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We investigate charge ordering in the presence of electron-phonon coupling for quarter-filled ladder systems
by using exact diagonalization. As an example we consider,gVising model parameters obtained from
first-principles band-structure calculations. The relevant Holstein coupling to the lattice considerably reduces
the critical value of the nearest-neighbor Coulomb repulsion at which formation of the zig-zag charge-ordered
state occurs, which is then accompanied by a static lattice distortion. Energy and length of a kink-like excita-
tion on the background of the distorted lattice are calculated. Spin and charge spectra on ladders with and
without static distortion are obtained, and the charge gap and the effective spin-spin exchange pararaeter
extracted.J agrees well with experimental results. Analysis of the dynamical Holstein model, restricted to a
small number of phonons, shows that low frequency lattice vibrations have a strong influence on the charge
ordering, particularly in the vicinity of the phase transition point. By investigating the charge order parameter
we conclude that phonons produce dynamical zig-zag lattice distortions. A model with only static distortions
gives a good description of the system well away from the transition point while overestimating the amount of
charge ordering in the vicinity of the phase transition.
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I. INTRODUCTION 10,11. The low-energy excitations of the zig-zag order pa-

The formation of an ordered pattern of ion charges is da@Meter are also strongly influenced by the lattice.

rather general type of phase transition which occurs in three- | N€ Static properties of the ground state of the doped lad-
as well as lower-dimensional solids. It has been known fod€rs without coupling to lattice distortions were extensively
more than six decadkssince its discovery in magnetite 'NVestigated using mean field approaches? the density-

: ng | o e ¢
Fe,0,. Even in that compound this phenomenon still attractdN@trix renormalization-groupbMRG), ™ bosonization, and

a lot of attention due to the interesting physics of the transif€normalization group techniqués.The DMRG studies

tion. Since the charge ordering causes changes in the intethow that at strong enough Hubbard interaction the ladders

action between the ions, it drives a lattice distortion, Which,exhlblt a zig-zag charge order if the repulsion between the
in turn, influences the ordering pattern. The quarter_ﬁ"edelectrons on the nearest-neighbor sites exceeds some critical

ladder compound NayDs (Ref. 2 is another interesting ex- value V.. The corresponding phase transition is of second-

ample of a svstem which shows charae ordering. Here thorder as a function d¥. For a very strong intersite repulsion,
pie Y . 9 9. hase separation becomes posstbIBynamical properties
transition, as observed in the nuclear magnetic resonan

: ; . ere studied with exact numerical diagonalizatfor® with-
experiments, occurs atTco=35 K and is accompanied by ¢ taking into account the coupling to the lattice. They were
the formation of a spin gdpat the sameor sllghtly lower quite successful in understanding N&¢ dynamical prop-
temperature. In Na)Os, where oned,, electron is shared by grties above the transition temperature.
two Vions in a V-O-V rung, the ordering occurs as a static  The investigation of the ordering of electrons interacting
charge disproportiony between the V ions, which obtain with the lattice requires the knowledge of electron-phonon
charges 4.58 with a zig-zag pattern of's. Most probably,  couplings and lattice force constants in addition to electronic
the main driving force for the transition is the Coulomb re- parameters such as hopping matrix elements and electron
pulsion of electrons on the nearest-neighbor sites within oneorrelations. For a given compound almost all of these pa-
leg of the ladder. For half the ladders the apical oxygen ion isameters can be extracted from first-principles band-structure
located below the ladder and for the other half above. Thereealculations. The force constants and electron-phonon cou-
fore the crystal environment of the V ions is asymmetric, andpling can be obtained by comparing the total energies and the
the d,, electron is subject to a strong Holstein-like electron-interionic forces in distorted and undistorted lattices. The
phonon coupling.As a result, the transition is accompanied phonon frequencies required for studies of dynamical lattice
by the displacement of ions from their positions in the high-distortions are given by experimehtwhile the necessary
temperature phasél>Tco). They then form a larger unit knowledge of their eigenvectors can be obtained from first-
cell, as clearly seen directly in the x-ray diffraction principles calculations. We performed such calculations of
experimentd,where displacements of V ions of the order of the band structure, lattice dynamics and electron-phonon
0.05 A were observed, and indirectly in the appearance ooupling for the NayOs; compound. These calculations are
new phonon modes in the infrared absorptiamd Raman in good agreement with Ref. 2 in the part concerning the
scattering spectra. band structure, and their details as well as a comparison to
The importance of the coupling to the lattice for phaseother first-principles calculatios will be published
transitions in quarter-filled systems was shown in Refselsewheré&? In the present paper we will concentrate on the
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strongest electron-phonon mode present in p&ywhich is —9Q () ® —
a simple Holstein-type interacticf.
We therefore investigate a model which takes into account t
the main interactions, i.e., the Hubbard and intersite repul- a
sions and the coupling to the lattice. We study the ground-
state properties of a quarter-filled ladder coupled to static a —. ! . . —
b

