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Thermodynamic and diamagnetic properties of weakly doped antiferromagnets
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The finite-temperature properties of weakly doped antiferromagnets as modeled by the two-dimensionalt-J
model and relevant to underdoped cuprates are investigated by numerical studies of small model systems at
low doping. Two numerical methods are used: the world line quantum Monte Carlo method with a loop cluster
algorithm and the finite-temperature Lanczos method, yielding consistent results. The thermodynamic
quantities—specific heat, entropy, and spin susceptibility—reveal a sizable perturbation induced by holes
introduced into a magnetic insulator, as well as a pronounced temperature dependence. The diamagnetic
susceptibility introduced by a coupling of the magnetic field to the orbital current reveals an anomalous
temperature dependence, changing character from diamagnetic to paramagnetic at intermediate temperatures.
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I. INTRODUCTION

The anomalous normal-state properties of supercond
ing cuprates1 have stimulated intense theoretical investig
tions of models of strongly correlated electrons describ
the interplay between antiferromagnetic~AFM! ordering of
reference~undoped! insulating substances and the itinera
character of charge carriers introduced by doping. For
understanding of superconductivity the most challenging
gime is that of intermediate~optimum! doping. However,
even the apparently simplest region of weak doping is
fully understood theoretically.

Recently, attention in experimental and theoretical inv
tigations of cuprates has been given to the characteriza
and understanding of different doping regimes.2 In a simple
picture, weak doping should correspond to the regime wh
properties vary linearly with concentration of holes: i.e., o
can deal with a semiconductorlike model where charge
riers ~holes! are independent and well-defined quasiparticl
This requires a nonsingular variation of thermodynam
quantities with doping. However, this scenario has be
questioned near the metal-insulator transition based als
numerical solutions for some model systems,1 e.g., the Hub-
bard model. Alternative possibilities include pha
separation,3 quantum critical behavior,4 or other instabilities
at low doping. Still, singular behavior in a planar@two-
dimensional~2D!# system is expected only atT50, while
T.0 should lead to a regular variation with doping.

Among the least understood properties of charge carr
in cuprates and correlated systems in general are thos
lated to the coupling of their orbital motion to an extern
magnetic field. Evidently anomalous and not understood
the Hall constant in cuprates which reveals unusual temp
ture and doping dependence.5 Another quantity is the dia-
magnetic~orbital! susceptibilityxd , which for noninteract-
PRB 620163-1829/2000/62~10!/6745~9!/$15.00
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ing electrons corresponds to Landau diamagnetism6 and
seems to be connected to the Hall response.7 An anomalous
paramagneticlike variation with magnetic field has been
ticed within the ground state of thet-J model8 at low doping.
RecentT.0 studies of a single hole within thet-J model9

confirm the existence of a paramagnetic regime at inter
diate T, though the systems studied were quite small. C
clusive experimental results on diamagnetic susceptib
are lacking,10 since the orbital part appears quite hidden
other contributions, although it could be distinguished via
anisotropy.

The aim of this paper is to study the thermodynamic pro
erties and orbital response of correlated electrons at fi
temperature in the low-doping regime. Most numerical stu
ies of thet-J model have so far focused on the ground-st
properties,11 employing exact diagonalization of small sy
tems, projector Monte Carlo techniques, and density ma
renormalization group12 ~DMRG!. Recently, the finite-
temperature Lanczos method~FTLM! has been introduced
which allows insight into the statics and dynamics atT.0.
In previous applications certain thermodynamic quantit
have also been investigated as a function of doping. In
paper we focus on the low-doping regime, where the met
can be compared with the alternative approach, an adapta
of the world line quantum Monte Carlo~QMC! cluster
method13 which allows for the study of much larger system
at least for temperaturesT.T2 below which the minus-sign
problem sets in. Large systems are particularly important
the study of the diamagnetic response which appears to
quite sensitive to finite-size effects. In both cases, ways
dealing with the magnetic field are introduced. Related QM
methods have been used to study the nonmagnetic prope
of the t-J model, in an exploratory calculation for dope
chains and for ladders with 1 and 2 holes,15 in two dimen-
6745 ©2000 The American Physical Society
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6746 PRB 62DARKO VEBERIČ, PETER PRELOVSˇEK, AND HANS GERD EVERTZ
sions atJ→0 with 1 or 2 holes16 and for chains at finiteJ in
a background of no holes.14

In the following, the planart-J model as a representativ
model for strongly correlated electrons and electronic pr
erties of cuprates is studied,

H52t (
^ i j &s

~ c̃ j s
† c̃is1H.c.!1J (̂

i j &
S Si•Sj2

1

4
ninj D ,

~1!

where c̃is
† and c̃is are fermionic operators, projecting ou

sites with double occupancy. To approach the regime
strong correlations close to the real situation in cupra
J/t50.4 is used in most numerical calculations. We also
kB5\51.

