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The finite-temperature properties of weakly doped antiferromagnets as modeled by the two-dimésdsional
model and relevant to underdoped cuprates are investigated by numerical studies of small model systems at
low doping. Two numerical methods are used: the world line quantum Monte Carlo method with a loop cluster
algorithm and the finite-temperature Lanczos method, yielding consistent results. The thermodynamic
gquantities—specific heat, entropy, and spin susceptibility—reveal a sizable perturbation induced by holes
introduced into a magnetic insulator, as well as a pronounced temperature dependence. The diamagnetic
susceptibility introduced by a coupling of the magnetic field to the orbital current reveals an anomalous
temperature dependence, changing character from diamagnetic to paramagnetic at intermediate temperatures.

I. INTRODUCTION ing electrons corresponds to Landau diamagnétismd
seems to be connected to the Hall respdnaa.anomalous

The anomalous normal-state properties of superconducparamagneticlike variation with magnetic field has been no-
ing cuprate$ have stimulated intense theoretical investiga-ticed within the ground state of the) modef at low doping.
tions of models of strongly correlated electrons describingRecentT>0 studies of a single hole within the) modeP
the interplay between antiferromagnet®&FM) ordering of  confirm the existence of a paramagnetic regime at interme-
reference(undopedl insulating substances and the itinerantdiate T, though the systems studied were quite small. Con-
character of charge carriers introduced by doping. For thelusive experimental results on diamagnetic susceptibility
understanding of superconductivity the most challenging reare lacking'® since the orbital part appears quite hidden by
gime is that of intermediatéoptimum doping. However, other contributions, although it could be distinguished via the
even the apparently simplest region of weak doping is nognjsotropy.
fully understood theoretically. o The aim of this paper is to study the thermodynamic prop-
~ Recently, attention in experimental and theoretical invesgties and orbital response of correlated electrons at finite
tigations of cuprates has been given to the characterizatioymperature in the low-doping regime. Most numerical stud-
and understanding of different doping reginds. a simple s of thet-J model have so far focused on the ground-state

picture, weak doping should correspond to the regime WherEropertiesl,l employing exact diagonalization of small sys-

properties vary Iinearly with con.centration of holes: i.e., ON€e s projector Monte Carlo techniques, and density matrix
can deal with a semiconductorlike model where charge Carr'enor,malization ol (DMRG) Rece;ntl the finite-
riers (holeg are independent and well-defined quasiparticles 9 ' Y,

This requires a nonsingular variation of thermodynamictemperalture Lanczos meth¢BTLM) has been introduced,

quantities with doping. However, this scenario has beerYVhiCh allows insight into the statics and dynamicsTatO.

questioned near the metal-insulator transition based also dfl Prévious applications certain thermodynamic quantities
numerical solutions for some model systehesg., the Hub- have also been investigated as a function of doping. In this

bard model. Alternative possibilities include phasePaper we focus on the low-doping regime, where the method
separatior?, quantum critical behavidtor other instabilities ~¢an be compared with the alternative approach, an adaptation
at low doping. Still, singular behavior in a plangtwo-  ©of the world line quantum Monte Carl¢QMC) cluster
dimensional(2D)] system is expected only dt=0, while method® which allows for the study of much larger systems
T>0 should lead to a regular variation with doping. at least for temperaturés>T_ below which the minus-sign
Among the least understood properties of charge carriergroblem sets in. Large systems are particularly important for
in cuprates and correlated systems in general are those rte study of the diamagnetic response which appears to be
lated to the coupling of their orbital motion to an external quite sensitive to finite-size effects. In both cases, ways of
magnetic field. Evidently anomalous and not understood islealing with the magnetic field are introduced. Related QMC
the Hall constant in cuprates which reveals unusual temperanethods have been used to study the nonmagnetic properties
ture and doping dependenténother quantity is the dia- of the t-J model, in an exploratory calculation for doped
magnetic(orbital) susceptibility x4, which for noninteract- chains and for ladders with 1 and 2 holsp two dimen-
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sions atJ—0 with 1 or 2 hole&® and for chains at finitd in and the weight of the configuratioW/(C) factorizes into a

a background of no holé$. product of plaquette weights. The partition function

In the following, the planat-J model as a representative
mo_del for strongly_ correlgted electrons and electronic prop- Z=Z W(C)=E H W(p) 3)
erties of cuprates is studied, C C peC

