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Uniform hopping approach to the ferromagnetic Kondo model at finite temperature
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We study the ferromagnetic Kondo model with classical corespins via unbiased Monte Carlo simulations and
derive a simplified model for the treatment of the core spins at any temperature. Our simplified model captures
the main aspects of the Kondo model and can easily be evaluated both numerically and analytically. It provides
a better qualitative understanding of the physical features of the Kondo model and rationalizes the Monte Carlo
results including the spectral densiy(w) of a one-dimensiongllD) chain with nearest-neighbor Coulomb
repulsion. By calculating the specific heat and the susceptibility of systems up to Sjzevel @letermine the
Curie temperature of the 3D one-orbital double-exchange model, which agrees with experimental values.
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I. INTRODUCTION magnetic (FM) Kondo model with classicat,y corespins
have been performed by Dagottet al.®"*' Yi etal,!?
Manganese oxides such as ;LaSrMnO; and Furukawa® and Motome and Furukaw4.Static and dy-
La;_,CaMnO; have been attracting considerable attentionnamical properties of the model have been determined.
since the discovery of colossal magnetoresitdric&hese  These studies revealed features that have been interpreted as
materials crystallize in the perovskite-type lattice structuresignatures of phase separatidRS. PS has also been
where the crystal field breaks the symmetry of the atomigeported® from computations based on a dynamical mean-
wave function of the manganeskelectrons. The energeti- fie|d treatment of the DE model at=0. A phase diagram

cally lower t; levels are occupied by three localized elec-ang critical exponents of the DE model have been deter-
trons. Due to a strong Hund coupling, their spins are alignedyined with a hybrid MC algorithm®7

thus forming a localized corespin wite= 3/2. The electron
configuration of the MA" ions ist3,e;, whereas for Mfi*
ions thee, electron is missing. Due to a hybridization of the
ey wave function with the oxygen 2 orbitals, theey elec-
trons are itinerant and can move from an Mnion to a
neighboring MA™ via a bridging G~. The interplay of vari-

In the manganites, the Hund couplidg is much stronger
than the kinetic energy. Consequently, configurations are
very unlikely in which the electronic spin is antiparallel to
the local corespin. It is therefore common practice to use
Jy= and to ignore antiparallel spin arrangements alto-

L2 . ; ether. This approximation yields reasonable results in the
ous physical ingredients such as the strong Hund coupling erromagnetic regime. Close to half filling, however, a finite
the itinerant electrons to localized corespins, Coulomb cor- 9 gime. 9, '

relations, and electron-phonon coupling leads to a rich phasfé-zrromagnetlc Hund coupling even enhances the antiferro-

diagram including antiferromagnetic insulating, ferromag-magnetic ordering of the corespins. In a previous pabee

netic metallic, and charge ordered domains. The carrierd@ve Proposed an effective spinless fermi@&&h model

moving in the spin and orbital background show remarkabléhat takes effects of antiparalle};— ey spin configurations
dynamical featured? into account via virtual excitations. It has been demonstrated

Since full many-body calculations for a realistic model, that the results of the ESF model are in excellent agreement

including all degrees of freedom, are not possible yet, severa¥ith those of the original Kondo model even for moderate
approximate studies of simplified models have been pervalues ofJy.
formed in order to unravel individual pieces of the rich phase In Ref. 18, we also introduced the uniform hopping ap-
diagram of the manganites. The electronic degrees of freggroach(UHA), which replaces the influence of the random
dom are generally treated by a Kondo lattice model, which ircorespins on the, electron dynamics by an effective uni-
the strong Hund coupling limit is commonly referred to asform hopping process. In that work, the hopping parameter
the double-exchangéDE) model, a term introduced by was determined by minimization of the ground-state energy.
Zener’ In addition, the correlation of the itineramy, elec-  Essential physical features of the original model could be
trons is well described by a nearest-neightam) Coulomb  described even quantitatively by UHA, while the configura-
interaction. The on-site Hubbard term merely renormalizegion space, and hence the numerical effort, was reduced by
the already strong Hund coupling. For the Kondo model withseveral orders of magnitude. Besides the numerical advan-
quantum spins, it is still impossible to derive rigorous nu-tage, UHA also allows the derivation of analytical results in
merical and analytical results. If th&=3/2 corespins are some limiting cases.
treated classically, however, the model can be treated by un- In the present paper, we extend the UHA to finite tem-
biased Monte Carlo techniques. The impact of quantum spingerature. Thermal fluctuations of the corespins are mapped to
on the electronic properties has been studied in Refs. 6—8. fiuctuations of the uniform hopping parameter. In order to
appears that quantum effects are importantSerl/2 core- include entropy effects correctly, we have to determine the
spins or aff =0. For finite temperature ar=3/2, classical densityI'(u) of corespin states for a given hopping param-
spins present a reasonable approximation. eteru. The reliability of the finite-temperature UHA is scru-
Elaborate Monte CarldMC) simulations for the ferro- tinized by a detailed comparison of the results for various
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properties of the one-orbital DE model with unbiased MC  Equation(1) consists of a kinetic term for the itinerag
data. electrons with transfer integrals, j5, wherei(j) are site