The paper is organized as follows. Section II of the pa
is devoted to a brief introduction of both numerical tec
niques employed, QMC and the FTLM. In Sec. III results f
several thermodynamic properties in the low-doping regi
are presented and discussed. Section IV is devoted to a
cussion of the orbital susceptibility of the system.

II. NUMERICAL METHODS

Results are obtained independently by the world l
QMC method and the FTLM. Wherever possible, results
both methods for doped systems are compared and pres
relative to the undoped Heisenberg AFM. For large enou
systems, we expect to reach a typical behavior in the lo
doping regime.

A. World line quantum Monte Carlo method

The loop cluster algorithm~LCA! for the world line QMC
has been introduced by one of the present authors13 and re-
cently adapted also to thet-J model.15,16

We briefly describe the world line representation of t
QMC. The Hamiltonian, Eq.~1!, on a 2D square lattice
can be split within the standard Trotter-Suzu
decomposition17,18 into four parts H5H11H21H31H4
consisting of mutually commuting terms. This is equivale
to the well-known checkerboard decomposition of Hamil
nians in 1D. The partition function is

Z5Tr e2bH5 lim
M→`

Tr@e2b̃~H11H21H31H4!#M

5Tr@e2b̃H1e2b̃H2e2b̃H3e2b̃H4#M1O~ b̃2!

' (
f1¯f4M

^f4Mue2b̃H1uf1&

3^f1ue2b̃H2uf2&¯^f4M21ue2b̃H4uf4M&, ~2!

where b̃5b/M and b51/T. The summation is taken ove
the complete orthonormal set of statesuf i&. Within each
imaginary time stepb̃, the time evolution operator is ap
plied. Since the Hamiltonian is total spin conserving, we c
track time evolution of a particular spin along its so call
world line ~WL!. Because of the cyclic property of the trac
the WLs are periodic in the imaginary time interval@0, b#.
The time evolution operator acts only on 232 plaquettes,
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and the weight of the configurationW(C) factorizes into a
product of plaquette weights. The partition function

Z5(C
W~C!5(C )

pPC
W~p! ~3!

is formally that of a (211)-dimensional classical system
The thermal average of an observableO can be obtained by

~O!5
1

Z (C
W~C!O~C!. ~4!

Such thermal expectation values are calculated by mean
Monte Carlo~MC! importance sampling, where a sequen
of configurationsCi ~Markov chain! is constructed, which
obeys detailed balance and reproduces the correct Boltzm
distribution W(C)/Z. Thermal expectation values now be
come simple averages

^O&5 lim
K→`

1

K (
i

K

O~Ci !. ~5!

In practice, Monte Carlo runs are finite,K,`, leading to
statistical errors which can be calculated from the stand
deviation of partial data sets.13

In standard local algorithms an update from one confi
rationC to anotherC8 in the Markov chain represents a sma
local change of the WLs. Therefore, consecutive configu
tions are highly correlated, which drastically increases
necessary number of Monte Carlo steps. Such difficulties
overcome in the LCA,13 which introduces global~nonlocal!
stochastic updates that effectively reduce the correlations
the LCA formulation also the continuous time limitb̃→0
can be taken,19 avoiding the second-order systematic error
Eq. ~2!. For certain observables improved estimators can
easily constructed, allowing a potential reduction of statis
cal errors. For more details we refer to the introductory pa
in Ref. 13.

The LCA has recently been adapted to thet-J model. The
update procedure is split into three substeps, allowing
application of the standard LCA for theS51/2 antiferromag-
netic Heisenberg model or for free fermions in all thr
cases. Within each substep, only updates between two o
possible three states~↑, ↓, and hole+! are performed. For the
weights of particular plaquettes and other technical det
we refer to Ref. 15.

