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Uniform hopping approach to the ferromagnetic Kondo model at finite temperature

Winfried Koller,* Alexander Pru¨ll, Hans Gerd Evertz, and Wolfgang von der Linden
Institut für Theoretische Physik, Technische Universita¨t Graz, Petersgasse 16, A-8010 Graz, Austria

~Received 29 November 2002; published 31 March 2003!

We study the ferromagnetic Kondo model with classical corespins via unbiased Monte Carlo simulations and
derive a simplified model for the treatment of the core spins at any temperature. Our simplified model captures
the main aspects of the Kondo model and can easily be evaluated both numerically and analytically. It provides
a better qualitative understanding of the physical features of the Kondo model and rationalizes the Monte Carlo
results including the spectral densityAk(v) of a one-dimensional~1D! chain with nearest-neighbor Coulomb
repulsion. By calculating the specific heat and the susceptibility of systems up to size 163, we determine the
Curie temperature of the 3D one-orbital double-exchange model, which agrees with experimental values.
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I. INTRODUCTION

Manganese oxides such as La12xSrxMnO3 and
La12xCaxMnO3 have been attracting considerable attent
since the discovery of colossal magnetoresitance.1,2 These
materials crystallize in the perovskite-type lattice structu
where the crystal field breaks the symmetry of the atom
wave function of the manganesed electrons. The energeti
cally lower t2g levels are occupied by three localized ele
trons. Due to a strong Hund coupling, their spins are align
thus forming a localized corespin withS53/2. The electron
configuration of the Mn31 ions is t2g

3 eg
1 , whereas for Mn41

ions theeg electron is missing. Due to a hybridization of th
eg wave function with the oxygen 2p orbitals, theeg elec-
trons are itinerant and can move from an Mn31 ion to a
neighboring Mn41 via a bridging O22. The interplay of vari-
ous physical ingredients such as the strong Hund couplin
the itinerant electrons to localized corespins, Coulomb c
relations, and electron-phonon coupling leads to a rich ph
diagram including antiferromagnetic insulating, ferroma
netic metallic, and charge ordered domains. The carr
moving in the spin and orbital background show remarka
dynamical features.3,4

Since full many-body calculations for a realistic mod
including all degrees of freedom, are not possible yet, sev
approximate studies of simplified models have been p
formed in order to unravel individual pieces of the rich pha
diagram of the manganites. The electronic degrees of f
dom are generally treated by a Kondo lattice model, which
the strong Hund coupling limit is commonly referred to
the double-exchange~DE! model, a term introduced by
Zener.5 In addition, the correlation of the itineranteg elec-
trons is well described by a nearest-neighbor~nn! Coulomb
interaction. The on-site Hubbard term merely renormali
the already strong Hund coupling. For the Kondo model w
quantum spins, it is still impossible to derive rigorous n
merical and analytical results. If theS53/2 corespins are
treated classically, however, the model can be treated by
biased Monte Carlo techniques. The impact of quantum s
on the electronic properties has been studied in Refs. 6–
appears that quantum effects are important forS51/2 core-
spins or atT50. For finite temperature andS53/2, classical
spins present a reasonable approximation.

Elaborate Monte Carlo~MC! simulations for the ferro-
0163-1829/2003/67~10!/104432~10!/$20.00 67 1044
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magnetic ~FM! Kondo model with classicalt2g corespins
have been performed by Dagottoet al.,9–11 Yi et al.,12

Furukawa,13 and Motome and Furukawa.14 Static and dy-
namical properties of the model have been determin
These studies revealed features that have been interpret
signatures of phase separation~PS!. PS has also been
reported15 from computations based on a dynamical mea
field treatment of the DE model atT50. A phase diagram
and critical exponents of the DE model have been de
mined with a hybrid MC algorithm.16,17

In the manganites, the Hund couplingJH is much stronger
than the kinetic energy. Consequently, configurations
very unlikely in which the electronic spin is antiparallel
the local corespin. It is therefore common practice to u
JH5` and to ignore antiparallel spin arrangements al
gether. This approximation yields reasonable results in
ferromagnetic regime. Close to half filling, however, a fin
ferromagnetic Hund coupling even enhances the antife
magnetic ordering of the corespins. In a previous paper,18 we
have proposed an effective spinless fermion~ESF! model
that takes effects of antiparallelt2g2eg spin configurations
into account via virtual excitations. It has been demonstra
that the results of the ESF model are in excellent agreem
with those of the original Kondo model even for modera
values ofJH .

In Ref. 18, we also introduced the uniform hopping a
proach~UHA!, which replaces the influence of the rando
corespins on theeg electron dynamics by an effective un
form hopping process. In that work, the hopping parame
was determined by minimization of the ground-state ene
Essential physical features of the original model could
described even quantitatively by UHA, while the configur
tion space, and hence the numerical effort, was reduced
several orders of magnitude. Besides the numerical adv
tage, UHA also allows the derivation of analytical results
some limiting cases.

