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Screened-interaction expansion for the Hubbard model and determination
of the quantum Monte Carlo Fermi surface
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We develop a systematic self-consistent perturbative expansion for the self-energy of Hubbard-like models.
The interaction lines in the Feynman diagrams are dynamically screened by the charge fluctuations in the
system. Although the formal expansion is exact—assuming that the model under the study is perturbative—
only if diagrams to all orders are included, it is shown that for large-on-site-Coulomb-repulsion-U systems
weak-coupling expansions to a few orders may already converge. In order to test the approximation at
intermediate-to-high temperatures, we use the exact charge-fluctuation susceptibility from quantum Monte
Carlo ~QMC! simulation studies as input, which determines the exact screened interaction, and compare our
results for the self-energy to the QMC results. We also make comparisons with fluctuation-exchange approxi-
mation. We show that the screened interaction for the large-U system can be vanishingly small at a certain
intermediate electron filling, and it is found that our approximation for the imaginary part of the one-particle
self-energy agrees well with the QMC results in the low-energy scales at this particular filling. But the
usefulness of the approximation is hindered by the fact that it has the incorrect filling dependence when the
filling deviates from this value. We also calculate the exact QMC Fermi surfaces for the two-dimensional~2D!
Hubbard model for several fillings. Our results near half filling show extreme violation of the concepts of the
band theory; in fact, instead of growing, the Fermi surface vanishes when doped toward the half-filled Mott-
Hubbard insulator. Sufficiently away from half filling, noninteractinglike Fermi surfaces are recovered. These
results combined with the Luttinger theorem might show that diagrammatic expansions for the nearly-half-
filled Hubbard model are unlikely to be possible; however, the nonperturbative part of the solution seems to be
less important as the filling gradually moves away from one half. Results for the 2D one-band Hubbard model
for several hole dopings are presented. Implications of this study for the high-temperature superconductors are
also discussed.

DOI: 10.1103/PhysRevB.64.195105 PACS number~s!: 71.10.Fd, 71.18.1y, 71.10.Hf, 74.72.2h
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I. INTRODUCTION
The basic Hamiltonian for the simplest description of

teracting electrons in a periodic potential of fixed lattice io
the one-band Hubbard model, was widely investigated a
the discovery of high-temperature superconductors.1 In two
dimensions, this model is widely accepted to have an a
ferromagnetic ground state at half filling of its tight-bindin
band, although the temperature evolution and the rela
with the antiferromagnetism of its insulating electron sp
trum are poorly understood.2 But there is still ongoing debat
about the nature of this model; in fact, there are vario
mysteries, at band fillings close but not equal to one-h
The model may have a superconducting ground state o
close to such an instability at these fillings; therefore, und
standing the Hubbard model seems to be crucial for an
derstanding of the high-temperature superconductors.

There have been numerous approaches to the solutio
the two-dimensional~2D! Hubbard model. Exact diagona
ization studies are limited to very small lattices and mai
for this reason they are inconclusive.3 Because of statistica
errors, exact quantum Monte Carlo~QMC! studies at band
fillings corresponding to that of the high-temperature sup
conductors~about 15% doped away from one-half! are lim-
ited to temperatures no less than about a quarter of
electron-hopping energy of the model.4 At such moderately
0163-1829/2001/64~19!/195105~9!/$20.00 64 1951
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high temperatures little information can be obtained ab
possible low-temperature instabilities such as supercond
tivity. But it should be reminded that QMC studies have l
to a fairly good understanding of the insulating antiferroma
netic behavior of the half-filled model which corresponds
the undoped parent compounds of the high-temperature
perconductors.

To overcome the lattice size or temperature limitations
the available exact methods, approximate methods
needed. An important class of such approximations use
grammatic formalisms. Since these approximations are w
coupling in nature, it is important that the approximatio
sum up the physically important diagrams that constitute
exact infinite perturbative expansion. For example, s
consistent approximations like the fluctuation-exchan
~FLEX! approximation, generalize the physically importa
Hartree-Fock approximation by adding electron-hole a
electron-electron pair scattering events to the bare Coulo
interaction.5

In order to go beyond Hartree-Fock- or FLEX-type a
proximations, one has to employ additional diagrams. A n
formal approach to this is to renormalize, i.e., replace wit
perturbative expansion, the bare-interaction lines in the d
grams. But this can cause an enormous numeri
calculational challenge, because now the interaction lines
©2001 The American Physical Society05-1
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principle, can depend on the momentum and frequency
the incoming and outgoing electrons, whereas for the b
Coulomb interaction, they do not.