1 is formally that of a (2-1)-dimensional classical system.
H=—t >, (T:;r(,?:i(,nt H.c)+J >, (S-Sj— Zn‘nj)’ The thermal average of an observabllecan be obtained by
(ij)o (i)
() 1
ot o - . (0)== 2 W(C)O(C). 4
where T/, andT;, are fermionic operators, projecting out Z°C

fSuch thermal expectation values are calculated by means of
SMonte Carlo(MC) importance sampling, where a sequence

J/t=0.4 is used in most numerical calculations. We also use configurationsC; (Markov chain is constructed, which

Ke=#=1. . . . obeys detailed balance and reproduces the correct Boltzmann
The paper is organized as follows. Section Il of the PaAPCistribution W(C)/Z. Thermal expectation values now be-
is devoted to a brief introduction of both numerical tech-

niques employed, QMC and the FTLM. In Sec. Il results forCome simple averages

several thermodynamic properties in the low-doping regime 1 X
are presented and discussed. Section IV is devoted to a dis- (O)Y=1lim = >, OC). (5)
cussion of the orbital susceptibility of the system. koo KT

In practice, Monte Carlo runs are finit&,<o, leading to
Il. NUMERICAL METHODS statistical errors which can be calculated from the standard

Results are obtained independently by the world linedeviation of partial data sefs, .
QMC method and the FTLM. Wherever possible, results of N standard Ioca,l algorithms an update from one configu-
both methods for doped systems are compared and present@&'onc to anotherC’ in the Markov chain represents a small

relative to the undoped Heisenberg AFM. For large enoughoc@! change of the WLs. Therefore, consecutive configura-
systems, we expect to reach a typical behavior in the lowtions are highly correlated, which drastically increases the
doping regime. necessary number of Monte Carlo steps. Such difficulties are

overcome in the LCA? which introduces globalnonlocal)
stochastic updates that effectively reduce the correlations. In
] ) the LCA formulation also the continuous time limit—0
The loop cluster algorithrfLCA) for the world line QMC  can be taker? avoiding the second-order systematic error of
has been introduced by one of the present autharsd re-  Eq. (2). For certain observables improved estimators can be
cently adapted also to ttte] model.™ . easily constructed, allowing a potential reduction of statisti-
We briefly describe the world line representation of theca errors. For more details we refer to the introductory paper
QMC. The Hamiltonian, Eq(1), on a 2D square lattice i, Ref. 13.
can be split within the standard Trotter-Suzuki  The |CA has recently been adapted to thkemodel. The
decompositioh*® into four parts H=H;+H,+H;+H, update procedure is split into three substeps, allowing the

consisting of mutually commuting terms. This is equivalentapplication of the standard LCA for ti&= 1/2 antiferromag-
to the well-known checkerboard decomposition of Hamilto-netic Heisenberg model or for free fermions in all three

A. World line quantum Monte Carlo method

nians in 1D. The partition function is cases. Within each substep, only updates between two of the
- possible three statd$, |, and hole°) are performed. For the
Z=Tre A= lim Tre AH1tHztHs+H)M weights of particular plaquettes and other technical details
M—oe we refer to Ref. 15.

In case of negative weight®/(C)<0, their magnitude
|W(C)| is taken for construction of the MC procedure, since
the negativaV(C) cannot be taken as a probability. Equation

= Tr[ef:éHlef:éHZef’bH:iefﬁH{l M + O(BZ)

=, % <¢4M|9—EH1|¢1> (4) becomes
- ) - . B (Sign>< O)\W‘
X(pale P2 o) (bam-1l€ P bam),  (2) <O>_<3Tn>\w| (6)

where 8= /M and S=1/T. The summation is taken over \here(---),, denotes the expectation value with respect to
the complete orthonormal set of states;). Within each  the absolute value of the weight. In systems with such a
imaginary time steps, the time evolution operator is ap- *“sign problem,” the average sigKsign),, often becomes
plied. Since the Hamiltonian is total spin conserving, we carexponentially small with increasing system size and decreas-
track time evolution of a particular spin along its so calleding temperaturd, leading to a blowup of statistical errofs.
world line (WL). Because of the cyclic property of the trace, Let us briefly comment on the origin of negative signs in
the WLs are periodic in the imaginary time intenj@l, 8].  the WL formulation of thet-J model. In the system with no
The time evolution operator acts only orx2 plaquettes, doped holes, the only source of negative weights are
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plaquettes, where two opposite spins exchange their posi  1.000 |
tions representing a spin flip. Because of the periodicity of
WLs in time direction and the absence of holes, spin flips
always occur in even numbers, producing no net negative
sign. In the pure Heisenberg model, this sign can also be 0.100 ¢
transformed away by rotation of spins on one sublattice, re- ,
sulting in all-positive plaquette weight3. 5
For one hole doped into the AFM, one would naively not
expect a sign problem: e.g., in this case there is no sign in the
exact diagonalization approach. Examining the particle WLs
surrounding the hole WL, one finds, however, that an ex-
change of two fermions can occur whea0 andJ+ 0, pro-
ducing an odd number of spin flips, i.e., a negative sign, as . ‘ .
can be seen schematically in a smak 2 system, 2 4 6 8
Bt

