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Single-particle spectral function of quarter-filled ladder systems

M. Aichhorn, E. Ya. Sherman, and H. G. Evertz
Institut für Theoretische Physik, Technische Universität Graz, Petersgasse 16, A-8010 Graz, Austria

We study the single-particle properties of quarter-filled ladder systems such as α′-NaV2O5 by
means of a recently developed generalization of the variational cluster perturbation theory to ex-
tended Hubbard models. We find a homogeneous antiferromagnetic insulating phase for nearest-
neighbor repulsions smaller than a critical value, without any metallic phase for small repulsions.
Different from C-DMFT and LDA considerations, the inclusion of diagonal hopping within a ladder
has little effect on the bonding bands, while flattening and shifting the antibonding bands. In the
low-temperature charge-ordered phase, the spectrum depends on whether the ordering is driven by
the Coulomb repulsion or by the coupling to a static lattice distortion. The small change of the
experimentally observed gap upon charge ordering implies that the lattice coupling plays an impor-
tant role in this ordering. Inter-ladder coupling is straightforward to include within our method.
We show that it has only a minor effect on the spectral function. The numerically calculated spectra
show good agreement with experimental angle-resolved photo-emission data.

PACS numbers: 71.10.Fd,71.38.-k

I. INTRODUCTION

In recent years low-dimensional strongly-correlated
systems have been the subject of many experimental
and theoretical studies due to their fascinating proper-
ties such as the occurrence of ordered patterns of the
ion charges. A compound in this class of materials is
the low-dimensional vanadium bronze α′-NaV2O5. Al-
though known for many years1 it has attracted consider-
able attention in recent years because of a very interesting
low-temperature phase. The compound exhibits a spin-
Peierls-like transition at Tc ≈ 35K accompanied by the
opening of a spin gap.2 At the same3 or slightly higher
temperature charge ordering takes place. Different from
the first X-ray investigations, recent studies4,5,6 at room
temperature showed a disordered state with equivalent
valence 4.5 for all vanadium ions. Below the phase tran-
sition point, NMR-studies7 gave two different valences for
the ions, a clear evidence for the formation of a charge-
order pattern below Tc. Since one dxy electron is shared
by two V sites in a V-O-V rung, the ordering occurs
as a static charge disproportion δ between the V ions,
yielding charges 4.5 ± δ with a zig-zag pattern of δ’s.
Since the crystal environment of the vanadium ions is
asymmetric, the dxy electrons are coupled to the lattice
via a strong Holstein-like electron-phonon interaction.8

This results in a static lattice distortion below the charge
ordering transition temperature, where the ion displace-
ments from their positions in the high-temperature phase
is of the order of 0.05 Å as observed in X-ray diffraction
experiments.9

Although the crystal structure of α′-NaV2O5 is com-
posed of nearly decoupled two-dimensional layers that
consist of coupled two-leg ladders, spin-susceptibility
measurements2 revealed that the system can be rea-
sonably well described by a one-dimensional Heisenberg
model. This behavior could be explained by realiz-
ing that the molecular-orbital state on a rung occu-
pied by one electron is a key element of the electronic

structure,10 yielding quasi 1D magnetic exchange cou-
plings. In addition angle-resolved photo-emission spec-
troscopy (ARPES), performed in the disordered high-
temperature phase showed quasi 1D band dispersions of
the vanadium 3d bands,11,12 and it was argued that spin-
charge separation should be present in this system.13

Previous studies14,15,16,17 revealed that the electron-
phonon coupling is very important for the phase transi-
tion in quarter-filled ladder compounds. For this rea-
son we study a model Hamiltonian that includes the
coupling of the dxy electrons to the lattice. The rele-
vant parameters for the study of lattice effects can be
obtained from experiments18 (phonon frequencies), and
from first-principle calculations (lattice force constants
and electron-phonon coupling).5,19

Static and dynamic properties of quarter-filled lad-
der compounds without coupling to the lattice have
been studied intensively in the past using different
methods like mean-field approaches,20,21,22 exact di-
agonalisation (ED) of small clusters,23,24,25,26 density-
matrix renormalization-group (DMRG),27 cluster dy-
namical mean-field theory (C-DMFT),28 and bosoniza-
tion and renormalization-group techniques.29 Recently
the influence of the lattice coupling on the charge-
ordering transition was investigated by employing ED
methods.17

In this paper we study the single-particle spectral func-
tion of the compound α′-NaV2O5, which can be directly
related to the ARPES experiments, by applying the re-
cently proposed variational cluster perturbation theory
(V-CPT).30 This method is a combination of the clus-
ter perturbation theory31 and the self-energy functional
approach (SFA),32 which provides results for the infi-
nite lattice and allows to study symmetry-broken phases.
It was used with success for the investigation of the
magnetic ground-state properties of the two-dimensional
Hubbard model.33 For Hamiltonians including offsite
Coulomb interactions an extension of this theory has
been developed,34 which turned out to give very accu-
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rate results for the one and two-dimensional extended
Hubbard model.

The paper is organized as follows. In Sec. II we intro-
duce the model Hamiltonian and give a short description
of the V-CPT method. Sec. III and Sec. IV includes our
results for single and coupled ladders, respectively, and
we finally draw our conclusions in Sec. V.