In this article, we present a self-consistent diagramm
expansion for the electron self-energy, in which the inter
tion lines are renormalized. The systematic perturbative
pansion sums up the skeleton diagrams which exclude e
tron loops that represent a contribution to the cha
fluctuations. Renormalization of the interaction lines is the
fore achieved by the screening of the bare Coulomb inte
tion by the charge fluctuations. Although the approximat
is exact, assuming that the model under the study is pe
bative, only if the diagrams to all orders are included, it m
converge rapidly if the screened interaction is considera
weaker than the bare Coulomb interaction. For the large-
site-Coulomb-repulsion-U 2D Hubbard model, we evaluat
the exactscreened interaction from the QMC data and sh
that this is indeed the case near, but sufficiently doped a
from, half filling. Then, by using this exact screened intera
tion, we evaluate the electron self-energy up to third or
and compare to the QMC results. We find that the imagin
part of the self-energy at low energies almost converge
the exact QMC results at third order.

This article is organized as follows: In Sec. II we form
late our approximation. In Sec. III we present and discuss
results for the one-particle self-energy along with the ex
QMC and approximate FLEX calculations. We also calcul
the exact QMC Fermi surfaces of the 2D Hubbard model
discuss them in Sec. IV. And finally, we summarize our m
findings in Sec. V.

II. METHOD

We will develop our diagrammatic expansion for the ele
tron self-energy for the case of the 2D one-band exten
Hubbard model. The expansion is valid in other dimensio
as well and is easily generalizable to multiband models. T
Hamiltonian is

H5(
i j

S 2(
s

t i j cis
† cj s1

1

2 (
ss8

Vi j nisnj s8D , ~1!

wherecis
† creates an electron with spins at siteRi on an

N5L3L square lattice with periodic boundary condition
and nis5cis

† cis . The lattice constanta is set to be 1. The
Coulomb matrix elementVi j [V(Ri2Rj ) comprises the
Hubbard on-site repulsionU[V(0) and an extended par
V(DR) for nonzeroDR. For the calculations done in thi
article, we include only a first-neighbor hybridizationt and
the chemical potentialm in t i j , and the on-siteU in V(DR).
For the high-temperature-superconducting cuprates, it is
timated thatt;0.3–0.5 eV andU/t;8 –12.6,7 We will use
U/t58 in all our calculations.

In Fig. 1~a!, we show the generic form of theexact
screened interactionVs expressed in terms of the bare Co
lomb interactionV and theexactpolarization insertionP. In
momentum-frequency space,
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Vs~Q!5
V~Q!

12P~Q!V~Q!
, ~2!

whereQ5(Q,iV). Figure 1~b! shows the zeroth- and first
order diagram contributions toP, expressed in terms ofVs.
This form of expression is useful because it allows one
write down a self-consistent approximation forVs and P,
given a one-particle Green’s function.

These two simply related quantities are also similarly
lated to a physical quantity easily measurable in QMC st
ies, the charge susceptibilityxc . The expression for this two
particle correlation function as a thermodynamic expectat
value is

xc~Q,iV!5
1

N (
i j

E
0

b

dt eiVt2 iQ•(Ri2Rj )^Dni~t!Dnj~0!&,

~3!

whereni(t)[(scis
† (t)cis(t) andDni(t)[ni(t)2^ni(t)&.

In principle, the definition of a polarization insertionP is
arbitrary and so is of a screened interactionVs through Eq.
~2!. P defined in this article through the diagrammatic expa
sion in Fig. 1~b! actually corresponds to the polarization i
sertion of the charge susceptibilityxc . The exactxc is ex-
pressible as a geometric series in terms of the exactP, such
that

2xc~Q!5
P~Q!

12P~Q!V~Q!
~4!

~see also Fig. 2!. Combining Eqs.~2! and ~4!, we obtain an
important expression for the screened interactionVs in terms
of the physicalcharge susceptibility of the system,xc :

Vs~Q!5V~Q!2V~Q!xc~Q!V~Q!. ~5!

At this point, we are ready to calculate the exactVs by
using the exactxc obtained by QMC. UsingV(Q)5U for
the Hubbard model, we have

FIG. 1. ~a! Exact screened interactionVs. Here V is the bare
Coulomb interaction.~b! Exact polarization insertionP.

