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Transport properties of one-dimensional Hubbard models
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We present results for the zero- and finite-temperature Drude weightD(T) and for the Meissner fraction of
the attractive and the repulsive Hubbard model, as well as for the model with next-nearest-neighbor repulsion.
They are based on quantum Monte Carlo studies and on the Bethe ansatz. We show that the Drude weight is
well defined as an extrapolation on the imaginary frequency axis, even for finite temperature. The temperature,
filling, and system size dependence ofD is obtained. We find counterexamples to a conjectured connection of
dissipationless transport and integrability of lattice models.@S0163-1829~98!07548-1#
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I. INTRODUCTION

An ideal conductor is characterized at zero temperature
a nonvanishing Drude weightD in the real part of the con
ductivity,

Re$s~v!%5Dd~v!1s reg~v!, ~1!

as first introduced by Kohn in the context of the Mo
transition.1 For finite temperature, the Drude weightD(T)
can be introduced by a formal extension of Eq.~1!:

Re$s~v,T!%5D~T!d~v!1s reg~v,T!. ~2!

A superconductor is characterized by an additional quan
probing the Meissner effect, the superfluid density.2 There
are similar transport quantities for spin degrees of freedo3

Recently there has been a great deal of interest in tr
port properties at finite temperature, and especially in
Drude weight, since the high-Tc materials exhibit an unusua
low-frequency behavior of the optical conductivity in th
underdoped regime.4 Based on analytical and numerical r
sults, a very interesting possible connection between the
tegrability of a lattice model and its finite-temperature Dru
weight has been proposed, conjecturing5–8 that an integrable
system is characterized by a finite Drude weightD(T.0)
Þ0 whenD(T50)Þ0, and remains an ideal insulatorD(T
.0)50 whenD(T50)50, whereas a nonintegrable syste
should exhibit a vanishing Drude weight atT.0.

The results of our finite-temperature quantum Mon
Carlo simulations do not confirm such a connection in
repulsive Hubbard model with and without next-neare
neighbor interaction. We also show that the Drude wei
can be extracted directly by an extrapolation of the curre
current correlations on Matsubara frequencies, even at fi
temperature, thus avoiding an analytic continuation to r
frequencies.
PRB 590163-1829/99/59~3!/1825~9!/$15.00
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We investigate the one-dimensional Hubbard model o
ring of L sites threaded by a fluxLF. The Hamiltonian is

HH~F!52t(
i ,s

~ci ,s
† ci 11,s e2 ieF~xW i ,t !1ci 11,s

† ci ,s eieF~xW i ,t !!

1U(
i

ni↑ni↓ , ~3!

wherec,c† are annihilation and creation operators, and

Peierls phaseF(xW i ,v)5*
xW i

xW i 11 AW (zW,v) dzW in general is a

function of position and frequency. We set\, c, and the
lattice spacing to unity, and we specify energies in units ot.
We use periodic boundary conditionsci 1L,s5ci ,s .

The Drude weight of the one-dimensional Hubbard mo
at zero temperature has been investigated in several pa
including studies of the scaling behavior ofD at half-filling
by Stafford, Millis, and Shastry,9 close to half-filling by
Stafford and Millis10 and by Fyeet al.11 For arbitrary filling,
results were given by Schulz,12 and by Fyeet al. with the
Lanczos method for small systems.11 Römer and Punnoose13

computed both Drude weight and spin stiffness. Some
lated properties of charge and spin currents at finite temp
ture were recently computed by Peres, Sacramento,
Carmelo14 in a perturbation theory based on the Bethe a
satz. For the limitL→`, expressions for the Drude weigh
based on the Bethe ansatz at finite temperature were
recently given by Fujimoto and Kawakami.15

In Sec. II we discuss representations of the fini
temperature Drude weight, and show that it can be obtai
by an extrapolation purely in imaginary frequencies. In S
III we briefly review the conjectured connection to integr
bility. In Sec. IV we compute the filling dependence
D(T50) at zero temperature via the Bethe ansatz equati
and use these equations to give an approximation toD(T) at
1825 ©1999 The American Physical Society
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1826 PRB 59S. KIRCHNER, H. G. EVERTZ, AND W. HANKE
half-filling for low temperature and small system sizes.
Sec. V we present a systematic quantum Monte Carlo st
of the finite temperature Drude weight in the Hubba
model, both repulsive and attractive. Results for a clos
related property, the Meissner fraction, are presented in
VI, and we studyD(T) in the extended Hubbard model i
Sec. VII.

