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Effective spinless fermions in the strong-coupling Kondo model
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Starting from the two-orbital Kondo-lattice model with classitg| spins, an effective spinless fermion
model is derived for strong Hund couplinly; with a projection technique. The model is studied by Monte
Carlo simulations and analytically using a uniform hopping approximation. The results for the spinless fermion
model are in remarkable agreement with those of the original Kondo-lattice model, independent of the carrier
concentration, and even for moderate Hund coupling Phase separation, the phase diagram in uniform
hopping approximation, as well as spectral properties including the formation of a pseudogap are discussed for
both the Kondo-lattice and the effective spinless fermion model in one and three dimensions.
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[. INTRODUCTION ables aregy electrons with spins parallel to thg, spins at
the respective sites. The influence of antiparallel spins is ac-
The study of manganese oxides such as_L&rMnO;  counted for by the effective Hamiltonian. The derivation of
and La_,CaMnO; has attracted considerable attentionthe model is based on a projection technique, analogous to
since the discovery of colossal magnetoresistance in thedge derivation of theéJ model from the Hubbard model. The
compounds:? These materials crystallize in the perovskite-role of the HubbardU is played byJy which couples to the
type lattice structure where the crystal field partially lifts the classicaltyy spins. In contrast to théJ model, the high-
degeneracy of the manganesetates. The energetically fa- €nergy subspace is thus controlled by classical variables, and
vorable threefold degeneratg, levels are populated with consequently the resulting model is much simpler thartdhe
localized electrons, which according to Hund’s rule form lo-Model. For a giventy spin configuration, the resulting
calized S=3/2 spins. The electronic configuration of the Hamiltonian is aone—par_tlcleoperator. Its electrqnlc trace
Mn3* ions is tg el with one electron in thes, orbital, can be evaluategl analytically, once thg one-particle energies
which is missina ?n the Mh" ions. Thee eIecgtrons can are known, Ieafjmg to an effective action for t% SPins,
: . s 9. ~ . which can be simulated by Monte Carlo techniques.
move between neighboring Mn ions mediated by bridging The obvious advantage of this approach is the reduction

0_2 2p orbitals. The interplay of electronic, spin, and or- ¢ the dimension of the Hilbert space. This can be exploited
bital degrees of freedom along with the mutual interactions;, pmc simulations by going to larger systems and/or addi-
such as the strong Hund couplidg of the itinerant electron tjgnal degrees of freedom.
to |Ocalizedtzg SpinS, Coulomb correlations, and electron- For a |arge range of parameters, the effective Spin|ess fer-
phonon coupling leads to a rich phase diagram includingnion model is found to yield very satisfactory results and to
antiferromagnetic insulating, ferromagnetic metallic, andperform much better than the rough— o approximation.
charge ordered domaiACharge carriers moving in the spin We compare spin and charge correlations as well as quasi-
and orbital background show interesting dynamicalparticle spectra of the projection approach with the full two-
featurest® The electronic degrees of freedom are generallyspin model and with thd,— o limit.
treated by a Kondo-lattice model, which in the strong Hund The effective model is treated without approximations by
coupling limit is commonly referred to as double-exchangeMonte Carlo simulations as well as by a uniform hopping
(DE) model, a term first coined by Zenkr. approximationlUHA) capturing the essential influence of the
Monte Carlo(MC) simulations have contributed signifi- t,4 spins on theg, electrons. The UHA computation can be
cantly to our understanding of the manganites. Intense M@erformed analytically, particularly in the thermodynamic
simulations for the DE model have been performed by Dagtimit. Most of the UHA results are found to be in striking
otto et al” and Furukawin the space of the classically agreement with MC results. We find two-phase transitions as
treatedt,, spins. Static and dynamical observables of thea function of the chemical potential, one close to the empty
Kondo model have been determin&@ihese MC simulations band and the second close to a completely filled band. At
gave first theoretical indications of phase separatief each phase transition we observe PS, as reported for the up-
(Ref. 10 in manganite models. Preliminary studies haveper transition in Ref. 10. For a one-dimensiosD) chain
been performed to analyze the importance of nearestwe derive an analytical expression for the two critical chemi-
neighbor Coulomb repulsion in the two-orbital DE mddel cal potentials at which PS occurs.
as well as the importance of classical phontms. For the 3D Kondo-lattice model, canonical UHA results
Many publications are based on thg=< limit. Here we  vyield a phase diagram that displays various types of antifer-
propose an effective spinless fermion model for the strongromagnetiqd AF) order including spin canting, as well as fer-
coupling limit of the Kondo-lattice Hamiltonian, which is romagnetism(FM). Our finite Jy results for 3D are in close
equally simple as thé, = limit but which still contains the agreement with those derived in the limit of infinite Hund
crucial physical ingredients of finitd, . The dynamic vari- coupling®® In the grand canonical ensemble we find, how-
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ever, that only the 3D antiferromagnetic and the 3D ferro-

