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Low-temperature Lanczos method for strongly correlated systems
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We present a modified finite-temperature Lanczos method for the evaluation of dynamical and static quan-
tities of strongly correlated electron systems that complements the finite-temperature method introduced by
Jaklič and Prelovsˇek for low temperatures. Together they allow accurate calculations at any temperature with
moderate effort. As an example we calculate the static spin-correlation function and the regular part of the
optical conductivitys reg(v) of the one-dimensional Hubbard model at half filling and show in detail the
connection between the ground-state and finite-temperature method. By using cluster perturbation theory, the
finite-temperature spectral function is extended to the infinite system, clearly exhibiting the effects of spin-
charge separation.
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The finite-temperature Lanczos method, introduced
Jakličand Prelovsˇek,1 has in recent years allowed the preci
calculation of thermodynamic quantities of strongly cor
lated systems. It has been applied to thet-J model for the
cuprates2–8 and vanadates,9,10 orbital t-J model,11 Kondo lat-
tice model,12 Heisenberg model,13 and static properties of th
Hubbard model.14,15 In principle, this method can be applie
at all temperatures, but at low temperatures, the requ
number of random samples is very large. FTLM is restric
to small systems, and particularly at low temperatures, fin
size effects become important. They can be overcome
least for properties derived from the single-particle Gree
function, by using cluster perturbation theory~CPT!,16,17

which provides infinite system results with remarkab
accuracy.18 However, CPT requires finite cluster Gree
functionsGab(v) for all sitesa,b, increasing the number o
required Lanczos runs and matrix elements by a factor e
to the number of lattice sites. It therefore requires a su
ciently fast low-temperature method.

In this paper, we present a modified finite-temperat
Lanczos method that allows us to calculate properties
large Hilbert spaces at low temperatures that are not ac
sible by the existing method. We show that a combination
our low-temperature Lanczos method~LTLM ! with the
FTLM allows an accurate calculation of thermodynam
properties at any temperature with moderate effort.

Let us first present the existing FTLM. For the case o
static expectation value of an operatorO
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with b51/T (kB5\51) and a sum over a complete orth
normal basis setun&, the FTLM approximation is
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with a sum over symmetry sectorss of dimensionNs andR
random vectorsur & in each sector.19 M is the number of
Lanczos steps. For each random vectorur &, a Lanczos pro-
cedure is performed, yieldingM eigenenergies«m

(r ) and cor-
responding eigenvectorsuCm

(r )&. The trace in Eq.~1! requires
Ns states, while very accurate results can be obtained via
~2! even for a drastically reduced number of Lanczos st
M!Ns and a partial random sampling of the Hilbert su
spacesR!Ns .

For dynamical correlation functionsC(t)5^A(t)B&,
FTLM calculates

C~ t !5
1

Z (
s

Ns

R (
r

R

(
i , j

M

e2b« i
(r )

e2 i ( «̃ j
(r )

2« i
(r ))t^r uC i

(r )&

3^C i
(r )uAuC̃ j

(r )&^C̃ j
(r )uBur &. ~3!

Here, an initial vector

uF̃0
(r )&5Bur &/A^r uB†Bur & ~4!

is used to generate additional eigenenergies«̃ j
(r ) and eigen-

vectorsuC̃ j
(r )& from that part of the Hilbert space onto whic

the operatorB projects. Hence, the term̂C̃ j
(r )uBur & in Eq.

~3! becomes sufficiently large.
Let us now consider the behavior of Eqs.~2! and ~3! in

the limit T→0. In this case, only the ground stateuC0&
contributes and we get

^O&5(
r

R

^C0uOur &^r uC0&/(
r

R

^C0ur &^r uC0& ~5!

and similarly for Eq.~3!. Thus, the ground-state result wi
suffer from severe statistical fluctuations, although the ex
~Lanczos! eigenvectoruC0& is reached with everyur & and
one random vector should be sufficient. Yet FTLM ge
worse with decreasing temperatureT.

The modifications we present in this paper are designe
overcome this limitation. Let us put forward a method for
static expectation value~1!. We use a symmetric form
©2003 The American Physical Society03-1
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As before, we approximate the trace by random sampl
but now we insert the approximate eigenbasis obtained
the Lanczos procedure twice, initially obtaining
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The partition functionZ is calculated in the same way as
standard FTLM. The behavior in the limitT→0 is now dif-
ferent. If only the ground stateuC0& contributes, Eq.~7!
becomes
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In agreement with ground-state Lanczos, one random ve
suffices for the ground-state expectation value.