II. DRUDE WEIGHT

Applying a Kramers-Kronig relation to Eq.~2! results in

D~T!5p lim
v→0

@v Im $s~v,T!%#. ~4!

Using linear response, the Drude weight is given by6

D~T!

pe2
52^kx&2Re$L~0,v→0!% ~5!

at F50, where^kx& denotes the average kinetic energy p
site andL(qW ,v) is the current-current correlation function
frequency space2 ~see the Appendix for details!. There are
two different ways to obtain the Drude weight from th
imaginary frequency correlation function. One can perfo
an analytic continuation of the data to real frequency w
the maximum entropy method to obtain ImL(v)/v, and
then use thef-sum rule

D

pe2
52^kx&2

2

pE01

`

dv
Im L~v!

v
. ~6!

Alternatively, one can work entirely on the imaginary fr
quency axis: The analytical continuation of the curre
current correlation functionL, given in Eq.~A4!, is valid in
the continuous upper plane, including the imaginary axis
frequencies different from the Matsubara frequencies. O
can therefore take the limitv→0 for L either along the rea
axis, or purely on the imaginary axis, even at finite tempe
ture. The latter version eliminates the need for an anal
continuation~e.g., via maximum entropy! from data on the
imaginary Matsubara frequencies onto real frequencies
the present paper we employed this procedure. We have
fied that it produces results compatible with those using
f-sum rule, but with smaller errors.

The generalization ofD to finite temperatures can also b
achieved by defining7

D~T!5
p

L (
n

e2bEn

Z

]2 En~F!

]F2 U
F50,qW 50

, ~7!

where Z5tr e2bH is the partition function. In the limitT
→0, this immediately reduces to Kohn’s Drude weight

D~T50!5
p

L

]2 E0~F!

]F2 U
F50,qW 50

. ~8!

The equivalence of Eqs.~5! and ~7! within perturbation
theory is shown in the Appendix.
dy
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III. CONNECTION TO INTEGRABILITY

A model is usually called integrable if the energy eige
values are distributed according to a Poisson distribution.
a non-integrable model, the eigenvalues follow a Gauss
orthogonal ensemble distribution.16 It can be shown for lat-
tice models which are solvable by the Bethe ansatz that
eigenvalues are Poisson distributed.17 Hence the Hubbard
model Eq.~3! is integrable. In Sec. VII we will study the
extended Hubbard-model with nearest-neighbor repuls
which is non-integrable.18

Based on analytical and numerical results, Zotos a
co-workers5–8 conjectured a very interesting connection b
tween the integrability of a lattice model and its finit
temperature Drude weight, stating that for a one-dimensio
model the finite temperature Drude weight in the thermo
namic limit is6,7 ~1! nonzero for an integrable system when
is nonzero atT50, ~2! zero for an integrable system when
is zero atT50, and ~3! zero for a nonintegrable system
Conjecture~2! is different from the original suggestion5 of a
direct equivalence between integrability and finite Dru
weight atT.0 in one-dimensional systems. It was motivat
by an explicit example in which the authors computed
Drude weight for a one-dimensional model of interacti
fermions in the insulating regime with a ‘‘Mott-Hubbard
gap, and found a vanishing Drude value in the insulat
regime even at high temperatures.