In the present paper, we extend the UHA to finite te
perature. Thermal fluctuations of the corespins are mappe
fluctuations of the uniform hopping parameter. In order
include entropy effects correctly, we have to determine
densityG(u) of corespin states for a given hopping para
eteru. The reliability of the finite-temperature UHA is scru
tinized by a detailed comparison of the results for vario
©2003 The American Physical Society32-1
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properties of the one-orbital DE model with unbiased M
data.

So far, in most MC simulations, the Coulomb interacti
of the eg electrons has been neglected due to its additio
computational burden. It should, however, have an impor
impact, particularly on phase separation. Moreover, at q
ter filling, the nn repulsion leads to the charge ordering~CO!
phase. We have performed MC simulations for the Kon
model including a Hubbard-like Coulomb interaction.
these simulations, for each classical corespin configurat
the electronic degrees of freedom are treated by Lanc
exact diagonalization. We find that also in this case UH
yields reliable results while reducing the computational co
plexity by orders of magnitude. An excerpt of the results
given here, while a thorough discussion will be provid
elsewhere.

Also starting from an UHA-type of Hamiltonian, Millis
et al.19 claim that the bare DE model cannot even explain
right order of magnitude of the Curie temperatures of
manganites. This claim is, however, based on uncontro
additional approximations. We find that a more rigoro
evaluation of UHA for a one-orbital DE model and larg
three-dimensional~3D! systems yields a Curie temperatu
which is indeed close to the experimental values. Our res
for the DE model are in accord with the Hybrid MC result17

and with other estimates.11,13,20

This paper is organized as follows. In Sec. II, the mo
Hamiltonian is presented and particularities of the MC sim
lation are outlined. The uniform hopping approach is d
cussed in Sec. III. One-dimensional applications are give
Sec. IV and compared with MC data. The impact of Co
lomb correlations on the spectral density is discussed. In
V, the UHA is used to calculate the phase diagram of the
model in three dimensions. The key results of the paper
summarized in Sec. VI.

II. MODEL HAMILTONIAN AND UNBIASED
MONTE CARLO SIMULATION

In this paper, we will concentrate on properties of t
itineranteg electrons interacting with the localt2g corespins.
It is commonly believed that the electronic degrees of fr
dom are well described by a multiorbital Kondo lattic
model

Ĥ52 (
i j ab

s

t ia, j baias
† aj bs2JH(

ia
siaSi1 (

i j ab
Via, j bn̂ian̂ j b

1J8(̂
i j &

Si•Sj . ~1!

As proposed by de Gennes,21 Dagotto et al.,9,22 and
Furukawa,13 the t2g spinsSi are treated classically, which i
equivalent to the limitS→`. The spin degrees of freedom
are thus replaced by unit vectorsSi , parametrized by pola
and azimuthal anglesu i andf i , respectively. The magnitud
of both corespins andeg spins is absorbed into the exchan
couplings.
10443
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Equation~1! consists of a kinetic term for the itineranteg
electrons with transfer integralst ia, j b , where i ( j ) are site
indices,a(b) orbital indices, ands(s8) spin indices. The
transfer integrals, which are restricted to nn sites, are gi
as matrices in the orbital indicesa,b51(2) for x22y2

(3z22r 2) orbitals ~see e.g., Ref. 22!,

t i ,i 1 ẑ5tS 0 0

0 1D , t i ,i 1 x̂/ ŷ5tS 3

4
7

A3

4

7
A3

4

1

4
D . ~2!

The overall hopping strength ist, which will be used as
unit of energy, by settingt51. The operatorsaias

† (aias)
create~annihilate! eg electrons at sitexi in orbital a with
spin s. The second term of the Hamiltonian describes
Hund coupling with exchange integralJH , wheresW ia stands
for the spin of the electron at sitei in orbital a. The spin-
resolved occupation number operator is denoted byn̂ias .
The third term describes a Coulomb repulsion, withn̂ia be-
ing the spin-integrated density operator. The local Hubb
interaction is excluded from the sum, i.e.,Via,ia50, as it
effectively merely modifies the Hund couplingJH . Finally,
Eq. ~1! contains a superexchange term. The value of the
change coupling isJ8'0.02,22 accounting for the weak an
tiferromagnetic coupling of thet2g electrons.

For strong Hund couplingJH@t, the electronic density of
states~DOS! essentially consists of two sub-bands, a low
and an upper Kondo band, split by'2JH . In the lower
band, the itineranteg electrons move such that their spins a
predominantly parallel to thet2g corespins, while the oppo
site is true for the upper band.23 Throughout this paper, the
electronic densityn ~number of electrons per orbital! will be
restricted to 0<n<1, i.e., only the lower Kondo band i
involved.

A. Effective spinless fermions

It is expedient to use the individualt2g spin directionsSi
as the local quantization axes for the spin of the itineranteg
electrons at the respective sites. This representation is
ticularly useful for theJH→` limit, but also for the projec-
tion technique, which takes into account virtual processes
finite Hund coupling. The transformation in the electron
spin is described by a local unitary 232 matrix U(Si) with

aW ia5U~Si !cW ia cW ia5U†~Si !aW ia , ~3!

where aW ia is a column vector with entriesaia↑ and aia↓ ,
respectively. The transformed annihilation operators in lo
quantization are represented bycW ia . For the creation opera
tors, we have

aW ia
† 5cW ia

† U†~Si !, cW ia
† 5aW ia

† U~Si !. ~4!