FIG. 2. The charge susceptibilityxc expanded in terms of the
polarization insertionP. HereV is the bare Coulomb interaction.
5-2



ite
nt

-

e
te
g

t

n

,

te
e

po
f

d
nc
-

of
-
nd
lf-
tion
ld
se
to

the

ne

all

a-
ia-

the
rs.
d by

is

ird

a

-
his

-
e

SCREENED-INTERACTION EXPANSION FOR THE . . . PHYSICAL REVIEW B 64 195105
Vs~Q!5U2U2xc~Q!. ~6!

One can also Fourier transformVs(Q) to real space by using

Vs~DR,iV!5
1

N (
Q

eiQ•DRVs~Q,iV!. ~7!

Again, for the Hubbard model,

Vs~DR,iV!5Ud~DR!2U2xc~DR,iV!, ~8!

whered is the Kronecker delta. In Fig. 3, we plot the on-s
and time-independent component of the exact screened i
action obtained from QMC,Vs(DR50,iV50), for different
hole dopings,x[12^n&, measured with respect to half fill
ing. Although the bare~unscreened! Coulomb interactionU
is equal to 8t, strikingly, the corresponding component of th
exact screened interaction is substantially weaker for in
mediate hole dopingsx, actually vanishing and changin
sign, i.e., becoming attractive, atx;15%. We will refer to
this effect as ‘‘overscreening’’8 and explain below why it
happens.

From Eq. ~8!, because of theU2 term, one can suspec
that for sufficiently largeU, this term will dominate and
Vs(DR50,iV50) will become negative~attractive!, since
xc(DR50,iV50) is always positive and approaches a no
zeroU-independent limit@of O(x/t) by a simpleU5` scal-
ing argument# for U@t. On the other hand, at half filling
charge fluctuations are suppressed; so thatxc(DR,iV50)
;O(t2/U3) and Vs(DR50,iV50).U, for U@t. Hence,
the presence of a sufficiently largeU and finite hole doping
off half filling, x, is necessary for overscreening. Also, no
that overscreening is not restricted to the on-site compon
of the Coulomb interaction; the nearest-neighbor com
nents, and so forth, can also become attractive because o
overscreening effect.8

At this point, we are ready to write down a controlle
perturbative expansion for the one-particle self-energy. Si
the exact screened interactionVs was shown to be substan

FIG. 3. Vs(DR50,iV50) as a function of the hole dopingx
[12^n& obtained from QMC for the 2D Hubbard model. Param
eters areU/t58; T/t51/3, whereT is the temperature; and th
lattice size is 838.
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tially weaker than the bare interaction, the HubbardU, one
can expect that an expansion in terms ofVs should converge
much more rapidly than a brute-force expansion in terms
U. As a matter of fact, it is not difficult to pick up the dia
grams which contribute to this expansion. Keeping in mi
that our approximation for the self-energy will be se
consistent in the sense that all one-particle-Green’s-func
lines will correspond to the full Green’s function, we shou
allow only the skeleton diagrams in which none of the
lines have any self-energy diagrams explicitly attached
them. As a second step, bearing in mind the fact that
interaction lines in our diagrams, which correspond toVs,
already include the polarization diagrams in them@Fig. 1~a!#,
we omit any self-energy diagram in which an interaction li
has a polarization diagram@see Fig. 1~b!# inserted. These are
basically the only rules needed in the diagram selection. If
the diagrams to infinite order are included, anexactpertur-
bation series will result, like in any other rigorous perturb
tive expansion. Note that the interaction lines in our d
grams, orVs, represent the bare Coulomb interactionU
screened by the charge fluctuationsxc @Eq. ~5!#. Therefore,
we have derived a diagrammatic expansion in terms of
charge fluctuations, which is exact if carried out to all orde
Moreover, because of the overscreening effect discovere
the analysis of the interaction lines (Vs) obtained by QMC
exactly, a weak-coupling expansion to a first few orders
expected to converge in a rapid, controlled fashion.

In Fig. 4, we show all the self-energy diagrams up to th
order. The Hartree diagram in Fig. 4~a! is written separately
in terms of the bare interaction (U in this case! to prevent
double counting; for the one-band Hubbard model, it is
trivial constant which is equal toU^n&. The other first-order
diagram in Fig. 4~a! is like the Fock diagram with the bare
interaction line replaced by the screened interaction. T
diagram combines the bare-interaction Fock diagram~which
is again equal to a trivial constant,2U^n&/2, in this case!

