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We investigate charge ordering in the presence of electron-phonon coupling for quarter-filled ladder systems
by using exact diagonalization. As an example we consider NaV2O5 using model parameters obtained from
first-principles band-structure calculations. The relevant Holstein coupling to the lattice considerably reduces
the critical value of the nearest-neighbor Coulomb repulsion at which formation of the zig-zag charge-ordered
state occurs, which is then accompanied by a static lattice distortion. Energy and length of a kink-like excita-
tion on the background of the distorted lattice are calculated. Spin and charge spectra on ladders with and
without static distortion are obtained, and the charge gap and the effective spin-spin exchange parameterJ are
extracted.J agrees well with experimental results. Analysis of the dynamical Holstein model, restricted to a
small number of phonons, shows that low frequency lattice vibrations have a strong influence on the charge
ordering, particularly in the vicinity of the phase transition point. By investigating the charge order parameter
we conclude that phonons produce dynamical zig-zag lattice distortions. A model with only static distortions
gives a good description of the system well away from the transition point while overestimating the amount of
charge ordering in the vicinity of the phase transition.
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I. INTRODUCTION

The formation of an ordered pattern of ion charges is a
rather general type of phase transition which occurs in three-
as well as lower-dimensional solids. It has been known for
more than six decades1 since its discovery in magnetite
Fe3O4. Even in that compound this phenomenon still attracts
a lot of attention due to the interesting physics of the transi-
tion. Since the charge ordering causes changes in the inter-
action between the ions, it drives a lattice distortion, which,
in turn, influences the ordering pattern. The quarter-filled
ladder compound NaV2O5 (Ref. 2) is another interesting ex-
ample of a system which shows charge ordering. Here the
transition, as observed in the nuclear magnetic resonance
experiments,3 occurs atTCO<35 K and is accompanied by
the formation of a spin gap4 at the same5 or slightly lower
temperature. In NaV2O5, where onedxy electron is shared by
two V ions in a V-O-V rung, the ordering occurs as a static
charge disproportiond between the V ions, which obtain
charges 4.5±d with a zig-zag pattern ofd’s. Most probably,
the main driving force for the transition is the Coulomb re-
pulsion of electrons on the nearest-neighbor sites within one
leg of the ladder. For half the ladders the apical oxygen ion is
located below the ladder and for the other half above. There-
fore the crystal environment of the V ions is asymmetric, and
the dxy electron is subject to a strong Holstein-like electron-
phonon coupling.6 As a result, the transition is accompanied
by the displacement of ions from their positions in the high-
temperature phasesT.TCOd. They then form a larger unit
cell, as clearly seen directly in the x-ray diffraction
experiments,7 where displacements of V ions of the order of
0.05 Å were observed, and indirectly in the appearance of
new phonon modes in the infrared absorption8 and Raman
scattering spectra.9

The importance of the coupling to the lattice for phase
transitions in quarter-filled systems was shown in Refs.

10,11. The low-energy excitations of the zig-zag order pa-
rameter are also strongly influenced by the lattice.12

The static properties of the ground state of the doped lad-
ders without coupling to lattice distortions were extensively
investigated using mean field approaches,13–15 the density-
matrix renormalization-group(DMRG),16 bosonization, and
renormalization group techniques.17 The DMRG studies
show that at strong enough Hubbard interaction the ladders
exhibit a zig-zag charge order if the repulsion between the
electrons on the nearest-neighbor sites exceeds some critical
value Vc. The corresponding phase transition is of second-
order as a function ofV. For a very strong intersite repulsion,
phase separation becomes possible.16 Dynamical properties
were studied with exact numerical diagonalization18–20with-
out taking into account the coupling to the lattice. They were
quite successful in understanding NaV2O5 dynamical prop-
erties above the transition temperature.

The investigation of the ordering of electrons interacting
with the lattice requires the knowledge of electron-phonon
couplings and lattice force constants in addition to electronic
parameters such as hopping matrix elements and electron
correlations. For a given compound almost all of these pa-
rameters can be extracted from first-principles band-structure
calculations. The force constants and electron-phonon cou-
pling can be obtained by comparing the total energies and the
interionic forces in distorted and undistorted lattices. The
phonon frequencies required for studies of dynamical lattice
distortions are given by experiment,9 while the necessary
knowledge of their eigenvectors can be obtained from first-
principles calculations. We performed such calculations of
the band structure, lattice dynamics and electron-phonon
coupling for the NaV2O5 compound. These calculations are
in good agreement with Ref. 2 in the part concerning the
band structure, and their details as well as a comparison to
other first-principles calculations21 will be published
elsewhere.22 In the present paper we will concentrate on the
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strongest electron-phonon mode present in NaV2O5, which is
a simple Holstein-type interaction.22

We therefore investigate a model which takes into account
the main interactions, i.e., the Hubbard and intersite repul-
sions and the coupling to the lattice. We study the ground-
state properties of a quarter-filled ladder coupled to static
lattice distortion with the Lanczos algorithm. We show that
the ordering is strongly enhanced by the interaction with the
lattice for realistic values of the coupling. Secondly, the in-
teraction with dynamical(quantum) phonons at different fre-
quencies within the Holstein model is considered. We find
that indeed, the quantum phonons produce and stabilize the
static order.