The unitary matrixU(Si) depends uponSi and is chosen
such that it diagonalizes the individual contributions to t
Kondo exchange
2-2
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UNIFORM HOPPING APPROACH TO THE . . . PHYSICAL REVIEW B 67, 104432 ~2003!
siaSi[aW ia
† ~SSi !aW ia5cW ia

†
„U†~Si !~SSi !U~Si !…cW ia , ~5!

with S being the vector of Pauli matrices. The eigenvalues
(SSi) are61 and the matrix of eigenvectors is given by

U~Si !5S ci sie
2 if i

sie
if i 2ci

D , ~6!

with the abbreviationscj5cos(uj/2) and sj5sin(uj/2) and
the restriction 0<u j<p. The Kondo exchange term in Eq
~5! in the new representation reads

siaSi5n̂ia↑2n̂ia↓ . ~7!

The spin-integrated density operatorsn̂ia are unaffected by
the unitary transformation. The entire Kondo Hamiltoni
becomes

Ĥ52 (
i j ab
ss8

t ia, j b
s,s8 cias

† cj bs812JH(
ia

n̂ia↓

1 (
i j ab

Via, j bn̂ian̂ j b1J8(̂
i j &

Si•Sj . ~8!

We have added an additional termĤc5JHN̂ proportional to
the eg-electron numberN, equivalent to a trivial shift of the
chemical potential.

The prize to be paid for the simple structure of the Hu

term is that the modified hopping integralst ia, j b
s,s8 now depend

upon thet2g corespins,

t ia, j b
s,s8 5t ia, j b„U

†~Si !U~Sj !…s,s85t ia, j bui j
s,s8 . ~9!

The relative orientation of thet2g corespins at sitei and j
enters via

ui , j
s,s~S!5cicj1sisje

is(f j 2f i )5cos~q i j /2!eic i j

ui , j
s,2s~S!5s~cisje

2 isf j2cjsie
2 isf i !sin~q i j /2!eix i j

~10!

These factors depend on the relative angleq i j of corespinsSi
andSj in the corespin configurationS and on some complex
phasesc i j and x i j . It should be noticed that the modifie
hopping part of the Hamiltonian is still Hermitian becau

ui , j
s,s85(uj ,i

s8,s)* .
The advantage of the local quantization is, as describe

Ref. 18, that the energetically unfavorable states witheg
electrons antiparallel to the localt2g corespins can be inte
grated out. This leads to the effective spinless fermion mo

Ĥp52 (
i , j ,a,b

t ia, j b
↑↑ cia

† cj b2 (
i , j ,a,b,a8

t ia8, j b
↑↓ t j b,ia

↓↑

2JH
cia8

† cia

1 (
i j ab

Via, j bn̂ian̂ j b1J8(̂
i j &

Si•Sj . ~11!

The spinless fermion operators correspond to spin-up e
trons ~relative to thelocal corespin-orientation! only. The
spin index has therefore been omitted. With respect to aglo-
10443
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contributions from both spin-up and spin-down electro
The V-dependent contributions in the energy denomina
have been ignored, sinceuVia, j bu!uJHu. In principle, the ef-
fective Hamiltonian also contains ‘‘three-site’’ hopping pr
cesses. It has been shown18 that the three-site term has ne
ligible impact, and it has been ignored here.

Since each eigenvector can have an arbitrary phase
unitary matrix in Eq.~6! is not unique. This implies that

U~Si !5S ci sie
2 if i

sie
if i 2ci

D S eia( i ) 0

0 eib( j )D
also diagonalizes the Kondo term. The additional phase
tors modify the hopping integrals of the spin-up channel

ui , j
↑↑~S!5~cicj1sisje

i (f j 2f i )!ei [a( j )2a( i )]

5cos~q i j /2!ei [c i j 1a( j )2a( i )] . ~12!

Consequently, in the one-dimensional case and with o
boundaries, we can choose the local phase factors such
the nn hopping integrals are simply given by the real nu
bers cos(qij /2).

B. Grand canonical treatment

Our model contains classical~corespins! and quantum-
mechanical (eg electrons! degrees of freedom. The appropr
ate way to cope with this situation in statistical mechanics
to define the grand canonical partition function as

Z5E D@S#trce
2b[ Ĥ(u,f)2mN̂] ,

E D@S#5)
i 51

L S E
0

p

du isinu iE
0

2p

df i D , ~13!

where trc indicates the trace over fermionic degrees of fre
dom at inverse temperatureb, N̂ is the operator for the tota
number ofeg electrons,L is the number of lattice sites, an
m stands for the chemical potential. Upon integrating out
fermionic degrees of freedom, we obtain the statisti
weight of a corespin configurationS

w~S!5
trce

2b[ Ĥ(S)2mN̂]

Z . ~14!

