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We present a modified finite-temperature Lanczos method for the evaluation of dynamical and static quan-
tities of strongly correlated electron systems that complements the finite-temperature method introduced by
Jaklicand Prelovsk for low temperatures. Together they allow accurate calculations at any temperature with
moderate effort. As an example we calculate the static spin-correlation function and the regular part of the
optical conductivityo"®%(w) of the one-dimensional Hubbard model at half filling and show in detail the
connection between the ground-state and finite-temperature method. By using cluster perturbation theory, the
finite-temperature spectral function is extended to the infinite system, clearly exhibiting the effects of spin-
charge separation.
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The finite-temperature Lanczos method, introduced bywith a sum over symmetry sectosof dimensionNg andR
Jaklicand Prelovek,! has in recent years allowed the preciserandom vectorgr) in each sectol? M is the number of
calculation of thermodynamic quantities of strongly corre-Lanczos steps. For each random vedtor a Lanczos pro-
lated systems. It has been applied to the model for the  cedure is performed, yieldinyl eigenenergies(!) and cor-
cuprate$® and vanadate$!° orbital t-J model* Kondo lat- responding eigenvectof¥{")). The trace in Eq(1) requires
tice model,* Heisenberg modeéf, and static properties of the N_ states, while very accurate results can be obtained via Eq.
Hubbard modet™**In principle, this method can be applied (2) even for a drastically reduced number of Lanczos steps
at all temperatures, but at low temperatures, the requirefj <N, and a partial random sampling of the Hilbert sub-
number of random samples is very large. FTLM is restrictedspacesR<N.
to small systems, and particularly at low temperatures, finite- For  dynamical correlation functionsC(t) = (A(t)B),
size effects become important. They can be overcome, &T|M calculates
least for properties derived from the single-particle Green'’s
function, by using cluster perturbation theof¢PT),*¢%’ 1_NR M
which provides infinite system results with remarkable, cp)==> =3 3 efﬁef’)efi@}’)fsi‘”)t“|q,i(r)>
accuracy® However, CPT requires finite cluster Greens 25 R
functionsG,,(w) for all sitesa,b, increasing the number of (1 A LT (O /5 ()
required Lanczos runs and matrix elements by a factor equal X(¥; |A|\I’j ><q'i [BIr). 3
to the number of lattice sites. It therefore requires a suffi- I
ciently fast low-temperature method. Here, an initial vector

In this paper, we present a modified finite-temperature _

Lanczos method that allows us to calculate properties for |D§7y=8]|r)/\(r[BBJr) (4
large Hilbert spaces at low temperatures that are not acces- 5
sible by the existing method. We show that a combination ofs used to generate additional eigenenergiﬁ% and eigen-

our Iow-lfemperature Lanczosl rr}ethc(diTl;Mg Withd the vectors| ¥ (") from that part of the Hilbert space onto which
FTLM allows an accurate calcu ation of thermo ynamic,, operatorB projects. Hence, the ter¢1~1'(r)|B|r> in Eq.
properties at any temperature with moderate effort. 3) becomes sufficiently large ]

) N (
Let us first present the existing FTLM. For the case of a Let us now consider the behavior of Edg) and (3) in

static expectation value of an operatdr the limit T—0. In this case, only the ground stafté)
contributes and we get

N N
©)=5 3 (nloe ), 2= (nle ). (1 . .
(0)= 2 (Wo|Olr)(r| W)/ 2 (Wolr)(r|¥o) ~ (5)

with B=1/T (kg=#=1) and a sum over a complete ortho-

normal basis sen), the FTLM approximation is and similarly for Eq.(3). Thus, the ground-state result will

R M suffer from severe statistical fluctuations, although the exact
1 & Ng " (Lanczos eigenvecto| W) i hed with d
_i5 Ns e (O /x5 (1) g o) is reached with everyr) an
(0) Z z R 2 % e Fom(r[ W)Wyl Olr), one random vector should be sufficient. Yet FTLM gets
worse with decreasing temperature
N.R M The modifications we present in this paper are designed to
—pelD) his limitation. Let us put forward a method for a
7= 3 r|w Oy [2e~Bely 2 overcome this p _
z R Z % Krl¥adl @ static expectation valugl). We use a symmetric form
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1 N In order to span the relevant subspace of the Hilbert space,
— — (1 — (U . ~ (1
(O)=5 ; (nje” (V2R Oe™ (12| n), (6)  we now choose initial vectorgb{"")oB|W (") for the sec-

ond Lanczos run. WitV such second Lanczos runs, the
As before, we approximate the trace by random samplingpumerical effort would be much higher than for FTLM. For
but now we insert the approximate eigenbasis obtained bipw temperatures, it can be reduced, since only the low-lying
the Lanczos procedure twice, initially obtaining states contribute to the expectation values. We consider only
states below a cutoff enerdy,, defined by