In case of negative weightsW(C),0, their magnitude
uW(C)u is taken for construction of the MC procedure, sin
the negativeW(C) cannot be taken as a probability. Equatio
~4! becomes

^O&5
^sign3O& uWu

^sign& uWu
, ~6!

where^¯& uWu denotes the expectation value with respect
the absolute value of the weight. In systems with such
‘‘sign problem,’’ the average sign̂sign& uWu often becomes
exponentially small with increasing system size and decre
ing temperatureT, leading to a blowup of statistical errors.18

Let us briefly comment on the origin of negative signs
the WL formulation of thet-J model. In the system with no
doped holes, the only source of negative weights
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plaquettes, where two opposite spins exchange their p
tions representing a spin flip. Because of the periodicity
WLs in time direction and the absence of holes, spin fl
always occur in even numbers, producing no net nega
sign. In the pure Heisenberg model, this sign can also
transformed away by rotation of spins on one sublattice,
sulting in all-positive plaquette weights.13

For one hole doped into the AFM, one would naively n
expect a sign problem: e.g., in this case there is no sign in
exact diagonalization approach. Examining the particle W
surrounding the hole WL, one finds, however, that an
change of two fermions can occur whentÞ0 andJÞ0, pro-
ducing an odd number of spin flips, i.e., a negative sign
can be seen schematically in a small 232 system,

where a loop motion of the hole	 around the system and
consecutive spin flip reproduce the original configura
tion with two fermions↑ and ↑̄ interchanged. Measuring th
sign here reduces to spin flip counting.

For higher concentration of holes, a more general exp
sion for the sign of the configuration can be obtained. It lin
the fermion WL (permf) and hole WL permutation (permh),

sgn~C!5~21!permf5~21!permh sgn@W~C!#, ~7!

so that for low doping it is preferable to measure perh
rather than permf . The sign problem also complicates th
use of the improved estimators since for every observab
separate algorithm must be devised.

To follow the emergence of the sign problem as well
the development of diamagnetic properties, it is conven
to generalize the isotropic spin interaction term of the mo
Eq. ~1! to an anisotropic one with general anisotropy para
eterg:

HJ5J(̂
i j &

Fg2 ~Si
1Sj

21Sj
1Si

2!1Si
zSj

zG . ~8!

This modifies the pure spin substep~↑,↓! of the t-J LCA so
that otherwise independent loops are ‘‘frozen’’ togethe13

into clusters and updated stohasticaly.
The results for̂ sign& as a function of inverse temperatu

bt51/kBT are presented in Fig. 1. Note that for a single h
in the system,Nh51, the relevant temperature scale in t
anisotropic case isT2;gJ: i.e., there is no sign problem fo
g50. At T&T2 the sign starts to deteriorate rapidly, as c
be seen in Fig. 1, preventing the investigation of lo
temperature properties. As expected^sign& decreases by add
ing additional holesNh.1. For this reason, within the dope
t-J model only chains and coupled chains15 have been inves
tigated by the LCA so far, and in two dimensions the lim
J→0 with Nh51,2.16 Recently, though, a way around th
sign problem has been proposed by calculating ferm
propagators for a background of no holes.14
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For a fixed number of holes, the average sign will co
verge as the system size increases. This convergence c
be taken as a another criterion that the limit of a dilute s
tem has been reached.

B. Finite-temperature Lanczos method

In the analysis of thet-J model, the exact diagonalizatio
of small systems using the Lanczos algorithm has been
tensively employed,11 predominantly in the investigation o
the static and dynamic properties of the ground state. M
recently, a FTLM combining the Lanczos procedure and r
dom sampling was introduced,20,21 allowing the calculation
of T.0 static and dynamic properties of correlated syste
The application is particularly simple for an arbitrary fun
tion of conserved quantities, e.g.,f (H,Sz),

Z'
Nst

K (
n51

K

(
i 50

M21

e2bEi
n
u^nuc i

n&u2, ~9!

^ f &'
Nst

KZ (
n51

K

(
i 50

M21

f ~Ei
n ,Sz

n!e2bEi
n
u^nuc i

n&u2, ~10!

whereuc i
n& andEi

n are~approximate! eigenfunctions and en
ergies, respectively, obtained by diagonalization within
reduced orthonormal set, generated from the initial functio
un& in M Lanczos steps.Nst is the dimension of the complet
basis.K initial function un& are chosen at random, but wit
good quantum numberSz . Usually, it is enough to choos
M ,K!Nst. For a more detailed discussion of the meth
and results, we refer to Ref. 21.