Equation~13! is the starting point of Monte Carlo simu
lations for the Kondo model,9 where the sum over the clas
sical spins is performed via importance sampling. The s
configurationsS enter the Markov chain according to th
weight factorw(S) that is computed via exact diagonaliz
tion of the corresponding Hamiltonian in Eq.~8!. In the 1D
case, we have performed MC simulations, in which spins
domains of random lengths were rotated. We have perform
MC runs with 1000 measurements. The skip between su
quent measurements was chosen to be some hundreds o
tice sweeps reducing autocorrelations to a negligible leve

Apart from quantities that can be derived directly fro
the partition functionZ, we will also be interested in dy
2-3
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KOLLER, PRÜLL, EVERTZ, AND von der LINDEN PHYSICAL REVIEW B67, 104432 ~2003!
namical observables, notably in the one-particle retar
Green’s functionŠ^aias ;aj bs

†
‹&v in global spin quantization

This function follows from

Š^aias ;aj bs
†

‹&v5E D@S#w~S!Š^aias ;aj bs
†

‹&v
S . ~15!

The one-particle Green’s functionŠ^aias ;aj bs
†

‹&v
S , corre-

sponding to a particular corespin configurationS, is deter-
mined from the Green’s function in local spin quantizati
by employing Eqs.~3! and ~4!:

Š^aias ;aj bs
†

‹&v
S5U~Si !s↑U* ~Sj !s↑Š^cia ;cj b

†
‹&v

S . ~16!

To arrive at Eq.~16!, we used the fact that inlocal quanti-
zation only the spin-up channel contributes
Š^cias ;cj bs8

†
‹&v

S , i.e., s5s85↑. The spin-down channe
has structures corresponding to the upper Kondo band
which we are not interested here. Inglobal quantization, both
spin directions contribute. The spin-integrated Green’s fu
tion reads

(
s

Š^aias ;aj bs
†

‹&v
S5uji

↑↑~S!Š^cia ;cj b
†
‹&v

S . ~17!

The unbiased Monte Carlo result for the spin-integrated o
particle Green’s function is therefore determined from

(
s

Š^aias ;aj bs
†

‹&v5E D@S#w~S!uji
↑↑~S!Š^cia ;cj b

†
‹&v

S .

~18!

We note that the one-particle DOS is independent of
choice of the spin quantization because it can be determ
from diagonal Green’s functions in real space.

III. UNIFORM HOPPING APPROACH AT FINITE T

The impact of the DE mechanism on the electronic kine
energy can be mimicked by anaveragehopping amplitude.21

In a previous paper,18 we introduced what we called the un
form hopping approach~UHA!. It gave strikingly good re-
sults for ground-state properties. The idea behind UHA is
replace the termsui j

↑↑ in the hopping amplitude, Eq.~9!,
which correspond to cos(qij /2) as discussed before, by a un
form valueu. In Ref. 18, the optimal UHA parameteru was
determined by minimizing the ground-state energy. Here,
will extend this approach to finite temperatures by tak
entropic effects into account.

In order to introduce the finite-temperature UHA, we pr
ceed as follows. For a given corespin configuration char
terized by the set of angles$u i ,f i%, we define theaverage u
value

u~S!5
1

Np
(̂
i j &

ui j
↑↑~S!.

Here,Np is the number of nn pairŝi j &. We now replace the
individual factorsui j

↑↑ in Eq. ~13! by u(S). Besidesui j
↑↑ , the

Hamiltonian depends onuui j
s,2su2 and onSi•Sj , which cor-

respond to sin2(qij /2) and cosqij , respectively. As a furthe
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approximation~see below!, these terms are respectively r
placed by 12u2(S) and 2u2(S)21.

The introduction of UHA leads to the partition function

Z5E D@S#E
0

1

dud„u2u~S!…trce
2b[ Ĥ(u)2mN̂]

5:E
0

1

duGNp
~u!e2bV(u). ~19!

The integrand can be interpreted as the~non-normalized!
thermal probability density for the uniform hopping param
eteru,

p~uub!5GNp
~u!e2bV(u). ~20!

It consists of the density of corespin statesGNp
(u) and the

Boltzmann factor. The former corresponds to a density
states and is given by

GNp
~u!5E D@S#d„u2u~S!…. ~21!

It accounts for the number of different corespin configu
tions ~multiplicity! that give rise to the same average ho
ping amplitudeu. We note that since anglesq i j /2 enter into
Eq. ~10!, this is different from the density of states of th
classical Heisenberg model. The grand potentialV(u)

2bV~u!5 ln trce
2b[ Ĥ(u)2mN̂] ~22!

is obtained from the fermionic trace of the homogeneo
version of the Hamiltonian of Eq.~11!, which reads

Ĥp~u!52u(
^ i , j &
a,b

t ia, j bcia
† cj b2~12u2! (

^ i , j &
a,b,a8

t ia8, j bt j b,ia

2JH

3cia8
† cia1 (

i , j ,a,b
Via, j bn̂ian̂ j b1J8Np~2u221!.