Note that there is no rigorous proof of a connection b
tween integrability and a finite Drude weight. However, su
ject to some assumptions, Zotos, Naef, and Prelovˇec
showed in their most recent paper8 that the Drude weight is
finite whenever there exists an operatorA such that@A,H#
50 and

lim
L→`

b

L

^ jA&2

^A2&
Þ0. ~9!

Thus a weaker condition than integrability might suffice
make the Drude weight finite.

IV. ZERO AND LOW TEMPERATURE: BETHE ANSATZ

We employ the Bethe ansatz equations for the Hubb
model, first obtained by Lieb und Wu in 1968,19 to calculate
D(T) and its filling dependence exactly at zero temperatu
and to provide an approximation forD(T) at low finite tem-
perature. As was shown by Shastry and Sutherland,20 the
Hubbard model with twisted periodic boundary conditions

C~ . . . ,rW1LxW , . . . !5exp@ if#C~ . . . ,rW, . . . ! ~10!

can be solved with an appropriate ansatz for the wave fu
tion. Heref5eL F is the overall phase aquired along th
chain of lengthL.21 The Bethe ansatz equations derived
Shastry and Sutherland are

Lkn52pI n1f12(
j 51

M

arctan@4~L j2sinkn!/U#, ~11!
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2(
n51

N

arctan@4~L j2sinkn!/U#

52pJj12(
iÞ j

M

arctan@2~L j2L i !/U#, ~12!

whereN is the total number of electrons,M is the number of
electrons with spin down,L j are parameters associated w
the spin dynamics, and the quantum numbersI n andJm char-
acterize charge and spin excitations. The quantum num
have to be chosen such that10,22 I n is an integer or half-
integer if M is even or odd, respectively,Jm is an integer or
half-integer if N2M is odd or even, respectively, allI n(n
51, . . . ,N) @all Jm(m51, . . . ,M )] are different from each
other, and

uI nu<~L21!/2, uJmu<~N2M !/2. ~13!

The energy of a state with given quantum numbers is gi
by22

E522(
n

cos~kn!. ~14!

Following Ref. 9, we then calculate the Drude weight fro
Eq. ~7! as

D52pe2L(
n

H cosknFdkn

df G2

1sinkn

d2kn

df2 J U
f50

.

~15!

A. Zero temperature

At half-filling and zero temperaturethe asymptoticL de-
pendence of the Drude weight is

D~L;T50!52~21!L/2C~U !L1/2exp@2L/z~U !#
~16!

(L even!, as was shown by Stafford and Millis.10 The corre-
lation lengthz is defined by Eq.~16!. For L→` the Drude
weight in Eq.~16! vanishes, indicating the finite charge ga
at half-filling. We show results for half-filling in Fig. 1. Fo
L mod 450 the ring becomes paramagnetic. This was

FIG. 1. Scaling dependence ofD(T50) at U54 and half-
filling.
rs

n

l-

ready discussed in Refs. 9 and 11. We find that the effec
correlation lengthz'4.25 at the system sizes of Fig. 1
slightly larger than the valuez54.06 atU54 found numeri-
cally in Ref. 9.

Away from half-filling the Hubbard model describes a
ideal metal, with a finite Drude weight atL→`. We show
the system size dependence at quarter filling in Fig. 2.
find that theL dependence is very similar to the half-fille
case, shifted byD(L5`). Even though Eq.~16! was only
derived for the half-filled case, it fits the approach toD(L
5`) very well, albeit with a different exponent forL and a
very large value ofz, as shown in the inset of Fig. 2.

We determined the complete filling dependence of
Drude weight by solving the Bethe ansatz equations num
cally for system sizes up toL580, and extrapolating to an
infinite system size using Eq.~16!. The results are shown in
Fig. 3. As expected, the Drude weight vanishes forn50 ~no
electrons! andn51 (L electrons!. For small system sizes u
to L512 the filling dependence was already reported by F
et al. using Lanczos techniques.11 Solving the Bethe ansat
equations enables us to access much larger systems~up to
L580), and thus to obtain a better extrapolation to the th

FIG. 2. The Drude weight atU54 and quarter fillingn5
1
2

scales toward a finite valueD(L5`)/(2e2)51.29. The inset
shows the scaling dependence@D(L5`)2D(L)#/(2e2)
5L21.12(1)exp@2L30.04(1)# on a logarithmic scale~at L mod
450).