magnetic order prevail. The transition is again accompanied

by PS. The first factor on the right-hand side is given by the hopping
The paper is organized as follows. In Sec. Il the Kondo-amplitudest;, j;, which read

lattice model is introduced. By applying a projection tech-

’ ’
g,0 o,0
tiajp= tiajpti" -

niqgue in Sec. lll, this model is mapped onto the effective 3 _\/§

spinless fermion model. In Sec. IV we present the phase 0 0 4 4

diagrams and phase-separation boundaries in one and threet; i+2=t( ) tiexy=t 2)
dimensions within a uniform hopping approximation. Results 0 1 ’ _\/_§ E

of Monte Carlo simulations for the original and the projected T 4

model are discussed in Sec. V. Finally, in Sec. VI we sum- . ) o )
marize the key conclusions. as matrices in the orbital indices 8=1(2), corresponding

to thex?—y? (3z—r?) orbitals(see, e.g., Ref.)1 The over-
all hopping strength ig, which will be used as a unit of
Il. MODEL HAMILTONIAN energy, by setting=1. The relative orientation of th

In this paper, we will concentrate on purely electronic SPINS at sites andj enters via

(tag,€g) properties, leaving phonon degrees of freedom for
further studies. As proposed by Dagottetal.” and
Furukawa® the t,, spinsS are treated classically, which is B . .
equivalent to the limitS—o. The spin degrees of freedom ufy “=o(cisie” 7i—cisie” 7, ©)
are therefore replaced by unit vectdss, parametrized by
polar and azimuthal angleg and ¢;, respectively, which
represent the direction of thg, spin at lattice sites;. The T } . ] oo o' v
magnitude of the spin is absorbed into the exchange coddamiltonian is still Hermitian, since;’;” = (uf’;"")*.
plings. It is expedient to use the individua), spin directions Finally, Eq.(1) contains a S,uperex?hange term. The value
as local quantization axes for the spin of the itinerept ~Of the exchange coupling i8'~0.02" accounting for the
electrons at the respective sites. This representation is pafeak antiferromagnetic coupling of thg, electrons. Here
ticularly useful for thedy— o limit, but also for the projec- We will approximate the locéh spins classically. For strong
tion technique, which takes spin-flip processes for finiteHund couplingly>1, the electronic density of statd309)
Hund coupling into account. consists essentially of two subbands, a lower and an upper
It is commonly believed that the electronic degrees of Kondo band,” split by approximately 2. In the lower
freedom are well described by a multiorbital Kondo-lattice band, the itinerang, electrons move such that their spins are
model, predominantly parallel to thgy spins, while the opposite is
true for the upper bantf. Throughout this paper, the elec-
tronic densityn (number of electrons per sjtavill be re-
A=— > ti’i;f’j’[;CFMCjBUHFZJHZ ﬁial stricted to G<n<1, i.e., predominantly the lower Kondo
le band is involved.

U7 =cicj+s;s;e' 744,

with the abbreviations;=cos(@/2) ands;=sin(#/2) and
the restriction 6 ¢;<m. The modified hopping part of the

i.j,a,B,0,0'

+J’<Z> S-S. 1 Ill. PROJECTION TECHNIQUE
ij
The separation of energy scafeis a well-known strategy
It consists of a kinetic term with modified transfer integralsto simplify quantum-mechanical many-body systems. In the

t;gjj’ﬁ, wherei(j) are site indicesq(B) orbital indices, and case of manganites, the Hund couplidig is kncgwn to be
o(c') are spin indices. The number of lattice sites will be Much greater than the other parametersnd J'. Conse-
denoted by, and the number of orbitals per site by The  duently, the hopping to antiparallel,—t,, configurations

operators; (Ciuo) Create(annihilate e, electrons at site; can be treated in second-order perturbation th@dhby a

in the orblifgl «, with spin parallel ¢=1) or antiparallel projection approach. On thg Iow-gnergy scale, the dynamical
variables areey electrons, with spin parallel to the lo