o) T o T o T FIG. 1. Average sign in QMC for different values of the anisot-
ropy y and number of holeBl,, for a 6X6 system with]=0.4t.

k=)
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0.010 |

0.001 |

- - For a fixed number of holes, the average sign will con-
T ] Lo T 7 ! verge as the system size increases. This convergence could
be taken as a another criterion that the limit of a dilute sys-

where a loop motion of the hole around the system and a tem has been reached.

consecutive spin flig~~ reproduce the original configura-

tion with two fermions] andT_interchanged. Measuring the
sign here reduces to spin flip counting. B. Finite-temperature Lanczos method
For higher concentration of holes, a more general expres-

. . . ! : ) In the analysis of thé-J model, the exact diagonalization
sion for the sign of the configuration can be obtained. It linksy¢ gmall systems using the Lanczos algorithm has been ex-

the fermion WL (perry) and hole WL permutation (PR} tensively employed! predominantly in the investigation of
the static and dynamic properties of the ground state. More
sgn(C) =(—1)P¥M=(—1)PhsgfW(C)], (7)) recently, a FTLM combining the Lanczos procedure and ran-

S dom sampling was introducéd?* allowing the calculation
so that for low doping it is preferable to measure perm of T>0 static and dynamic properties of correlated systems.

rather than pergm The sign problem also complicates the The application is particularly simple for an arbitrary func-
use of the improved estimators since for every observable fon of conserved quantities, e.d(H,S,),

separate algorithm must be devised.
To follow the emergence of the sign problem as well as

the development of diamagnetic properties, it is convenient Ngt KoM E )
to generalize the isotropic spin interaction term of the model K Z 2 “PEnl g%, ©)
Eqg. (1) to an anisotropic one with general anisotropy param-
etervy.
K M-1

f(EM,S) - BE! ny2
J% S's4sts) S| ® 2 2 (B, She PE[nlyM?,  (10)
1]

This modifies the pure spin substép|) of thet-J LCA so  where|y{) andE" are (approximatg eigenfunctions and en-
that otherwise independent loops are “frozen” togetfer ergies, respectively, obtained by diagonalization within the
into clusters and updated stohasticaly. reduced orthonormal set, generated from the initial functions
The results foKsign) as a function of inverse temperature |n) in M Lanczos stepd\, is the dimension of the complete
Bt=1/kgT are presented in Fig. 1. Note that for a single holebasis.K initial function |n) are chosen at random, but with
in the systemN,,=1, the relevant temperature scale in thegood quantum numbe8,. Usually, it is enough to choose
anisotropic case i§_~ yJ: i.e., there is no sign problem for M,K<Ng. For a more detailed discussion of the method
y=0. At T=T_ the sign starts to deteriorate rapidly, as canand results, we refer to Ref. 21.
be seen in Fig. 1, preventing the investigation of low- It is expected thal >0 reduces the finite-size effects of
temperature properties. As expectsitjn) decreases by add- the measured quantities. It is, however, important to realize
ing additional holedN,> 1. For this reason, within the doped that for a particular system, finite-size effects start to be pro-
t-J model only chains and coupled chainbave been inves- nounced atT<T; where, e.g., some characteristic length
tigated by the LCA so far, and in two dimensions the limit scale becomes larger than the system size. In our case of low
J—0 with N,=1,21° Recently, though, a way around the doping, N<20 andJ=0.4t, we find T{c~0.4]. All our re-
sign problem has been proposed by calculating fermiorsults are presented fof>Ti where Z(T¢)~Z*. In the
propagators for a background of no hotés. present studyZ* =30, so that at least 30 states are sampled
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0.0 ' ' ' ' tween QMCAE, and AE;, confirming the assumption of
— AE, FTLM N=20 the low-doping regime and holes as independent quasiparti-
---- AE, FTLM N=20 cles in theT window presented. In FTLM results, on the
051 ©AE,QMC N=6x6 1 other hand, the difference betweAi, andAE; is already

® AE, QMC N=6x6

visible, sinceN,,=2 here means already an appreciable dop-
ing ¢,=0.1. ForT=0 the differenceAE,—AE; equals to

the binding energ¥ and in the continuum corresponds to the
second derivative of the ground-state energy with respect to
the doping. In the chosen parameter reginde- Q.4t), the
binding energy is negative, thus pointing to an attractive in-
teraction between the holes. With the increase of the tem-
perature, the bound state disintegrates and the difference
, , , , AE,—AE, approaches zero. In the case of a small system,
0.0 0.5 1.0 1.5 2.0 the difference can even become positive, but vanishes with

T/t increasing system size.