So far, in most MC simulations, the Coulomb interactionindices, «(8) orbital indices, andr(o’) spin indices. The
of the ey electrons has been neglected due to its additionaransfer integrals, which are restricted to nn sites, are given
computational burden. It should, however, have an importands matrices in the orbital indices,3=1(2) for x2—y?
impact, particularly on phase separation. Moreover, at quart3z>—r?) orbitals (see e.g., Ref. 22
ter filling, the nn repulsion leads to the charge orde(i@@®)

phase. We have performed MC simulations for the Kondo 3 B J3

model including a Hubbard-like Coulomb interaction. In 0 0 4 T4

these simulations, for each classical corespin configuration, ti’i+£:t< ) tivay=t . 2
the electronic degrees of freedom are treated by Lanczos 01 _ \/_§ }

exact diagonalization. We find that also in this case UHA Ty 4

yields reliable results while reducing the computational com-

plexity by orders of magnitude. An excerpt of the results is The overall hopping strength ts which will be used as

given here, while a thorough discussion will be providedunit of energy, by setting=1. The operatorsirw(aiw)

elsewhere. create(annihilate e, electrons at sitex; in orbital @ with
Also starting from an UHA-type of Hamiltonian, Millis spin o. The second term of the Hamiltonian describes the

et al'® claim that the bare DE model cannot even explain theqng coupling with exchange integrd),, wherea,, stands

right order of magnitude of the Curie temperatures of thefor the spin of the electron at siiein orbital . The spin-
manganites. This claim is, however, based on uncontrolled

additional approximations. We find that a more rigorousresowéd occuanon_number operator Is d_enotefhmg.
evaluation of UHA for a one-orbital DE model and large The third term describes a Coulomb repulsion, with be-
three-dimensionai3D) systems yields a Curie temperature INd the spin-integrated density operator. The local Hubbard
which is indeed close to the experimental values. Our resultgitéraction is excluded from the sum, i.&/,,=0, as it
for the DE model are in accord with the Hybrid MC redit  effectively merely modifies the Hund couplirdy, . Finally,
and with other estimatdg: 1320 Eq. (1) contains a superexchange term. The value of the ex-
This paper is organized as follows. In Sec. I, the modelchange coupling is’~0.027% accounting for the weak an-
Hamiltonian is presented and particularities of the MC simu-tiferromagnetic coupling of the,, electrons. _
lation are outlined. The uniform hopping approach is dis- For strong Hund coupling,>t, the electronic density of
cussed in Sec. Ill. One-dimensional applications are given igtates(DOS) essentially consists of two sub-bands, a lower
Sec. IV and compared with MC data. The impact of Cou-and an upper Kondo band, split by2Jy. In the lower
lomb correlations on the spectral density is discussed. In Sefand, the itinerang, electrons move such that their spins are
V, the UHA is used to calculate the phase diagram of the DEPredominantly parallel to the,, corespins, while the oppo-
model in three dimensions. The key results of the paper argite is true for the upper bar?rg.Throughout this paper, the

summarized in Sec. VI. electronic densityn (number of electrons per orbijalill be
restricted to B=n<1, i.e., only the lower Kondo band is
involved.

II. MODEL HAMILTONIAN AND UNBIASED
MONTE CARLO SIMULATION A. Effective spinless fermions
_In this paper, we will concentrate on properties of the ¢ j5 eypedient to use the individug), spin directionsS
itinerantey electrons interacting with the locgly corespins. as the local quantization axes for the spin of the itineggnt

It is commonly believed that the electronic degrees of freeqocirons at the respective sites. This representation is par-

dom Iare well described by a multiorbital Kondo lattice ticularly useful for thedy,— o limit, but also for the projec-
mode tion technique, which takes into account virtual processes for
finite Hund coupling. The transformation in the electronic

~ Aa spin is described by a local unitaryx2 matrix U(S) with
H= _”2,3 tia,j,BaiTaoajB(r_‘]HiZ O'iaSﬁJFi]EB Via,jgNiaNip

3, =U(S)Cip Cia=U"(S)ai, 3
+3'> S'S. (1)  wherea, is a column vector with entrieg;,; anda,,
(i respectively. The transformed annihilation operators in local

99 quantization are represented 8y,. For the creation opera-
As proposed by de Gennés, Dagotto et al,®** and tors, we have