(o=1]) to the localtyy spin orientationS . The next term . ] » W - : -
describes the Hund coupling with exchange intedral As ~ SPins. The virtual excitations i ¢7)—(j1)—(i"a’T),

he s th . ved i b ¢ which are mediated by the hopping matrix, lead to an effec-
usualniq, 1S tN€ Spin-resolved occupation number operatory;, . spinless fermion Hamiltonian
Usually, the Kondo-lattice Hamiltonian contains an addi-

tional term proportional to the electron numbieg, H.= ( ot )
i jgligia) +

> B e

I

—JuNe, which has been omitted in Eql), as it merely Hy=— > t/} ,clciz— > | 53 | Cia
results in a trivial shift of the chemical potential— u blep haa' \ 1A H
—Jy. thh, b

The modified hopping integraIE,"C;j'B depend upon the - X (E %) ciT,a,CerJ’Z S-S
geometry of theg, orbitals and the relative orientation of the li#i"aa’ \ 1B H X
tyg spins: (4)
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The effective Hamiltonian contains the kinetic energyegf us ug
electrons, with spin parallel to thg, spins,(first term). The 1
kinetic energy is optimized by aligning dl4 spins, which is

the usual ferromagnetic double-exchange effect. The second
term describes an additional hybridization and favors antifer-
romagnetict,, spins leading to an effective antiferromag-
netic interactiondg, which is generally stronger thadi.

The “three-site” hopping processes of the third term are of
minor influence. We will see that this term is in general neg-
ligible. On the other hand, its inclusion does not really in-
crease the numerical effort. Equati@h) is valid for arbitrary 0 !
hopping matrices;, ;5. In subsequent sections, however,

the discussion will be restricted to nearest-neighbor hopping

only.

The Hamiltonian Eq.4) constitutes a spinless fermion
model, similar to the one obtained in thg— o limit, which
can be treated numerically along the !m.es proposed by Daqi_ne) exhibits a jump(phase separati¢from AF to FM order atu$
otto and co-workersand Furukawd. Finite J,; values can c !

. . and back to AF order a5 .
thus be treated with the same numerical effort as the case

Jy=c°. In the MC simulations, the weight for &g spin e&)ing[third term in Eq.(4)]. At the end of this section we will

configurgtio'n is determined by the grand canonical trace ov how that it can indeed be neglected. Due to the symmetry of
the fermionic degrees of freedom in the one-electron poteng,

tial created by the,, spins.
The obvious advantage of E@) as compared to Eq1)
is the reduced Hilbert space.

FM

filled

-1 u
-J5

FIG. 1. Filling of the tight-binding band depending upon chemi-
cal potential and hopping amplitude. Condition for partial filling:
u>u*(u). The minimum free-energy solution in UHAdashed

e hopping elements, thé—y? orbitals form an irrelevant
dispersionless band, which will be ignored in the sequel. The
influence of the average spin orientation is captured in the
uniform hopping amplitudel. Assuming periodic boundary

conditions, the Hamiltonian simplifies to
IV. UNIFORM HOPPING APPROXIMATION

1-u?

Before discussing approximation-free MC results for the A=—-u), CiTCj_ > clci+Jd'L(2u?—1), (5)
effective spinless fermion model, we will investigate the (D w5
main features of the Hamiltonia{@) by a uniform hopping
approximation proposed by van den Brink and Khom&kii.
To this end, we introduce two different mean angles betwee
neighboringt,, spins, one ire direction (¢,) and one in the
x-y plane (0yy). It should be stressed th&, and 6, are
relative angles between adjacent spins, with values between €= —2u cog k) — (1—u?)/Jy. (6)

0 andsr, and are not to be confused with the polar andgles

We assume that these angles are the same between all neigte band width is 4. It vanishes accordingly for AF order,
boring spins,i.e, §-S.3;=cosé, for all lattice sitesi and  and reaches a maximum for FM order. In Fig. 1 the resulting
S-S:x=5:S+y=cosb,,. The allowed spin configurations band filling is schematically depicted for zero temperature as
include, among others, ferromagnetism antiferromagnetisnfunction of chemical potential and hopping amplitude. The
as well as spin canted states. The impact ofttjespins on  condition for an empty/ filled band depends on the “effective
the hopping amplitudes simplifies to chemical potential”