It is also evident from Fig. 2 thaXE(T) is not a monoto-
nous function. The ground state of a single hole introduced
one-hole ground state result fdi=4Xx4 from Ref. 11.A and ¥ into the AFM is quitg well und,erStOOd via analytical
are our ground-state results fAE;, and AE, for N=20, respec- approache€ and numerical calculatiors.For J/t=0.4, _the
tively. zero-temperature resulkE(0)~—1.44 can be explained
well by the interplay between the gain of the kinetic energy

in the thermal averagés.It should be stressed that the represented by the hopping tery and the loss of local

FTLM gives also the correct ground state within the choserfAFM correlation energy around the hole. . _
small system. AE(T) has not been considered so far. An interpretation

of its behavior can be given as follows. Introducing a single
hole into an AFM destroys the local AFM spin order and
thus increases the exchange energy. The increase is, how-
Thermodynamic propertie€)(c;) depend on the hole ever, expected to disappear Bt-J where the spin system
concentrationc,=N;,/N. For the weak doping limit, one becomes disordered. On the other hand, the ground-state ki-
would expect a linear dependence for most quantities. For aetic energy in a disordered spin system is quite similar to
finite system size, the relevant parameter is thus the numbdéhe one in an AFM, hence the decrease of the internal energy
of holes,Ny,, doped into the AFM. In the low-doping re- AE for T>J. This remains valid folf <t where also higher
gime, it makes sense to represent the results as a differendwpping-related states become populated and finsT
—)—0, explaining the turn back up far=0.%.

FIG. 2. Internal energy per hol&E vs T as calculated within
the FTLM and the QMC method fod=0.4t. B represents the

IIl. THERMODYNAMIC PROPERTIES

AO;=0O(N,=i)—O(N,=i—1). (11 The specific heat defined by
To distinguish the change in a particular quantity with dop- J9E 1027 1 9Z\2
ing, this notation is used in the following. If, e. A\ O, be- C= ﬁzﬁz Z&_ﬂ2_<z %) } (13

haves quantitatively aa©®,, one can conclude that the
quantity changes linearly with the number of added holesjs optained asg?[(E?)—(E)?] within the FTLM and the
Np; i.e., the holes behave as independent entities, and thgMC method. The results are presented in Fig. 3.

system sizes are large enough so that the low-doping regime The main effect of introducing holes into the AFM insu-
has indeed been reached. Such behavior is, however, not thgor onC is to decrease the peak &t-J. This appears in
only possibility at low doping, since one can expect, €.9.AC as a pronounced dip which slightly weakens and shifts

even-odd effects in the case of pairing of holes. its energy scald to lower values with doping, as can be seen
from the line shape in Fig. 3.
A. Internal energy, specific heat, and entropy The entropy is
The internal energy, defined by S—B(E-F)=BE+InZ (14
_9BF 142 (12  We reconstruct it from the specific heat
B Zp’
aS

is calculated within the FTLM a&E) in Eq.(10) and in QMC C:Ta_T (15

as an expectation value of the corresponding operd&or,
=2E(C)W(C). Results of both methods are presented inby numerical integration from high temperatufgs o:
Fig. 2.

From Fig. 2 we first conclude that f&XxE, the results at
N=20 (which overlap also with the results &t=18) ob- AS(T) - AS(=)= L
tained via the FTLM are essentially equivalent with QMC
results for much larger lattices, at least foE 0.2 reached The high-temperature integration constants are chosen so
by the QMC method. We note also a close agreement behat AS(«)=A In Ng;.