lattice distortion with the Lanczos algorithm. We show that
the ordering is strongly enhanced by the interaction with the b
lattice for realistic values of the coupling. Secondly, the in-
. . : . 1 0 1
teraction with dynamicalquantum phonons at different fre-
guencies within the Holstein model is considered. We find —’ O . —
that indeed, the quantum phonons produce and stabilize the
static order. {
The paper is organized as follows. In Sec. Il we introduce a
the extended Hubbard mod@tHM) with additional lattice
distortions. In Sec. lll we present results for static properties _O t . Q —
of this model, including kink excitations. Dynamical quanti- 0 b 1 0
ties are discussed in Sec. IV. Section V focuses on the influ-
ence of dynamical phonons, and finally we give our conclu- FIG. 1. Schematic picture of ladders, with hopping matrix ele-
sions in Sec. VI. mentst, on the rungs and, along the chains. The darkness of the
circles corresponds to the charges on the sites of the ladder. The
upper ladder is shown without charge order, the lower ladder with
Il. MODEL zigzag charge order.

The quarter-filled ladder compound’-NaV,05 can be
described microscopically by an extended Hubbndt-U pressed in units of 0.08 since the ion displacement below

-V) model (EHM). For the description of the distorted low- . . . :
temperature phase we also include the coupling of electron-gcO are of this order of magn|tu_d7e\N|th the chosen units of
to the lattice, yielding the model energy and length the comparison of the band structure and

lattice force calculations done on distorted and undistorted
H=Hgyu +H, + Hey, 1) lattices give the dimensionless constarts0.125 andC
=0.35, respectivel§? The effective coupling paramet€?/ «
is close to unity and, therefore, the lattice plays an important
role in determining the properties of NaWs.
Henw=-— 2> tij(CiTg—ng+ H.c)+U> NNy + > vinin;, _The Hamilt_onian in Ea(d) will bg use_d for_ calculations
(ij).o i Gij) with both static and dynamical lattice distortions. All quan-
(2a) tities presented in this paper are calculated by the ground
state Lanczos method on single ladders of up to eight rungs,
which enabled us to perform simple finite size scaling. The
(2b)  largest Hilbert space for the eight rung lattice considered in
this study was of dimensioNg.s=1 656 592, which could
be reduced in special cases by exploiting translational invari-
He=— c> zn;, (20) ance ands, conservation tdNg s~ 103 820. The next lattice
i size admitting charge order would consist of ten rungs,
which is far beyond our computational capabilities. The re-
striction to a single ladder is a considerable simplification
compared to the structure of NgWsg, but for the quantities
. o : . . of interest in this paper the role of other ladders is of minor
nect nearest neighbor sité$) (see Fig. ) with occupation importance, sincepth[()a frustration of the ladder-ladder interac-

numbersm =ny +m,. . ) tions significantly reduces their effect in the zig-zag ordered
The first-principles calculations done in Ref. 2 and by OUlgiate.

group? yield the intrarung hopping,~0.35 eV, which we
will use below as the unit of energy. For the hopping along
the ladder we usg=t,/2, again in agreement with the band-
structure result$?? whereas previous DMRG studi€svere

whereH, is the lattice deformation contribution, aft}, the
electron-lattice interaction. These terms are given by

with the effective lattice force constamt and the Holstein
constantC. The sites are labeled by the indide$, andz is
the distortion on sité. The hopping matrix elementg con-

Ill. STATIC PROPERTIES

mostly done at,/t,<1.4. For the on-site Coulomb interac- A. Charge order
tion we useU=8.0 as estimated in Ref. 2. We assumg
=V to be the same for all bonds, and takes a free param- To investigate the connection between the lattice distor-

eter since there is no unique procedure of extracting it frontion and charge ordering we calculated the static charge
the band-structure calculations. The lattice distortions are exstructure factor

245108-2



CHARGE ORDERING IN QUARTER-FILLED LADDER.. PHYSICAL REVIEW B 69, 245108(2004)

-0.1 T T T T T T T

08" ¢=00,%x=00

0.6

NS 04 e

L] S—

—
081~ €=0.35,x=0.125

0.6 -
~ 8 [ 7 N =
S i A P =4
1 1 ] - S — =
0 0.5 1 15 2 02 e — scaled -
1 | | -
FIG. 2. Ground-state energy per site as a function of the distor- 05 1 15 v 2 25 3
tion z calculated on an 8 2 system with periodic boundary condi-
tions along the ladder, anG=0.35. From bottom to top¥=1.0, FIG. 3. Charge order parameter for several value¥.dfipper/

1.5,2.0,2.5,3.0. The arrows indicate the position of the minimum. ower panel: Calculation without/with coupling to the lattice. The
solid lines are obtained by Ny finite size extrapolation.