FIG. 4. All the contributing self-energy diagrams in the first~a!,
second~b!, and third order~c! of the screened-interaction (Vs) ex-
pansion. The weak-coupling expansion would become exact~as-
suming the model under study is perturbative! when carried out to
all orders.
5-3
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ESIRGEN, SCHU¨ TTLER, GRÖBER, AND EVERTZ PHYSICAL REVIEW B64 195105
with the charge-fluctuation self-energy diagram found
FLEX-like approximations, because the screened interac
is the sum of the bare interaction and the charge-fluctua
propagator@see, e.g., Eq.~5! or ~6!#. In second order, there i
only one diagram contributing to the self-energy@Fig. 4~b!#,
and in third order, the number of all the contributing di
grams is 6@Fig. 4~c!#.

At this point, we would like to discuss the fact that th
screened-interaction expansion developed here is a
energy approximation. In Fig. 5, we plot the exact scree
interactionVs(Q,iV), which was obtained by QMC simula
tion, as a function of the frequencyV. For the chosenQ
point, Vs is actually attractive and small at zero frequen
and vanishes at a slightly higher frequency. But as we
proach the first Matsubara frequency,Vs rapidly grows, and
it is already more than half of the bare, unscreened Coulo
repulsion. As the frequency increases further,Vs finally ap-
proaches to the bare repulsive interaction,U58t. It is now
clear that the high-energy part of theVs is not weak, and our
approximation is limited to the low-energy scales. Therefo
for the temperature studied here (T5t/3), the calculated self-
energy is expected to be accurate only for the first Matsub
frequency,pT't, a small-enough fraction of the width o
the tight-binding band, which governs the energy scale
Vs.

Before finishing this section, we would like to discuss
peculiar property of the irreducible polarization insertion a
the associated three-point vertex function. As we discus
earlier, the exact screened interactionVs, as obtained from
QMC simulation, vanishes at particular (DR,iV) points, and
it will vanish at particular (Q,iV) points likewise; this was
the motivation behind developing a weak-coupling exp
sion in terms ofVs(Q). But from Eq.~2!, Vs(Q)50 imme-
diately implies thatP(Q)5` at the sameQ5(Q,iV) point.
This divergence in the polarization insertion of the cha
susceptibility does not imply a divergence in the charge s

FIG. 5. The exact screened interactionVs(Q,iV), calculated by
the QMC method, shown as a function of the frequencyV. The
momentum point isQ5(p/2,0) on an 838 lattice. Parameters ar
U/t58; T/t51/3, whereT is the temperature; andx514.0%,
wherex[12^n&.
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ceptibility itself, which is the actual physical quantity. I
fact, from Eq. ~4!, P(Q)5` simply implies thatxc(Q)
51/V(Q). Although this divergence is not a worry from
physics point of view, it imposes technical difficulties on th
expansion ofP(Q) @see Fig. 1~b!# along these singularities
to overcome this difficulty in an actual calculation ofP(Q),
it would be more appropriate to expand its inverse 1/P(Q)
rather than to expandP(Q) itself directly.

Both the polarization insertion and the self-energy can
expressed in terms of a three-point irreducible vertex fu
tion L(Q,k) by the exact relations~see Fig. 6!

P~Q!5
2T

N (
k

G~k!G~k2Q!L~Q,k! ~9!

and

S~k!5V~Q50!^n&2
T

N (
Q

L~Q,k!Vs~Q!G~k2Q!,

~10!

where G(k) is the one-particle Green’s function andk
5(k,iv). Equation~9! immediately implies that for a given
Q, if P(Q)5`, thenL(Q,k)5`, becauseG(k) is always
finite. Even thoughL(Q,k) in Eq. ~10! may diverge, the
one-particle self-energyS(k), which is the actual physica
quantity, remains finite, because ifL(Q,k) diverges at a
given Q, thenVs(Q) will vanish, therefore canceling the di
vergence. But there is still a concern that a weak-coupl
expansion forL in Fig. 6~b!, which generates the diagram
in Fig. 4, may not be sufficient because of this divergi
behavior. We will put our theory to numerical testing in th
next section.

III. ONE-PARTICLE SELF-ENERGY

We perform our numerical calculations for the self-ener
on periodic discrete lattices of sizes 434 and 838, so that
they can be compared with the QMC results. We use
Matsubara-frequency representation and employ a ferm
frequency cutoff of;35t. All the QMC calculations were