0,0 02
u,””=co E s

for h,opping processes along thédirection, and similarly for According tox<minge), the band is empty if.<—2. For
uy,” for electron motion in the-y plane. The hopping ma- e completely filled band the condition reads-2. Partial
trix is now tran;lanonally invariant. The inner product of the filing is possible for intermediate values of the chemical
t2q Spins entering the superexchange reads potential (—2<u<2) if the hopping amplitude exceeds a
thresholdu* («). The logarithm of the grand canonical par-
. 92
S+ S+z=C080,=2u;— 1, tition function reads

where we have dropped orbital indices. The virtual hopping
rocesses couple merely to the density, and the dispersion of
e spinless fermions is given by the shifted tight-binding
band structure,

o,—0 ; 02 -~ 1 2
ug=sin |, wi=| u+ J—(l—u) /u. )
H

2

and similarly for neighboring pairs in they plane.
INY=2, In(1+e Al& ) —BJ'L(2u2—-1).
A. Phase separation in 1D systems K

First we consider the simplest case, namely, a 1D chain itn the thermodynamic limitl{(—<c) and forT=0, the free
the z direction and we ignore the additional three-site hop-energy per lattice site is
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FIG. 3. Electron density versus chemical potential fhy
=4,6, and 1Qright to leff), andJ’ =0.02. The lines correspond to
UHA. MC results at3=50, L= 20 for the spinless fermion model

FIG. 2. Free energy as a function of chemical potential andH, (circles are compared with those for the DE mode(crossek
hopping amplitudeu for T=0, J4=6, andJ’'=0.02. The solid Error bars of the MC data are smaller than the symbols.
lines are foru{ and u5, respectively. For the sake of claritf{u

=0,u) has been subtracted. filing increases gradually withu, following the tight-
binding formulan=arccos( u/2)/.
f=uE(m)—upN(R)+J'(2u?—1), (8) At u5, FM domains with densityn,>n; coexist with

) i o AFM domains of density 1. Finally, for> 5, the system
with E(x) being the mean kinetic energy aNx) the mean j,,,ns hack to antiferromagnetism, now at density 1. We thus
particle number of a tight-binding band with dispersion geq that the system exhibits phase separation. It should be
—2cosk). For|x|<2, these guantities are pointed out that PS is suppressed if nearest-neighbor Cou-

4—x2’ Moo EJF arcsin(x/2) | Irﬁ?;)elggpulsmn amonge, electrons is included into the

2 ™ Let us now discuss the values pf , and the size of the
The kinetic energyE(x) is zero for the empty bandx& discontinuity in n. According to Eq.(9), thg first critical
—2), as well as for the completely filled bang>2). The chemical potentialuj=pu°(3'), corresponding toNo(u)
mean particle numbeX(x) is zero if the band is empty and =0, is independent of the actual value &f . Here the ef-
unity if it is full. Figure 2 shows the free energy as a function fective antiferromagnetic interactiodys purely stems from
of chemical potential and hopping amplitudeWe find local ~ the superexchange coupling of thg spins,Jes=J". This
minima atu=0 (AF orde) andu=1 (FM orde). The ki-  does, however, not mean that the Hund coupling is irrelevant
netic terms decrease with increasiugfavoring FM order, '-for th|S phase transition. On the Contrary, the phase transition
while thet,, spin energies increase with increasingavor- IS driven by the FM tendency introduced by the Hund cou-
ing AF order. The global minimum switches from AF to FM Pling. The independence df; in our results means that there
at the critical chemical potentigt=u$ and back to AF at &ré no second-order corrections to the=c limit. The de-

w=uS. The values for the critical chemical potential follow Peéndence of.® on J'is depicted in Fig. 4. ,
from the conditionf|,_o="f|,_;, yielding Now we turn to the second phase transition corresponding
u= u=1»

to Ng(x®) =1. This transition is controlled by the stronger
(1S4 134 No(u®) +23" = u®N(u)—E(u®), (9)  effective exchange coupling

whereNgy(«°) denotes the mean particle number tor 0, 2

i.e., for perfect AF order. In this case, the tight-binding band

is dispersionless andy(°) is either 0 or 1, depending upon :

the actual value of the chemical potential. 1.5b b
For the standard parameter sef=6 andJ’'=0.02, the

numerical values foru® are wp{=-1.6730 and uj ;

=1.03431. [
The UHA solution corresponds to the global minimum of

the free energy. Its location is depicted in Fig. 1 and the

corresponding densities are shown as lines in Fig. 3. For 0.5

large negative chemical potential the system is antiferromag-

netic and thee; band is empty. AtuS, AFM domains with

zero electron density coexist with FM domains with finite  FIG. 4. Dependence of the critical chemical potentjaf ;| on

densityn;. Increasingu leads to ferromagnetism, and the the effective exchange couplinly.