TACdT 16
- dT. (16
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. —— FTLM ¢,=0/20
04t T o QMC ¢,=0/36 -
Z
O
0.2 J
— FTLM ¢,=0/20
J/[ i Jit o QMC ¢,=0/36
0 — : : H l , , , ,
20 t 0 [ T T T T
— Ay, FTLM N=20
- oL - Ay, FTLMN=20
o = e . 0 Ay,, QMC N=6x6
2 —— AC, FTLM N=20 3 Y ® Ax., QMC N=6x6
o0 | ——- AC,FTLMN=20 | =
' 0 AC, QMC N=6x6
® AC, QMC N=6x6
0
_40 1 1 1 1 b P _
0.0 0.5 1.0 1.5 2.0 L L L :
TIt 0.0 0.5 1.0 1.5 2.0
FIG. 3. Specific heat per site/N for undoped systerttop) and Th
change with dopinAC (bottom, both in units okg) vs T as cal- FIG. 5. Spin susceptibility for undoped systep (top) and
culated within the FTLM and the QMC method fdr=0.4t. change of the spin susceptibility with dopirgys (bottom) vs T

. ) ) obtained within the FTLM and the QMC method fdr= 0.4t.
In contrast tAE andAC discussed previoushA S is not

linear in N}, in the low-doping limit. In analogy with low-

concentration systems, like the dilute classical gas, entropy iSqa attributed partly to the logarithmic dependencecpn at

expected to scale a8Sx[A(Nc, Inc)l, i.e., AS;<InN, SO {he same it is evident that the behavior is much closer to a

the change still depends explicitly on the system size. This igystem of classical particles than to a degenerate electron
also realized in Fig. 4, wherdS; still varies withN, yet  gas.

curves for differentN appear parallel down to the lowest
reachable temperatures.
It is particularly remarkable how large the entropy in-

consistent withAS measured in cupraté While this could

B. Spin susceptibility

creaseAS;>1 is even at the lowest<J. This is indeed The uniform spin susceptibility can be evaluated as a ther-
modynamic quantity from
4 r { 1 2
B(S)
§ XS: NZ ’ (17)
3 F

where S,=3,;S is the conserved total spin. In the FTLM
then Eq.(10) can be applied, while within the QMC method
Xs is related to the number of spin-up and -down WLs.

It is instructive to present results both fdryg with re-
spect to the undoped AFM, Fig. 5, as well as for the effective
Curie constantdifference of the square momeryer hole,
1r — AS,FTLMN=20 1 A(S%y=NAx,/B, in Fig. 6.

o AS, QMC N=6x6 The results in Figs. 5 and 6 are easy to interpret for high
T>t. Each hole introduced into the system reduces the ef-
fective Curie constant by one spin, i.é4(S2)=—1/4. On

the other hand, at loWw <J the situation is reversed since
Axs>0. This increase can be attributed to the relaxation of

FIG. 4. Entropy increasAS (in units ofkg) for a single hole ~ the AFM order by the hole doping. Note that in an AFj,
obtained via the FTLM and the QMC method, on different sizeachieves a maximum &t~ J, while below that temperature
lattices andJ=0.4. Long-dashed lines represeh(«). it is reduced due to the longer-range AFM order. It is inter-

0 I 1 1 I
0.0 0.5 1.0 15 2.0
T/t
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' the WL representation this concerns matrix elements
— Ay, FTLM N=20

- Ay FTLM N=20 (p|le P ¢') in Eq. (2). For the plaquette representing the
° AX“Q QMC N=6x6 | hopping between sitesandj, the matrix elements become
s1

1 ® Ay, QMC N=6x6

1/4 ¢

0 —tel ”ii)
, (21

te ' 0

written in theo T), |T ¢) base. The imaginary time propagator
in the same base is

-

~ o coshBt  €'%i sinhBt
e AH) p=( o 0 @
/4 | e MisinhBt  coshpt
‘ - ‘ - Thus the plaquette weights along the hole WL obtain an
0.0 0.5 1.0 1.5 20 additional phase factoN(p,a)=W(p)e' P, The weight of
Tit the whole configuration is a product, E@),

FIG. 6. Effective square momer(Curie constant per hole

A(SE) vs T, obtained from the data in Fig. 5. For comparison also W(C,a)= H W(p,a)=W(C)H exdif(p)], (23
the result for noninteracting classical spiflSCS9 is presented peC peC

(dashed ling where the phases sum up:

e § o]

e
IV. ORBITAL SUSCEPTIBILITY =ex+ P % A(r)dr

esting to note that at the lowest reachable temperafure
~J/2 each hole effectively adds just one spin, iz&(sﬁ) ex;{i E 6(p)
~1/4. peC

=e'eS (249

In order to investigate the orbital response of the system,
a homogeneous magnetic fieklperpendicular to the plane The integral runs along the hole WL. Hefés defined as the
has to be introduced. When we discuss the orbital magnetriented area of the hole WL projected onto the plane in
zation and susceptibilityg enters only in the kinetic term of units of the lattice plaquette ar@d. For more holesS gen-