The paper is organized as follows. In Sec. II we introduce
the extended Hubbard model(EHM) with additional lattice
distortions. In Sec. III we present results for static properties
of this model, including kink excitations. Dynamical quanti-
ties are discussed in Sec. IV. Section V focuses on the influ-
ence of dynamical phonons, and finally we give our conclu-
sions in Sec. VI.

II. MODEL

The quarter-filled ladder compounda8-NaV2O5 can be
described microscopically by an extended Hubbard(or t-U
-V) model (EHM). For the description of the distorted low-
temperature phase we also include the coupling of electrons
to the lattice, yielding the model

H = HEHM + Hl + He-l , s1d

whereHl is the lattice deformation contribution, andHe-l the
electron-lattice interaction. These terms are given by

HEHM = − o
ki j l,s

tijscis
† cjs + H . c.d + Uo

i

ni↑ni↓ + o
ki j l

Vijninj ,

s2ad

Hl = ko
i

zi
2

2
, s2bd

He−l = − Co
i

zini , s2cd

with the effective lattice force constantk and the Holstein
constantC. The sites are labeled by the indicesi, j , andzi is
the distortion on sitei. The hopping matrix elementstij con-
nect nearest neighbor siteski j l (see Fig. 1) with occupation
numbersni =ni↑+ni↓.

The first-principles calculations done in Ref. 2 and by our
group22 yield the intrarung hoppingta<0.35 eV, which we
will use below as the unit of energy. For the hopping along
the ladder we usetb= ta/2, again in agreement with the band-
structure results,2,22 whereas previous DMRG studies16 were
mostly done atta/ tbø1.4. For the on-site Coulomb interac-
tion we useU=8.0 as estimated in Ref. 2. We assumeVij
=V to be the same for all bonds, and takeV as a free param-
eter since there is no unique procedure of extracting it from
the band-structure calculations. The lattice distortions are ex-

pressed in units of 0.05Å since the ion displacement below
TCO are of this order of magnitude.7 With the chosen units of
energy and length the comparison of the band structure and
lattice force calculations done on distorted and undistorted
lattices give the dimensionless constantsk=0.125 andC
=0.35, respectively.22 The effective coupling parameterC2/k
is close to unity and, therefore, the lattice plays an important
role in determining the properties of NaV2O5.

The Hamiltonian in Eq.(1) will be used for calculations
with both static and dynamical lattice distortions. All quan-
tities presented in this paper are calculated by the ground
state Lanczos method on single ladders of up to eight rungs,
which enabled us to perform simple finite size scaling. The
largest Hilbert space for the eight rung lattice considered in
this study was of dimensionNstates=1 656 592, which could
be reduced in special cases by exploiting translational invari-
ance andSz conservation toNstates=103 820. The next lattice
size admitting charge order would consist of ten rungs,
which is far beyond our computational capabilities. The re-
striction to a single ladder is a considerable simplification
compared to the structure of NaV2O5, but for the quantities
of interest in this paper the role of other ladders is of minor
importance, since the frustration of the ladder-ladder interac-
tions significantly reduces their effect in the zig-zag ordered
state.

III. STATIC PROPERTIES

A. Charge order

To investigate the connection between the lattice distor-
tion and charge ordering we calculated the static charge
structure factor

FIG. 1. Schematic picture of ladders, with hopping matrix ele-
mentsta on the rungs andtb along the chains. The darkness of the
circles corresponds to the charges on the sites of the ladder. The
upper ladder is shown without charge order, the lower ladder with
zigzag charge order.
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Scsqd =
1

N
o
i j

eiqsRi−R jdskninjl − knl2d, s3d

whereN is the total number of sites in the system. The zig-
zag charge order parametermCO can be expressed in terms of
this structure factor as

mCO
2 =

1

Nknl2ScsQd, Q = sp,pd. s4d

The termknl2 in the denominator ensures that the order pa-
rameter is equal to unity for full ordering, which in NaV2O5
corresponds to the charges of V ions within a rung to be
equal to +5 and +4, respectively.

At this point the lattice distortionszi in the Hamiltonian
are external parameters of the model and not dynamical vari-
ables. Therefore they have to be fixed in a proper way, for
which we chose a mean field approach. Considering the dis-
tortions as the mean field parameters one can extract the
optimal value for thezi by looking for the minimum in the
ground-state energy with respect tozi. This procedure could
be done within the unrestricted Hartree-Fock approximation,
but this complicates the calculation because of the larger
number of variables for which the minimum has to be found.
Instead we restrict ourselves to a single order pattern, the
zig-zag order,13,15 which was observed experimentally:7

zi = zeiQ·Ri s5d

and investigate the total energy as a function ofz. The opti-
mal values ofz where the total energy reaches the minimum
for several values of the nearest-neighbor Coulomb interac-
tion V determined in this way are indicated by arrows in Fig.
2. In the following we denote the position of the minimum in
the ground-state energy byzmin.