It is expected thatT.0 reduces the finite-size effects o
the measured quantities. It is, however, important to rea
that for a particular system, finite-size effects start to be p
nounced atT,Tfs where, e.g., some characteristic leng
scale becomes larger than the system size. In our case o
doping,N<20 andJ50.4t, we find Tfs;0.4J. All our re-
sults are presented forT.Tfs where Z(Tfs);Z* . In the
present study,Z* 530, so that at least 30 states are samp

FIG. 1. Average sign in QMC for different values of the aniso
ropy g and number of holesNh for a 636 system withJ50.4t.
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6748 PRB 62DARKO VEBERIČ, PETER PRELOVSˇEK, AND HANS GERD EVERTZ
in the thermal averages.21 It should be stressed that th
FTLM gives also the correct ground state within the chos
small system.

III. THERMODYNAMIC PROPERTIES

Thermodynamic propertiesO(ch) depend on the hole
concentrationch5Nh /N. For the weak doping limit, one
would expect a linear dependence for most quantities. F
finite system size, the relevant parameter is thus the num
of holes,Nh , doped into the AFM. In the low-doping re
gime, it makes sense to represent the results as a differ

DOi5O~Nh5 i !2O~Nh5 i 21!. ~11!

To distinguish the change in a particular quantity with do
ing, this notation is used in the following. If, e.g.,DO2 be-
haves quantitatively asDO1 , one can conclude that th
quantity changes linearly with the number of added ho
Nh ; i.e., the holes behave as independent entities, and
system sizes are large enough so that the low-doping reg
has indeed been reached. Such behavior is, however, no
only possibility at low doping, since one can expect, e
even-odd effects in the case of pairing of holes.

A. Internal energy, specific heat, and entropy

The internal energy, defined by

E5
]bF

]b
52

1

Z

]Z

]b
, ~12!

is calculated within the FTLM aŝE& in Eq. ~10! and in QMC
as an expectation value of the corresponding operatoE
5SCE(C)W(C). Results of both methods are presented
Fig. 2.

From Fig. 2 we first conclude that forDE1 the results at
N520 ~which overlap also with the results atN518) ob-
tained via the FTLM are essentially equivalent with QM
results for much larger lattices, at least forT>0.2t reached
by the QMC method. We note also a close agreement

FIG. 2. Internal energy per holeDE vs T as calculated within
the FTLM and the QMC method forJ50.4t. j represents the
one-hole ground state result forN5434 from Ref. 11.m and .

are our ground-state results forDE1 and DE2 for N520, respec-
tively.
n

a
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tween QMCDE2 and DE1 , confirming the assumption o
the low-doping regime and holes as independent quasip
cles in theT window presented. In FTLM results, on th
other hand, the difference betweenDE2 andDE1 is already
visible, sinceNh52 here means already an appreciable d
ing ch50.1. ForT50 the differenceDE22DE1 equals to
the binding energy11 and in the continuum corresponds to th
second derivative of the ground-state energy with respec
the doping. In the chosen parameter regime (J50.4t), the
binding energy is negative, thus pointing to an attractive
teraction between the holes. With the increase of the te
perature, the bound state disintegrates and the differe
DE22DE1 approaches zero. In the case of a small syst
the difference can even become positive, but vanishes w
increasing system size.

It is also evident from Fig. 2 thatDE(T) is not a monoto-
nous function. The ground state of a single hole introduc
into the AFM is quite well understood via analytica
approaches22 and numerical calculations.11 For J/t50.4, the
zero-temperature resultDE(0);21.44t can be explained
well by the interplay between the gain of the kinetic ener
represented by the hopping termHt and the loss of local
AFM correlation energy around the hole.

DE(T) has not been considered so far. An interpretat
of its behavior can be given as follows. Introducing a sing
hole into an AFM destroys the local AFM spin order an
thus increases the exchange energy. The increase is,
ever, expected to disappear atT.J where the spin system
becomes disordered. On the other hand, the ground-stat
netic energy in a disordered spin system is quite similar
the one in an AFM, hence the decrease of the internal ene
DE for T.J. This remains valid forT,t where also higher
hopping-related states become populated and finallyDE(T
→`)→0, explaining the turn back up forT*0.7t.