FIG. 3. The filling dependence ofD at U54 andT50, extrapo-
lated to an infinite system size.
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1828 PRB 59S. KIRCHNER, H. G. EVERTZ, AND W. HANKE
modynamic limit. The Drude weight for fixed system si
L5100 was also obtained by Ro¨mer and Punnoose,13 and
our results agree.

B. Partial Drude weight at finite temperature

We now turn to finite temperatures and half-fillin
Whereas ground-state properties depending only on the
ergy can be calculated easily using the Bethe ansatz equ
Eq. ~11!, dynamical properties are much harder to determ
via the usual Bethe ansatz. One recent method by Ju¨ttner,
Klümper, and Suzuki reduces the problem to finding the
lution of two coupled nonlinear integral equations.23 Here we
will be content with a much simpler procedure to calcula
the spin triplet contribution to the finite temperature Dru
weight at half-filling. We neglect excitations across t
charge gap. As we will see, this approximation is valid
small values ofLT/U, i.e., for low temperatures and not to
large systems.

Low-energy excitations are described by variations of
quantum numbers around the ground-state configuration.
chooseN mod 452, at which the ground state is a singlet10

As excitations around this state we consider spin-trip
states, withM5N/221; that is, we consider theS51 and
Sz521 excitations. To include singlet excitations one has
refer to the general Bethe ansatz equations introduced
Takahashi,24 with a phase included as in Ref. 14. The ge
eralized equations describing all four branches of singlet
triplet excitations~the aforementioned ones and theS51 and
Sz50 excitations! are given in Ref. 25.

Due to the charge gap at half-filling, there are no lo
lying charge exitations. The charge quantum numbersI n
therefore remain unchanged from the ground state. For
spin quantum numbers, from Eq.~13! with M5N/221, we
obtain that

uJj u<
N

4
, ~17!

and theJj ’s are now half-integers. Thus there areN/211
possible values for theM5N/221 spin quantum numbers
All possibilities to distribute theJj ’s according to Eq.~17!
that differ from the ground-state constellation describe
cited states. These are the lowest possible excitations. In
dition, there is a singlet excitation, degenerate in energy w
the three triplet excitations.22 This singlet excitation also
contains two holes in the spin quantum numbers compa
with the ground-state constellation. It is described by co
plex quantum numbers. Due to the degeneracy, its contr
tion just multiplies the partition function by a constant facto
The quantityDtriplet(b,L) calculated via Eq.~15! using only
the triplet spin excitations is of course only part of the Dru
weight, but as we will see it should be a good approximat
for small temperatures and small system sizes.

For the temperature and system size dependence
Dtriplet(b,L) ~at L mod 452) we find again a relation simi
lar to theT50 result of Stafford and Millis,10 Eq. ~16!:

Dtriplet~b,L !

2e2
5a~b!Lbexp@2cL#, ~18!
n-
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where onlya(b) is a function of the temperature. The resu
for Dtriplet are shown in Fig. 4, and the fitted parametersa
andc in Table I.

We conclude that in the thermodynamic limitL→`, trip-
let excitations do not contribute to the Drude weight. Th
also remains true for higher spin excitations.

For the b range studied, the exponentb50.33660.005
and the length scalec2154.1760.01 are independent o
temperature. They differ somewhat in value from theT50
result for the complete Drude weightD(T50) @see Eq.~16!
and Fig. 1#. The amplitudea(b) of Dtriplet is precisely linear
in b for the b range studied.

a~b!5~30.91160.007!2~0.237 7160.000 09!b.
~19!

