller
at large finite temperature and compare them with the pre€Tors.
diction for the temperature and system size dependence ob- We used this procedure to determibgT) from finite-
tained in Sec. IV. The simulations were carried out using thdemperature quantum Monte Carl@MC) runs. We typi-
grand canonical quantum Monte Carlo metb@he calcu- cally collected about 180000 Monte Carlo sweeps for each
lation yields the current-current correlation function at dis-data point, with a discrete time step &f= 3; for 3=3 and
crete imaginary times; . Performing a Fourier transforma- A7=15 for 3=8. We obtained the following results.
tion results in the current-current correlation function at the Figure 6 shows the Drude weight for repulsive interaction
bosonic Matsubara frequencies,. The analytic continua- U =4 and inverse temperatufe= 8. The system size depen-
tion of this function onto real frequencies at zero momentunflence is compatible to that &"*'*(L) [Eq. (18)], as ex-
gives A (0,0) of Eq. (5). However, the analytic continuation Pected for temperatures small compared to the charge gap:
is a numerically ill-conditioned problem which we can avoid.
As pointed out in Sec. I, one can take the limit-0 di- D(L)/(me?)=—AL Bexd —CL]+d. (24)
rectly along the imaginary axis. We therefore calculatby

fitting A on the Matsubara frequencies. This is still an ill- e determined the parameters byya fit. For the case
conditioned problem when only information about a finite gpown in Fig. 6 the results ara=10.12+1.14, B=0.75
number of Matsubara frequencies is available. It is therefore. g gg ¢=0.22+0.09, andd=0.020+ 0.003.
important to use a fitting function with the proper analytical Thus, in the thermodynamic limit, we obtain a finite
form. o , Drude weight D(8=8,y=1U=4)/(me?)=0.02+0.003.
From the analytic continuation of E¢A4), it can be seen T system size behavior of the full Drude weidghL,3
thgtA(O,iw|) is a well-behaved function on the imaginary =8) [Eq. (24)] appears to be similar to that of the partial
axis, namely, a sum of Lorentz curves: Drude weightD'"P'®{(L, ) obtained by the Bethe ansatz in
Eqg. (18), within the large error oB, even thoughD(L,3
A =8) contains charge exitations, as well as higher spin and
A(O,iw|)=z Cjﬁ- (22)  charge-spin excitations. o
i of +Aj Toward higher temperatures, the Drude weight increases
rapidly. Results a3=3 are shown in Fig. 7. The approach
to the asymptotic value is very fast now, and there is no
longer a clear exponential behavior.
One might be concerned that at temperatgre3 and
lattice sizel. =40 the effects of the finite-size gap could still
St 5 st (23 be important. We therefore verified that at very high tem-
o +b®  wj+d® o tf perature 3=0.5, L=20) the Drude weight remains finite.

We approximate it by a finite series

c e

Apr(Ojw)=
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FIG. 9. At quarter-filing v~0.500 (3=3,U=4), the Drude
FIG. 7. At large temperaturef=3U=4,v=1) the Drude eight is finite. Small variations in filling of the grand canonical
weight is large and converges rapidly with system size. The Meisssimulations may be responsible for the large deviation of the data at

ner fractionk (see Sec. VJl converges to zero quickly. L=28.

In fact, its value increases further, to aboDV(mwe?) 5

=0.231). InFig. 8 our results for the Drude weight at vari- _md F o5

ous temperatures in the half-filled case are shown. =1 92 o (25)
Away from half-filling the finite temperature Drude ¢=049-0

weight remains finite. Results at quarter-filling are shown inyhere F is the free energy. It reduces to Kohn’s Drude
Fig. 9. The asymptotic value is already reached for VerYyeight for T=0.

small system sizes. Note that away from half-filling, there  g\ouation of Eq(25) results in

was some fluctuation of the actual filling for differeintin

the grand canonical QMC run, which is not reflected in the
error bars. This can cause the outlying point.at28 in Fig.

9.