The specific heat defined by

C5
]E

]T
5b2F1

Z

]2Z

]b22S 1

Z

]Z

]b D 2G ~13!

is obtained asb2@^E2&2^E&2# within the FTLM and the
QMC method. The results are presented in Fig. 3.

The main effect of introducing holes into the AFM insu
lator on C is to decrease the peak atT;J. This appears in
DC as a pronounced dip which slightly weakens and sh
its energy scaleJ to lower values with doping, as can be se
from the line shape in Fig. 3.

The entropy is

S5b~E2F !5bE1 ln Z. ~14!

We reconstruct it from the specific heat

C5T
]S

]T
~15!

by numerical integration from high temperaturesT;`:

DS~T!2DS~`!5 ÈT DC

T
dT. ~16!

The high-temperature integration constants are chosen
that DS(`)5D ln Nst.
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In contrast toDE andDC discussed previously,DS is not
linear in Nh in the low-doping limit. In analogy with low-
concentration systems, like the dilute classical gas, entrop
expected to scale asDS}uD(NCh

ln Ch
)u, i.e., DS1} ln N, so

the change still depends explicitly on the system size. Thi
also realized in Fig. 4, whereDS1 still varies with N, yet
curves for differentN appear parallel down to the lowe
reachable temperatures.

It is particularly remarkable how large the entropy i
creaseDS1@1 is even at the lowestT,J. This is indeed

FIG. 3. Specific heat per siteC/N for undoped system~top! and
change with dopingDC ~bottom, both in units ofkB) vs T as cal-
culated within the FTLM and the QMC method forJ50.4t.

FIG. 4. Entropy increaseDS ~in units of kB) for a single hole
obtained via the FTLM and the QMC method, on different s
lattices andJ50.4t. Long-dashed lines representDS(`).
is

is

consistent withDS measured in cuprates.23 While this could
be attributed partly to the logarithmic dependence onch , at
the same it is evident that the behavior is much closer t
system of classical particles than to a degenerate elec
gas.

B. Spin susceptibility

The uniform spin susceptibility can be evaluated as a th
modynamic quantity from

xs5
b^Sz

2&
N

, ~17!

where Sz5S iSi
z is the conserved total spin. In the FTLM

then Eq.~10! can be applied, while within the QMC metho
xs is related to the number of spin-up and -down WLs.

It is instructive to present results both forDxs with re-
spect to the undoped AFM, Fig. 5, as well as for the effect
Curie constant~difference of the square moment! per hole,
D^Sz

2&5NDxs /b, in Fig. 6.
The results in Figs. 5 and 6 are easy to interpret for h

T.t. Each hole introduced into the system reduces the
fective Curie constant by one spin, i.e.,D^Sz

2&521/4. On
the other hand, at lowT,J the situation is reversed sinc
Dxs.0. This increase can be attributed to the relaxation
the AFM order by the hole doping. Note that in an AFM,xs
achieves a maximum atT;J, while below that temperature
it is reduced due to the longer-range AFM order. It is inte

FIG. 5. Spin susceptibility for undoped systemxs ~top! and
change of the spin susceptibility with dopingDxs ~bottom! vs T
obtained within the FTLM and the QMC method forJ50.4t.
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6750 PRB 62DARKO VEBERIČ, PETER PRELOVSˇEK, AND HANS GERD EVERTZ
esting to note that at the lowest reachable temperaturT
;J/2 each hole effectively adds just one spin, i.e.,D^Sz

2&
;1/4.

IV. ORBITAL SUSCEPTIBILITY

In order to investigate the orbital response of the syst
a homogeneous magnetic fieldB perpendicular to the plan
has to be introduced. When we discuss the orbital magn
zation and susceptibility,B enters only in the kinetic term o
Eq. ~1!, via the Peierls construction

Ht52t (
^ i j &s

~eiu i j c̃ j s
† c̃is1H.c.!, ~18!

where the phases are given within Landau gauge as

u i j 5
e

\
A~r i !•Ri j , A5B~0,x,0!, ~19!

with Ri j 5r j2r i . The relevant parameter for the strength
B is the dimensionless flux per plaquettea52pBa2/f0 ,
wherea is the lattice spacing andf05h/e is the unit quan-
tum flux.