FIG. 6. The polarization insertionP(Q) ~a! and the one-particle
self-energyS(k) ~b! in terms of the three-point irreducible verte
L(Q,k). Here G(k) is the one-particle Green’s function,Q
5(Q,iV), and k5(k,iv). V and Vs are the bare and screene
interactions, respectively.
5-4
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SCREENED-INTERACTION EXPANSION FOR THE . . . PHYSICAL REVIEW B 64 195105
done at a temperatureT5t/3, and with the cutoff employed
here, this corresponds to 16 positive Matsubara frequen
Note that QMC calculations are performed in imagina
time, and a time discretization is made for numerical p
poses. The number of time slices in@0,b51/T# used in the
QMC calculations was 80, which is equivalent to using
positive Matsubara frequencies—even larger a cutoff t
our diagrammatic calculations. We chose a smaller cutoff
our diagrammatic calculations to avoid the high-frequen
errors in theVs obtained from the QMC method, which goe
directly into the calculations. We vary the chemical poten
m in order to match the fillinĝ n& with that of the QMC
method. In order to calculatên&, the one-particle Green’s
function G(k,iv) has to be summed over the Matsuba
frequencies, and to prevent cutoff effects in this relative
slow-converging sum, we effectively extend the sum to
finity by using the standard—replace the high-frequency p
of the sum with the result for the noninteracting case—tri

In Fig. 7, we plot the real and imaginary parts of t
self-energy as a function of Matsubara frequencies al
with the results from QMC calculations. We chose a parti
lar momentum point close to the Fermi surface,k5(p,0),
but the k dependence of both the QMC and the screen
interaction-expansion calculations near the Fermi surfac
small. QMC error bars are omitted in all but one plot in th
article for clarity, but the estimated QMC error bar for th
real and imaginary parts of the self-energy at the first f
quency is about60.1t. The corresponding error bar for th
QMC Green’s function is about60.02t21. Also, the error
bars for the self-energy grow with frequency, whereas, t
are roughly constant for the Green’s function. Note that
temperature in these calculations isT5t/3, and the second
Matsubara frequency 5pT, is already about 5.2t, which is a
substantial fraction of the~noninteracting! bandwidth of our
model, 8t. For the reasons we explained in the previous s
tion, our approximation is a low-energy approximatio
which is unable to capture this regime. But the first Matsu
ara frequencypT'1.0t is low enough compared to th
bandwidth, and remarkably, at the 14% hole doping, wh
the screened interaction almost vanishes~see Fig. 3!, our
approximation for the imaginary part of the self-energy
most converges to the QMC result within the error bar@Fig.
7~b!#. This shows that our expansion may indeed be conv
ing very rapidly at the hole doping at which the on-site co
ponent of the screened interaction at zero frequen
Vs(DR50,iV50), vanishes. But when the hole doping
varied away from this point, ImS varies in the opposite
direction with respect to exact QMC results. Naturally, ha
ing the correct doping dependence is one of the most des
aspects of any approximation, which, therefore, substanti
limits the usefulness of this expansion. It is quite possi
that the reason for this failure may be intimately related
the vertex divergence problem discussed in the previous
tion.

In Fig. 8, we show the evolution of the self-energy wi
the order of the diagrams included. The imaginary part,
fact, seems to be converging to the QMC result at the low
frequency with increasing order, and it is about the same
the QMC result within the QMC error bar~see Fig. 10! at
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third order. But the real part seems to be going in the wro
direction with increasing order.

The real part of the self-energy which was calculated
the screened-interaction expansion actually does not do
well against the exact QMC results@Fig. 7~a!# at all, but as
we will analyze below, this is not a failure of the expansi
itself. In fact, this is merely the quantity which determin
the location of the Fermi surface. The Luttinger theore9

states that, for any diagrammatic expansion, the total volu
~area in 2D! enclosed by the Fermi surface is equal to t
total filling ^n&; therefore, our approximation will obey thi

FIG. 7. The one-particle self-energy as a function of the M
subara frequency, shown for the screened-interaction expan
~solid lines and solid symbols! along with exact~except for statis-
tical errors! QMC results~dashed lines with open symbols!. Thek
point is (p,0). Hole dopingsx[12^n& are 10.0%~squares!, 14.2%
~circles!, and 17.5%~triangles!. Other parameters areU/t58 and
T/t51/3. Lattice sizes are 434 for the screened-interaction expa
sion and 838 for QMC simulations. Hole dopings for both th
expansion and the QMC correspond to averages on 434 k-space
meshes. Actual QMC hole dopings averaged on 838 k-space
meshes are 9.7%, 14.0%, and 17.1%. The real~a! and imaginary~b!
parts. @We use 838 QMC results in these comparisons becau
QMC calculations were performed only on 838 lattices for most
hole dopings, but the difference between 434 and 838 QMC
results is well within the error bars~see Fig. 10 and the associate
discussion at the end of this section!.#
5-5
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ESIRGEN, SCHU¨ TTLER, GRÖBER, AND EVERTZ PHYSICAL REVIEW B64 195105
statement. But then this simply implies that the exact QM
results may not obey the Luttinger theorem for the volume
the Fermi surface. To investigate this further, we calcula
the exact QMC Fermi surfaces for various dopings, wh
will be discussed later.