For interaction strengths ofV=1.5 up toV=3.0 a clear
minimum occurs atz<1. Additionally one finds a maximum
at z=0, which results from thez→−z symmetry of the sys-
tem. We also found a small distortion forV=1.0, but it is
strongly size dependent and rapidly decreases with increas-
ing length of the ladder, whereas the distortions marked by
arrows in Fig. 2 are almost independent of the system size.

Therefore we argue that the finite value ofz at V=1.0 is due
to finite-size effects and disappears in the thermodynamic
limit. For this reason we did not mark it with an arrow in Fig.
2.

This behavior gives a first idea about the charge ordering
of the system with and without coupling to the lattice. From
Fig. 2 one could expect that the charge ordering transition in
the presence of static mean-field-like lattice distortions oc-
curs in the region betweenV=1.0 andV=1.5. In order to
investigate this transition we calculate the order parameter
given by Eq.(4). This quantity shows strong finite-size ef-
fects, which makes it necessary to apply finite-size scaling.
We calculated the order parameter for systems of four and
eight rungs, respectively, the largest system size available.
Although higher-order corrections to the scaling behavior are
expected for these small systems, we performed a 1/Nrungs
extrapolation to 1/Nrungs=0. This procedure does not give
the exact value of the order parameter in the thermodynamic
limit and does not allow to extract an exact value for the
critical Coulomb interactionVc, but it provides the possibil-
ity to obtain a rough estimate of the interactionV at which
the phase transition occurs as well as the approximate
mCO

2 sVd dependence.
To study the effects of the lattice distortions we also cal-

culated the order parameter without coupling to the lattice,
that is forC=0. The results are shown in Fig. 3. As one can
see in the upper panel where no lattice distortions are
present, the order parameter changes rather smoothly when
going from the disordered phase into the ordered one. A
different behavior can be found for finite lattice distortions.
Here the charge ordering sets in, at a much lower value ofV
than in the absence of distortions. In addition the transition
sharpens considerably. For both zero and finite distortions
the finite size scaled order parameter is slightly negative for
small interactionsV, which is due to the fact that higher
order corrections in the scaling have been neglected.

The optimal distortionsz for different values of the Hol-
stein constantC and repulsionV are presented in Fig. 4. In
our units the distortion found experimentally in the charge-
ordered phase is at approximatelyz=0.9,7 indicated by a

FIG. 2. Ground-state energy per site as a function of the distor-
tion z calculated on an 832 system with periodic boundary condi-
tions along the ladder, andC=0.35. From bottom to top:V=1.0,
1.5,2.0,2.5,3.0. The arrows indicate the position of the minimum.

FIG. 3. Charge order parameter for several values ofV. Upper/
lower panel: Calculation without/with coupling to the lattice. The
solid lines are obtained by 1/Nrungs finite size extrapolation.
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horizontal line in 4. ForV=1.5, close to the charge order
phase transition, this value ofz=0.9 is reached nearC
=0.33. The distortion close toz=0.9 is realized also for other
interactions, e.g., deep in the ordered phase atV=3.0, C
=0.24. Since, however, NaV2O5 is probably close to a quan-
tum critical point of charge ordering,20 and because of the
value forC obtained from the band structure calculations, we
conclude that the system can best be described in the ordered
phase usingV<1.3 andC<0.35.

When calculating the ground-state energy of the system,
the question arises how the terms in Eq.(1) contribute to the
total energy, i.e., whether some sort of virial theorem holds.
In Fig. 5 the behavior of the two contributions(2b) and(2c)
is shown. One can easily see that the crossing points of the
curves are at the same value ofz at which the ground-state
energy reaches its minimum, Fig. 2. Therefore we find that a
virial theorem such as that for the one-electron polaronic
states,23 is fulfilled in the form

kHll = −
1

2
kHe-ll, s6d

with a relative numerical accuracy of better than 10−4. For
large Coulomb interactions well above the phase transition
this high accuracy is likely achieved since the ion charges
depend very weakly onz. Therefore, compared toHe-l and
Hl, HEHM is almost independent of z, namely
fdHEHM/dzszmind<0.005g, and the dependence ofHe-lszd in
Fig. 5 is close to a straight line. Then the virial theorem
follows from the functional form ofHlszd and He-lszd. For
smaller values of the interaction, e.g.,V=1.5, the depen-
dence of the ion charges andHEHM is considerably larger
fdHEHM/dzszmind<0.03g. Yet also in this case the virial rela-
tion is satisfied. The contribution of the sum of the lattice
terms kHl +He-ll to the total energy varies between 19% at
V=1.5 and 30% atV=3.0.