The dc orbital susceptibility of the system in the extern
magnetic field is

xd52m0

]2F

]B2 52
m0e2a4

\2

]2F

]a2

52
x0

b F1

Z

]2Z

]a22S 1

Z

]Z

]a D 2G ,
~20!

wherex05m0e2a4/\2. So far,xd has been investigated onl
for a single holeNh51 by a high-temperature expansion
J50, and by the FTLM forJ.0.9 In the latter study it was
realized that results are quite sensitive to finite-size effe
so it is desirable to get corresponding results also via
QMC method, where much larger lattices can be studied

Let us first derive the expression for the orbital susce
bility within the QMC method. As seen from Eq.~18!, the
magnetic field affects only the hopping of the electrons.

FIG. 6. Effective square moment~Curie constant! per hole
D^Sz

2& vs T, obtained from the data in Fig. 5. For comparison a
the result for noninteracting classical spins~NCSs! is presented
~dashed line!.
,

ti-

f

l

s,
e

i-

n

the WL representation this concerns matrix eleme

^fue2b̃Huf8& in Eq. ~2!. For the plaquette representing th
hopping between sitesi and j, the matrix elements become

Hi j
hop5S 0 2teiu i j

2te2 iu i j 0 D , ~21!

written in theu+ ↑&, u↑ +& base. The imaginary time propagat
in the same base is

e2b̃Hi j
hop

5S coshb̃t eiu i j sinhb̃t

e2 iu i j sinhbt coshb̃t
D . ~22!

Thus the plaquette weights along the hole WL obtain
additional phase factorW(p,a)5W(p)eiu(p). The weight of
the whole configuration is a product, Eq.~3!,

W~C,a!5 )
pPC

W~p,a!5W~C!)
pPC

exp@ iu~p!#, ~23!

where the phases sum up:

expF i (
pPC

u~p!G5expF i R u~r !dr G
5expF i

e

\ R A~r !dr G5eiaS. ~24!

The integral runs along the hole WL. HereS is defined as the
oriented area of the hole WL projected onto the plane
units of the lattice plaquette areaa2. For more holes,S gen-
eralizes similarly to the sum of all hole WL areas.

Now we can write the partition function in the magnet
field as

Z5(C
W~C,a!5(C

eiaS~C!W~C!. ~25!

For a given configurationC, there always existC8 ~imaginary
time inversion! with the same weight, butS(C8)52S(C);
therefore, the exponential in Eq.~25! can be replaced by a
cos function. ForB50 we havê S&50 and obtain the zero
field susceptibility from Eq.~20!,

xd52x0

^S2&
b

. ~26!

xd can be thus measured without the presence of a magn
field. This is just another consequence of the more gen
fluctuation-dissipation theorem. Even thoughS2 is strictly
positive, the thermal average in Eq.~26! can become nega
tive because of correlations between the sign of the we
and the areaS of the hole WL. From Eq.~6! we can deduce
that^S2&,0 when the configurations with negative sign te
to have largerS2(C)uW(C)u than configurations with positive
ones.

The hole WL can obtain nonzero spatial winding numb
due to the periodic boundary conditions and small syst
size. E.g., the WL can run along the imaginary time, cro
the system boundary, and complete time periodicity rec
necting with its spatially periodic image. In that case the a
S as defined by Eq.~24! has no physical meaning. Therefor
we restrict our simulation so that only the zero spatial win
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ing loop updates are generated~a discussion on fixing the
winding numbers can be found in Ref. 24!. The hole is al-
lowed to cross the system boundary as long as it does
increase the winding number. The effect of the restriction
analogous to the movement of the hole doped into an infi
periodic spin background with a unit cell equal to the size
the system. The results for thermodynamic quantities p
sented in the previous section agree within the error b
with the unrestricted case. This restriction is weaker th
closed boundary conditions, resulting in smaller finite-s
effects.

The introduction of finiteB.0 into the model, Eq.~18!,
reduces the translational symmetry and thus for a given
tem size increases the required minimal base set used in
FTLM. In the present study a few mobile holes on a syst
of tilted squares withN up to 20 sites and periodic bounda
conditions are considered. It is nontrivial to incorpora
phasesu i j corresponding to a homogeneousB, being at the
same time compatible with periodic boundary conditions.25,9

This is possible only for quantized magnetic fieldsB
5mB0 , whereB05f0 /N.

xd from Eq. ~26! can be calculated in the FTLM only b
taking a numerical derivative of the free energyF
52T ln Z, with Z from Eq.~9!. Finite systems provideF(a)
only for discrete values ofa. Here xd can be obtained by
fitting the F(a) dependence to the parabolic formF(a)
5F(0)1ca2 in two pointsa5 i2p/N anda5 j 2p/N. The
corresponding results for the susceptibility are denoted
x i j . In small systems (N,20) the introduction ofB.0 can
lift some zero-field degeneracies. Thex01 values are there
fore systematically affected by larger finite-size effects. F
the system withN520, both valuesx01 andx12 agree quite
reasonably with the QMC data.