This is surprising, since it resembles the high-temperat
behavior generally expected of the complete Drude weig5

We found that the interaction dependence ofDtriplet for a
given temperature and system size can be approximated

Dtriplet~U !;U2dexp@2 f U#, ~20!

where the parametersd and f depend on system size.
Recently we received a paper by Fujimoto a

Kawakami15 with exact expressions for the Drude weight
finite temperature in the limitL→`, based on the Bethe
ansatz. The Drude weight is finite at finite temperature,
agreement with our results. The authors computed the le
ing contributions to D(L5`,T) explicitly at small tempera-
tures, which at half-filling are, as expected, proportional
exp@2DMHb#, whereDMH is the Mott-Hubbard gap.

Since the quantityDtriplet(b,L) vanishes exponentially a
L→`, the spin contributions to the Drude weight consider

FIG. 4. Scaling behavior ofDtriplet(T) as a function ofL for
finite temperatures andU54, n51.

TABLE I. Parametersa andc obtained by fitting the curves in
Fig. 4 to Eq.~18!.

Inverse temperature a c

b560 16.6560.16 0.240060.0003
b580 11.9060.11 0.240060.0003
b5100 7.14060.068 0.240060.0003
b5120 2.37960.023 0.240060.0003
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here should dominate over the charge excitations for me
copic systems withb@1 ~so that higher excitations are su
pressed!, and

cL!bU, ~21!

i.e., for low temperaturesT and small values ofLT/U.

V. FINITE TEMPERATURE: QMC RESULTS

In this section we present our results for the Drude wei
at large finite temperature and compare them with the p
diction for the temperature and system size dependence
tained in Sec. IV. The simulations were carried out using
grand canonical quantum Monte Carlo method.26 The calcu-
lation yields the current-current correlation function at d
crete imaginary timest i . Performing a Fourier transforma
tion results in the current-current correlation function at
bosonic Matsubara frequenciesivn . The analytic continua-
tion of this function onto real frequencies at zero moment
givesL(0,v) of Eq. ~5!. However, the analytic continuatio
is a numerically ill-conditioned problem which we can avo
As pointed out in Sec. II, one can take the limitv→0 di-
rectly along the imaginary axis. We therefore calculateD by
fitting L on the Matsubara frequencies. This is still an i
conditioned problem when only information about a fin
number of Matsubara frequencies is available. It is theref
important to use a fitting function with the proper analytic
form.

From the analytic continuation of Eq.~A4!, it can be seen
that L(0,iv l) is a well-behaved function on the imagina
axis, namely, a sum of Lorentz curves:

L~0,iv l !5(
j

cj

D j

v l
21D j

2
. ~22!

We approximate it by a finite series

LFIT~0,iv l !5
a

v l
21b2

1
c

v l
21d2

1
e

v l
21 f 2

, ~23!

FIG. 5. Fit of L(0,ivn), at the nonzero Matsubara frequencie
for L532, U54, m52.2, and b510, plotted vsn. The cross
marks the extrapolated value atv50.
s-

t
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b-
e
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e
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and determine the constantsa,b,c,d,e, and f by a x2 fit.
This ansatz fits the data very well. Figure 5 shows an
ample of our fit. We find that the third term in Eq.~23!,
e/(v l

21 f 2), and often also the second term, do not contr
ute significantly, indicating that Eq.~23! is a good approxi-
mation. However, it should be noted that the constantsa,c,
ande are not identical to the differences of the energy eig
values ofH appearing inL(0,iv l), since they result from a
fit to a truncated series. We have verified that our proced
to calculate the Drude weight produces results compat
with those using thef-sum rule@Eq. ~6!#, but with smaller
errors.

We used this procedure to determineD(T) from finite-
temperature quantum Monte Carlo~QMC! runs. We typi-
cally collected about 180 000 Monte Carlo sweeps for e
data point, with a discrete time step ofDt5 1

32 for b53 and
Dt5 1

10 for b58. We obtained the following results.
Figure 6 shows the Drude weight for repulsive interacti

U54 and inverse temperatureb58. The system size depen
dence is compatible to that ofDtriplet(L) @Eq. ~18!#, as ex-
pected for temperatures small compared to the charge g

D~L !/~pe2!52AL2Bexp@2CL#1d. ~24!