B. Kink excitations

So far we have considered the perfect zig-zag charge or-
der pattern described by Eq.(5). This ordering can be de-
stroyed by local in-rung excitations where an electron hops
from the site with minimal energy to that with maximal en-
ergy, as marked by black and white circles in Fig. 1. The
excitation energy of this process is 2V, provided the system
is totally ordered, that is,mCO=1.0. Another type of excita-
tion is the formation of a local pair of doubly occupied and
empty rungs, which has the same energy 2V at mCO=1.0. In
addition, there are nonlocal kinklike excitations, where the
order parameter smoothly changes along the ladder between
two degenerate patterns as shown in Fig. 6. The nonlocal
character of the excitation leads to a decrease of the excita-
tion energy. Since the lattice is coupled to ion charges by the
Holstein interaction, the kinks couple to the lattice, too.

In order to investigate kink excitations we used the largest
system size available, which is a single ladder consisting of
eight rungs, and imposed twisted “Möbius” boundary
conditions24 as shown in Fig. 7. The zig-zag distortions of
Eq. (5) are modified to a kink distortion

FIG. 4. Optimal distortionzopt as a function of the Holstein
constantC for different values of the coulomb interactionV, calcu-
lated on a 832 cluster. The horizontal line indicates the experimen-
tal result.

FIG. 5. Contribution of the lattice energy Eq.(2b) (dashed) and
the electron-lattice energy Eq.(2c) (solid) to the ground state en-
ergy as a function of the distortionz, at C=0.35. The lattice energy
is independent ofV. Electron-lattice energy, from top to bottom:
V=1.0,1.5,2.0,2.5,3.0. The arrows are drawn where the total energy
has its minimum, as in Fig. 2.

FIG. 6. (a) A schematic plot of a non-local kink-like excitation
in an ordered ladder. The darkness of the circles corresponds to the
charges on the sites of the ladder.(b) Local kink excitation with a
sharp change of the order parameter. The electron states for one of
the electrons moving between sitesu and d are degenerate in this
case.
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zi = zeiQ·RitanhF sRi − R0dêa

L
G , s7d

with the center of the kinkR0 located in the middle between
the rungs,L being its length in units of the lattice spacing,
and êa the unit vector in ladder direction. We keptz at its
previous optimal valuezmin and variedL looking for the
minimum in the ground-state energy as shown in Fig. 8.

For interactions up toV=1.0 the ground-state energy
strongly decreases with increasing kink lengthL, without a
minimum, implying that at this weak coupling we have no
kink excitations in the system. For larger interactions we
found a clear minimum in the ground-state energy. The kink
length atV=1.5 is L<2.15, and it shrinks toL<1.33 atV
=3.0.

The kink excitation energy is defined as the difference
between the ground-state energy with twisted boundary con-
ditions at the optimal value ofL and the ground-state energy
with periodic boundary conditions and static distortionsz
=zmin. It is shown in Fig. 9. In the fully ordered state and in
the atomic limit whereV@ ta, the kink potential energyDE is
close toV (see Fig. 6). The actual total energy is consider-
ably smaller since the kinks are extended and since at the
kink boundary the electron energy on the uppersud and
lower sdd legs become degenerate as shown in Fig. 6, and
therefore the intrarung hopping becomes more likely. The
hopping kinetic energy of the order of −ta decreases the total
energy of the system, leading to the result shown in Fig. 9.

For weak interactions, where the kinks are well extended
andmCO

2 !1, our results can be compared with a model cal-
culation in a classicalf4 model for infinite ladders12 which
gives

L =
1

ÎV − Vc

, s8ad

DE =
3

2
VsV − Vcd3/2, s8bd

whereVc is the critical value of the Coulomb interaction for
the phase transition. To make a connection to our results, we
estimateVc from Eqs.(8a) and(8b) for the distorted lattice at
V=1.5 andC=0.35 independently and compare them. From
L and DE we obtain Vc=1.28 andVc=1.05, respectively.
These values are in reasonable agreement with each other
and consistent with the behavior of the order parameter, see
Fig. 3.

At all values ofV the kink excitation energy with lattice
coupling is larger than the excitation energy without cou-
pling shown as dashed line in Fig. 9. This can be understood
since at a fixed value ofV.Vc the charge order parameter is
larger for the distorted lattice. Since the ordering is more
complete, the kink lengths are smaller which increases the
excitation energy. Note that without lattice coupling we have
no parameterL as in Eq.(7) for the determination of the kink
length.