~23!

The uniform hopping approach presents an enorm
simplification of the original problem. First, the evaluation
the fermionic trace simplifies considerably; for nonintera
ing electrons (V50), it can even be computed analyticall
Second, the high-dimensional configuration space of the
respins shrinks to a unit interval. Once the density of co
spin statesGNp

(u) has been determined, the integration ov
the corespin states can be carried out.

The thermal probability densityp(uub) in Eq. ~20! con-
tains two competing factors. The density of corespin sta
GNp

(u) peaks nearu52/3 and decreases algebraically
zero asu approaches the bounds of the unit interval. A te
dency towards ferromagnetic~antiferromagnetic! order is re-
flected by an exponential increase of the Boltzmann fac
towardsu51 (u50). This factor becomes increasingly im
portant with decreasing temperature. In the ferromagn
2-4
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UNIFORM HOPPING APPROACH TO THE . . . PHYSICAL REVIEW B 67, 104432 ~2003!
case, the combined distribution has its peak, depending
the value ofb, somewhere between 2/3 and 1~see Fig. 1 for
an illustration in three dimensions!. With increasingb, the
peak shifts towardsu51.

In summary, the configuration space of the corespin
reduced to the one-parametric space of the UHA parametu.
This simplification is based on the assumption that as fa
the Boltzmann factor is concerned, the effect of the coresp
on the electrons can be replaced by a mean effective h
ping. Fluctuations of the corespins are allowed for by
densityGNp

(u) and by fluctuations of the UHA paramete
resulting in a finite lifetime of the quasiparticles even in t
FM phase, and in a finite bandwidth even in the antifer
magnetic phase. The densityGNp

(u) takes care of the correc
inclusion of the corespin entropy, which will become cruc
in the ensuing discussion.

Validity of the additional approximation.In order to as-
sess the additional approximation introduced by the subs
tion of the terms^sin2(q/2)&'12^cosq/2&2[12u2 and
^cosq&'2^cosq/2&221[2u221, a Monte Carlo simula-
tion with random spins on a 163 simple cubic~sc! lattice has
been performed. For each spin configuration, the mean
ues of the functions cos(q/2), cos(q), and sin2(q/2) have
been computed. The resulting scatter plot is depicted in

FIG. 1. Mean^u& ~solid line! and standard deviation~dashed
line! of p(uub) vs inverse temperature for a 43 cluster at quarter
filling. The b dependence of the variance is depicted in the ins

FIG. 2. Averagê sin2(q/2)& and averagêcosq& as a function of
the average hoppingu5^cosq/2& for a 163 cluster. The dashed
lines show the results of the approximation explained in the tex
10443
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2. Astonishingly, the data follow a unique curve and mo
over they are fairly well described by the approximation e
ployed.

IV. UHA VERSUS MONTE CARLO IN ONE DIMENSION

In this section, we scrutinize the uniform hopping a
proach by a detailed comparison of its results with MC d
obtained for the original Hamiltonian, Eq.~11!. Since the
UHA affects only the treatment of the corespins, we w
restrict our attention to a one-orbital model and neglect
degeneracy of theeg orbitals. In this case, Hamiltonian~23!
simplifies to

Ĥp~u!52u(̂
i j &

ci
†cj2

12u2

2JH
(

i
zini1V(̂

i j &
ninj

1J8Np~2u221!, ~24!

wherezi denotes the number of nearest neighbors of sitei.
For a one-dimensional chain with open boundary con

tion, GNp
(u) can be calculated exactly. For a two-site lattic

we find G1(u)52ux [0,1](u), wherexB(u) denotes the char
acteristic function of the setB. Since the relative angles o
the Np5L21 nearest-neighbor pairs of a chain of lengthL
are independent,GNp

(u) reduces to a (Np21)-fold convolu-

tion of G1(u). Therefore,GNp
(u) is piecewise polynomial

and can be evaluated numerically. It can be approximated
a Gaussian, which is not surprising because the central l
theorem applies. In combination with the Boltzmann fact
however, a Gaussian approximation is not good enough
cause the Boltzmann factor amplifies the tails of the dis
bution.

A. Energy distribution

In this section, we will compare UHA with MC results fo
the DE model withV5J850, JH5` for a one-dimensiona
system with oneeg orbital per site. The Hamiltonian of Eq
~24! reduces to a one-particle tight-binding Hamiltonian

Ĥp~u!52u(
^ i , j &

ci
†cj , ~25!

with only kinetic energy. The hopping integralu is the only
remnant of the interaction with thet2g corespins. The grand
potential reads

2bV~u!5(
k

ln~11e2b(ek2m)!

5E dErL~E!ln~11e2b(E2m)!, ~26!

where the one-particle eigenvaluesek522u cosk depend on
u and rL(E) denotes the tight-binding DOS of theL-site
lattice. V(u) can now be computed easily, and along w
exact results forGNp

(u), we have access to the partitio
function and thermal quantities such as the kinetic energy
Fig. 3, the results for the kinetic energy are compared w

.