1 .
Sla) = NE IR ((niny) = (n)?), (3 Therefore we argue that the finite valuezdt V=1.0 is due
E to finite-size effects and disappears in the thermodynamic
whereN is the total number of sites in the system. The zig-limit. For this reason we did not mark it with an arrow in Fig.
zag charge order parametegg can be expressed in terms of 2.

this structure factor as This behavior gives a first idea about the charge ordering
1 of the system with and without coupling to the lattice. From
2 _ _ Fig. 2 one could expect that the charge ordering transition in
= , =(m,m). 4 ; , i : ; :
Mco N<n>25°(Q) Q=(mm) @ the presence of static mean-field-like lattice distortions oc-

5. , curs in the region betweexW=1.0 andV=1.5. In order to
The term(n)” in the denominator ensures that the order pay,estigate this transition we calculate the order parameter
rameter is equal to unity for full ordering, which in N&®s  given by Eq.(4). This quantity shows strong finite-size ef-
corresponds to the charges of V ions within a rung to b&gcts, which makes it necessary to apply finite-size scaling.
equal to +5 and +4, respectively. _ o We calculated the order parameter for systems of four and
At this point the lattice distortiong in the Hamlltor_uan eight rungs, respectively, the largest system size available.
are external parameters of the model and not dynamical variyjthough higher-order corrections to the scaling behavior are
ables. Therefore they have to be fixed in a proper way, fobxpected for these small systems, we performed N, 14
whiph we chose a mean field approach. Considering the di%‘xtrapolation to 1K,.,=0. This procedure does not give
tortions as the mean field parameters one can extract thge exact value of the order parameter in the thermodynamic
optimal value for thez by looking for the minimum in the |imit and does not allow to extract an exact value for the
ground-state energy with respectzoThis procedure could  citical Coulomb interactio’V,, but it provides the possibil-
be done within the unrestricted Hartree-Fock approxmanonity to obtain a rough estimate of the interactigrat which
but this complicates the calculation because of the largef,e phase transition occurs as well as the approximate
number of variables for which the minimum has to be found.m%o(v) dependence.
Instead we restrict ourselves to a single order pattern, the "1 study the effects of the lattice distortions we also cal-
zig-zag ordet>**which was observed experimentally: culated the order parameter without coupling to the lattice,
7 = zd?R (5) that is forC=0. The results are shown in Fig. 3. As one can
see in the upper panel where no lattice distortions are
and investigate the total energy as a functiorz.ofhe opti-  present, the order parameter changes rather smoothly when
mal values ofz where the total energy reaches the minimumgoing from the disordered phase into the ordered one. A
for several values of the nearest-neighbor Coulomb interaddifferent behavior can be found for finite lattice distortions.
tion V determined in this way are indicated by arrows in Fig.Here the charge ordering sets in, at a much lower valué of
2. In the following we denote the position of the minimum in than in the absence of distortions. In addition the transition
the ground-state energy &y, sharpens considerably. For both zero and finite distortions
For interaction strengths 0f=1.5 up toV=3.0 a clear the finite size scaled order parameter is slightly negative for
minimum occurs az= 1. Additionally one finds a maximum small interactionsV, which is due to the fact that higher
at z=0, which results from the— -z symmetry of the sys- order corrections in the scaling have been neglected.
tem. We also found a small distortion fof=1.0, but it is The optimal distortiong for different values of the Hol-
strongly size dependent and rapidly decreases with increastein constanC and repulsionV are presented in Fig. 4. In
ing length of the ladder, whereas the distortions marked byur units the distortion found experimentally in the charge-
arrows in Fig. 2 are almost independent of the system sizeordered phase is at approximatety 0.9/ indicated by a
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charges on the sites of the ladd@y) Local kink excitation with a
sharp change of the order parameter. The electron states for one of
the electrons moving between sitesandd are degenerate in this
case.

FIG. 4. Optimal distortionz,, as a function of the Holstein
constantC for different values of the coulomb interactidf calcu-
lated on a & 2 cluster. The horizontal line indicates the experimen-
tal result.

1
. . . <H|> == _<He-|>! (6)
horizontal line in 4. ForvV=1.5, close to the charge order 2

phase transition, this value aof=0.9 is reached nea€

=0.33. The distortion close @=0.9 is realized also for other with a relative numerical accuracy of better tharr“L.GFor

interactions, e.g., deep in the ordered phasé&/a8.0, C large Coulomb interactions well above the phase transition

=0.24. Since, however, Ng@s is probably close to a quan- this high accuracy is likely achieved since the ion charges

tum critical point of charge orderingy,and because of the depend very weakly oa. Therefore, compared tdl, and

value forC obtained from the band structure calculations, weH;, Hgqw IS almost independent of z, namely

conclude that the system can best be described in the orderb@Herm/ dZ(Zyin) =~0.008, and the dependence bf.(2) in

phase using/~1.3 andC~=0.35. Fig. 5 is close to a straight line. Then the virial theorem
When calculating the ground-state energy of the systenfollows from the functional form ofH(z) and He,(2). For

the question arises how the terms in EL.contribute to the ~smaller values of the interaction, e.9/~=1.5, the depen-

total energy, i.e., whether some sort of virial theorem holdsdence of the ion charges artgyy is considerably larger

In Fig. 5 the behavior of the two contributio@b) and(2c)  [dHenm/dZ(Zyn) =0.03]. Yet also in this case the virial rela-

is shown. One can easily see that the crossing points of thiéon is satisfied. The contribution of the sum of the lattice

curves are at the same value ot which the ground-state terms(H,;+Hg,) to the total energy varies between 19% at

energy reaches its minimum, Fig. 2. Therefore we find that &=1.5 and 30% av=3.0.