Let us first comment on the validity of results forxd .
Sincexd deals with an orbital current represented by lo
motion of charge carriers~holes!, it is much more sensitive
to finite-size effects9 than most other correlation function
This was also the main motivation to employ the QM
method, where much larger systems can be reached. In
7, finite-size scaling is performed for the QMC data f
xd(T) for the case ofNh51. We can see that the differentT

FIG. 7. Finite-size scaling ofxd from QMC with one hole, for
different T andJ50.4t. Solid lines serve as a guide to the eye a
are fits to the 1/N2 and 1/N4 dependence.
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points do not cross upon changing the system sizeN. Thus,
at least qualitatively, results do not depend on the sys
size. Therefore, the sizes of choice for the QMC systems
be 636 and 838.

In Fig. 8, xd obtained via both methods is presented. F
T@t, the response is diamagnetic and proportional toT23 as
well as essentiallyJ independent.9 The most striking effect is
that the orbital response below some temperatureTp turns
from diamagnetic to paramagnetic, consistent with the p
liminary results obtained via the FTLM.9 In order to locate
the origin of this phenomenon, results for differentJ and
anisotropiesg are shown in Fig. 9. It appears thatTp scales
with gJ: i.e., atJ50 the response is clearly diamagnetic
all T, and forg50, J.0 no crossing is observed with eithe
method.

At lower temperaturesT,Td!Tp , the diamagnetic be-
havior is expected to be restored. This follows from the

FIG. 8. Orbital susceptibilityxd vs T obtained via the QMC
method and the FTLM forJ50.4t. Regarding the FTLM,x12 for
N520 should be most relevant~thick line!.

FIG. 9. xd vs T for Nh51 and differentJ andg. QMC results
for the 636 system are shown with different dots and are labe
with appropriate values ofJ and g. Solid lines correspond to the
N520 FTLM for the same values ofJ, g as in QMC. For compari-
son also results of a high-temperature expansion~HTE! for J50
~Ref. 9! are shown~dash-dotted line!. The data forJ50.4, g51
from Fig. 8 are not shown again.
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gument that atT→0 a hole in an AFM should behave as
quasiparticle with a finite effective mass, exhibiting a cyc
tron motion in BÞ0. The latter behavior should lead t
xd(T→0)→2`.9 Numerically, it is easiest to test this con
jecture for a single hole andg50 ~also true forJ50).
Namely, the QMC has no sign problem atg50, so that error
bars are only due to the finite MC sampling.

The results in Fig. 9 are quite interesting even forg50.
At J50 a monotonous increase ofuxdu is observed, diverg-
ing asT→0.9 It can be explained as a gradual transition fro
a hole in a random spin background to a well-defined qu
particle, i.e., the ferromagnetic polaron, atT→0. The situa-
tion is more complicated forJ.0. It is plausible that the
difference to theJ50 case shows up atT,J, where the
AFM short-range correlations appear. Relative toJ50, a
spin-ordered state blocks the loop motion of holes, neces
for finite diamagneticxd . The effect is thus first a decreas
of uxd(T)u with decreasingT, as seen in Fig. 9. Turnover t
the diverging diamagneticxd should happen only when th
coherent quasiparticle is formed atTd!J. Here Td should
scale with the inverse of the quasiparticle effective m
1/m* . It is known thatm* can become very large for th
extremeg50 case, in particular for largerJ. This explains
why we cannot reach the coherent regime forJ50.4t even at
T50.2t ~Fig. 8!, while the downturn is indeed observed f
J/t50.1, 0.2,g50 ~Fig. 9!.