We determined the parameters by ax2 fit. For the case
shown in Fig. 6 the results areA510.1261.14, B50.75
60.88,C50.2260.09, andd50.02060.003.

Thus, in the thermodynamic limit, we obtain a fini
Drude weight D(b58,n51,U54)/(pe2)50.0260.003.
The system size behavior of the full Drude weightD(L,b
58) @Eq. ~24!# appears to be similar to that of the parti
Drude weightDtriplet(L,b) obtained by the Bethe ansatz
Eq. ~18!, within the large error ofB, even thoughD(L,b
58) contains charge exitations, as well as higher spin
charge-spin excitations.

Toward higher temperatures, the Drude weight increa
rapidly. Results atb53 are shown in Fig. 7. The approac
to the asymptotic value is very fast now, and there is
longer a clear exponential behavior.

One might be concerned that at temperatureb53 and
lattice sizeL540 the effects of the finite-size gap could st
be important. We therefore verified that at very high te
perature (b50.5, L520) the Drude weight remains finite

, FIG. 6. The Drude weight atb58, U54, andn51 is nonzero
in the thermodynamic limitL→`. The form of the interpolating
function is motivated by theT50 Bethe ansatz results.
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In fact, its value increases further, to aboutD/(pe2)
50.23(1). In Fig. 8 our results for the Drude weight at var
ous temperatures in the half-filled case are shown.

Away from half-filling, the finite temperature Drud
weight remains finite. Results at quarter-filling are shown
Fig. 9. The asymptotic value is already reached for v
small system sizes. Note that away from half-filling, the
was some fluctuation of the actual filling for differentL in
the grand canonical QMC run, which is not reflected in t
error bars. This can cause the outlying point atL528 in Fig.
9.

For theattractive Hubbard modelat half-filling, the situ-
ation is similar to the repulsive case. At low temperatures
system size dependence is slower, as shown in Fig. 10,
the Drude weight has not yet reached its asymptotic valu
our calculations. At high temperature, shown in Fig. 11,
Drude weight converges quickly to a large value.

We see that in the half-filled Hubbard model at finite te
perature the Drude weight is nonzero in the thermodyna
limit L→`, both for the repulsive and attractive cases. Sin
half-filling is the insulating case of the Hubbard model
zero temperature, this result is in disagreement with con
ture ~2! ~Sec. III!.

VI. MEISSNER FRACTION

A property closely related to the Drude weight is t
Meissner fractionk ~Ref. 27! defined as

FIG. 7. At large temperature (b53,U54,n51) the Drude
weight is large and converges rapidly with system size. The Me
ner fractionk ~see Sec. VI! converges to zero quickly.

FIG. 8. The Drude weight in the repulsive model (U54,n
51) increases rapidly with temperature.
n
y

e

e
nd
in
e

-
ic
e
t
c-

k[
p

L

]2F

]F2U
F50,qW→0

, ~25!

where F is the free energy. It reduces to Kohn’s Drud
weight for T50.

Evaluation of Eq.~25! results in

k

pe2
52^kx&2L~qW→0,ivn50!. ~26!

Note that L(qW→0,ivn50) at the zeroeth Matsubara fre
quency, given in Eq.~A5!, is in general not equal to the
analytically continued correlation function atv→0 @Eq.
~A6!#, so that at finite temperaturek differs from the Drude
weight D by the contributions from degenerate states:

D~T!2k5 lim
qW→0

b

L (
n,m

Em5En

Pnz^nu j p~qW !um& z2. ~27!