Figure 9 shows results for the FLEX calculations in co
parison with the QMC. The FLEX approximation employe
here uses exchange of charge and spin fluctuations, i.e.
particle-hole channel, but omits the particle-particle fluctu
tions ~for the Hubbard model there would only be particl
particle fluctuations of the singlet type!. The results for the
real part are very similar to the screened-interaction exp
sion. FLEX has a somewhat better qualitative behavior
high frequencies. The low-frequency behaviors of the r
part for FLEX and screened-interaction expansions are
pected to be very similar because they are both expecte
obey the Luttinger theorem. The real part for FLEX at t
lowest frequency is doing somewhat worse than

FIG. 8. The one-particle self energy as a function of the M
subara frequency, shown for the first-~triangles!, second-~squares!,
and third-~circles! order screened-interaction expansion~solid lines
and solid symbols! along with exact~except for statistical errors!
QMC results~dashed lines and open circles!. Thek point is (p,0).
Hole dopingx[12^n& is 14.2%. All parameters are the same as
Fig. 7. The real~a! and imaginary~b! parts.
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screened-interaction expansion, probably because ImS for
FLEX is somewhat bigger, indicating that FLEX results a
more distant to their zero- or low-temperature values@com-
pare Figs. 7~b! and 9~b!#. Im S is expected to vanish at zer
temperature and zero frequency also according to the
tinger theorem. FLEX results for the ImS show a correct
qualitative behavior at high frequencies. Although they a
capture the doping dependence correctly, the magnitud
the doping dependence is smaller by an order of magnitu
In addition, they do not do well quantitatively at any partic
lar doping.

The screened-interaction-expansion calculations p
formed in this article are computationally very time consu
ing. The reason for this is the requirement for the summat
over many frequency and momentum variables for the th
and higher-order diagrams. In order to go to fourth order, o

-
FIG. 9. The one-particle self-energy as a function of the M

subara frequency, shown for the FLEX approximation~solid lines
and solid symbols! along with exact~except for statistical errors!
QMC results ~dashed lines with open symbols!. The k point is
(p,0). Hole dopings x[12^n& are 10.0% ~squares!, 14.2%
~circles!, and 17.5%~triangles!. Other parameters areU/t58 and
T/t51/3. Lattice sizes are 434 for FLEX and 838 for QMC.
Hole dopings for both the FLEX and the QMC correspond to av
ages on 434 k-space meshes. Actual QMC hole dopings averag
on 838 k-space meshes are 9.7%, 14.0%, and 17.1%. The rea~a!
and imaginary~b! parts.
5-6
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would probably need Monte Carlo summation techniqu
Even at third order, we were able to perform our calculatio
on 434 lattices only. In Fig. 10 we make some compariso
of the calculations on different lattice sizes. 434 and 838
QMC results are compared to the screened-interact
expansion results. FLEX results are shown as well. The
ference between the results for the two lattice sizes seem
be very small. Estimated QMC error bars for the ImS on the
838 lattice are also shown. These are the approximate u
bounds to the statistical errors associated with the QMC
culations.

FIG. 10. The one-particle self-energy plotted as a function of
Matsubara frequency for the purpose of evaluating lattice-size
fects. Results for QMC~squares!, screened-interaction expansio
~circles!, and FLEX approximation~triangles! are shown. Thek
point is (p,0). Solid lines and solid symbols represent 838 lattices
for QMC and 434 otherwise. Dashed lines and open symbols r
resent 434 lattices for all. Parameters areU/t58 andT/t51/3.
Hole dopingsx[12^n& averaged on 434 k-space meshes ar
14.2% ~solid lines and solid symbols! and 13.8%~dashed lines and
open symbols!. Actual, (838)-mesh-averaged hole doping for th
838 QMC lattice is 14.0%~solid line with solid squares!. Note
that the (434)-mesh-averaged hole-doping values for all data s
match each other among the solid and the dashed lines. The re~a!
and imaginary~b! parts. Also shown are the QMC error bars for t
Im S on the 838 lattice.
19510
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IV. EXACT QMC FERMI SURFACE