R M
1 N B NGOG
<O>:Z ES ES 2 2 e (L2)B(e "+ ey )<r|\I’|(r)> efﬁc(chE0)<8C, (10)
(WD O] eV WwO]r). (7)  wheree defines the accuracy of the approximation ghds

the minimal inverse temperature considered, and the calcu-
The partition functiorZ is calculated in the same way as in lation will be accurate for all3>8.. We thus proceed as
standard FTLM. The behavior in the limit— 0 is now dif-  follows: For each random start vectfr), we perform an
ferent. If only the ground stateé¥,) contributes, Eq.(7) initial Lanczos run withM iterations. For each of thif

becomes states|y{")) with energies belovE,, we then calculate an
R R initial vector |®JV)ocB| W) and perform a second run
(C')):E (‘I’o|r><r|‘1’o><‘1’o|@|‘1’o>/2 (Wo|r)(r| W) with MNanczos iterations, obtaining an approximate eigen-
T T basis| ¥{""). Using these basis sets, the final form of LTLM
=(V,|O|¥,). (8) isw'fhe same as Egs. 7 and 9, witl| and\I'J(r) replaced by
DN and\lfj(”'), respectively.

In agreement with ground-state Lanczos, one random vector"
suffices for the ground-state expectation value.

If we compute the numerators in E) andZ separately,
both suffer from pronounced statistical fluctuations, which

however cancel exactly al=0 as shown in Eq(8). For static expectation values, these dteor FTLM and Mg for

finite T the fluctuations in numerator and denominator do noﬁ_TLM for each random vector. Therefore. both methods

cancel exactly, but they are still strongly correlated. Separatg,, ., oqjivalent CPU time requirements per random vector
error analysis for both terms would overestimate the statisti- henM .~ M
- CN '

cal noise. These correlations are taken into account by ent? . . . .
. . . . For dynamical correlation functions, the number of matrix
ploying a jackknife technique: elements to be calculated in the second Lanczos ru3s
For dynamical correlation functions, a straightforwardf FTLM and M2 for LTLM. For LTLM h ¢
variant of Eq.(3) suitable for low temperatures is or and M for - or » We have 1o per-
form M. second Lanczos runs, but only one for FTLM.
1 N.R M Thus, we have similar CPU time requirements per random
Cy==> =SS 128" +e(") vector for both methods whekl ;~M @3, In the limit T
Z% R —0, we haveM =1, and forR=1, LTLM is comparable to

Memory requirements of our method are the same as for
standard FTLM, but the CPU time requirements differ sig-
nificantly. CPU time is mainly determined by the number of
matrix elements that have to be calculated. In the case of

the ground-state Lanczos technique.

For both methods, CPU time is proportional R the
number of random vectors. But, by design, far fewer random
vectors are needed for the LTLM than for the FTLM at low
temperatures for a given accuracy.

All considerations so far have been done without regard-
ing reorthogonalization of Lanczos vectors. This procedure

Xe—i[Ej“)—(1/2)(afr)+s,(”)]t<r|\I,|r><q,l(r)|A|q,J(r)>

X(TOBIw (P Or). 9
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FIG. 1. Spin-correlation functiorC,=(S’S’, ;) for the one- O_|01 N 1 .

dimensional Hubbard model on a 12 site chain with periodic bound- T/t

ary conditions atU=8t andn=1. Solid: LTLM with B.,=1, &,

=0.01, M=100, andR=25. Dashed: Two independent runs of FIG. 2. Relative statistical errotsC,/C, of LTLM (solid) and
FTLM with M =100 andR=25. Inset: Deviation o€, in the high-  FTLM (dashedl with R=25 in both cases. Other parameters as in
temperature region beyongl.. Here,R=50 in both cases. Fig. 1. The error of LTLM afT=0.01t is A,¢=10"5.
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FIG. 3. Regular part of the optical conductivity of the one- f—_
dimensional Hubbard model on a 12 site chain with periodic bound- -5
ary conditions atU=6t andn=1. Left panel: LTLM calculations
with B8.=3, £,=0.01, andR=40. Right panel: FTLM calculations