IV. DYNAMIC PROPERTIES

In Sec. III we only considered static properties. However,
enlightening insight into the physics of the system can be
extracted from dynamical correlation functions showing the
spectra of charge and spin excitations. The corresponding
susceptibilities are given by

xCsq,vd =E dteivtknqstdn−ql, s9ad

xSsq,vd =E dteivtkSq
zstdS−q

z l, s9bd

wherenqstd ,n−q andSq
zstd ,S−q

z are the Fourier transforms of
the charge andz component of spin densities, respectively.

We calculated the charge susceptibility Eq.(9a) on a lad-
der consisting of eight rungs with periodic boundary condi-

FIG. 7. Twisted(“Möbius”) boundary conditions which produce
a kink excitation. The numbers label the sites in the 832 cluster
from 1 to 16.

FIG. 8. Ground-state energy per site as a function of the kink
lengthL, Eq. (7).

FIG. 9. Kink excitation energy as a function of the interactionV.
It is zero forVø1.0. The lines are guides to the eye.
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tions along the ladder. The results are shown in Fig. 10. We
define the charge gapDC as the energy at which the lowest
lying excitation of the charge susceptibility occurs. The cor-
responding momentum is alwaysq=Q. In the disordered
phase we have no gapless charge excitation. When increasing
the Coulomb interactionV, the gap atq=Q decreases as
shown in Fig. 11, and all other charge excitations become
insignificant. The charge gap does not vanish exactly forC
=0, i.e., without coupling to the lattice, but appears to go to
zero as Nrungs→`. When the coupling to the lattice is
switched on, the gap is exactly zero in the ordered phase
where the symmetry is broken explicitly. The charge gap
behaves in a similar way as the order parameter(Fig. 3),
namely, without electron-lattice coupling it changes
smoothly across the phase transition, whereas the changes
for finite coupling are significantly sharper.

In Fig. 10 atV=1.0, a gapless excitation atq=Q can be
seen, which occurs due to a small but finite distortion. As
already discussed in Sec. III, this distortion is finite only due

to the finite-size effects and should be zero in the thermody-
namic limit.

We note that the gapDC in the charge spectrum is differ-
ent from the one commonly used in DMRG calculations,
D : =fE0sN+2d−E0sNdg /2, whereE0sN+2d andE0sNd are the
ground-state energies for systems consisting ofN+2 andN
particles, respectively. Indeed, as a function ofV, D shows a
behavioroppositeto DC, with D=0 in the unbroken phase
andD.0 at largeV.16

The spin susceptibility[Eq. (9b)] calculated on the same
system is shown in Fig. 12. The momentum scan consists of
two ranges, fromsqa,qbd=s0,0d to s0,pd, and fromsp ,0d to
sp ,pd. In the first rangesqa=0d one can clearly see the dis-
persion of an effective one-dimensional Heisenberg model,
as predicted by perturbation theory.26 The main change of the
spin susceptibility as a function ofV in this range is a de-
crease of the effective magnetic exchange interactionJeff
with increasing charge order. It can be extracted from the
spin dispersion usingJeff=2 vs0,p /2d /p (Ref. 25), and is
shown in Fig. 13. According to magnetic susceptibility
measurements,27 Jeff in the low-temperature phase is approxi-
mately 0.8 of the exchange in the disordered phase. Our re-
sults are in a good qualitative agreement with these data in
the sense that an increase in charge order goes together with
a decrease inJeff.

28 However, a quantitative comparison can-
not be made since in the experiment the ordering and, corre-
spondingly,Jeff, are traced as a function of temperature for
given other system parameters while we investigate the or-
dering atT=0 as a function of the extended Hubbard repul-
sion V. Our calculation also agrees well with the analytical
results of Refs. 16 and 29, where it was shown that the ex-
change rapidly decreases with increasingV. Quantitatively,
at V=3, C=0 our results giveJeff<0.06 while perturbation
theory16,29 predicts Jeff<0.04. Moreover, for V=1.3, C
=0.35, which give a lattice distortion close to the value ob-
served experimentally(see Fig. 4), the exchange parameter
in Fig. 13 is about 67 meV which is very close to the experi-
mental 60 meV observed in the inelastic neutron scattering
measurements of Ref. 31.

The second range in the spin spectrum(Fig. 12), with
qa=p, shows only high-energy excitations at smallV, but

FIG. 10. Charge susceptibility calculated on an 832 ladder.
Upper panel: without lattice coupling. Lower panel: With lattice
coupling sC=0.35d. The wave vector scan consists of the two
rangessqa,qbd /p=s0,0d→ s0,1d ands1,0d→ s1,1d, separated by a
tick mark on the horizontal axis. An additional broadening of width
h=0.1 was used.