In this section, we will discuss the exact QMC Ferm
surfaces calculated. Although there are several equiva
definitions for the Fermi surface, the definition which locat
the Fermi surface as the zero-frequency poles of the Gre
function is most suitable for finite temperatures. One fin
the solution of«(k)1ReS(k,v50)5m in order to locate
such poles.9 For a Fermi liquid, these poles correspond
quasiparticles at the Fermi surface. But the definition is g
eral and can also be used at finite temperatures. Note tha
Luttinger theorem, which relates the volume enclosed by
Fermi surface to the total electron filling, is strictly vali
only at zero temperature, but as long as the temperatur
not unreasonably high, one finds that the Luttinger theor
is satisfied in an approximate manner, and the only chang
the quasiparticle picture is some temperature broadening
to the finite ImS(k,v50). As mentioned in the previou
section, the quantity ImS(k,v50) is indeed a good indica
tion of how close one is toT50, which should actually
vanish atT50 for a system obeying the Luttinger theorem
In order to numerically calculate the Fermi surface on a fin
838 QMC lattice, we first find the solution of«(k)
1ReS(k,v50)5m by interpolating between thek points.
Moreover,S(k,v50), which is very close in value to the
one at the lowest available frequency,S(k,v5 ipT), is
found by linear extrapolation using the lowest-two freque
cies. Due to this numerical approximation procedures,
systematic interpolation and extrapolation errors up to a
percent are possible.

Figure 11~a! shows the exact QMC Fermi surfaces f
actual hole dopingsx[12^n& ranging from 5.0% to 33.5%
These actual hole dopings in decreasing order arex
533.5% @smallest surface centered aroundk5(0,0)],
23.5%, 20.3%, 17.1%, 14.0%, 9.7%, and 5.0%~the arcs
centered around the Brillouin-zone corners!. We found the
areas enclosed by the Fermi surfaces by numerical inte
tion, and calculated the hole dopings implied by the L
tinger theorem corresponding to these areas. Note that,
to the curve-fitting procedures employed for the discr
(k,v) space, these areas are uncertain within a few perc
The results in the same order as the actual hole dopings
33.5%, 20.5%, 14.1%, 7.1%,24.3%, 219.8%, and
232.8%. We plot these values against the actual doping
Fig. 11~b!. Considering the fact that we are at a moderat
high temperatureT5t/3 and accounting for the curve-fittin
errors, the Luttinger theorem seems to be satisfied at l
qualitatively for hole dopingsx>17%, i.e., the so-called
overdoped region in the context of high-temperature sup
conductivity. On the other hand, in the underdoped regi
QMC Fermi surfaces start deviating from the Luttinger the
rem in a systematic qualitative matter. As one proceeds
wards half filling, Fermi surface starts shrinking towards t
k5(p,p) point, looking like an electron-doped system. Th
is completely inconsistent with the concepts of the ba
theory and Fermi liquid. Fermi surface of the Hubbard mo
gradually gets smaller and disappears when the hole do
gets smaller in the underdoped region. Therefore, this se
to be a doping-induced transition between a Fermi-liq
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-
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metal and a strongly correlated insulator. This extreme v
lation of the Luttinger theorem may imply that there is
asymptotically convergent diagrammatic expansion for
Hubbard model in the underdoped region. But it looks lik
as the hole doping increases past the optimal dop
(;15%), the system looks more like a conventional Fer
liquid, and diagrammatic expansions seem more likely to
possible. In Fig. 11~b!, we plot the hole dopingsx deduced
from the area enclosed by the Fermi surface according to
Luttinger theorem against the actual hole dopings. A syst
atic deviation towards half filling is clearly seen. Note th
the line is only a guide to the eye; it is quite possible that
area of the QMC Fermi surface at dopings very close to h
filling gets vanishingly small. We do not have data for su
dopings at the point, so further investigation is necessar