E(x)=—

[
Il

0 0.05 0.1 0.15
Jeff
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04— ; ; at u=0 andu=1. The condition for phase separation is
5 : therefore stillf|,_o=f|,—1. In principle, due to the finite
03l i width of the band atu=0 intermediate particle numbers
No(u®) are possible. A detailed calculation shows, however,
An ool that for realistic parameters,_onlyo_(ﬂc_)zo or No(u®) =1
can meet the phase-separation criterion. IRgfu®) =0 and
‘ No(u®) =1, however, no hopping is possible and conse-
0.1 quently the additional hopping term vanishes. Therefore, the
: ‘ criterion for PS is the same as in E®) and the three-site
0 : : hopping has no influence on the critical chemical potentials
0 0.05 Jog 0.1 0.15 me at which phase separation occurs.

In general, the modification of the bandwidth due to next-

FIG. 5. Discontinuity inn as a function of the effective ex- nearest neighbor hopping is small. It has almost negligible
change couplingg . impact on the results. On the other hand it poses little extra-
effort to include it in MC simulation.

Jeg=J' + m (10 C. Phase diagram in 3D systems

We now turn to the 3D case. In uniform hopping approxi-

as can be seen from E), or directly from Eq.(5) at N mation, the superexchange reads

=1. Due to the particle-hole relatioN(—u)+N(n)=1,
the second critical chemical potential is given b=
— u°(Jeq), depicted in Fig. 4. In the limiy—o we have
ui=—u5. The density discontinuity isAn:=N(uj) whereL denotes the linear dimensions of the system. Upon
=An(J’') at u§ andAn:=1—N(u$)=An(Jes) atu5. Itis  substituting uniform hopping amplitudes into E@f), the
depicted in Fig. 5. Series expansion of B8).with respectto  fermionic part of the Hamiltonian can easily be diagonalized.
wuC about u°=—2 vyields An=(3J'/7%)Y3 At Jes=0 the  The one-particle energies are given by the eigenvalues of a
slope of the curve diverges, implying that already an infini-2X2 matrix with matrix elements

tesimalJg; leads to phase separation in this regime.

For realistic parameter valued (=6 andJ’'=0.02) we
find An,;~0.18 and An,~0.3, respectively. The second
value is mainly driven by the virtual hopping, which in-
creases the tendency towards PS.

Hee=J'L3[2(2uf,— 1) +(2uZ—1)],

3
e11(k) = 5[ — Uyy(cosky+cosk,) = (1— ug,)/Iul,

3
e1x(k)= > Uyy(cosky— cosky) = €21(K), (11
B. Impact of “three-site terms”

Here we consider the impact of the additional hopping in €22(K) = — 2u,cosk, — Uy, (cosk,+ cosky)/2
Eqg. (4), which in the 1D case with one orbital results in a 12 2
next-nearest neighbor hopping, [1= Uz + (1= U )/
where the subscript 1 (2) refers ¥8—y? (322—r?) orbit-
z et e +He. als. The symmetry of the; wave function has been ex-

T 2 ploited in the above expressions. As a consequence of the
UHA with two different angles, and 6., virtual hopping
processes cannot induce transitions between different orbit-
als, andJy appears only in the diagonal elements of the
1-u?2 1-u2 matrix.

I3 cog 2k). We determine the phase diagram in tb@nonical en-

H H sembleat T=0 with respect to electron densityand ex-

In the limit u—1, we recover the original tight-binding change coupling’ for fixed Hund couplingd;=8, with Eq.
band. The density of states has additional van Hove singud1) evaluated on a 20momentum lattice. For each param-
larities. Contrary to the dispersion of E), the bandwidth  eter set, the free energy is minimized with respect to the

1-u?

.
H 23,

Combined with the terms of Eq5), the resulting single-
particle dispersion reads

€,=—2ucosk—

remains finite in the limiu— 0, due toH*. hopping amplitudes. The resulting phase diagram is depicted
Next we derive the conditions for phase separation. In thé Fig. 6. At very low doping, 3D antiferromagnetiG) or-
limit T—0, the free energy is given by der dominates, irrespective of the valueJdfas long asJ’