Eq. (1), via the Peierls construction eralizes similarly to the sum of all hole WL areas.
Now we can write the partition function in the magnetic
He=—t> (%] g, +H.c), (18 field as
(ij)
where the phases are given within Landau gauge as 7= W(C,a)= e*SOwW(C). (25)
C C
e
Oij=7 Ar)-Rij,  A=B(0x,0), (19 For a given configuratiod, there always exist' (imaginary

_ time inversion with the same weight, bus(C')=—S(C);
with Rj;=r;—r;. The relevant parameter for the strength Oftherefore, the exponential in E¢R5) can be replaced by a

B is the dimensionless flux per plaqueiie=27Ba®/do,  cos function. FoB=0 we have(S)=0 and obtain the zero-
wherea is the lattice spacing ané,=h/e is the unit quan- 4 1q susceptibility from Eq(20)

tum flux.
The dc orbital susceptibility of the system in the external (8%
magnetic field is Xa= X0 (26)

9°F woe?at 9°F

__ __ X4 can be thus measured without the presence of a magnetic
Xd= " Hogp2 "2 9a?

field. This is just another consequence of the more general
fluctuation-dissipation theorem. Even thoudh is strictly
positive, the thermal average in E@6) can become nega-
tive because of correlations between the sign of the weight
and the ared of the hole WL. From Eq(6) we can deduce
(20) that(S?)<0 when the configurations with negative sign tend
whereyo= uoe?a*/f2. So far,x4 has been investigated only to have largetS?(C)|W(C)| than configurations with positive
for a single holeN,=1 by a high-temperature expansion at ones.
J=0, and by the FTLM ford>02 In the latter study it was The hole WL can obtain nonzero spatial winding number
realized that results are quite sensitive to finite-size effectgjue to the periodic boundary conditions and small system
so it is desirable to get corresponding results also via theize. E.g., the WL can run along the imaginary time, cross
QMC method, where much larger lattices can be studied. the system boundary, and complete time periodicity recon-
Let us first derive the expression for the orbital susceptinecting with its spatially periodic image. In that case the area
bility within the QMC method. As seen from E@l8), the S as defined by Eq24) has no physical meaning. Therefore,
magnetic field affects only the hopping of the electrons. Inwe restrict our simulation so that only the zero spatial wind-

X0l Z [10Z\?
BlZoa? \Zoal |




PRB 62 THERMODYNAMIC AND DIAMAGNETIC PROPERTIES @ . .. 6751

o T/=0.4 0.05 ¢ !
004 | e 05 \ —-— FTLM g, N=18 N,=1
: . \ -—- FTLM ,, N=18 N,=1
5 \ - FTLM y,, N=20 N,=1
\ FTLM %, N=20 N,=1
o QMC N=6x6 N,=1
0.02 F ® QMC N=8x8 N,=1
K = 4 QMC N=6x6 N,=2
N S i ¥ QMC N=8x8 N,=2
Ry
0.00 000 F-————————— ntyr-— —
JIt
-0.02 t l . . . .
0.0 0.5 1.0 15 2.0
1/N T/t
FIG. 7. Finite-size scaling of4 from QMC with one hole, for FIG. 8. Orbital susceptibilityyq vs T obtained via the QMC
different T andJ=0.4t. Solid lines serve as a guide to the eye andmethod and the FTLM fod=0.4t. Regarding the FTLMy;, for
are fits to the M? and 1N* dependence. N=20 should be most relevarthick line).

ing loop updates are generatéal discussion on fixing the points do not cross upon changing the system Biz&hus,
winding numbers can be found in Ref.)2&he hole is al-  at least qualitatively, results do not depend on the system
lowed to cross the system boundary as long as it does neiize. Therefore, the sizes of choice for the QMC systems will
increase the winding number. The effect of the restriction ihe 6x 6 and 8x 8.
analogous to the movement of the hole doped into an infinite In Fig. 8, x4 obtained via both methods is presented. For
periodic spin background with a unit cell equal to the size ofT>t, the response is diamagnetic and proportiondl td as
the system. The results for thermodynamic quantities prewell as essentially independent. The most striking effect is
sented in the previous section agree within the error barfhat the orbital response below some temperalyydgurns
with the unrestricted case. This restriction is weaker thafrom diamagnetic to paramagnetic, consistent with the pre-
closed boundary conditions, resulting in smaller finite-sizeliminary results obtained via the FTLRIIn order to locate
effects. the origin of this phenomenon, results for differehtand
The introduction of finiteB>0 into the model, Eq(18),  anisotropiesy are shown in Fig. 9. It appears thgg scales
reduces the translational symmetry and thus for a given syswith yJ: i.e., atJ=0 the response is clearly diamagnetic at
tem size increases the required minimal base set used in th@ T, and fory=0, J>0 no crossing is observed with either
FTLM. In the present study a few mobile holes on a systemmethod.
of tilted squares WithN up to 20 sites and periOdiC bOUndary At lower temperature§ < Td< Tp! the diamagnetic be-