FIG. 11. Charge gapDC at q=Q of the charge susceptibility as
a function ofV. Solid lines: 832 ladder. Dashed lines: 432 ladder.
Open symbols: Without lattice coupling. Full symbols: With lattice
coupling (see text for caseV=1.0).
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again an effective Heisenberg dispersion at largeV. For
small V the gap in the spin spectrum is very close to the
charge gap, indicating that it is due to charge excitations. To
verify this conjecture, we calculated charge and spin suscep-

tibilities in the noninteracting limitV=0, with tb=0 (isolated
rungs). In this case charge and spin susceptibilities are equal
for qa=p and the gap is exactly the difference between the
bonding and the antibonding state given by 2ta. Secondly, we
analyzed the dependence of the spin susceptibility on the
hopping tb along the ladder in the disordered phase atV
=0.5 (Fig. 14). Whereas the dispersion forqa=0 scales astb

2,
which is clear evidence of the magnetic origin of these exci-
tations, the difference between the maximal and minimal ex-
citation energy forqa=p scales astb. These observations
show a direct interplay between the spin and the dipole-
active charge excitations, which is similar to the “charged”
magnons introduced in Ref. 30 for interpretation of the in-
frared absorption spectra of NaV2O5.

It is interesting to note that the spin spectra in the ordered
phase appear to possess a mirror symmetry with respect to
the central tick mark in Fig. 12. To quantify this observation,
the dispersions of the low-energy excitations atV=3.0 have
been depicted in Fig. 15. The dispersions forqa=0 andqa
=p are indeed very similar. Without lattice coupling the dis-
persion with qa=p is shifted upwards compared toqa=0
because of the small but finite charge gap atV=3.0 (see Fig.
11). With lattice coupling and at interactions where no charge
gap occurs the agreement is even better. This behavior can be
understood in the following way. In the disordered phase
where each electron on a rung occupies a molecular orbital
consisting of two sites, momentaq=s0,pd andq=sp ,0d are
not equivalent(same spin on the two sites of the rung, versus
opposite spin on two sites of neighboring rungs). In this
phase pure spin excitations withqa=p are not possible since
they require different spins on different sites within a rung.
This could be achieved only by exciting another electronic
state within the rung, which has the energy 2ta. In the totally
zig-zag ordered state where the electrons are located on one
site of the rung, these momenta become equivalent. The
same holds for momentaq=s0,0d andq=sp ,pd.

The overall effect of charge ordering on the dynamical
susceptibilities can best be seen by comparing the plots for
V=2.5, C=0.0 andV=1.5, C=0.35, where the values of the
order parameter are similar, see Fig. 3. The spin and charge
excitations shown in these plots are qualitatively the same

FIG. 12. Spin susceptibility calculated on an 832 ladder. Upper
panel: without lattice coupling. Lower panel: With lattice coupling
sC=0.35d. Presentation as in Fig. 10.

FIG. 13. Effective magnetic exchange interactionJeff in ladder
direction in units ofJeffsV=0.5d as a function ofV, extracted from
the spin susceptibility Eq.(9b). The interaction is shown with(solid
line) and without lattice coupling(dashed line).

FIG. 14. Spin susceptibility in the disordered phase atV=0.5 for
hopping along the laddertb=0.5 (left) and tb=0.3 (right). Momen-
tum scan as in Fig. 10.
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and the susceptibilities differ only slightly on a few points.
From these figures we conclude that the dynamical spin and
charge susceptibilities of the system mainly depend on the
order parameter but not on the way in which the order has
been achieved.

V. HUBBARD-HOLSTEIN MODEL

So far we have only considered static distortions of the
lattice. Although this is a good approximation if the dynamic
fluctuations around these equilibrium positions are small,
quantum phonon effects can play an important role, espe-
cially in the critical region. In this section, we therefore con-
sider the extended Hubbard-Holstein model(EHHM)

H = HEHM + o
i
F 1

2M
p̂i

2 +
k

2
ẑi

2 − CẑiniG , s10d

with HEHM defined in Eq.(2a) andM being the mass of the
local oscillators. The operatorsẑi and p̂i are the coordinate
and momentum of the ion on lattice sitei, and all other
quantities are defined in Eq.(1). When expressed in phonon
creation and annihilation operators, it reads(up to a constant)

H = HEHM + v0o
i

bi
†bi − go

i

sbi
† + bidni . s11d

Here bi
†sbid creates(annihilates) a phonon of frequencyv0

(with "=1) at lattice site i, and the phonons are locally
coupled to the electron density with coupling strengthg
=CÎv0/2k.

We would like to point out that the nature of the local
phonon mode in Eq.(11) is not specified and could corre-
spond to one of several phonon modes in the vanadates.
Clearly, the use of dispersionless Einstein phonons neglects

any coupling between lattice distortions of neighboring sites.
However, a coupling of the Holstein type is the strongest
phonon mode in NaV2O5.