virial theorem such as that for the one-electron polaronic

states? is fulfilled in the form _ _
B. Kink excitations

So far we have considered the perfect zig-zag charge or-
der pattern described by E¢p). This ordering can be de-
stroyed by local in-rung excitations where an electron hops
from the site with minimal energy to that with maximal en-
ergy, as marked by black and white circles in Fig. 1. The
excitation energy of this process i¥2provided the system
is totally ordered, that isn-o=1.0. Another type of excita-
tion is the formation of a local pair of doubly occupied and
empty rungs, which has the same eneryya meo=1.0. In
addition, there are nonlocal kinklike excitations, where the
order parameter smoothly changes along the ladder between
two degenerate patterns as shown in Fig. 6. The nonlocal
093 o5 o075 1T 15 L5 character of the excitation leads to a decrease of the excita-
tion energy. Since the lattice is coupled to ion charges by the

FIG. 5. Contribution of the lattice energy E@b) (dasheg and Holstein interaction, the k|_nks cogpl_e to the lattice, too.
the electron-lattice energy E¢Rc) (solid) to the ground state en- In order to investigate kink excitations we used the largest
ergy as a function of the distortian at C=0.35. The lattice energy SyStem size available, which is a single ladder consisting of
is independent o¥/. Electron-lattice energy, from top to bottom: €ight rungs, and imposed twisted “Md&bius” boundary
V=1.0,1.5,2.0,2.5,3.0. The arrows are drawn where the total energgonditiong* as shown in Fig. 7. The zig-zag distortions of
has its minimum, as in Fig. 2. Eq. (5) are modified to a kink distortion
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FIG. 7. Twisted(“M6bius”) boundary conditions which produce 3 !
a kink excitation. The numbers label the sites in the B cluster
from 1 to 16.
0.5
‘_
. R, -Rpeé
z= zéQ'Ritanr{%} : (7

with the center of the kinlR, located in the middle between
the rungs,L being its length in units of the lattice spacing,
and &, the unit vector in ladder direction. We keptat its
previous optimal valuez,,, and variedL looking for the
minimum in the ground-state energy as shown in Fig. 8. 1

For interactions up tov=1.0 the ground-state energy L= W-ov. (83)
strongly decreases with increasing kink lengithwithout a ¢
minimum, implying that at this weak coupling we have no 3
kink excitations in the system. For larger interactions we AE==V(V-V)%? (8b)
found a clear minimum in the ground-state energy. The kink 2

length atV=1.5 isL.~2.15, and it shrinks t.~1.33 atV \yherev is the critical value of the Coulomb interaction for
=3.0. the phase transition. To make a connection to our results, we

The kink excitation energy is dgfined_ as the Olif'fere”ceestimate\/c from Eqgs.(8a) and(8b) for the distorted lattice at
between the ground-state energy with twisted boundary cony_1 5 andc=0.35 independently and compare them. From
ditions at the optimal value df and the ground-state energy L and AE we obtainV,=1.28 andV,=1.05, respectively

Cc . [ . 1 .

with periodic boundary conditions and static distorias thege values are in reasonable agreement with each other

=Zpin- It i§ s.ho'wn in Fig. 9. In th? fully ordgred state aﬂd in and consistent with the behavior of the order parameter, see
the atomic limit wherd/>t,, the kink potential energgE is Fig. 3.

close toV (see Fig. 6 The actual total energy is consider- = “a; 5y yalues ofV the kink excitation energy with lattice
ably smaller since the kinks are extended and since at th@

X oupling is larger than the excitation energy without cou-
kink boundary the electron energy on the upge) and  pjing shown as dashed line in Fig. 9. This can be understood

lower (d) legs become degenerate as shown in Fig. 6, andjnce at a fixed value 6f >V, the charge order parameter is

therefore the intrarung hopping becomes more likely. Tharger for the distorted lattice. Since the ordering is more
hopping kinetic energy of the order of;decreases the total complete, the kink lengths are smaller which increases the
energy of the system, leading to the result shown in Fig. 9.excitation energy. Note that without lattice coupling we have

For weak interactions, where the kinks are well extendeg,q parametet as in Eq(7) for the determination of the kink
andmg,<1, our results can be compared with a model calength.

culation in a classica$* model for infinite ladderd? which

FIG. 9. Kink excitation energy as a function of the interaction
It is zero forV=1.0. The lines are guides to the eye.

gives IV. DYNAMIC PROPERTIES
-0.302 1-0.23 In Sec. lll we only considered static properties. However,
0304 -0.232 enlightening insight into the physics of the system can be
= : 10234 extracted from dynamical correlation functions showing the
;o'0’306_ 0236  Shectra of charge and spin excitations. The corresponding
-0.308 1 susceptibilities are given by
Vel 1-0.238
0,31 1-0.24 ot
01747 -0.124 xc(d,0) = | dte€“{ny(t)n_y), (93
-0.176 ]
-Lor -0.126
S 1-0.128
& -0.18 1.0.13 _J jot
0182} 10132 xs(d,0) = | dte“(HSy), (9b)
-0.184 -0.134

o 1 2z 3 whereng(t),n_, and Sé(t),SEq are the Fourier transforms of
the charge and component of spin densities, respectively.