>0. Increasing the electron concentration 36£>0.02, the
u s system favors first & phase, then ah phase, and finally
f=f_wd6 pu(€)(e—u)—J"(2u"—1), ferromagnetisn. Similar results have been found for the
Jy=0 limit.*® Finite values forJ, have almost negligible
wherep,(€) denotes the density of states corresponding tanfluence on the phase diagram for densities0.5. TheG
€. Numerical evaluation shows that the minima afe still  phase has not been reported®isince it has not been taken
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Besides the analysis for the canonical ensemble, compu-
tations have been performed for tlggand canonical en-
sembleas well. The results are significantly different. In the
grand canonical ensemble, only t@eand theF phases re-
main. The white solid line in Fig. 6 represents the phase
boundary between the two phases. For fidgdhe behavior
is similar to that of the 1D system, depicted in Fig. 3. Below
a critical chemical potentigk], the electron density is zero
and thet,, spins have AF order. A=, zero density and
a finite densityn,, given by the solid line in Fig. 6, coexist.
Concurrent with phase separation, AF and FM orders coex-

0.1 s ; s ist. Aboven{, the density increases monotonically. The sec-
0 01 0.2 0:3 0 05 ond transition a$ is not shown in Fig. 6 as it occurs close
n ton=1. Therefore, the grand canonical UHA result does not

FIG. 6. CanonicalT=0 UHA phase diagram of the spinless €xhibit the additional magnetic phases 4ndC), which are
two-orbital Kondo-lattice model with classicab, spins for Jy o.b.served in experiment. The relevant densities are never sta-
=8. Depending upon the electron concentration of the canonicdpilized.
ensemble and the superexchan@eype, A type, C type antiferro-
magnetic phases or the ferromagnetic ph&sg are observed.

Meaning of phasesiG=(AFAF); A=(FM,AF); C=(AFFM); V. MC SIMULATIONS FOR 1D SYSTEMS

F=(FM,FM), where the first entry denotes the order in thy ) ) )
plane and the second indirection. The solid line represents the  IN this section we compare MC results, obtained for the

phase boundary betwe&handF orders, respectively, obtained in a Original double exchang€éE) model(1), with those for the
grand canonical ensemble. effective spinless fermion modgEq. (4)], where the addi-
tional (“three-site”) hopping term has been neglected. We
into consideration. For small superexchange oftthespins  use the grand canonical Monte Carlo method introduced in
(J'<0.018), the transition fronG to A phase evolves via Ref. 10 with open boundary conditions.
spin canting. By increasing the electron doping, Ehphase We restrict the discussion to 1D systems. There is no rea-
is reached without canting. The situation is more complex foison to believe that the performance of the approximation of
larger values of’. Figure 7 shows the optimal anglés and  effective spinless fermions is different in higher dimensions.
fyy as a function of the electron densityfor J’=0.025 and  Furthermore, the approximation has little influence on the
Jy=8. Forn<0.039, there is 3D AF orde/ type) with an  orbital degrees of freedom, and we restrict the analysis to the
increasing tendency towards canting betwegrspins in the  one-orbital model. In all simulations, the superexchange cou-
x-y plane. Atn=0.04 this tendency is strongly reduced, pling of thet,q spins isJ’=0.02.
while at the same time cogj discontinuously jumps to zero Figure 3 shows the dependence of the electron density on
and we gradually enter th€ phase by aligning the spins the chemical potential. The system parameters Laze20,
along the chains iz direction. The ferromagnetic chains are =50, andJy is varied betweenly=4 andJ,=10. All
not perfectly antiferromagnetically stacked. At about 8%results for the two models are in almost perfect agreement.
electron density we observe a phase transition td\thbase.  The “largest” difference can be observed af for J,=4.
At n~0.15 an abrupt transition to 3D ferromagnetic orderThe lines in Fig. 3 represent the results of the uniform hop-
occurs. ping approximation, which are strikingly close to the MC
. . data points. The discontinuities are more pronounced in
""""""" UHA than in the MC data, which can partially be attributed
to the fact that the UHA results are fbr=o andT=0. The
treatment of finite temperatures in the UHA requires the de-
termination of the number df, configurations at a given
and is the subject of current investigatidfis.
............... A i B The structure factor of they, spins has been calculated
for various densities in the grand canonical ensemble by
adjusting the chemical potential. The results are illustrated in

J;

cos 6

-0.5¢ . : Fig. 8. Again the data for the two models, the Kondo, and the
~ effective spinless fermion model, are in perfect agreement
o - within the error bars. Corroborating the UHA results of the
-1175 o , , ] preceding section, the filled banai£1) has a peak ak
0 0.05 0.1 0.15 =1, corresponding to AF order. For decreasing density the

ferromagnetic peak increases upre 1/2 and then it de-

FIG. 7. Evolution of the optimal angle and 6, as function of ~ creases again. The inset shows the nearest-neighbor and
the electron density at J’=0.025,J,,=8. Further details same as next-nearest-neighbor spin-correlation function versus den-
Fig. 6. sity. We observe that both models yield the same magnetic
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. . FIG. 10. Electronic contribution to the total energy versus elec-
FIQ. 8. _Structure factor for theé,y spins at various elect_ron tron number for@=50, L=20, andJ,=6. Results for the DE
densities withJ,=6, 8=50, andL =20, for the spinless fermion

modelH, (circles, and for the DE modeH (crosses When not
shown, error bars are smaller than the symbols. The inset shows t
nearest-neighboi(solid line) and next-nearest-neighbqdashed
line) t,q spin correlation.

modelH (crossesare compared with those for the spinless fermion
wRodel H, (circles.