Furukawa:® thet,y spinsS are treated classically, which is

equivalent to the limitS—c. The spin degrees of freedom at =¢f ut(s) of =af u(s). (4)
are thus replaced by unit vectoBs, parametrized by polar e e ool e

and azimuthal angleg and¢; , respectively. The magnitude The unitary matrixU(S) depends upor§ and is chosen
of both corespins and, spins is absorbed into the exchange such that it diagonalizes the individual contributions to the
couplings. Kondo exchange
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ozt > _ 2ttt z bal spin-quantization axis, the ESF modgL) still contains
71a5=8u(28)81,= (VIS ESHU(S))Ci, ) contributions from both spin-up and spin-down electrons.
with 3 being the vector of Pauli matrices. The eigenvalues ofThe V-dependent contributions in the energy denominator
(2S) are=x1 and the matrix of eigenvectors is given by  have been ignored, sin¢¥;, ;s <|Ju|. In principle, the ef-
i fective Hamiltonian also contains “three-site” hopping pro-
G se ™ 6  cesses. It has been shoWthat the three-site term has neg-
st  —c /) ligible impact, and it has been ignored here.
Since each eigenvector can have an arbitrary phase, the
unitary matrix in Eq.(6) is not unique. This implies that

¢ se /e o
Siei‘/’i _Ci 0 e'B(l)

U(Si):(

with the abbreviationg;=cos@/2) ands;=sin(#/2) and
the restriction 6< ¢;<x. The Kondo exchange term in Eq.
(5) in the new representation reads

UiaS:ﬁiaT_ﬁiai' (7)
The spin-integrated density operatars, are unaffected by
the unitary transformation. The entire Kondo Hamiltonian
becomes uiw(S):(CiCj+Sisjei(¢’j7‘z’i))ei[a(j)*a(i)]

U($)=(

also diagonalizes the Kondo term. The additional phase fac-
tors modify the hopping integrals of the spin-up channel as

=cog 9;;/2) €'Y ) (], (12)

Consequently, in the one-dimensional case and with open
boundaries, we can choose the local phase factors such that
the nn hopping integrals are simply given by the real num-

- ot .
H___E tigaiﬁciaocjﬁa’_*'z‘JHz Nig|
ijaB ia

(7'0"

+ AN +J' .S .
igﬁ Via,jgiaNjptJ <|Ej> S-S ®  pers cosf;/2).
We have added an additional tetti=J,N proportional to B. Grand canonical treatment

the eg-electron numbeN, equivalent to a trivial shift of the

chemical potential. mechanical ¢, electron$ degrees of freedom. The appropri-
The prize to be paid for the simple structure of the Hund 9 : b degrees ot o ppropri-
ate way to cope with this situation in statistical mechanics is

term is that the modified hopping integrafs’; ; now depend {4 define the grand canonical partition function as
upon thet,, corespins,

Our model contains classicatoresping and quantum-

7,0’ o0’ = —B[F‘(01¢)—MN]

(5=t U (SHU(S))g0r =tig gt . (9) z f DLsltree ’

The relative orientation of the,y corespins at sité and L - o

enters via f pIs1=]1 f dé;sin 6, f dd)i), (13
1= 0 0

T0(Qy=c.c. +5s s al0(d—d) = . i i
Ui (S)=cic TS5, cos(;;/2)e™ where t indicates the trace over fermionic degrees of free-
i o(8)= a(cisje“”¢i— stie—imﬁi)sin( gij/g)eixu dom at inverse temperatyﬂa N is the operator for 'Fhe total

(10) number ofe, electronsL is the number of lattice sites, and
w stands for the chemical potential. Upon integrating out the
fermionic degrees of freedom, we obtain the statistical
weight of a corespin configuratiofi

These factors depend on the relative angjieof corespinsS
andsS; in the corespin configuratiofi and on some complex
phasesy;; and x;; . It should be noticed that the modified

hopping part of the Hamiltonian is still Hermitian because tr.e BIH(S) ~uN]
’ ' C
U = (U W(S)=——F—. (14)
The advantage of the local quantization is, as described in
Ref. 18, that the energetically unfavorable states vegh Equation(13) is the starting point of Monte Carlo simu-

electrons antiparallel to the local, corespins can be inte- lations for the Kondo modélwhere the sum over the clas-
grated out. This leads to the effective spinless fermion modesical spins is performed via importance sampling. The spin
configurationsS enter the Markov chain according to the

- " tilf,’jﬁtjl;'ia + weight factorw(S) that is computed via exact diagonaliza-
Hp= T 2 tia,jBCiaCJﬁ__ _ E . Tcia’cia tion of the corresponding Hamiltonian in E@). In the 1D
ek R " case, we have performed MC simulations, in which spins in
-~ o~ , domains of random lengths were rotated. We have performed
+ianB Via,jpNiaNjptJ <.EJ> S-S. (1) MC runs with 1000 measurements. The skip between subse-

guent measurements was chosen to be some hundreds of lat-
The spinless fermion operators correspond to spin-up eledice sweeps reducing autocorrelations to a negligible level.
trons (relative to thelocal corespin-orientationonly. The Apart from quantities that can be derived directly from
spin index has therefore been omitted. With respectdwa  the partition functionZ, we will also be interested in dy-
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namical observables, notably in the one-particle retardedpproximation(see beloy, these terms are respectively re-
Green'’s functior((aiw;a;rﬁa»w in global spin quantization. placed by 1 u?(S) and 2u?(S)—1.
This function follows from The introduction of UHA leads to the partition function