FIG. 11. ~a! The exact QMC Fermi surfaces for various ho
dopings. Parameters areU/t58 andT/t51/3. Actual hole dopings
x[12^n& in decreasing order arex533.5% @smallest surface cen
tered aroundk5(0,0)], 23.5%, 20.3%, 17.1%, 14.0%, 9.7%, a
5.0% ~the arcs centered around the Brillouin-zone corners!. The
lattice size is 838. ~b! The hole dopingsx deduced from the area
enclosed by the Fermi surfaces according to the Luttinger theo
plotted against the actual hole dopingsx[12^n& ~circles and the
solid line!. Also shown are the FLEX results at the same tempe
ture ~squares and the dashed line!. The long-dashed line withou
symbols corresponds to the Luttinger theorem. The lattice size
the FLEX calculations is 16316.
19510
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determine the existence of such ‘‘hole pockets.’’10 In order to
rule out temperature effects one might also study lower te
peratures, which could be accessible for such dopings v
close to half filling. This figure also shows the results f
FLEX calculations at the same temperature. Since FLEX
expected to satisfy the Luttinger theorem at low tempe
tures, the deviations in this case are known to be ma
because of temperature effects. But these deviations
much more reasonable, and the FLEX results show appr
mately correct slope for all dopings. Doping deduced fro
the Luttinger theorem for FLEX calculations also have t
correct sign for all dopings. We show the FLEX Fermi su
faces at 5.0% doping for the temperature studied aboveT
5t/3) along with a low-temperature Fermi surface in F
12. The low- and intermediate-temperature Fermi surfa
for FLEX look very similar, and the low-temperature case
almost identical to the noninteracting case~for the Hubbard
model, which is also the same as the Hartree-Fock case!. The
comprehensive results we obtained for the Fermi surface
also qualitatively consistent with the other recent QMC stu
of the Hubbard4 and high-temperature expansion study oft-J
~Ref. 11! models.

V. SUMMARY AND CONCLUSIONS

In this article, we studied an approximation for the on
particle self-energy of the large-U Hubbard-like models. An
expansion was written out in terms of a screened interact
which is nonlocal and retarded, although it acts between
cal and instantaneous charge densities. The screenin
achieved by the charge fluctuations. The expansion is an
act perturbative expansion, although this does not necess
mean that it is an exact solution because of the possibility

m,

-

or

FIG. 12. The FLEX Fermi surface at the temperatureT/t51/3
~long-dashed line! and at a lower temperatureT/t51/16 ~solid
line!. This is the lowest available temperature for the lattice s
studied (16316) at this doping. Parameters areU/t58 andx[1
2^n&55.0%. Hole dopingsx deduced from the areas according
the Luttinger theorem are 7.6% (T/t51/16) and 9.5% (T/t
51/3). Note that the low-temperature FLEX Fermi surface is
most the same as the noninteracting~or Hartree-Fock! Fermi sur-
face ~not shown!.
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SCREENED-INTERACTION EXPANSION FOR THE . . . PHYSICAL REVIEW B 64 195105
nonperturbative nature of the large-U systems. We carried
out the expansion up to the third order. The screened in
action was determined by QMC calculations exactly a
then directly put into the expansion calculations. The lo
component of the exact screened interaction, which scre
the bare HubbardU, was found to be vanishing at certa
small frequencies at hole dopings near 15%. This is a v
encouraging behavior for a weak-coupling expansion, wh
indicates that such expansions might be possible at l
enough frequencies where the screened interaction is
small. However, the analysis of the three-point vertex fu
tion, which together with the screened interaction determi
the one-particle self-energy, showed that it diverges at
same frequency-momentum points where the screened i
action vanishes. The expansion for the self-energy had o
limited success against the exact QMC results. Although
expansion gave excellent results for the low-energy par
Im S near 15% hole doping, where the screened interac
vanishes, it had the wrong doping dependence around
same value. Moreover, the real part of the QMC results w
not consistent with a diagrammatic expansion which sho
obey the Luttinger theorem, although we cannot rule out
possibility of temperature effects. If it were because of te
perature effects, this would also mean that our approxima
does not work for ReS at all, since with increasing orde
results for the expansion moved in the wrong direction.
contrast, ImS showed a converging behavior near 15% do
ing, as mentioned above. We also calculated FLEX s
energies, which had the correct qualitative doping dep
dence and high-frequency behavior, but did actually wo
quantitatively near 15% doping.

In order to investigate the QMC ReS results, we numeri-
cally calculated the exact QMC Fermi surfaces. The res
n
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showed extreme violation of the Luttinger theorem near ha
filling, which might be because of a doping-induced meta
insulator transition arising from strong-coupling effects. Th
Fermi surface of the Hubbard model seemed to be reduc
to hole pockets centered aroundk5(p,p) at small hole dop-
ings near half filling. Further QMC investigation at smalle
hole dopings and lower temperatures might bring more e
dence into this.

As far as the high-temperature superconductors are c
cerned, exact QMC results might be indicating that the u
derdoped region of these materials is a transition betwee
strong-coupling Mott-Hubbard insulator and a Fermi meta
The disappearance of the Fermi surface with the decreas
hole doping can also be viewed as an opening of
pseudogap.12 For the full investigation of this region at low
temperatures, other nonperturbative treatments might be n
essary. However, the partial success of the screen
interaction expansion developed here shows that it might
useful near optimal doping, as well as other diagramma
expansions in the optimally doped and overdoped regions
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