FIG. 8. Ground-state energy per site as a function of the kink We calculated the charge susceptibility E@g) on a lad-
lengthL, Eq. (7). der consisting of eight rungs with periodic boundary condi-
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0 \ \ || \ - o
0.0 L,1(0.0) (1.1)(0.0) . FIG. 11. Charge gapc atq=Q of the charge susceptibility as
q/m a function ofV. Solid lines: 8x 2 ladder. Dashed lines:>42 ladder.
Open symbols: Without lattice coupling. Full symbols: With lattice
4 \ coupling(see text for cas¥=1.0).
3 u to the finite-size effects and should be zero in the thermody-
.Iq;: namic limit.
Rl We note that the gaj¢ in the charge spectrum is differ-
Al -8 L ent from the one commonly used in DMRG calculations,
S— o . & A: :[EO(N+2)—E0(N)]/2, whereEy(N+2) a}nqlEo(N) are the
0 | | - | - ground-state energies for systems consisting62 andN
o particles, respectively. Indeed, as a functiorVpiA shows a
3+ behavioroppositeto Ac, with A=0 in the unbroken phase
andA >0 at largeV.1®
® 2- The spin susceptibilityEq. (9b)] calculated on the same
system is shown in Fig. 12. The momentum scan consists of
| v=20 V=25 V=30 two ranges, fronq,,q,)=(0,0) to (0,), and from(,0) to
0 \ - \ - x - (7, ). In the first rang€q,=0) one can clearly see the dis-
o (100 Lhi00) =l persion of an effective one-dimensional Heisenberg model,
q/m as predicted by perturbation thedfThe main change of the

spin susceptibility as a function &f in this range is a de-

FIG. 10. Charge susceptibility calculated on ax 3 ladder. crease of the effective magnetic exchange interach

Upper panel: without lattice coupling. Lower panel: With lattice .~ .
coupling (C=0.35. The wave vector scan consists of the two with increasing charge order. It can be extracted from the

ranges(q,,dp)/m=(0,0— (0,1) and(1,0— (1, 1), separated by a SPIN dlspers[on usinge;=2 a_)(0,7-r/2)/7r (Ref. 25, and.|s._
tick mark on the horizontal axis. An additional broadening of width SNOwn in Fig. 13. According to magnetic susceptibility
7=0.1 was used. measurement¥, Jo« in the low-temperature phase is approxi-
mately 0.8 of the exchange in the disordered phase. Our re-
tions along the ladder. The results are shown in Fig. 10. Waults are in a good qualitative agreement with these data in
define the charge gafy: as the energy at which the lowest the sense that an increase in charge order goes together with
lying excitation of the charge susceptibility occurs. The cor-a decrease idg+.°® However, a quantitative comparison can-
responding momentum is always=Q. In the disordered not be made since in the experiment the ordering and, corre-
phase we have no gapless charge excitation. When increasisgondingly,J.s, are traced as a function of temperature for
the Coulomb interactiorV, the gap atq=Q decreases as given other system parameters while we investigate the or-
shown in Fig. 11, and all other charge excitations becomelering atT=0 as a function of the extended Hubbard repul-
insignificant. The charge gap does not vanish exactly(for sionV. Our calculation also agrees well with the analytical
=0, i.e., without coupling to the lattice, but appears to go toresults of Refs. 16 and 29, where it was shown that the ex-
zero asNngs— . When the coupling to the lattice is change rapidly decreases with increasiigQuantitatively,
switched on, the gap is exactly zero in the ordered phasat V=3, C=0 our results givelo4~0.06 while perturbation
where the symmetry is broken explicitly. The charge gaptheory*®2° predicts J.4~0.04. Moreover, forvV=1.3,C
behaves in a similar way as the order paramékeg. 3), =0.35, which give a lattice distortion close to the value ob-
namely, without electron-lattice coupling it changesserved experimentallygsee Fig. 4, the exchange parameter
smoothly across the phase transition, whereas the changesFig. 13 is about 67 meV which is very close to the experi-
for finite coupling are significantly sharper. mental 60 meV observed in the inelastic neutron scattering
In Fig. 10 atV=1.0, a gapless excitation g=Q can be measurements of Ref. 31.
seen, which occurs due to a small but finite distortion. As The second range in the spin spectrgiig. 12), with
already discussed in Sec. lll, this distortion is finite only dueg,=7, shows only high-energy excitations at smé¥ll but
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FIG. 12. Spin susceptibility calculated on aix & ladder. Upper

panel: without lattice coupling. Lower panel: With lattice coupling

(C=0.35. Presentation as in Fig. 10.

again an effective Heisenberg dispersion at laxgeFor
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FIG. 14. Spin susceptibility in the disordered phas¥=a0.5 for
hopping along the laddep=0.5 (left) andt,=0.3 (right). Momen-
tum scan as in Fig. 10.