(@iaeia gl 0= f DISIW(S){(@iar i8] g0e- (15) zZ= f D[S] foldua(u—u(S))trce*ﬁ[F“”)*ﬂNl

The one-particle Green'’s functiof{a; . ; ]BU))w, corre-

sponding to a particular corespin configuratiSnis deter- . 1d ~BO(U)
mined from the Green’s function in local spin quantization B ul'y,(w)e :
by employing Eqs(3) and (4):

(19

i s s The integrand can be interpreted as {m®n-normalizedl
{@iac18{geN 0=U(S)s1U*(§)¢1{(Cia:CjgNs- (160  thermal probability density for the uniform hopping param-

To arrive at Eq.(16), we used the fact that ilocal quanti- eter,

zation only the spin-up channel contributes to
{Ciay;iC JTBU NS, ie, o=0¢'=1. The spin-down channel

has structures corresponding to the upper Kondo band, iR ¢consists of the density of corespin stale,s (u) and the

\é\'hl'nczIvr\;ecggigito'mﬁéﬁ;eqrﬂirg ?rr??niqur:ggg“r%gnbgznCBoItzmann factor. The former corresponds to a density of
P P 9 states and is given by

tion reads

p(ulg) =Ty (u)e F2W. (20

> (@@l s =l (Ciaict NS, (D) Iy, (u)= f DLS]ou—u(8)). @D

It accounts for the number of different corespin configura-
tions (multiplicity) that give rise to the same average hop-
ping amplitudeu. We note that since angla;/2 enter into

The unbiased Monte Carlo result for the spin-integrated one
particle Green’s function is therefore determined from

; ” Eqg. (10), this is different from the density of states of the
> <<aimr;aj,8(r>>w=f DLSIW(S)U(S){(CiniC] )5 - classical Heisenberg model. The grand poterfiéi)
18 ~ :
19 — BQ(u)=Intree” AHW NI (22

We note that the one-particle DOS is independent of the
choice of the spin quantization because it can be determingd obtained from the fermionic trace of the homogeneous
from diagonal Green'’s functions in real space. version of the Hamiltonian of Eq11), which reads

IIl. UNIFORM HOPPING APPROACH AT FINITE T tiarjpligi
p(u UE t|aJBC|aC],8 (1 U) E —s

The impact of the DE mechanism on the electronic kinetic a B W B'Z, 23
energy can be mimicked by averagehopping amplitudé?
In a previous papéef we introduced what we called the uni-
form hopping approaclUHA). It gave strikingly good re-
sults for ground- state properties. The idea behind UHA is to
replace the term:u in the hopping amplitude, Eq9),
which correspond to co#(;/2) as discussed before, by a uni-
form valueu. In Ref. 18, the optimal UHA parameterwas
determined by minimizing the ground-state energy. Here, w
will extend this approach to finite temperatures by taking.
entropic effects into account.

In order to introduce the finite-temperature UHA, we pro-

><ci*a,cia+i JZB ViagMian; g+ 3" Np(2u2—1).
(23

The uniform hopping approach presents an enormous
implification of the original problem. First, the evaluation of
he fermionic trace simplifies considerably; for noninteract-
ing electrons Y=0), it can even be computed analytically.
Second, the high-dimensional configuration space of the co-

ceed as follows. For a given corespin configuration charac respins shrinks to a unit interval. Once the density of core-
terized by the set of anglds, ,&,}, we define thaverage u spin stated™ (u) has been determined, the integration over

value the corespin states can be carried out.
The thermal probability densitp(u|g) in Eq. (20) con-
tains two competing factors. The density of corespin states
S)__ E Ui (S) FNp(u) peaks neau=2/3 and decreases algebraically to
zero asu approaches the bounds of the unit interval. A ten-
Here,N, is the number of nn pair§j). We now replace the dency towards ferromagnetiantiferromagneticorder is re-
individual factorsu][ in Eq. (13) by u(S). Besidesu]|', the  flected by an exponential increase of the Boltzmann factor
Hamiltonian depends ohJ ~7|? and onS- S;, which cor-  towardsu=1 (u=0). This factor becomes increasingly im-
respond to sﬁ(m‘}”/Z) and cos?, respectlvely. As a further portant with decreasing temperature. In the ferromagnetic
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1 ‘ - - A 2. Astonishingly, the data follow a unique curve and more-
e over they are fairly well described by the approximation em-
ployed.