In the thermodynamic limitL→` and in a transverse vecto
field, k measures the superfluid density.2,21,27 In our one-
dimensional case it will thus become zero. For a finite s
tem, the Meissner fraction can be finite.

s-

FIG. 9. At quarter-filling n'0.500 (b53,U54), the Drude
weight is finite. Small variations in filling of the grand canonic
simulations may be responsible for the large deviation of the dat
L528.

FIG. 10. The Drude weight in the attractive model at low
temperature —b510, U524, andn51 — shows a strong finite-
size dependence.
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We show results for the Meissner fraction on fin
systems21 in Figs. 7, 11, 12, and 13. ForL→`,k vanishes.
We find a finite-size behavior similar to that of the Dru
weight. As for the Drude weight atT50 ~see Fig. 1!, k is
positive whenL54n12 and negative whenL54n. At high
temperatureb53, k converges to zero very quickly bot
for the repulsive and the attractive model~Figs. 7 and 11!. At
low temperature the approach to zero is exponential in s
tem size, but much slower, as shown in Figs. 12 and 13.
very small systems,k is of similar magnitude as the Drud
weight. Even though the differenceD2k @Eq. ~27!# contains
a factor ofb, this difference turns out to besmallerat larger
b in the temperature range studied, both for small and la
systems, contrary to previous expectations.27

VII. EXTENDED HUBBARD MODEL

In Sec. V we showed that for the integrable Hubba
model @Eq. ~3!# the finite-temperature Drude weight both
half-filling and away from it is nonzero even in the therm
dynamic limit. This is in contrast to theT50 case, where the
Drude weight vanishes at half-filling due to the charge g

Let us now examine a nonintegrable case, provided by

FIG. 11. Attractive Hubbard model at high temperature:b53,
U524, andn51. The Drude weight~upper points! quickly con-
verges to a large finite value, whereas the Meissner fractionk van-
ishes~lower points; see Sec. VI!. For comparison,̂kx&'20.890,
with little size dependence.

FIG. 12. Meissner fraction in the repulsive model at low te
perature:b58, U54, ^kx&'20.955, andn51. The two values at
L510 and 26 differ in sign, since they belong to system si
whereL54n12.
s-
or

e

.
e

extended Hubbard model with nearest-neighbor interactio18

He5HH1V(
i

~ni↑1ni↓!~ni 11↑1ni 11↓!. ~28!

We have measured the Drude weight and the Meissner f
tion at finite temperature in this model. Results for a we
extended interaction ofV5 1

2 and away from half-filling are
shown in Fig. 14. The Meissner fraction drops to ze
quickly, similar to the behavior in Fig. 7. The Drude weig
has a large value already at small system sizes. It show
very slow falloff, consistent withD;e2(0.000 8160.000 04)L.
This falloff may be caused entirely by a very small syste
atic increase in the filling factor measured in the grand
nonical simulations. If the exponential falloff is real, then t
Drude weight would drop to small values only at extreme
large system sizes, but would be zero in the thermodyna
limit, in agreement with the conjecture of Zotos and c
workers. However, from our data it appears more likely th
the thermodynamic limit ofD is finite, which would be in
disagreement with conjecture~3!. This would imply that,
even though the model is not integrable, there is an oper
satisfying Eq.~9! in the extended Hubbard model. A simila
conclusion has been drawn for a related model recently.28

-

s

FIG. 13. Meissner fraction in the attractive model at low te
perature,b510, U524, n51: k;exp@2(0.160.002)L#. The ki-
netic energy iŝ kx&'20.96 for all system sizes.

FIG. 14. The Drude weight in the extended Hubbard mode
U54, V5

1
2 , b53, andn50.897860.0002 is nearly constant. Th

error bars do not take into account that the filling has some varia
with L in our grand canonical simulations.
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We have also measured the Drude weight atb55,U54,
and larger repulsionV51.6, on a large systemL560. Both
at quarter-filling n50.5 and atn50.633 we find a finite
value D/(pe2)50.21(2), even though the model is not in
tegrable.