tibilities in the noninteracting limiv/=0, with t,=0 (isolated
rungs. In this case charge and spin susceptibilities are equal
for g,=7 and the gap is exactly the difference between the
bonding and the antibonding state given ky. Secondly, we
analyzed the dependence of the spin susceptibility on the
hopping t, along the ladder in the disordered phaseVat
=0.5(Fig. 14). Whereas the dispersion fgg=0 scales a%,
which is clear evidence of the magnetic origin of these exci-
tations, the difference between the maximal and minimal ex-
citation energy forq,=7 scales ag,. These observations
show a direct interplay between the spin and the dipole-
active charge excitations, which is similar to the “charged”
magnons introduced in Ref. 30 for interpretation of the in-
frared absorption spectra of NaWs.

It is interesting to note that the spin spectra in the ordered
phase appear to possess a mirror symmetry with respect to
the central tick mark in Fig. 12. To quantify this observation,
the dispersions of the low-energy excitations/at3.0 have
been depicted in Fig. 15. The dispersions ¢ge=0 andq,

small V the gap in the spin spectrum is very close to the= are indeed very similar. Without lattice coupling the dis-
charge gap, indicating that it is due to charge excitations. T@ersion withqg,= is shifted upwards compared =0
verify this conjecture, we calculated charge and spin suscefecause of the small but finite charge gayat3.0(see Fig.

e . " . . "
.
0.8 -
o o-oC=0
a +—o (=035
T 0.6F . —
e "o,
'j )
~ 041 -
,\"‘6 \.\
021 Ny
-9
3
! 1 ! 1
% 5 1 1.5 2 2.5 3
v

FIG. 13. Effective magnetic exchange interactilyp in ladder
direction in units ofJ;(V=0.5) as a function oV, extracted from
the spin susceptibility Eq9b). The interaction is shown wit{solid
line) and without lattice couplingdashed ling

11). With lattice coupling and at interactions where no charge
gap occurs the agreement is even better. This behavior can be
understood in the following way. In the disordered phase
where each electron on a rung occupies a molecular orbital
consisting of two sites, momentg=(0,7) andg=(,0) are

not equivalentsame spin on the two sites of the rung, versus
opposite spin on two sites of neighboring rupgm this
phase pure spin excitations witj=7 are not possible since
they require different spins on different sites within a rung.
This could be achieved only by exciting another electronic
state within the rung, which has the enerdy. 2n the totally
zig-zag ordered state where the electrons are located on one
site of the rung, these momenta become equivalent. The
same holds for momenig=(0,0) andq=(, ).

The overall effect of charge ordering on the dynamical
susceptibilities can best be seen by comparing the plots for
V=2.5,C=0.0 andv=1.5,C=0.35, where the values of the
order parameter are similar, see Fig. 3. The spin and charge
excitations shown in these plots are qualitatively the same
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any coupling between lattice distortions of neighboring sites.
_______ However, a coupling of the Holstein type is the strongest

018z e phonon mode in Na)0s.2? It also represents the simplest
e model for electron-phonon interactions, and has been suc-
cessfully used to describe the physics of other transition
metal oxides such as the manganités.

Compared to exact diagonalization of the model described
by the Hamiltonian in Eq(1), an additional difficulty arises
0 ' | : ] : in the case of the EHHM since the number of phonons is not
conserved. Consequently, even for a finite number of lattice
sites, the Hilbert space contains an infinite number of states,

e Ok)
*--0 (1t,1t-ky)

0.041 and has to be truncated in some way in order to apply the
2 Lanczos method. For this reason the size of the systems
002 which can be investigated is also considerably reduced. We

restricted ourselves to a lattice with four rungs and chose a
- 1 subset of the phonon states’&¥

N
1 0
i INon =TT —===(b/)"" 0}, (12)
i=1 V!

FIG. 15. Spin dispersion in the ordered phasevat3.0 ex- here,” denotes the number of phonons at lattice sied
tra(_:ted from_ Fig. _12. I_30ttom: with lattice coupllng,_ top: without |0>ph is the phonon vacuum state. Alternatively, the basis
lattice coupling. Direction of momentum scans: Solid lin€;0) states could also be formulated in momentum space as in
—(0,), dashed linestw, 7) — (7, 0). Ref. 33

Now the truncation of the Hilbert space consists of re-

and the susceptibilities differ only slightly on a few points. stricting the total number of phonons in theph subset as
From these figures we conclude that the dynamical spin and N

charge susceptibilities of the system mainly depend on the S 0<N
order parameter but not on the way in which the order has — ph
been achieved.