22 It also represents the simplest
model for electron-phonon interactions, and has been suc-
cessfully used to describe the physics of other transition
metal oxides such as the manganites.32

Compared to exact diagonalization of the model described
by the Hamiltonian in Eq.(1), an additional difficulty arises
in the case of the EHHM since the number of phonons is not
conserved. Consequently, even for a finite number of lattice
sites, the Hilbert space contains an infinite number of states,
and has to be truncated in some way in order to apply the
Lanczos method. For this reason the size of the systems
which can be investigated is also considerably reduced. We
restricted ourselves to a lattice with four rungs and chose a
subset of the phonon states as33,34

urlph = p
i=1

N
1

Îni
srd!

sbi
†dni

srd
u0lph, s12d

whereni
srd denotes the number of phonons at lattice sitei and

u0lph is the phonon vacuum state. Alternatively, the basis
states could also be formulated in momentum space as in
Ref. 33.

Now the truncation of the Hilbert space consists of re-
stricting the total number of phonons in theurlph subset as

o
i=1

N

ni
srd ø Nph s13d

leading tosNph+N−1d ! / fNph! sN−1d!g allowed phonon con-
figurations forN sites. We would like to point out that the set
of basis states in Eqs.(12) and (13) consists of all possible
phonon states with up toNph phonons excited. In particular,
the Hilbert space includes all linear combinations of such
states.

Usually,Nph is increased until convergence of an observ-
able of interestO is achieved. The latter can be monitored by
calculating the relative erroruOsNph+1d−OsNphdu / uOsNphdu.

Due to the complexity of the EHHM and the value of
parameters, it is not possible to include enough phonon states
to obtain converged results. Nevertheless, as in the case of
the pure Holstein model35 it is still possible to deduce the
tendency of the results asNph is increased and thereby obtain
information about the exact results(corresponding toNph
=`).

To reduce the required number of dynamical phonons, it
is expedient to introduce static distortionszi as a coordinate
transformationẑi =zi + x̂i so that quantum fluctuationsx̂i take
place around the positionzi. Applying this transformation to
Eq. (10) yields

H = HEHM + o
i
Fk

2
zi

2 − CziniG
+ o

i
F 1

2M
p̂i

2 +
k

2
x̂i

2 + skzi − Cnidx̂iG , s14d

which in second quantization results in an expression analo-
gous to Eq.(11). Note that the first line in the above equation

FIG. 15. Spin dispersion in the ordered phase atV=3.0 ex-
tracted from Fig. 12. Bottom: with lattice coupling, top: without
lattice coupling. Direction of momentum scans: Solid lines:s0,0d
→ s0,pd, dashed lines:sp ,pd→ sp ,0d.
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is the same as Eq.(1). For the static distortionszi we again
use the zig-zag order pattern(5) and determine the optimal
value ofz by minimizing the ground-state energy in the pres-
ence of phonons yielding a static distortionzstat, which is
related tozmin introduced in Sec. III byzmin=zstatsNph=0d.

Note that we perform this coordinate transformation only
because the number of phonons accessible in our calcula-
tions is very small, and in this case it is better to start from a
different equilibrium positionz=zstat and not fromz=0. If it
were possible to useNph=`, this coordinate transformation
would have no influence on the physical results and the ac-
tual lattice distortions would be produced by the dynamical
phonons as a coherent state of oscillators associated with the
ions, independent of any initial coordinate transformation. Of
course the broken symmetry would only occur in the ther-
modynamic limit, while correlations of the phonon positions
exist already on finite lattices.

The effect of dynamical phonons on the charge order pa-
rameter is shown in Fig. 16. We did calculations for several
values of V at phonon frequenciesv0=60 meV andv0
=125 meV, the two most relevant modes in NaV2O5.

22 The
smaller frequency belongs to a collective vibration which
includes displacements of the vanadium and oxygen ions,
whereas the larger one corresponds to a vibration of the api-
cal oxygen along thez axis.

From the upper panel of Fig. 16 one can easily see that for
the nontransformed coordinates(circles) the inclusion of dy-
namical phonons withv0=125 meV considerably increases
the charge ordering. Calculations withNph=1 and 2 (not
shown) revealed that the increase is monotonic in the number
of phonon states and we conclude that for convergence many
more phonon states would be necessary. For the distorted
lattice (diamonds), the dynamical phonons actually decrease
the charge ordering forVù1.0, and the strongest effect oc-
curs in the vicinity of the phase transition atV=1.0 andV
=1.5. The reason for this decrease is thatzstat is shifted

downwards with increasing number of dynamical phonons.
At V=1.0, where a finitezstat at Nph=0 is a finite size effect
(Sec. III A), zstat is reduced to zero forNph=3. At Vù1.5 the
relative change inzstat is similar to that inmCO

2 (Fig. 16). We
want to mention that the two solid curves in the upper panel
of Fig. 16 give an upper and a lower boundary for the actual
value of the order parameter on the four rung lattice, since
for Nph→ =` results forz=0 andz=zstat become equivalent,
as discussed above.

In the lower panel of Fig. 16 the differenceDmCO
2 of the

order parameter in the presence of dynamical phonons to
Nph=0 is shown including data forv0=60 meV. Forz=0
(upper two curves) this deviation is positive and the effect is
always larger forv0=125 meV, which corresponds to a
larger value ofg. Forz=zstat (lower two curves) it is negative
for Vù1.0. The crossing atV=1.0 is due to the small finite
value ofzstat for Nph=0, i.e., a finite size effect.