VIII. CONCLUSIONS

We have presented results for the Drude weightD(T), on
mesoscopic systems and extrapolated to the thermodyn
limit, for zero and finite temperature, in several versions
the one-dimensional Hubbard model, including the dep
dence on system size, filling, and temperature.

At zero temperature, we provided the full filling depe
dence ofD by solving the Bethe ansatz equations on la
systems. For small finite temperatures we computed
dominant contribution toD(T,L) on small systems from the
Bethe ansatz. At larger finite temperature we used the qu
tum Monte Carlo method. We showed that the Drude wei
can be obtained by an extrapolation of the current-curr
correlation function purely in imaginary frequencies. W
found a nonvanishing Drude weight at finite temperature
all cases considered: the repulsive Hubbard model bot
and away from half-filling, the attractive model at ha
filling, and the extended Hubbard model away from ha
filling. The Drude weight quickly grows with temperature fo
the half-filled Hubbard model.

Our results for the integrable half-filled Hubbard mod
do not confirm conjecture~2! ~Sec. III! on the connection
between integrability and finite-temperature Drude weig
and we find that conjecture~3! would disagree with the
~likely! nonzero value of the Drude weight in the nonint
grable extended Hubbard model.
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APPENDIX: SPECTRAL DECOMPOSITION OF THE
DRUDE WEIGHT

The Drude weight is given by

D~T!

pe2
52^kx&2Re$L~0,v→0!% ~A1!

at F50. Here^kx& is the average kinetic energy per site, a
L(qW ,v) is the current-current correlation function in fre
quency space.2 It can be obtained from an analytic contin
ation of

L~qW ,ivn!5
1

LE0

b

eivnt^ j p~qW ,t! j p~2qW ,0!& dt, ~A2!
ic
f
-

e
e

n-
t

nt

r
at

-

l

t,

s

whereb51/T,ivn52p in/b are the Matsubara frequencie
qW is the momentum of the applied external vector potent
ande jp(qW ) is the Fourier transform of the paramagnetic cu
rent density,

j p~qW !5 i t (
k51, . . . ,L

s5↑,↓

e2 iqW •xWk~ck11,s
† ck,s2ck,s

† ck11,s!.

~A3!

In an eigenbasis of the Hamiltonian equation~3!, the
current-current correlation function at nonzero frequency
given by

L~qW ,iv lÞ0!5 (
n,m

EnÞEm

Pn

L

e~En2Em!b21

iv l1En2Em
z^nu j p~qW !um& z2,

~A4!

and exactly at zero Matsubara frequency it is

L~qW ,iv l50!5
2

L (
n,m

EnÞEm

Pn

Em2En
z^nu j p~qW !um& z2

1
b

L (
n,m

En5Em

Pnz^nu j p~qW !um& z2. ~A5!

Here^nu j pum& are matrix elements of the current operator
the eigenbasis, andPn5exp(2bEn) denotes the Boltzmann
factor for thenth eigenvalue of the Hamiltonian.

The current-current correlation function is well defined29

in the upper complex plane by specifying its values on
infinite set of finite Matsubara frequencies@Eq. ~A4!#. The
analytic continuation can easily be performed by takingiv l
→v1 id in Eq. ~A4!. Performing the zero-frequency limi
v→0 then yields

Re@L~qW ,v→0!#5
2

L (
n,m

EmÞEn

Pn

Em2En
z^nu j p~qW !um& z2,

~A6!

which is identical to the first term in Eq.~A5!. Thus

D~T!

pe2
52^kx&2

2

L (
n,m

EmÞEn

Pn

Em2En
z^nu j p~0!um& z2. ~A7!

Using second-order perturbation theory and assuming thaF
removes all degeneracies, the expression takes the same
as Eq.~8!, so that then the two definitions~2! and~7! agree.
The second term in Eq.~A5! is a nonanalytical part of the
thermal Green’s function,30 which does not contribute to th
Drude weight, but instead to the Meissner fraction, discus
in Sec. VI.
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