For theattractive Hubbard modeat half-filling, the situ-
ation is similar to the repulsive case. At low temperatures the .
system size dependence is slower, as shown in Fig. 10, aidote thatA(q—0,jw,=0) at the zeroeth Matsubara fre-
the Drude weight has not yet reached its asymptotic value iguency, given in Eq(A5), is in general not equal to the
our calculations. At high temperature, shown in Fig. 11, theanalytically continued correlation function ai—0 [Eq.
Drude weight converges quickly to a large value. (AB)], so that at finite temperature differs from the Drude

We see that in the half-filled Hubbard model at finite tem-weight D by the contributions from degenerate states:
perature the Drude weight is nonzero in the thermodynamic

L= (k) A(G—0jw=0). (26)
e

limit L—oo, both for the repulsive and attractive cases. Since B R
half-filling is the insulating case of the Hubbard model at D(T)—«=Ilim T > PAn]jP(a)|m)2. (27
zero temperature, this result is in disagreement with conjec- q—0 E;;"‘En

ture (2) (Sec. llI).
In the thermodynamic limiL —« and in a transverse vector
field, x measures the superfluid densi§-?’ In our one-

A property closely related to the Drude weight is the dimensional case it will thus become zero. For a finite sys-
Meissner fractionk (Ref. 27 defined as tem, the Meissner fraction can be finite.

VI. MEISSNER FRACTION

0.35

0.9

087}

0.891
] 1
025 I— 088} l

D(T =1/10)/(m %)

N\i
§ 015 | 086 1
Y ¥
| 085}
o84}
005 | i
= 083} {
0.00
082 , , , , , , , , ,
005 ‘ . ‘ . 6 8 10 12 14 16 18 20 22 24 26
02 00 03 08 13 1.8 system size L

temperature 1/
FIG. 10. The Drude weight in the attractive model at lower

FIG. 8. The Drude weight in the repulsive moddl €4,v temperature —8=10,U=—4, andv=1 — shows a strong finite-
=1) increases rapidly with temperature. size dependence.
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FIG. 13. Meissner fraction in the attractive model at low tem-

FIG. 11. Attractive Hubbard model at high temperatyge:3,  perature8=10,U=—4, v=1: x~ex—(0.1x0.002)]. The ki-
U=—4, andv=1. The Drude weightupper points quickly con-  netic energy igk,)~ —0.96 for all system sizes.
verges to a large finite value, whereas the Meissner fraetivan-
ishes(lower points; see Sec. YIFor comparison(k,)~—0.890,  extended Hubbard model with nearest-neighbor interacfion,
with little size dependence.

We show results for the Meissner fraction on finite He=Hy+V>, (N0 (Mg +HNig)). (28
system%1 in Figs. 7, 11, 12, and 13. Fdr—«, k vanishes. [

We find a finite-size behavior similar to that of the Drude ] )
weight. As for the Drude weight af=0 (see Fig. 1, x is  We have measured the Drude weight and the Meissner frac-

positive wherL =4n+2 and negative when=4n. At high  tion at finite temperature in this model. Results for a weak
temperature3=3, x converges to zero very quickly both €xtended interaction of =3 and away from half-filling are

for the repulsive and the attractive modElgs. 7 and 11 At ~ Shown in Fig. 14. The Meissner fraction drops to zero
low temperature the approach to zero is exponential in sysduickly, similar to the behavior in Fig. 7. The Drude weight
tem size, but much slower, as shown in Figs. 12 and 13. Fdias a large value already at small system sizes. It shows a
very small systemsx is of similar magnitude as the Drude Very slow falloff, consistent V\./lthD~ef(o'°00 81-:0.00004)
weight. Even though the differen@-— « [Eq. (27)] contains ~ This falloff may be caused entirely by a very small system-
a factor ofg, this difference turns out to bemallerat larger ~ @tic increase in the filling factor measured in the grand ca-

B in the temperature range studied, both for small and larggonical simulations. If the exponential falloff is real, then the
systems, contrary to previous expectatidhs. Drude weight would drop to small values only at extremely

large system sizes, but would be zero in the thermodynamic
limit, in agreement with the conjecture of Zotos and co-
Vil. EXTENDED HUBBARD MODEL workers. However, from our data it appears more likely that

In Sec. V we showed that for the integrable Hubbardthe thermodynamic limit oD is finite, which would be in
model[Eq. (3)] the finite-temperature Drude weight both at disagreement with conjectur€). This would imply that,
half-filling and away from it is nonzero even in the thermo- €ven though the model is not integrable, there is an operator
dynamic limit. This is in contrast to tiE=0 case, where the satisfying Eq.(9) in the extended Hubbard model. A similar
Drude weight vanishes at half-filing due to the charge gap.conclusion has been drawn for a related model recéfitly.