<u>

IV. UHA VERSUS MONTE CARLO IN ONE DIMENSION

In this section, we scrutinize the uniform hopping ap-
proach by a detailed comparison of its results with MC data
0.7ry % 25 50 obtained for the original Hamiltonian, Eq11). Since the

- UHA affects only the treatment of the corespins, we will
0 10 20 30 40 50 restrict our attention to a one-orbital model and neglect the
B degeneracy of they orbitals. In this case, Hamiltonia(23)

FIG. 1. Mean(u) (solid line) and standard deviatiofdashed simplifies to
line) of p(u|B) vs inverse temperature for & 4luster at quarter 1- 2
filling. The B dependence of the variance is depicted in the inset. ﬂp(u) — UE CiTCj -5 2 zn; +V<E nin,
H i i)

case, the combined distribution has its peak, depending on +J'Ny(2u2—1), (24)

the value of3, somewhere between 2/3 andske Fig. 1 for P

an illustration in three dimensiopsWith increasingB, the ~ Wherez; denotes the number of nearest neighbors ofisite

peak shifts towardsi=1. For a one-dimensional chain with open boundary condi-
In summary, the configuration space of the corespins igion, I'y (u) can be calculated exactly. For a two-site lattice,

reduced to the one-parametric space of the UHA pararneter we findI";(u) = 2ux(0,1)(u), whereyg(u) denotes the char-

This simplification is based on the assumption that as far agcteristic function of the seB. Since the relative angles of

the Boltzmann factor is concerned, the effect of the corespinghe N,=L—1 nearest-neighbor pairs of a chain of length

on the electrons can be replaced by a mean effective hogre independent; (u) reduces to aN,— 1)-fold convolu-

ping. Fluctuations of the corespins are allowed for by the;y, of (). Theprefore,FNp(u) is piecewise polynomial

densityI'y (u) and by fluctuations of the UHA parameter, . .

SO T o i and can be evaluated numerically. It can be approximated by
resulting in a finite lifetime of the quasiparticles even in the, G4yssian, which is not surprising because the central limit
FM phase, and in a finite bandwidth even in the antiferroe4rem applies. In combination with the Boltzmann factor,
magnetic phase. The densliy, (u) takes care of the correct po\yever, a Gaussian approximation is not good enough be-
inclusion of the corespin entropy, which will become crucial cause the Boltzmann factor amplifies the tails of the distri-
in the ensuing discussion. bution.

Validity of the additional approximationin order to as-
sess the additional approximation introduced by the substitu-
tion of the terms(sir?(9/2))~1—{(cos®¥2)>=1—u? and . , _ _
(cos®)~2(cosd¥2)2—1=2u’~1, a Monte Carlo simula- In this section, we WI}| compare UHA with MC resu_lts for
tion with random spins on a $&imple cubic(sg lattice has ~ the DE model withv=J"=0, J, = for a one-dimensional
been performed. For each spin configuration, the mean vafyStem with oneey orbital per site. The Hamiltonian of Eq.
ues of the functions co8(2), cos(), and sik(9%/2) have (24) reduces to a one-particle tight-binding Hamiltonian
been computed. The resulting scatter plot is depicted in Fig.

A. Energy distribution

Hp(u)=—u2, clc;, (25)
(i.J)
with only kinetic energy. The hopping integralis the only
remnant of the interaction with thg, corespins. The grand
A potential reads
~ A
s z
~— [
o 8 —BQ(u)=2, In(1+e Alec— )
2 k
:f dEp (E)In(1+e FE-M), (26)
0 02 04 06 08 1 where the one-particle eigenvalugs= — 2u cosk depend on

u and p, (E) denotes the tight-binding DOS of the-site
lattice. (2(u) can now be computed easily, and along with
FIG. 2. Averagdsir(9/2)) and averagécos®) as a function of ~ €Xact results forl’y (u), we have access to the partition
the average hopping={cosd/2) for a 16 cluster. The dashed function and thermal quantities such as the kinetic energy. In
lines show the results of the approximation explained in the text. Fig. 3, the results for the kinetic energy are compared with

<cos(9/2)>
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FIG. 3. Kinetic energy vs8 for a 20-site Kondo chain with -
Jy==,1'=V=0, andN=10. The statistical errors of the Monte Ekin
Carlo data(circleg are smaller than the marker size. The MC data
are compared with results of UHfsolid line) and the canonical FIG. 4. Probability density for the kinetic energy of a 16-site DE
low-T approximation(dashed ling chain at half filling for various values gB. The histograms are

taken from unbiased Monte Carlo data. Solid lines represent UHA
those of unbiased MC simulations. One finds an impressiveesults.
agreement between the two results. The energies are repro-
duced within thg error bars fc_>r all valqes gt At higher The above considerations show that UHA on the average
temperatures, this agreement is not obvious at all because the . o .
correctly describes the kinetic processes. In order to give a