At g.0, the results are qualitatively different. The mo
pronounced effect is the change into a paramagneticxd for
T,Tp . The width of thisT window is quite large. In fact,
within the FTLM and QMC data we are unable to locate t
reentrance temperatureTd into the diamagnetic response, a
though the latter is expected.9 An argument for the low value
of Td can be given in terms of a very shallow energy mi
mum which defines the quasiparticle dispersion near
ground state of a hole in an AFM within thet-J model,11 and
hence the quasiparticle loses its character already at very
excitation energies. Still, the paramagnetic response in
window Td,T,Tp remains to be explained.

Let us finally discuss also results forxd for finite doping
ch.0, as presented in Fig. 10. The easiest regime to inter
is that of a nearly empty band, i.e.,ch.0.7, wherexd is

FIG. 10. xd vs ch for severalT and J50.4t. The last graph
contains also a fourth-order HTE result~dotted line!. Canonical
~dots! and grand-canonical~line! values for all ch are obtained
within the FTLM with N516, wherex12 is used to calculatexd .
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diamagnetic and nearly independent ofT. In this regime the
electron system is dilute and strong correlations are unimp
tant; hence, Landau diamagnetism is expected. At mode
temperaturesT.J and for an intermediate-doping regim
0.2,ch,0.7, xd is dominated by a paramagnetic respon
with a peak at approximatelych51/2. As consistent with
results at low doping, there is a weak diamagnetism atch

,0.2 andT.Tp , while the paramagnetic regime extends
ch50 for T,Tp . For low temperaturesT!J quite pro-
nounced oscillations inxd(ch) appear and can be partly a
tributed to finite-system effects.

Certain aspects of the above results forxd(ch) can be
understood using the HTE. One is the asymmetry betw
ch→0 andch→1 at higherT.t. In the lowest order of the
HTE, only hopping of the electrons around a basic plaque
loop has to be considered. The signal on thech→0 side of
xd(ch) is thus reduced by a factor of 2358 against thech

→1 side since in the first case only the plaquettes with f
romagnetically aligned spins contribute.

V. CONCLUSIONS

Let us first compare both numerical methods used in
analysis of thet-J model at low doping. The QMC metho
allows the studies of larger systems and the loop algorit
solves some serious drawbacks of the MC methods. I
indeed very efficient in cases where there is no sign probl
e.g., the anisotropic modelg50 at Nh51. Within the WL
approach it is also very easy to formulate and measure
tain responses like the orbital susceptibilityxd . Still, the
method suffers from a sign problem~for g.0) even for a
single holeNh51 in an AFM~though not in a background o
no holes14!. Results are thus in practice limited toT*J/3 for
the isotropic caseg51. On the other hand, the FTLM has n
minus-sign problem, but rather limitations due to small s
tems which can be studied. These are even more pronou
in cases withB.0 where the translational symmetry is los
It is an interesting observation that within the FTLM, th
limiting temperatureTfs for the t-J model is in most cases
quite close to the lowestT reached by the QMC method.

We have presented several results for thermodyna
quantities, i.e., energyE, specific heatC, entropyS, and spin
susceptibilityxs , as a function ofT at low doping. At T
.Tfs all results are consistent with the picture where ho
introduced into the AFM behave as independent~nondegen-
erate! particles. The perturbation introduced into the AFM b
holes is quite large even at lowestT,J, in particular visible
from DC andDS, consistent with experiments in cuprates23

Results for the orbital susceptibilityxd , now obtained
also for much larger systems using the QMC method, c
firm the preliminary FTLM results,9 indicating an anomalous
paramagnetic response at low doping in an intermediate w
dow of temperaturesTd,T,Tp;J ~for the isotropic model
g51). In fact, within our numerical studies it is hard t
reach the lower end of this window, meaning thatTd,J/3.
Still, the reentrance into a diamagnetic behavior is expec
from theoretical arguments on the existence of a well-defi
quasiparticle atT→0, as well as from more reliable QMC
results for theg50 case.9 The paramagnetic response
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intermediateT can be viewed also as an extension of a m
pronouncedxd.0 regime observed at finite doping 0
,ch,0.5 at allT. The explanation can thus go in the dire
tion proposed by Laughlin,26,8 that at low dopingch→0 we
are dealing with quasiparticles~with a diamagnetic re-
sponse!, being a bound composite of charge~holon! and spin
~spinon! elementary excitations. The binding appears, ho
ever, to be quite weak and thus easily destroyed by finiteT or
,

e

-

ch , enabling the independent response of constituents, w
apparently is paramagnetic.
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