As a further test for the spinless fermion model, the elec-
tronic contribution to the total energy is shown in Fig. 10.
The energy for the Kondo-lattice modgirst two terms in
Eqg. (1)] is compared with the corresponding contributions in
Fhe effective spinless fermion modélqg. (4)]. For all fillings
the results are in very good agreement.

behavior: AF order at low and high densities and a ferromag
netic phase at intermediate fillings. The pronounced peak
k= for n=1 results from(virtual) spin-flip processes,

ciriven by the relatively strong exchange couplingy Quantitatively, the largest differences are found for
=0.103, EQq.(10). On the contrary the AF structure near —1. For this density the dependence of the energy,piis

=0 is much less pronouncc_ad 33 it is merely driven by theyygieq in Fig. 11. A detailed comparison reveals that the
weak super-exchange couplidg=0.02. Figure 9 shows the - oo ctive model describes the electronic energy extremely

structure factor for thé,, spins amn=1 for different values q| even in the moderate coupling regime. The ubiquitous
of Jy. The AF peak decreases with increasiigand de- 3 — o approximation, on the other hand, yields zero elec-

generates to a broad structure in the lidyjt—c. Obviously,  {onic energy. For the parameters underlying Fig. 11 tshe

the inclusion of the second-order term to the effective spingying are antiferromagnetically ordered and the lower Kondo

less fermion model, which is missing in the commonly used,5nq, or rather the single band of the spinless fermion model,
Jy=2° limit, and which provides the strong exchange cou-is completely filled. Nevertheless, the kinetic electronic en-
pling Jes, is crucial for the correct description of the AF gy is finite due tavirtual) spin-flip processes. It should be
order at high electron density. The inset shows the spin Strucpointed out that the additiondthree-sit¢ hopping term in

ture forn~3/4, at which the system exhibits ferromagnetic gq (4) has no influence on this result as the band is entirely
order. In this case, the FM correlations increase with increassjied.

ing Jy .

2 3

8 3

o o

= 5

S 2

-'(7)' 3]

o

=

m : N
JC L 2 ...... 4 ,,,,, 68 ..... 1012 1416 1820

FIG. 11. Electronic energies versus Hund couplihg for a
FIG. 9. Spin structure factor at=1 (inset showsn~0.75) for  completely filled 20-site chain dt=0. Kinetic energy(dotted ling
different values ofl,; . Same symbols and parameters as in Fig. 8.and total electronic energydashed lines for the Kondo-lattice
In the limit J,— (dashed ling the intensity of the AF peak is model. The solid line represents the total electronic energy for the
considerably reduced. effective spinless fermion model.
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FIG. 12. Spectral function obtained by a grand canonical simu-
lation for n=1/2 with J,=6, L=20, andB=50. An intrinsic line-
width y=0.1 has been added. The results for the Kondo model and
the effective spinless fermion model are indistinguishable.