It is interesting to study the order pattern of the dynami-
cally induced distortions. For this purpose we define the cor-
relation function

Cz =
1

N2o
i j

eiQsRi−R jdksẑi − kẑildsẑj − kẑjldl, s15d

which measures the zig-zag ordering of the lattice distor-
tions, similar to Eq.(4) for the charge densities. For the
nontransformed coordinates it is depicted in Fig. 17 forv0
=125 meV and different numbers of dynamical phonons.
From this figure it is clear that dynamical phonons induce
zig-zag lattice distortions which strongly increase around the
phase transition point. Note that the correlation functionCz
is not normalized to the intervalf0,1g since lattice distor-
tions are not conserved quantities, different from, e.g.,
charges.

For the transformed coordinates we can calculate the dy-
namically induced zig-zag distortionszdyn directly from the
expectation valueskẑil since the symmetry of the system is
broken explicitly. Results show that the sumztot=zstat+zdyn of
the static distortion and the dynamically induced distortion is

FIG. 16. (a) Order parametermCO
2 , calculated on a cluster with

four rungs. Phonon parameters areC=0.35, k=0.125, andv0

=125 meV. Parameters are chosen as shown in the caption.(b)
DmCO

2 =mCO
2 sNph=3d−mCO

2 sNph=0d for two phonon frequenciesv0

=60 and 125 meV. Upper two curves: Without static distortion.
Lower two curves: with static distortion. The dotted line marks
DmCO

2 =0.

FIG. 17. Correlation functionCz as defined in Eq.(15) without
static distortions forv0=125 meV. The number of phonons is given
in the caption.
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always smaller than the valuezmin determined in Sec. III A,
and this effect is most pronounced near the phase transition.
For V=1.5 andNph=3 we got zstat=0.889 andzdyn=0.013
yielding a total zig-zag distortion ofztot=0.902, which is
noticeably smaller thanzmin=1.001 for Nph=0. Well above
the transition point the dynamically induced distortions are
very small, for instance forV=3.0 andNph=3 calculations
gave zdyn=0.0005, andzstat=1.290 is only slightly smaller
thanzmin=1.294.

From this analysis we conclude that using just static dis-
tortions gives qualitatively correct results but overestimates
the lattice distortions, in particular, in the vicinity of the
phase transition. The value of the order parameter in the full
dynamical model withNph=` will therefore be somewhat
smaller than in Sec. III A, as discussed above.

VI. CONCLUSIONS

In this paper we investigated the influence of lattice ef-
fects on the charge ordering transition, the spectrum of kink
excitations and dynamical susceptibilities of quarter-filled
ladder systems and considered thea8-NaV2O5 compound as
an example. For this purpose we modified the Hamiltonian
of the extended Hubbard model by terms which take into
account the coupling of electrons to lattice distortions. The
lattice rigidity k and the Holstein coupling constantC used
in our model were determined by first-principles band struc-
ture calculations. The physical properties were calculated by
the exact diagonalization technique. The results for the
ground-state energy and the order parameter show that by
including static distortions, the phase transition is shifted sig-
nificantly downward to lower values of the nearest-neighbor
Coulomb interactionV. The calculated displacements of the
vanadium ions due to the electron-lattice coupling in the
charge ordered phase are in good agreement with experimen-
tal measurements.7 We also found a virial theorem to be
fulfilled to high precision for the terms in the Hamiltonian
that couple to the lattice.

As low-energy excitations of the distorted ground state we
considered kink excitations, where the charge order pattern
changes along the ladder between two degenerate configura-
tions. These kinks are long whenmCO

2 is small, and become
shorter with increasing order. The kink lengths and energies
at small mCO

2 are comparable with those of a classicalf4

model.12

Moreover, we studied the extended Hubbard-Holstein
model to investigate the effect of dynamical phonons. Re-
sults showed that they have a strong influence on the charge
order parameter in the vicinity of the phase transition. An
analysis of the correlations of the dynamically induced dis-
tortions revealed that phonons indeed favor zig-zag lattice
distortions. We showed that using just static distortions
somewhat overestimates the actual value of the lattice distor-
tion, but well away from the transition point this dynamical
effect is very small and a description by static distortions
gives already accurate results.

In addition to these static properties we also calculated the
dynamic charge and spin susceptibilities. We showed that the
main features of these quantities are determined by the value
of the order parameter and not by the way this value is
achieved. From the spin susceptibility we extracted the ef-
fective magnetic exchange interaction along the ladder,
which exhibits a pronounced decrease with increasing charge
order. The magnitude of this parameter taken atV=1.3,C
=0.35 is in good agreement with the experimental inelastic
neutron scattering data.31
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