2-5
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those of unbiased MC simulations. One finds an impress
agreement between the two results. The energies are re
duced within the error bars for all values ofb. At higher
temperatures, this agreement is not obvious at all becaus
corespins are strongly fluctuating. The impact of the fluct
tions seems to be well described by the UHA.

For a canonical ensemble at sufficiently low temperatu
~canonical low-T approximation!, one can derive an analyti
cal result for the UHA. To do so, the functionV(u) is re-
placed by the ground-state energy of the tight-bind
Hamiltonian, which we write as

V~u!5uEk , ~27!

with a factorEk ~total energy of a tight-binding system wit
unit hopping amplitude! independent ofu. The canonical par-
tition function then reads

Z5E D@S#e2buEk.

Since u can be expressed as the averageu
5(1/Np)(cos(qij /2), the exponential function can be wri
ten as a product of factors containing only nn spins. In
case of a 1D chain with open boundary conditions or fo
Bethe lattice, the relative angles of neighboring spins
thus be integrated independently. Consequently, the part
function factorizes and~up to some unimportant consta
factors! can be transformed to

Z5S E
0

1

duG1~u!e2uzD Np

5S 2
12e2z~11z!

z2 D Np

,

with z5bEk /Np . By differentiation with respect tob, we
obtain the kinetic energy

Ekin5Ek

z212z1222ez

z~z112ez!
.

This result is shown as a dashed line in Fig. 3. The co
parison with MC results shows an increasingly close agr
ment forb*10.

FIG. 3. Kinetic energy vsb for a 20-site Kondo chain with
JH5`,J85V50, andN510. The statistical errors of the Mont
Carlo data~circles! are smaller than the marker size. The MC da
are compared with results of UHA~solid line! and the canonica
low-T approximation~dashed line!.
10443
e
ro-

the
-

s

g

e
a
n
n

-
e-

The above considerations show that UHA on the aver
correctly describes the kinetic processes. In order to giv
more critical assessment of UHA, we study the fluctuatio
of the kinetic energy. It should be kept in mind that th
motivation of UHA is to describe the mean energy correc
It is thus nota priori obvious whether UHA also properly
reflects its fluctuations. In UHA, the fluctuations of the k
netic energy are exclusively due to fluctuations of the u
form hopping parameteru, that in turn is related to the rela
tive nn angles of corespins. In the full model, however, t
relative nn angles fluctuate locally.

By sampling the contributions to the kinetic energy in
MC simulation including local fluctuations, we obtain hist
grams for the full model. They can be compared with t
statistical distribution of the kinetic energy corresponding
the UHA densityGNp

(u)e2bV(u). The result of this compari-
son is depicted in Fig. 4. We find a perfect agreement
tween MC and UHA results revealing a nontrivial justific
tion of UHA.

B. Spectral function and Coulomb correlations

We will now comment on the influence of the nn Hubba
interaction on the spectral density and compare MC w
UHA results. A thorough discussion of correlation effects
conjunction with the Kondo model will be given
elsewhere.24 We have studied a 12-site chain with ope
boundaries at half filling of the effective spinless model, i.
quarter filling of the original Kondo model. In this case th
implementation of the ESF model reduces the dimension
the Lanczos basis from (N

2L)5134 596 to (N
L )5924. Addi-

tionally, UHA replaces the sampling of spin configuratio
with a simple scan in the UHA parameteru ~several 100 000
spin configurations in MC vs'20 values ofu in the relevant
u range@0.8,1.0# in UHA!.

Without the Hubbard interaction, the system is ferroma
netic due to the DE mechanism. The spectral density, ca
lated by MC and depicted in Fig. 12 of Ref. 18, is that of

FIG. 4. Probability density for the kinetic energy of a 16-site D
chain at half filling for various values ofb. The histograms are
taken from unbiased Monte Carlo data. Solid lines represent U
results.
2-6
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UNIFORM HOPPING APPROACH TO THE . . . PHYSICAL REVIEW B 67, 104432 ~2003!
tight-binding model.10 The peaks are slightly broadened d
to spin fluctuations. In UHA, through the variation of th
uniform hopping amplitudeu, we obtain a superposition o
tight-binding bands that combine to a broadened tig
binding band. For the parametersL520, JH56, and J8
50.02 and atb550, the average uniform hopping amplitud
^u& is found to bê u&.0.953. This yields a band widthW of
W.3.8, which agrees with what we have found in M
simulations.

We now include the nn Hubbard term withV52 in the
ESF model Eq.~11!, or alternatively in the UHA Hamil-
tonian in Eq.~23!. The Monte Carlo data are obtained b
resorting to a Lanczos exact diagonalization scheme for e
corespin configuration. The fermionic trace is then evalua
by summing over enough lowest eigenstates, such that
vergence is ensured. Details will be given elsewhere.24

In UHA, a t2V model has to be diagonalized. The Lan
zos diagonalization for this model is not really faster than
diagonalization of the original model, but the configurati
space is drastically reduced, as only the parameteru has to be
sampled within the unit intervaluP@0,1#.