Eg:}zsg;n;ngiostggnvgglflju;stléggzg.k;l;/hteh:amga('zbt\ of the quCtua_more critical assessment of UHA, we study the fluctuations

For a canonical ensemble at sufficiently low temperaturegf the !<|net|c energy. I shogld be kept in mind that the
(canonical lowT approximation, one can derive an analyti- motivation of UHA is to describe the mean energy correctly.

cal result for the UHA. To do so, the functidi(u) is re- It is thus nota priori obvious whether UHA also properly
placed by the ground-state energy of the tight-bindingreﬂeCts its fluctuations. In UHA, the fluctuations of the ki-

Hamiltonian, which we write as netic energy are exclusively due to fluctuations of the uni-
form hopping parametar, that in turn is related to the rela-
Q(u)=uE,, (27) tive nn angles of corespins. In the full model, however, the

_ ) o _ relative nn angles fluctuate locally.
with a factorE, (total energy of a tight-binding system with gy sampling the contributions to the kinetic energy in a
unit hopping amplitudeindependent ofi. The canonical par- ¢ simulation including local fluctuations, we obtain histo-

tition function then reads grams for the full model. They can be compared with the
statistical distribution of the kinetic energy corresponding to
Z:f D[S]e~PUE, the UHA densityFNp(u)e‘m(”). The result of this compari-

son is depicted in Fig. 4. We find a perfect agreement be
Since u can be expressed as the average tween MC and UHA results revealing a nontrivial justifica-

=(1IN,)=cos(;/2), the exponential function can be writ- 10N of UHA.
ten as a product of factors containing only nn spins. In the
case of a 1D chain with open boundary conditions or for a
Bethe lattice, the relative angles of neighboring spins can
thus be integrated independently. Consequently, the partition We will now comment on the influence of the nn Hubbard
function factorizes andup to some unimportant constant interaction on the spectral density and compare MC with
factorg can be transformed to UHA results. A thorough discussion of correlation effects in

conjunction with the Kondo model will be given
1 Np 1-e 41+9) elsewheré! We have studied a 12-site chain with open
Zz(f dul“l(u)eug) = ZT
0

) boundaries at half filling of the effective spinless model, i.e.,
quarter filling of the original Kondo model. In this case the

with ¢=BE,/N,. By differentiation with respect t@, we implementation of the ESF model reduces the dimension of

obtain the kinetic energy the Lanczos basis fromy()=134596 to f)=924. Addi-
tionally, UHA replaces the sampling of spin configurations

2+20+2— 26t with a simple scan in the UHA parametefseveral 100 000

[ S ——— spin configurations in MC vs=20 values ol in the relevant

{({+1-¢€) urange[0.8,1.0 in UHA).
This result is shown as a dashed line in Fig. 3. The com- Without the Hubbard interaction, the system is ferromag-

parison with MC results shows an increasingly close agreenetic due to the DE mechanism. The spectral density, calcu-
ment for 3= 10. lated by MC and depicted in Fig. 12 of Ref. 18, is that of a

B. Spectral function and Coulomb correlations

Np

kin— Ek
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FIG. 5. Spectral density of a 12-site Kondo chain at quarter We now apply UHA to an sc crystal and determine the
filing (N=6) with V=2, J'=0.02, J4=6, 8=50. Data of the Curie temperature for the bare one-orbital DE model. The
Monte Carlo—Lanczos hybrid algorithiidashed linesare com-  crucial difference between the 1D and the 3D geometry is
pared with UHA resultgsolid line). The inset displays the DOS that in the latter the relative angles of nn corespin pairs are in
obtained from MC simulations. general correlated. Therefore, the correct denBigy(u) is

no longer a convolution of the densiky; (u) of a single spin
air.

tight-binding modet® The peaks are slightly broadened duep
to spin fluctuations. In UHA, through the variation of the A. Determination of T'y (u)
uniform hopping amplitudes, we obtain a superposition of ) °
tight-binding bands that combine to a broadened tight- In order to determ|n€Np(u) for a 3D geometry, we have
binding band. For the parametets=20, J,=6, andJ’ !0 resort to numerical approaches. We have employed the
=0.02 and aB="50, the average uniform hopping amplitude Wang-Landau algorithfil with single spin-flip updates,
(u) is found to be/u)=0.953. This yields a band wid of which was mvgnted for the Qetermlnatlon of the den5|ty of
W=3.8, which agrees with what we have found in MC sFates of classical moqlels. Figure 6 shows_the r.esulltmg den-
simulations. sity FNp(u) as a function ofu for an sc lattice with linear