If we compute the numerators in Eq.~7! andZ separately,
both suffer from pronounced statistical fluctuations, wh
however cancel exactly atT50 as shown in Eq.~8!. For
finite T the fluctuations in numerator and denominator do
cancel exactly, but they are still strongly correlated. Sepa
error analysis for both terms would overestimate the stat
cal noise. These correlations are taken into account by
ploying a jackknife technique.20

For dynamical correlation functions, a straightforwa
variant of Eq.~3! suitable for low temperatures is
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FIG. 1. Spin-correlation functionC15^Si
zSi 11

z & for the one-
dimensional Hubbard model on a 12 site chain with periodic bou
ary conditions atU58t andn51. Solid: LTLM with bc51, «c

50.01, M5100, andR525. Dashed: Two independent runs
FTLM with M5100 andR525. Inset: Deviation ofC1 in the high-
temperature region beyondbc . Here,R550 in both cases.
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In order to span the relevant subspace of the Hilbert sp
we now choose initial vectorsuF̃0

(r ,i )&}BuC i
(r )& for the sec-

ond Lanczos run. WithM such second Lanczos runs, th
numerical effort would be much higher than for FTLM. Fo
low temperatures, it can be reduced, since only the low-ly
states contribute to the expectation values. We consider
states below a cutoff energyEc , defined by

e2bc(Ec2E0),«c , ~10!

where«c defines the accuracy of the approximation andbc is
the minimal inverse temperature considered, and the ca
lation will be accurate for allb.bc . We thus proceed as
follows: For each random start vectorur &, we perform an
initial Lanczos run withM iterations. For each of theMc

statesuc i
(r )& with energies belowEc , we then calculate an

initial vector uF̃0
(r ,i )&}BuC i

(r )& and perform a second ru
with M Lanczos iterations, obtaining an approximate eige
basisuC̃ j

(r ,i )&. Using these basis sets, the final form of LTL

is the same as Eqs. 7 and 9, with( i ,l
M andC̃ j

(r ) replaced by

( i ,l
Mc andC̃ j

(r ,i ) , respectively.
Memory requirements of our method are the same as

standard FTLM, but the CPU time requirements differ s
nificantly. CPU time is mainly determined by the number
matrix elements that have to be calculated. In the case
static expectation values, these areM for FTLM and Mc

2 for
LTLM for each random vector. Therefore, both metho
reach equivalent CPU time requirements per random ve
whenMc'AM .

For dynamical correlation functions, the number of mat
elements to be calculated in the second Lanczos run isM2

for FTLM and Mc
2 for LTLM. For LTLM, we have to per-

form Mc second Lanczos runs, but only one for FTLM
Thus, we have similar CPU time requirements per rand
vector for both methods whenMc'M (2/3). In the limit T
→0, we haveMc51, and forR51, LTLM is comparable to
the ground-state Lanczos technique.

For both methods, CPU time is proportional toR, the
number of random vectors. But, by design, far fewer rand
vectors are needed for the LTLM than for the FTLM at lo
temperatures for a given accuracy.

All considerations so far have been done without rega
ing reorthogonalization of Lanczos vectors. This proced

-

FIG. 2. Relative statistical errorsDC1 /C1 of LTLM ~solid! and
FTLM ~dashed! with R525 in both cases. Other parameters as
Fig. 1. The error of LTLM atT50.01t is D rel51028.
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becomes important forM*150, where numerical roundof
errors become significant, and significantly increases C
requirements.

Let us now demonstrate the method for the calculation
static and dynamical properties of the one-dimensional H
bard model, with Hamiltonian

H52t(
i ,s

~cis
† ci 11,s1H.c.!1U(

i
ni↑ni↓ . ~11!