wave number

Next we study the spectral functiol(w) in the grand
canonical ensemble for various mean electron densities cov-
ering the regimes for AF and FM order, as well as phase
separation. In all cases the system geometry is a 20-site chain
with open boundary conditions at inverse temperatgre
=50, and exchange coupling$=0.02 and],;=6. We start
out with the spectra in Fig. 12 for strong FM order at a mean
particle density oih=1/2. According to the inset of Fig. 8,
the spin correlations are 0.82 and 0.67 for nearest- and next-
nearest neighbors, respectively. The spectral function de-
picted in Fig. 12 resembles closely that of a tight-binding
model, valid for perfect FM order. The bandwidth is slightly
reduced, and fok values close to the Fermi momentum,
Ay(w) exhibits some minor shoulders. The half width at half
maximum of the peaks agrees with the value by which the
finite-size 6 peaks have been broadened. The inset displays
the DOS, which agrees with the tight-binding density of
states for open boundary conditions. Next we increase the
mean density to=0.75, corresponding to a chemical poten-
tial close tous. The spin order is still predominantly ferro-
magnetic. The results in Fig. 13 show that both models yield
very similar results, namely, a tight-binding type of quasipar- o
ticle band. The spectral _peaks are, however, significantly FIG. 13. Same as Fig. 12. The indicated particle numbers cor-
broader than the mock V‘{'dﬂ?”_ and upon approach_lng the respond ton=0.75, n=0.95, andn=0.05. Results for the Kondo
Fermi momentum the width increases asymmetrically ©Omodel are represented by solid lines, and those for the effective
wards the fermi level. The origin of the broad structures arespinless fermion model by dashed lines.
the random deviations of thgy spins from perfect FM or-
der. The resulting density of states has piled up spectrdb predominantly antiferromagnetic. Now the pseudo-gap, as
weight in the center and reveals a precursor of a pseudogafiscussed by Moreet al.,'® is clearly visible. Additionally
at the Fermi energy. Interestingly, the DOS is almost centewe observe a “mirror pseudogap” at the lower band edge.
symmetric and a mirror image of the “pseudo-gap” occursThere is still good qualitative agreement between the results
also at the lower band edge. of the two models. Quantitatively, however, there are devia-

The next panel depicts results fore=0.95, correspond to tions in the structures below the pseudogap. The density of
a chemical potential slightly above,,, where the spin order states is still remarkably well described by the spinless fer-

wave number
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mion model. It appears that virtual spin-flip processes included in our
In the opposite limit of low carrier concentratiom ( approach, which are missing in tdg=c model, are crucial

=0.05), the chemical potential is close tq;, where we for the antiferromagnetic phase close to half filling=(1),

find similar features. Again, together with the coexistence ofyhere they provide a strong effective exchange coupling

FM and AFM order, a pseudogap shows up at the chemicaj_.= 3’ +1/(21,,).

potential as well as at the upper band edge. The pseudo-gap Two phase transitions from AF to FM order and vice

is less pronoun(_:ed iln this case, where the antiferromagnetifarsa are observed, accompanied by phase separation. Ana-

exchange coupling’ is much smaller thadey at u3 . lytic expressions for the chemical potential at which phase
In both models a considerable amount of spectral weighgeparation occurs in a 1D chain have been derived in uni-

is transferred from the band edges to the center. Interestinglyy:m hopping approximatiofUHA). It has been shown,

the ﬂensﬂy_ of states 'Sh almost ﬁefnter_symmetnc. , Thg;owever, that they are in extremely good agreement with
pseudogap is present in the spectral function irrespective f i ation-free MC results.

the wave vectok. Moreoet al. argued that the pseudogap is The UHA phase diagram of the 3D spinless fermion

formed due to the presence of mixed phases with irregular . .
. . g " “model has been determined. In canonical ensembles, the
formations of FM domains. In contrast to this interpretation,

we find the pseudogap also in the perfect AF regime with ag_netic_phase_diagram _is in qualitative_ agreemen_t with that
single electror(hole). obtained in previous studies for tlg =< limit. Experimen-
Generally we observe, in agreement with angle-resolved@!ly observed phases, such @s A, C, and F orders are
photoemission  fine-structure  spectroscopfARPES fognd. On the other hand, grand canonical ensemblg calcu-
experiment£? that the width of peaks increases towards the/@tions show that only 3D AF and 3D FM orders prevail. The
Fermi energy and the spectral intensity decreases since spdfansition between the two phases is accompanied by phase
tral weight is transferred to the unoccupied part of the specseparation. Densities, required for other phases, are not
trum, which is not visible in ARPES. Furthermore, the peaksstable in UHA.
are generally much broader than the experimental resolution. The spectral functions show a remarkable center symme-
try. In the AF phase, at low and high electron densities, a
pseudogap structure is observed at the chemical potential and
VI. CONCLUSIONS a mirror image at the opposite edge of the spectrum.
In passing, it should be noted that nearest-neighbor Cou-
We have developed an effective spinless fermion modelomb repulsion of the, electrons in a two-orbital model can

for the strong-coupling multi-orbital Kondo-lattice model. he detrimental for phase separation. Detailed results will be
The effective model has a reduced Hilbert space, and is pagiscussed elsewhet8.

ticularly suitable for MC simulations. The numerical com-
plexity is the same as that of tldg, = model. The reduced
Hilbert space allows one to study higher spatial dimensions
and/or additional degrees of freedom, such as phonons.
Based on the evaluation of various observables, the effec-
tive spinless fermion model performs strikingly well, even  This work was partially supported by the Austrian Science
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