(13
i=1
leading to(Np,+N—-1)!/[Np,! (N-1)!] allowed phonon con-
figurations forN sites. We would like to point out that the set
V. HUBBARD-HOLSTEIN MODEL of basis states in Eq$12) and(13) consists of all possible

. L . honon states with up tl,, phonons excited. In particular,
.So far we have. o_nIy considered s.tat|c. d|§tort|ons of th he Hilbert space includes all linear combinations of such
lattice. Although this is a good approximation if the dynamic states

fluctuations around these equilibrium positions are small, Usually, Ny, is increased until convergence of an observ-

q.“a”th phof‘?” effe_cts can play an important role, €SP&3ple of interesO is achieved. The latter can be monitored by
cially in the critical region. In this section, we therefore con-

: . calculating the relative errd©(N,,+1) —O(N,p)|/|O(Nyp)|.
sider the extended Hubbard-Holstein moggHHM) Due to the complexity of th?a EHHM apnd the \falue of
1., k. R parameters, it is not possible to include enough phonon states
H = Hepy + 2 omPi Tt 522‘ Czn |, (100 to obtain converged results. Nevertheless, as in the case of
! the pure Holstein mode¥ it is still possible to deduce the
with Hgy defined in Eq(2a) andM being the mass of the tendency of the results &, is increased and thereby obtain
local oscillators. The operatogs and p; are the coordinate information about the exact resulgsorresponding toN,,
and momentum of the ion on lattice site and all other =%).
quantities are defined in E@L). When expressed in phonon  To reduce the required number of dynamical phonons, it
creation and annihilation operators, it re@dp to a constant IS expedient to introduce static distortiogsas a coordinate
transformatiorz;=z+%; so that quantum fluctuatioris take
H = Hegpw + 0o, bib; — g2, (bf + by)n;. (11)  place around the positiaz. Applying this transformation to
i i Eq. (10) yields

Here b(b) creates(annihilate3 a phonon of frequencyy, K
(with 2=1) at lattice sitei, and the phonons are locally H:HEHM+E EZ'Z‘CZ”i
coupled to the electron density with coupling strength !
:C\e‘st/ZK. 1 ~2  K.o S
We would like to point out that the nature of the local + 2 o P X (k= Cn)X (14)

phonon mode in Eq(1l) is not specified and could corre-
spond to one of several phonon modes in the vanadateshich in second quantization results in an expression analo-
Clearly, the use of dispersionless Einstein phonons neglectpous to Eq(11). Note that the first line in the above equation
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09— . 05— F———
08F a = e -
07} o g N
e T gy i loa q
~S° 0.6~ " |e--ez=0, N =0]] 0.4
0.5 o * e—ez=0, N,=3¢
C e I
04 A o--a2=2,, Ny =0[]
0 3‘- = 0, =125 meV 2=z Ny =3]]
T I — =] t03
0.04|- b) T
I z=0_~" 7
g 002 -
NE 0,00 B s — 0.2
-0.02 _— \\\ z=z,. ///' ©,= 60 meV
- ~ 2 — ®.=125meV || .
-0.04 N ) ki 0 s L s L s 1 . 1
0.5 1 1.5 2 2.5 3 '{).5 1 1.5 2 25 3
14 Vv

FIG. 16. (a) Order parametemZ, calculated on a cluster with FIG. 17. Correlation functioi, as defined in Eq(15) without
four rungs. Phonon parameters aBs=0.35, k=0.125, andwg static distortions fowy=125 meV. The number of phonons is given
=125 meV. Parameters are chosen as shown in the cagtipn. in the caption.

AMgo=mMgg(Npn=3) ~mo(Ny»=0) for two phonon frequenciesy

=60 and 125 meV. Upper two curves: Without static distortion. gownwards with increasing number of dynamical phonons.
LOV\ZIer two curves: with static distortion. The dotted line marks p¢ \/= 1.0, where a finitez at Ny,=0 is a finite size effect
Amgo=0. (Sec. Il A), zgyis reduced to zero foN,,=3. At V=15 the
relative change irzg,is similar to that inméo (Fig. 16). We
want to mention that the two solid curves in the upper panel
of Fig. 16 give an upper and a lower boundary for the actual
value of the order parameter on the four rung lattice, since
for Nyp— = results forz=0 andz=zy,;become equivalent,

is the same as Eql). For the static distortiong we again
use the zig-zag order patte(d) and determine the optimal
value ofz by minimizing the ground-state energy in the pres-
ence of phonons vyielding a static distortiag,, which is
related tozy, introduced in Sec. Il byzyn=Zsa{ Non=0).

: : ; as discussed above.
Note that we perform this coordinate transformation only . . 5
because the number of phonons accessible in our calcula- In the lower panel of Fig. 16 the differendar,, of the

tions is very small, and in this case it is better to start from aﬁlrdfro piirzwoevtvenr i|:c|t3dein%redsgigc]?osf—%yon?nrgl\(/:alpg?gfgns to
ph— 0= . =

different equilibrium positiore=z;,;and not fromz=0. If it . S " .
were possible to ushly,=, this coordinate transformation g:\,?,ge;t\?;? Ceurrvf?r;th'ii;\é'ﬁg\r} 'Sv\f’ﬁig'vsoﬁgi tgisgeg 'Z
would have no influence on the physical results and the a(i- y 9 “o— ’ P

tual lattice distortions would be produced by the dynamical®r9€" value 0. Forz;zstat(lower t.WO curvesitis negat!vg
phonons as a coherent state of (l)oscillators a)s/sociatgd with the" V=1.0. The cro_ssmg ar= 10 IS QUe to the small finite
ions, independent of any initial coordinate transformation. Ofvalue_ O.fZS‘at for_ Npn=0, i.e., a finite size effect. .
course the broken symmetry would only occur in the ther- It IS Interesting to study the prder pattern of th_e dynami-
modynamic limit, while correlations of the phonon positions cally-|nduced.d|stort|ons. For this purpose we define the cor-
exist already on finite lattices. relation function