We now include the nn Hubbard term with=2 in the dimensionsL,=4,6,10, and 12. As in the one-dimensional
ESF model Eq.(11), or alternatively in the UHA Hamil- €ase, lil'y (U)] diverges asi—0 andu—1. In fact, one can
tonian in Eq.(23). The Monte Carlo data are obtained by show that
resorting to a Lanczos exact diagonalization scheme for each
corespin configuration. The fermionic trace is then evaluated
by summing over enough lowest eigenstates, such that con-

vergence is ensured. Details will be given elsewfiére. in any spatial dimension. This divergence has important im-

In UHA, at—V model has to be diagonalized. The Lanc- pact on the low-temperature thermodynamic behavior. The
zos diagonalization for this model is not really faster than theémropy diverges logarithmically and the specific heat has a
diagonalization of the original model, but the configurationfijnite value forT—0. The scale in Fig. 6 might appear ex-
space is drastically reduced, as only the parameb&s to be  aggerated, but it is actually the small tail closeite 1 which
sampled within the unit interval € [0,1]. will become important for low temperatures.

Figure 5 shows the spectral density derived by both ap- The computational effort of finite-temperature UHA is
proaches. The electronic correlation has important impact oRow essentially reduced to the Wang-Landau determination

the spectral density. A gap appears in the middle of the originf I, (u), while the integration oveu to calculate various
nal Brillouin zone atk= /2, indicating the doubling of the P

unit cell due to charge ordering. In addition, the spectra ex

hibit more structure than just a simple quasiparticle peak.
This result is neither new nor surprising. The point we

want to make here is that UHA works well also for correlated

electrons, indicating that it can reliably be employed to study . ,

more sophisticated and more realistic models for the manga- B. FM to PM transition at J,=e, J'=0

nites, e.g., by including correlation effects, phononic degrees We now study the 3D DE model in the UHA. Based on

of freedom, and more orbital degrees of freedom. the tests of the preceding section, we expect the UHA results

u—1

In[FNp(u)] — (L=D)In(1—u) (28

physical results takes only a small amount of computer time.
Therefore, results can be obtained for much larger lattices
than with the conventional MC approach and, indeed, for a
whole range of temperatures at once.

104432-7



KOLLER, PRULL, EVERTZ, AND von der LINDEN PHYSICAL REVIEW B67, 104432 (2003

with unit hopping amplitudénow in three dimensiondor a
given electron filling. This approximation is justified because
Tc=0.17 is indeed small enough. The partition function now

reads
>
&) 1
Z:f duFNp(u)e*'BEk“. (30)
0
The impact of this “canonical lowr approximation” is il-
0 . . . lustrated in the inset of Fig. 7. We find that the position of the
o 01 02 03 04 05 peak is not affected at all. The only difference to the full
T grand canonical result is the longer tail at higher tempera-

-~ ) tures of the full result, which is due to additional fluctuations
FIG. 7. Specific heat per site of the sc DE modehat0.5 (v of the electrons.

=0) vs temperature fo =4 (bottor, L=6°,1C", andL =16’ The specific heat approaches a constant vélye 1 as
(top). Parameters arg,=,J’ =0. The results are obtained by the +_ " rpis can be inferred from Eq29), since, for low
“canonical low-T approximation”(see text In the inset, the ap- - . S
) o ) temperatures, the internal energy per lattice site is given by
proximate result for a T6lattice is compared with that of an exact . . .
grand canonical calculatiofdashed ling e,U* whose derivative with respect to temperature exactly
yields unity. This explains the plateau Gf, for T<0.1.

to be reliable also in this case. We restrict the present discus- Signatures of the FM to PM phase transition should show
sion to the casd, =<,J’ =0. For these parameters, only the UP especially in the magnetic susceptibiifty. For its cal-

FM and paramagnetitPM) phases existt2 culation, the densitj?‘Np(u) is not sufficient because a value
The trend from PM to FM can already be seen in Fig. 1,u of the average hopping does not determine the magnetiza-

where we show the expectation val¢e) of the uniform  tion m. Given the conditional probabilitp(m|u), the mo-

hopping parameter and its standard deviation as a function @hents of the magnetization are

the inverse temperatur@ at w=0. Already for a relatively

small system,p(u|B) is sharply peaked. Starting from

=2/3 at high temperatures, the expectation valug tends

towards unity, i.e., FM corespins, @ —~. From Eq.(28),

we find the asymptotic formula with

111
(Imi7y=2 [ dury (we oM
Z 0 p

1 1

u*=1+— (29 M(”)(u)=J’ dm/m|"p(m|u).
Bex 0

for the positionu* of the maximum ofp(u|B), wheree,  Egtimates of the conditional momenks™(u) have been

denotes the kinetic energy per lattice site of the tight-binding,,:2ined in a second run of the Wang-Landau algorithm. A

model with unit hopping parameter. It turns out that r  5n4om walk in the space of all corespin configurations is

=10, the curves fou* and(u) coincide. Well above this performed whose acceptance is controlled Hy,l(u). An
temperature, neaf~5.5, the variance op(ul/5) shows a estimator of the susceptibil®}?°is then given b ;
peak (see inset of Fig. ) indicating important fluctuations P 9 y

near this temperature. For the determination of the Curie
temperature of the DE model, we study the specific i&at
as a function of temperature for various system sizes. The
peaks of the specific heat at quarter filling=0.5) are plot-
ted in Fig. 7. They show signs of divergence as the lattice 60
size increases. This indicates the presence of a second-order
phase transition from FM to PM. We identify the position

x=BLEm?)—=(|m[)?).