conditions are considered. It is nontrivial to incorporatehayior is expected to be restored. This follows from the ar-
phasesy;; corresponding to a homogeneoBsbeing at the

same time compatible with periodic boundary conditi6hs. 0.1
This is possible only for quantized magnetic fields
=mB,, whereBy= ¢y /N.
x4 from Eq. (26) can be calculated in the FTLM only by
taking a numerical derivative of the free enerdy 0.0
=—TInZ, with Z from Eq.(9). Finite systems provide(«)
only for discrete values of.. Here x4 can be obtained by  _
fitting the F(a) dependence to the parabolic forR(a) §
=F(0)+ca? in two pointsa=i27/N anda=j2=/N. The
corresponding results for the susceptibility are denoted by
Xij - In small systemsN<20) the introduction 0B>0 can
lift some zero-field degeneracies. Thg; values are there- -0.2 |
fore systematically affected by larger finite-size effects. For
the system witiN=20, both values,, and x1, agree quite , ,
reasonably with the QMC data. 0.0 0.5 1.0
Let us first comment on the validity of results fat . Tit

Sinqexd deals with an orbital current represented by_loop FIG. 9. x4 vs T for Ny=1 and different) and y. QMC results
motion of charge carrieréholes, it is much more sensitive (o the 6x 6 system are shown with different dots and are labeled
to finite-size effectsthan most other correlation functions. it appropriate values ol and y. Solid lines correspond to the
This was also the main motivation to employ the QMC N=20 FTLM for the same values df y as in QMC. For compari-
method, where much larger systems can be reached. In Figen also results of a high-temperature expansfiE) for J=0

7, finite-size scaling is performed for the QMC data for (Ref. 9 are shown(dash-dotted ling The data ford=0.4, y=1
xq(T) for the case oN,=1. We can see that the differefit  from Fig. 8 are not shown again.
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005 T el ] diamagnetic and nearly independentTofin this regime the
electron system is dilute and strong correlations are unimpor-
tant; hence, Landau diamagnetism is expected. At moderate
temperaturesT>J and for an intermediate-doping regime,
0.2<¢,<0.7, x4 Is dominated by a paramagnetic response
with a peak at approximatelg,=1/2. As consistent with
o oz s os os_ 1 results at low doping, there is a weak diamagnetisneat
i <0.2 andT>T,, while the paramagnetic regime extends to
c,=0 for T<T,. For low temperature§ <J quite pro-

0.00
0.00

-0.02 |

-0.05 | {004t

=006 | T=0.5¢ o

-0.10 -0.08

0.00 4 0.00 4

22 el 1 oor | nounced oscillations iryq4(c,) appear and can be partly at-
= tributed to finite-system effects.
oos | T=11 | o2l T2 ] Certain aspects of the above results fgy(cy,) can be
. . understood using the HTE. One is the asymmetry between
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

¢,—0 andc,—1 at higherT>t. In the lowest order of the

HTE, only hopping of the electrons around a basic plaquette
FIG. 10. xq Vs Cp for severalT and J=0.4t. _The last gr_aph loop has to be considered. The signal on the-0 side of

contains also a fourth-order HTE resytotted ling. Canonical xa(Ch) is thus reduced by a factor off28 against the,

(d.OtTQ) and grand-c_anon_ucaﬂhne) Values. for allc, are obtained —1 side since in the first case only the plaquettes with fer-
within the FTLM with N=16, wherey, is used to calculatgy. . . . .
romagnetically aligned spins contribute.