The effect of dynamical phonons on the charge order pa- 1
rameter is shown in Fig. 16. We did calculations for several C,= —22 dRITRI(Z - (2)(Z - (7)), (15)
values of V at phonon frequencies,=60 meV and w, N5
=125 meV, the two most relevant modes in N&.?2 The
smaller frequency belongs to a collective vibration whichwhich measures the zig-zag ordering of the lattice distor-
includes displacements of the vanadium and oxygen iondions, similar to Eq.(4) for the charge densities. For the
whereas the larger one corresponds to a vibration of the apRontransformed coordinates it is depicted in Fig. 17 dgr
cal oxygen along the axis. =125 meV and different numbers of dynamical phonons.

From the upper pane| of F|g 16 one can eas”y see that folFrom this figure it is clear that dynamical phonons induce
the nontransformed coordinatésrcles the inclusion of dy- zig-zag lattice distortions which strongly increase around the
namical phonons witho,=125 meV considerably increases Phase transition point. Note that the correlation functin
the charge ordering. Calculations witd;,=1 and 2(not IS not normalized to the intervdD, 1] since lattice distor-
shown) revealed that the increase is monotonic in the numbetions are not conserved quantities, different from, e.g.,
of phonon states and we conclude that for convergence margparges.
more phonon states would be necessary. For the distorted For the transformed coordinates we can calculate the dy-
lattice (diamonds, the dynamical phonons actually decreasenamically induced zig-zag distortiorg,, directly from the
the charge ordering fov=1.0, and the strongest effect oc- expectation value¢z) since the symmetry of the system is
curs in the vicinity of the phase transition ¥t=1.0 andV ~ broken explicitly. Results show that the s@=Z,+ Zgy, Of
=1.5. The reason for this decrease is that; is shifted the static distortion and the dynamically induced distortion is
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always smaller than the valug,, determined in Sec. Il A, As low-energy excitations of the distorted ground state we
and this effect is most pronounced near the phase transitiosonsidered kink excitations, where the charge order pattern
For V=15 andN,,=3 we gotz;,~0.889 andz,=0.013  changes along the ladder between two degenerate configura-
yielding a total zig-zag distortion of,=0.902, which is  tions. These kinks are long wherg is small, and become
noticeably smaller tha,,=1.001 forN,,=0. Well above  shorter with increasing order. The kink lengths and energies
the transition point the dynamically induced distortions aregt small mZ, are comparable with those of a classigsl
very small, for instance fo=3.0 andN,,=3 calculations  1nqe|l2
gave Zq,,=0.0005, andz,=1.290 is only slightly smaller Moreover, we studied the extended Hubbard-Holstein
thanzmin:l_'294' , . ... model to investigate the effect of dynamical phonons. Re-
I_:rom th's analy§|s we conclude that using just stat_lc OIIS'sults showed that they have a strong influence on the charge
tortions gives qualitatively correct results but overestimateg .. parameter in the vicinity of the phase transition. An
the lattice Qistortions, in particular, in the vicinity. of the nalysis of the correlations of the dynamically induced dis-
phase transition. Th? value of the order parameter in the fu ortions revealed that phonons indeed favor zig-zag lattice
dynamical mgdel WithN, =20 W'" therefore be somewhat distortions. We showed that using just static distortions
smaller than in Sec. Il A, as discussed above. somewhat overestimates the actual value of the lattice distor-
tion, but well away from the transition point this dynamical
VI. CONCLUSIONS effect is very small and a description by static distortions

In this paper we investigated the influence of lattice ef-91ves already accurate results.
fects on the charge ordering transition, the spectrum of kink N @ddition to these static properties we also calculated the
excitations and dynamical susceptibilities of quarter-fillegdynamic charge and spin susceptibilities. We showed that the
ladder systems and considered tieNaV,0s compound as  Main features of these quantities are determined py the va[ue
an example. For this purpose we modified the HamiltoniarP the order parameter and not by the way this value is
of the extended Hubbard model by terms which take intdach!eved. From. the spin susqeptlblllty we extracted the ef-
account the coupling of electrons to lattice distortions. Thd€Ctive magnetic exchange interaction along the ladder,
lattice rigidity x and the Holstein coupling constaBtused which exhibits a p_ronounceo! decrease with increasing charge
in our model were determined by first-principles band struc°rder- The magnitude of this parameter takervatl.3,C
ture calculations. The physical properties were calculated by -3 iS in good agreement with the experimental inelastic
the exact diagonalization technique. The results for thd'€utron scattering datd.
ground-state energy and the order parameter show that by
including static distortions, the phase transition is shifted sig-
nificantly downward to lower values of the nearest-neighbor ACKNOWLEDGMENTS
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