Let us now examine a nonintegrable case, provided by the

0.3 ,
| 0.6
02 - + I * Z.: I I
0.5
0.1 &_\
hd
< 04
0 S x 5 |
: [
; 5 /X/ = 03
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-0.3}
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-0.5 L L L L 0.0 . I | |
. 10 15 20 25 j ; ) ] 30
o system size L

FIG. 12. Meissner fraction in the repulsive model at low tem-  FIG. 14. The Drude weight in the extended Hubbard model at
perature;3=8, U=4, (k,)~—0.955, andv=1. The two values at U=4,V= % B=3, andv=0.8978:0.0002 is nearly constant. The
L=10 and 26 differ in sign, since they belong to system sizeserror bars do not take into account that the filling has some variation
whereL=4n+2. with L in our grand canonical simulations.
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We have also measured the Drude weighBat5,U=4, whereB=1/T,iw,=2win/B are the Matsubara frequencies,
and larger repulsioV=1.6, on a large system=60. Both g is the momentum of the applied external vector potential,

at quarterfilling »=0.5 and atv=0.633 we find a finitt  ;,qe ip(q) is the Fourier transform of the paramagnetic cur-
value D/(we?)=0.21(2), even though the model is not in- rent dJer(Igi)ty P g

tegrable.
Vil CONCLUSIONS Pa)=it X e (el O O ki)
We have presented results for the Drude wel@tit), on =11
mesoscopic systems and extrapolated to the thermodynamic (A3)

limit, for zero and finite temperature, in several versions of

the one-dimensional Hubbard model, including the depen- . . L .
dence on system size, filling, and temperature. In an eigenbasis of the Hamiltonian equati), the

At zero temperature, we provided the full filling depen- Current-current correlation function at nonzero frequency is
dence ofD by solving the Bethe ansatz equations on largedven by
systems. For small finite temperatures we computed the

dominant contribution t® (T,L) on small systems from the . P, eEn"Emb_q .

Bethe ansatz. At larger finite temperature we used the quan- A(Q,iw#0)= >, T ml(n“"(qﬂm)lz,
tum Monte Carlo method. We showed that the Drude weight ETLE, e Em

can be obtained by an extrapolation of the current-current (A4)

correlation function purely in imaginary frequencies. We

found a nonvanishing Drude weight at finite temperature forand exactly at zero Matsubara frequency it is
all cases considered: the repulsive Hubbard model both at

and away from half-filling, the attractive model at half-

filling, and the extended Hubbard model away from half- S :E Pn P 2
filling. The Drude weight quickly grows with temperature for Alaier=0) L E Em—EnI<n|J (@lml
the half-filled Hubbard model. En#Em

Our results for the integrable half-filled Hubbard model B R
do not confirm conjecturé2) (Sec. lll) on the connection +f > Pa(n|iP(q)|m)]?.  (A5)
between integrability and finite-temperature Drude weight, E:;”Em

and we find that conjectur€3) would disagree with the
(likely) nonzero value of the Drude weight in the noninte-

grabie extended Hubbard model Here(n|jP|m) are matrix elements of the current operator in

the eigenbasis, anB,,=exp(—BE,) denotes the Boltzmann
factor for thenth eigenvalue of the Hamiltonian.
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APPENDIX: SPECTRAL DECOMPOSITION OF THE (AB)

DRUDE WEIGHT

The Drude weight is given by which is identical to the first term in E¢A5). Thus

D(T) 2 Pn .
D(T)=—(kx>—Re{A(0,wH0)} (A1) 2 =—(kod— ;n Em_Enl<n|1"(0)|m>lz- (A7)

En#En

we®

a‘qi: 0. .Here<kx> Is the average kmetlc.energy p'er S'.te’ andUsing second-order perturbation theory and assumingdhat
A(q,w) is the current-current correlation function in fre- removes all degeneracies, the expression takes the same form
quency spaclt can be obtained from an analytic continu- as Eq.(8), so that then the two definitior@) and(7) agree.
ation of The second term in EAS5) is a nonanalytical part of the
18 thermal Green’s functiof which does not contribute to the
AGiwy)= EJO een”(jP(q,7)jP(—q,0)) d7, (A2) i[f):lédeiwvellght, but instead to the Meissner fraction, discussed
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