Figure 5 shows the spectral density derived by both
proaches. The electronic correlation has important impac
the spectral density. A gap appears in the middle of the or
nal Brillouin zone atk5p/2, indicating the doubling of the
unit cell due to charge ordering. In addition, the spectra
hibit more structure than just a simple quasiparticle peak

This result is neither new nor surprising. The point w
want to make here is that UHA works well also for correlat
electrons, indicating that it can reliably be employed to stu
more sophisticated and more realistic models for the man
nites, e.g., by including correlation effects, phononic degr
of freedom, and more orbital degrees of freedom.

FIG. 5. Spectral density of a 12-site Kondo chain at qua
filling ( N56) with V52, J850.02, JH56, b550. Data of the
Monte Carlo–Lanczos hybrid algorithm~dashed lines! are com-
pared with UHA results~solid line!. The inset displays the DOS
obtained from MC simulations.
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V. FM PHASE TRANSITION IN THREE DIMENSIONS

We now apply UHA to an sc crystal and determine t
Curie temperature for the bare one-orbital DE model. T
crucial difference between the 1D and the 3D geometry
that in the latter the relative angles of nn corespin pairs ar
general correlated. Therefore, the correct densityGNp

(u) is

no longer a convolution of the densityG1(u) of a single spin
pair.

A. Determination of GNp
„u…

In order to determineGNp
(u) for a 3D geometry, we have

to resort to numerical approaches. We have employed
Wang-Landau algorithm25 with single spin-flip updates
which was invented for the determination of the density
states of classical models. Figure 6 shows the resulting d
sity GNp

(u) as a function ofu for an sc lattice with linear

dimensionsLx54,6,10, and 12. As in the one-dimension
case, ln@GNp

(u)# diverges asu→0 andu→1. In fact, one can
show that

ln@GNp
~u!# →

u→1

~L21!ln~12u! ~28!

in any spatial dimension. This divergence has important
pact on the low-temperature thermodynamic behavior. T
entropy diverges logarithmically and the specific heat ha
finite value forT→0. The scale in Fig. 6 might appear e
aggerated, but it is actually the small tail close tou51 which
will become important for low temperatures.

The computational effort of finite-temperature UHA
now essentially reduced to the Wang-Landau determina
of GNp

(u), while the integration overu to calculate various
physical results takes only a small amount of computer tim
Therefore, results can be obtained for much larger latti
than with the conventional MC approach and, indeed, fo
whole range of temperatures at once.

B. FM to PM transition at JHÄ`, J8Ä0

We now study the 3D DE model in the UHA. Based o
the tests of the preceding section, we expect the UHA res

r

FIG. 6. Density of corespin statesGNp
(u) vs UHA parameteru

for an sc lattice with linear sizeLx54 ~top!, Lx56,10, andLx

512 ~bottom!. All curves peak nearu52/3, as in the 1D case.
2-7
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KOLLER, PRÜLL, EVERTZ, AND von der LINDEN PHYSICAL REVIEW B67, 104432 ~2003!
to be reliable also in this case. We restrict the present dis
sion to the caseJH5`,J850. For these parameters, only th
FM and paramagnetic~PM! phases exist.18,26

The trend from PM to FM can already be seen in Fig.
where we show the expectation value^u& of the uniform
hopping parameter and its standard deviation as a functio
the inverse temperatureb at m50. Already for a relatively
small system,p(uub) is sharply peaked. Starting fromu
52/3 at high temperatures, the expectation value^u& tends
towards unity, i.e., FM corespins, asb→`. From Eq.~28!,
we find the asymptotic formula

u* 511
1

bek
~29!

for the positionu* of the maximum ofp(uub), whereek
denotes the kinetic energy per lattice site of the tight-bind
model with unit hopping parameter. It turns out that forb
*10, the curves foru* and ^u& coincide. Well above this
temperature, nearb'5.5, the variance ofp(uub) shows a
peak ~see inset of Fig. 1!, indicating important fluctuations
near this temperature. For the determination of the Cu
temperature of the DE model, we study the specific heatCv
as a function of temperature for various system sizes.
peaks of the specific heat at quarter filling (n50.5) are plot-
ted in Fig. 7. They show signs of divergence as the lat
size increases. This indicates the presence of a second-
phase transition from FM to PM. We identify the positio
T* .0.17 of the peak as the phase-transition temperatureTC
at n50.5. This value is somewhat higher than that det
mined with the hybrid MC algorithm16 (TC.0.14) for a 163,
lattice but is better than the variational estimate27 TC
.0.19.

In order to facilitate the calculation, particularly for ele
tron fillings different fromn50.5 (m50), we consider a
canonical ensemble and replace the Boltzmann factor
e2bF. If the temperature is small on the electronic ene
scale, we can replace the electronic free energyF by the
ground-state energyF.uEk . As introduced above,Ek de-
notes the kinetic energy atT50 of the tight-binding model

FIG. 7. Specific heat per site of the sc DE model atn50.5 (m
50) vs temperature forL543 ~bottom!, L563,103, and L5163

~top!. Parameters areJH5`,J850. The results are obtained by th
‘‘canonical low-T approximation’’ ~see text!. In the inset, the ap-
proximate result for a 163 lattice is compared with that of an exa
grand canonical calculation~dashed line!.
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with unit hopping amplitude~now in three dimensions! for a
given electron filling. This approximation is justified becau
TC&0.17 is indeed small enough. The partition function no
reads

Z5E
0

1

duGNp
~u!e2bEku. ~30!