T*=0.17 of the peak as the phase-transition temperatgre =~ 40
at n=0.5. This value is somewhat higher than that deter-
mined with the hybrid MC algorith®§ (T.=0.14) for a 18, 20
lattice but is better than the variational estinfatdl
=0.19.
In order to facilitate the calculation, particularly for elec- 00 01 02 03 04 05

tron fillings different fromn=0.5 (w=0), we consider a

: T
canonical ensemble and replace the Boltzmann factor by
e #F. If the temperature is small on the electronic energy FiG. 8. Magnetic susceptibility of the sc DE model at quarter
scale, we can replace the electronic free endfgy the filing (n=0.5) vs temperature for lattice size3 dottom), 6°,1¢%,
ground-state energlf=uE,. As introduced abovef, de-  and 16 (top). Parameters ard,=,J'=0. The results are ob-
notes the kinetic energy 8t=0 of the tight-binding model tained by the canonical low-approximation.
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400F . ‘ R UHA but is based on additional uncontrolled approxima-
paramagnetic tions. Our results for the DE model are in accord with other
300 estimateg13:20
Pl The experimentally observed phase diagram shows addi-
o tional phases for small concentrations: ferromagnetic insulat-
= 200 . ing (FI), paramagnetic insulating!), and a spin-canting in-
] ferromagnetic sulating(SCI) state. These states are not accounted for in our
100r present approach. For a correct description, a finite value of
scl FM J’ is important, as well as generalizations of UHA, which
ok : : : will be discussed elsewhefé.
0 0.1 0.2 0.3 0.4 0.5
X VI. CONCLUSIONS
FIG. 9. Curie temperaturédashed ling of the one-orbital DE In this paper, we have presented the uniform hopping ap-
model for a 18 cluster and=0.2 eV. Circles and phases PM, PI, proach(UHA) for the FM Kondo model at finite tempera-
FM, FI, and SCI are experimental resdftsor La; _,Sr,MnOs;. ture. We have used our method to calculate the ferromagnetic

to paramagnetic phase-transition temperature of the one-
Figure 8 shows the susceptibility as a function of the tem-orbital DE model for large 3D systems. We find that the DE
perature for various lattice sizes. We observe clear signs of model yields a Curie temperature that is comparable to the
divergence neail =0.18 which corroborates the transition experimental data.
temperature obtained from the specific heat. The finite temperature UHA in the frame of the ESF
The filling dependence of ¢ is easily determined from model reduces the numerical effort of a simulation by several
Eqg. (30). Since the filling dependence only enters g, orders of magnitude, while retaining all crucial physical fea-
which shows up in combination witB, we have the simple tures. In the example given in Sec. IV B, the reduction factor
relation is at least 16, The key idea is to map the physics of the
high-dimensional configuration space of thg corespins
BcEx=const onto an effective one-parametric model. The density of states
for the transition temperature. Thus, the Curie temperaturMt€ring our approach can be determined by the Wang-
T is proportional to the kinetic energg, of the tight- Landau algorithm. A full thermodynamic evaluation _of the
binding model which, in turn, is a function of the electron YHA model takes into account entropy and fluctuations of
filling. The proportionality of T¢ to the bandwidth has al- the corespins. Tests for 1D systems reveal that UHA r_esults
ready been found based on different approximatigig3! are in <_:Iose agreement with unbiased MC data for static and
In order to compare our calculations with experimenta/dynamic observables. _ _
results, we fix the single free parameter in the DE model, i.e., 1 hiS reduction in numerical effort will allow us to include
the hopping amplitude. We choose0.2 eV, a value rea- phon_omc a_nd/or.orbltal degrees of freedom in future numeri-
sonable for the materidf The dashed line of Fig. 9 shows cal S|mulat|qns in order to study more realistic models for
the Curie temperature obtained from the DE model in UHA (N manganites.
We find an astonishingly good agreement to the experimen-
tally observed phase diagram ofLgSr,MnQOgs in the ferro-
magnetic regime. Our result is in sharp contrast to the claim This work has been supported by the Austrian Science
made by Milliset al!® that the DE model cannot even ex- Fund (FWF), Project No. P15834-PHY. We are indebted to
plain the right order of magnitude df. for the manganites. W. Nolting for stimulating discussions and to V. Marti
The reasoning of Ref. 19 starts from similar ideas as thévlayor for drawing our attention to Refs. 16, 17, and 27.
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