with R=50. Number of Lanczos stepsl=100 and additional 0 L

broadening ofc=0.1. Dots mark the zero line. Only selected k

error bars are shown. For curves without error bars, the errors are fig. 4. Spectral functiorA(k,») obtained by LTLM for the

smaller than the linewidth. one-dimensional Hubbard model dt=8t, n=1, and8=10. Pa-
rametersR=30, B.=3, ande.=0.01. Upper panel: 8 site chain

becomes important foM =150, where numerical roundoff with periodic boundary conditions. Lower panel: CPT result based

errors become significant, and significantly increases CPWn 8 site clusters.

requirements.

Let us now demonstrate the method for the calculation offherefore, a combination of both methods provides precise

static and dynamical properties of the one-dimensional Hubresults for all temperatures with moderate effort.

bard model, with Hamiltonian As an example of dynamical correlation functions we cal-
culate the regular part of the optical conductivity, given by

H= _tiz (¢l CirrptHC)HUS . (1D) the current-current correlation function
T |

_g B o
We specify energies in units of As an example, we calcu- UrengRef dte(j(1)j), (12)
late the static spin-correlation functi@® =(S'S’, ;) on a 12 °
site chain with periodic boundary conditions at half filling with the current operatojr=itEi,U(ciTchl‘g—H.c.). In Fig.
(n=1). The number of basis statesNs=2 704 156. Sym- 3, we show results with approximately the same CPU time
metry sectors are specified by momentknand total spin for both methods. Slightly above the ground-state,Bat
S,. The largest sectoB,= +1 has 52272 basis states. The =40, LTLM approaches the exact ground-state resft.
sectorS,=0 is further reduced due to spin-tyffown) sym-  For intermediate temperaturgs=10, 5, and 3, slight statis-
metry. In Figs. 1 and 2, the convergence and statistical errortical fluctuations occur. With comparison to FTLM, we see
of LTLM and FTLM are compared at equal computational that 3= 1< g, is indeed beyond the validity of this calcula-
effort, with R=25 random samples per symmetry sector,tion. We also checked the accuracy of the results by using
each corresponding to sampling®fN¢~0.05% of the larg- M =200 Lanczos steps insteadf= 100, yielding the same
est Hilbert subspace. At low temperatures, our method protTLM spectra within statistical errors.
vides results that are orders of magnitude more precise than In contrast, FTLM suffers from strong statistical fluctua-
from standard FTLM, and which connect smoothly to thetions at small temperatures. Error bars are very large and
ground-state properties. We checked that for laRje¢here is  regions occur where'®%(w) becomes negative, a clear in-
no systematic drift for either method, and the FTLM resultsdicator that we did not use enough random vectors for
converge towards those of LTLM. At intermediate tempera-FTLM. As expected from our consideration of static expec-
tures, the statistical errors of LTLM increase and becomdation values, error bars of FTLM get smaller for higher tem-
similar to those of FTLM. Finally, considerably beyond the peratures. As for LTLM, we did calculations witid =200,
chosen cutoff temperature @/, LTLM is no longer appli- yielding the, same curves within error bars but leading to a
cable and begins to show a systematic deviation. better convergence at the high-frequency side of the

Both FTLM and LTLM provide results for a range of spectrum.

temperatures from a single calculation. For FTLM, this range As mentioned in the beginning, at low temperature, finite-
is limited towards low temperatures by statistical errors. Fomsize effects become important. At least for properties deriv-
LTLM, it is limited by the chosen cutoff temperaturegL/. able from the single-particle Green’s function, these effects
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can be overcome by using CP*’ In Fig. 4, we show the In conclusion, the method presented in this paper gives an
finite-temperature spectral functioh(k,) obtained on a accurate connection of the exact ground-state Lanczos
finite-size lattice with periodic boundary conditions, and themethod and the established FTLM. Using LTLM at low and

infinite lattice result obtained by CPT, which makes use ofFTLM at higher temperatures makes it possible to calculate
all the Green functions on the finite lattice as calculated bystatic and dynamical properties of strongly correlated sys-

LTLM. In the latter, a smooth structure consisting of severaltems fromT=0 up to T=c with very good accuracy and

branches can clearly be seen with spin-charge separation
k=0 visible in the lower part of the spectruth?® On the

rther small numerical effort.
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