The impact of this ‘‘canonical low-T approximation’’ is il-
lustrated in the inset of Fig. 7. We find that the position of t
peak is not affected at all. The only difference to the f
grand canonical result is the longer tail at higher tempe
tures of the full result, which is due to additional fluctuatio
of the electrons.

The specific heat approaches a constant valueCv51 as
T→0. This can be inferred from Eq.~29!, since, for low
temperatures, the internal energy per lattice site is given
eku* whose derivative with respect to temperature exac
yields unity. This explains the plateau ofCv for T&0.1.

Signatures of the FM to PM phase transition should sh
up especially in the magnetic susceptibility12 x. For its cal-
culation, the densityGNp

(u) is not sufficient because a valu
u of the average hopping does not determine the magne
tion m. Given the conditional probabilityp(muu), the mo-
ments of the magnetization are

^umun&[
1

ZE0

1

duGNp
~u!e2bV(u)M (n)~u!

with

M (n)~u!5E
0

1

dmumunp~muu!.

Estimates of the conditional momentsM (n)(u) have been
obtained in a second run of the Wang-Landau algorithm
random walk in the space of all corespin configurations
performed whose acceptance is controlled by 1/GNp

(u). An
estimator of the susceptibility28,29 is then given by

x5bL~^m2&2^umu&2!.

FIG. 8. Magnetic susceptibility of the sc DE model at quar
filling ( n50.5) vs temperature for lattice sizes 43 ~bottom!, 63,103,
and 163 ~top!. Parameters areJH5`,J850. The results are ob-
tained by the canonical low-T approximation.
2-8
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Figure 8 shows the susceptibility as a function of the te
perature for various lattice sizes. We observe clear signs
divergence nearT.0.18 which corroborates the transitio
temperature obtained from the specific heat.

The filling dependence ofTC is easily determined from
Eq. ~30!. Since the filling dependence only enters viaEk ,
which shows up in combination withb, we have the simple
relation

bcEk5const

for the transition temperature. Thus, the Curie tempera
TC is proportional to the kinetic energyEk of the tight-
binding model which, in turn, is a function of the electro
filling. The proportionality ofTC to the bandwidth has al
ready been found based on different approximations.13,30,31

In order to compare our calculations with experimen
results, we fix the single free parameter in the DE model,
the hopping amplitude. We chooset50.2 eV, a value rea-
sonable for the material.22 The dashed line of Fig. 9 show
the Curie temperature obtained from the DE model in UH
We find an astonishingly good agreement to the experim
tally observed phase diagram of La12xSrxMnO3 in the ferro-
magnetic regime. Our result is in sharp contrast to the cl
made by Millis et al.19 that the DE model cannot even e
plain the right order of magnitude ofTC for the manganites
The reasoning of Ref. 19 starts from similar ideas as

*Electronic address: koller@itp.tu-graz.ac.at
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FIG. 9. Curie temperature~dashed line! of the one-orbital DE
model for a 163 cluster andt50.2 eV. Circles and phases PM, P
FM, FI, and SCI are experimental results32 for La12xSrxMnO3.
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UHA but is based on additional uncontrolled approxim
tions. Our results for the DE model are in accord with oth
estimates.11,13,20

The experimentally observed phase diagram shows a
tional phases for small concentrations: ferromagnetic insu
ing ~FI!, paramagnetic insulating~PI!, and a spin-canting in-
sulating~SCI! state. These states are not accounted for in
present approach. For a correct description, a finite valu
J8 is important, as well as generalizations of UHA, whic
will be discussed elsewhere.24

VI. CONCLUSIONS

In this paper, we have presented the uniform hopping
proach~UHA! for the FM Kondo model at finite tempera
ture. We have used our method to calculate the ferromagn
to paramagnetic phase-transition temperature of the o
orbital DE model for large 3D systems. We find that the D
model yields a Curie temperature that is comparable to
experimental data.

The finite temperature UHA in the frame of the ES
model reduces the numerical effort of a simulation by seve
orders of magnitude, while retaining all crucial physical fe
tures. In the example given in Sec. IV B, the reduction fac
is at least 106. The key idea is to map the physics of th
high-dimensional configuration space of thet2g corespins
onto an effective one-parametric model. The density of sta
entering our approach can be determined by the Wa
Landau algorithm. A full thermodynamic evaluation of th
UHA model takes into account entropy and fluctuations
the corespins. Tests for 1D systems reveal that UHA res
are in close agreement with unbiased MC data for static
dynamic observables.

This reduction in numerical effort will allow us to includ
phononic and/or orbital degrees of freedom in future num
cal simulations in order to study more realistic models
the manganites.
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