gument that alf—0 a hole in an AFM should behave as a
guasiparticle with a finite effective mass, exhibiting a cyclo-
tron motion in B#0. The latter behavior should lead to V. CONCLUSIONS
xd(T—0)— —.° Numerically, it is easiest to test this con- _ _ )
jecture for a single hole ang=0 (also true forJ=0). Let us first compare both numerical methods used in the
Namely, the QMC has no sign problemt 0, so that error ~ @nalysis of thet-J model at low doping. The QMC method
bars are only due to the finite MC sampling. allows the studies of larger systems and the loop algorithm
The results in Fig. 9 are quite interesting even f6¢0.  solves some serious drawbacks of the MC methods. It is
At J=0 a monotonous increase [fgy| is observed, diverg- indeed very efficient in cases where there is no sign problem,
ing asT—0. It can be explained as a gradual transition frome.g., the anisotropic modet=0 at N,= 1. Within the WL
a hole in a random spin background to a well-defined quasiapproach it is also very easy to formulate and measure cer-
particle, i.e., the ferromagnetic polaron,Tat-0. The situa- tain responses like the orbital susceptibilipy. Still, the
tion is more complicated fod>0. It is plausible that the method suffers from a sign probleffor v>0) even for a
difference to theJ=0 case shows up af<J, where the single holeN,=1 in an AFM (though not in a background of
AFM short-range correlations appear. RelativeJts0, a  no holed?. Results are thus in practice limited Te= J/3 for
spin-ordered state blocks the loop motion of holes, necessatie isotropic case= 1. On the other hand, the FTLM has no
for finite diamagneticyy. The effect is thus first a decrease minus-sign problem, but rather limitations due to small sys-
of | x4(T)| with decreasindl, as seen in Fig. 9. Turnover to tems which can be studied. These are even more pronounced
the diverging diamagnetigy should happen only when the in cases witlB>0 where the translational symmetry is lost.
coherent quasiparticle is formed &§<J. Here T4 should It is an interesting observation that within the FTLM, the
scale with the inverse of the quasiparticle effective masdimiting temperatureT; for the t-J model is in most cases
1/m*. It is known thatm* can become very large for the quite close to the lowest reached by the QMC method.
extremey=0 case, in particular for largel. This explains We have presented several results for thermodynamic
why we cannot reach the coherent regimeXer0.4t even at  quantities, i.e., energl, specific heaC, entropyS, and spin
T=0.2 (Fig. 8), while the downturn is indeed observed for susceptibility s, as a function ofT at low doping. AtT
J/it=0.1, 0.2,y=0 (Fig. 9. >T, all results are consistent with the picture where holes
At y>0, the results are qualitatively different. The mostintroduced into the AFM behave as independgrmindegen-
pronounced effect is the change into a paramagngtitor ~ eratg particles. The perturbation introduced into the AFM by
T<T,. The width of thisT window is quite large. In fact, holes is quite large even at lowestJ, in particular visible
within the FTLM and QMC data we are unable to locate thefrom AC andA S, consistent with experiments in cuprafés.
reentrance temperatufig, into the diamagnetic response, al-  Results for the orbital susceptibilityy, now obtained
though the latter is expectédin argument for the low value also for much larger systems using the QMC method, con-
of T4 can be given in terms of a very shallow energy mini- firm the preliminary FTLM result$ indicating an anomalous
mum which defines the quasiparticle dispersion near th@aramagnetic response at low doping in an intermediate win-
ground state of a hole in an AFM within theJ model*tand  dow of temperature$,;<T< Tp~J (for the isotropic model
hence the quasiparticle loses its character already at very log=1). In fact, within our numerical studies it is hard to
excitation energies. Still, the paramagnetic response in theeach the lower end of this window, meaning thigtJ/3.
window Ty<T<T, remains to be explained. Still, the reentrance into a diamagnetic behavior is expected
Let us finally discuss also results fgy for finite doping  from theoretical arguments on the existence of a well-defined
c,>0, as presented in Fig. 10. The easiest regime to interprefuasiparticle aif —0, as well as from more reliable QMC
is that of a nearly empty band, i.ec,>0.7, whereyy is  results for they=0 case€’ The paramagnetic response at



PRB 62 THERMODYNAMIC AND DIAMAGNETIC PROPERTIES & . .. 6753

intermediatel can be viewed also as an extension of a morec;,, enabling the independent response of constituents, which
pronouncedy,>0 regime observed at finite doping 0.2 apparently is paramagnetic.

<cy<0.5 at allT. The explanation can thus go in the direc-
tion proposed by Laughliff® that at low dopingc,—0 we
are dealing with quasiparticle$with a diamagnetic re-
sponsg, being a bound composite of char@®lon and spin The authors wish to thank |. Sega for helpful suggestions.
(spinon elementary excitations. The binding appears, how-This work was supported by the Ministry of Science and
ever, to be quite weak and thus easily destroyed by fihie ~ Technology of Slovenia under Project No. J1-0231.
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