We specify energies in units oft. As an example, we calcu
late the static spin-correlation functionC15^Si

zSi 11
z & on a 12

site chain with periodic boundary conditions at half fillin
(n51). The number of basis states isN52 704 156. Sym-
metry sectors are specified by momentumk and total spin
Sz . The largest sectorSz561 has 52 272 basis states. Th
sectorSz50 is further reduced due to spin-up/~-down! sym-
metry. In Figs. 1 and 2, the convergence and statistical er
of LTLM and FTLM are compared at equal computation
effort, with R525 random samples per symmetry sect
each corresponding to sampling ofR/Ns'0.05% of the larg-
est Hilbert subspace. At low temperatures, our method p
vides results that are orders of magnitude more precise
from standard FTLM, and which connect smoothly to t
ground-state properties. We checked that for largerR, there is
no systematic drift for either method, and the FTLM resu
converge towards those of LTLM. At intermediate tempe
tures, the statistical errors of LTLM increase and beco
similar to those of FTLM. Finally, considerably beyond th
chosen cutoff temperature 1/bc , LTLM is no longer appli-
cable and begins to show a systematic deviation.

Both FTLM and LTLM provide results for a range o
temperatures from a single calculation. For FTLM, this ran
is limited towards low temperatures by statistical errors. F
LTLM, it is limited by the chosen cutoff temperature 1/bc .

FIG. 3. Regular part of the optical conductivity of the on
dimensional Hubbard model on a 12 site chain with periodic bou
ary conditions atU56t andn51. Left panel: LTLM calculations
with bc53, «c50.01, andR540. Right panel: FTLM calculations
with R550. Number of Lanczos stepsM5100 and additional
broadening ofs50.1. Dots mark the zero line. Only selecte
error bars are shown. For curves without error bars, the errors
smaller than the linewidth.
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Therefore, a combination of both methods provides prec
results for all temperatures with moderate effort.

As an example of dynamical correlation functions we c
culate the regular part of the optical conductivity, given
the current-current correlation function

s reg5
12e2bv

v
ReE

0

`

dt eivt^ j ~ t ! j &, ~12!

with the current operatorj 5 i t ( i ,s(cis
† ci 11,s2H.c.). In Fig.

3, we show results with approximately the same CPU ti
for both methods. Slightly above the ground-state, atb
540, LTLM approaches the exact ground-state result.21,22

For intermediate temperaturesb510, 5, and 3, slight statis
tical fluctuations occur. With comparison to FTLM, we s
that b51,bc is indeed beyond the validity of this calcula
tion. We also checked the accuracy of the results by us
M5200 Lanczos steps instead ofM5100, yielding the same
LTLM spectra within statistical errors.

In contrast, FTLM suffers from strong statistical fluctu
tions at small temperatures. Error bars are very large
regions occur wheres reg(v) becomes negative, a clear in
dicator that we did not use enough random vectors
FTLM. As expected from our consideration of static expe
tation values, error bars of FTLM get smaller for higher te
peratures. As for LTLM, we did calculations withM5200,
yielding the, same curves within error bars but leading t
better convergence at the high-frequency side of
spectrum.

As mentioned in the beginning, at low temperature, fini
size effects become important. At least for properties de
able from the single-particle Green’s function, these effe

-

re FIG. 4. Spectral functionA(k,v) obtained by LTLM for the
one-dimensional Hubbard model atU58t, n51, andb510. Pa-
rameters:R530, bc53, and«c50.01. Upper panel: 8 site chai
with periodic boundary conditions. Lower panel: CPT result bas
on 8 site clusters.
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can be overcome by using CPT.16,17 In Fig. 4, we show the
finite-temperature spectral functionA(k,v) obtained on a
finite-size lattice with periodic boundary conditions, and t
infinite lattice result obtained by CPT, which makes use
all the Green functions on the finite lattice as calculated
LTLM. In the latter, a smooth structure consisting of seve
branches can clearly be seen with spin-charge separatio
k50 visible in the lower part of the spectrum.16,23 On the
finite-size cluster, however, this structure is not evident a
exhibits more discrete excitations. Further work on fini
temperature CPT is in progress.18
ys

16110
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In conclusion, the method presented in this paper gives
accurate connection of the exact ground-state Lanc
method and the established FTLM. Using LTLM at low an
FTLM at higher temperatures makes it possible to calcu
static and dynamical properties of strongly correlated s
tems fromT50 up to T5` with very good accuracy and
rather small numerical effort.

This work has been supported by the Austrian Scie
Fund ~FWF! under projects Nos. P15834 and P15520. M
was supported by a DOC-scholarship of the Austrian Ac
emy of Sciences.
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15J. Bonča and P. Prelovsˇek, Phys. Rev. B67, 085103~2003!.
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