II. MODEL AND METHOD

On a microscopic level α′-NaV2O5 can be described by
an extended Hubbard model (EHM). In order to take into
account lattice effects we further extend this well-known
model by electron-phonon coupling terms, yielding the
model

H = HEHM + Hl + He−l, (1)

with HEHM the EHM Hamiltonian, Hl the contribution
of the lattice, and He−l a Holstein-like electron-phonon
coupling. These terms are given by

HEHM = −
∑

〈ij〉,σ

tij

(

c†iσcjσ + H.c.
)

+ U
∑

i

ni↑ni↓ +
∑

〈ij〉

Vijninj , (2a)

Hl =κ
∑

i

z2
i

2
, (2b)

He−l = − C
∑

i

zini, (2c)

where 〈ij〉 connects nearest-neighbor bonds, and tij is
the corresponding hopping matrix element. In Fig. 1
the lattice structure and the hopping processes used in
this study are shown. The most commonly used set for
these matrix elements is ta = 0.38 eV, tb = 0.18 eV, and
txy = 0.012 eV, and was obtained by fitting the LDA
bands.5 A recent study19 gave similar parameter values.
By including the additional hopping term td in a massive
downfolding procedure, Mazurenko et. al

28 found simi-
lar values for ta and txy, but the values tb = 0.084 and
td = 0.083 differ considerably from previous studies. In
this study we set ta as the energy unit and fix tb = 0.5,
except for Sec. III C, where we study the spectral function
including the hopping term td. The onsite Coulomb in-
teraction is set to U = 8 throughout the paper, in accor-
dance with band-structure calculations,19 and the inter-
site Coulomb interaction Vij is treated as a free param-
eter of the system, since the determination of a proper
value within first-principle calculations is very difficult.

The lattice distortions are given in units of 0.05 Å, since
the ion displacements in the ordered phase are of this or-
der of magnitude. The electron-phonon coupling C and
the lattice rigidity κ were determined by first-principle
calculations19 yielding C = 0.35 and κ = 0.125 within

ta

t
b

t
d

xyt

b

a

FIG. 1: Clusters used for the V-CPT calculations. The diag-
onal hopping td is indicated only once, but is present equiv-
alently between other sites. Decoupled bonds treated pertur-
batively are marked by dashed lines, and the boxes show the
clusters of finite size. Left: Single ladder with 6 × 2 cluster.
Right: Super cluster consisting of two 12 site clusters.

these units. We restrict our investigations to static dis-
tortions and neglect dynamical phonon effects, similar to
parts of Ref. 17.

The method we use in this paper for the calculation
of the single-particle spectrum is the variational cluster
perturbation theory for an EHM.34 The main idea is to
decouple the lattice into clusters of finite size as depicted
in Fig. 1, yielding the Hamiltonian

H =
∑

R

[

H
(c)
0 (R) + H1(R)

]

+
∑

R,R′

H
(i)
0 (R, R′), (3)

where R denotes the individual clusters. The first sum
consists of decoupled intra-cluster Hamiltonians with in-
teraction part H1(R), and the second sum gives the cou-
pling between clusters, which must be of single-particle
type and is of the general form

H
(i)
0 (R, R′) =

∑

a,b

T R,R′

a,b c†R,ac
R′,b

. (4)

The indices a and b are orbital indices within a clus-
ter. Obviously the Hamiltonian (3) is invariant under
the transformation

H
(c)
0 (R) → H

(c)
0 (R) + O(R)

H
(i)
0 (R, R′) → H

(i)
0 (R, R′) − δR,R′O(R),

(5)

with an arbitrary single-particle operator

O(R) =
∑

a,b

∆a,b c†R,acR,b. (6)
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This transformation allows the study of symmetry-
broken phases by the inclusion of fictitious symmetry-
breaking fields. In the present case of the EHM the in-
tercluster Coulomb interactions are decoupled on a mean-
field level, giving effective onsite potentials λi on the clus-
ter boundaries.34 The interactions within the individual
clusters are treated exactly by the Lanczos method.

The proper values of these mean-field potentials as well
as the proper choice of the single-particle operator O(R)
are determined within the framework of the SFA. It pro-
vides a unique way to calculate the grand potential of
a system by using dynamical information of an exactly
solvable reference system, which is in our case the de-
coupled cluster. This grand potential is parametrized
as a function of the matrix of single-particle parameters
∆ = ∆a,b for the operator (6) and the mean-field parame-
ters λi, and the functional form is taken from Refs. 32,34:

Ω(∆, λi) = Ω′(∆, λi)

+ T
∑

ωn,q

tr ln
−1

G(0)
q (λi, iωn)−1 − Σ(∆, λi, iωn)

− LT
∑

ωn

tr ln(−G′(∆, λi, iωn)), (7)

where Ω′(∆, λi) is the grand potential of the de-

coupled clusters, G(0)
q (λi, iωn) is the non-interacting

Green’s function of the original infinite-lattice prob-
lem after mean-field decoupling of inter-cluster Coulomb
interactions, Σ(∆, λi, iωn) is the cluster self energy,
G′(∆, λi, iωn) the cluster Green’s function and L de-
notes the number of clusters. All cluster properties can
easily be calculated by the Lanczos algorithm. The sum
over Matsubara frequencies in Eq. (7) is evaluated by a
continuation to the real frequency axis, iωn → ω + i0+,
yielding an integral from minus infinity to µ (note that
the Hamiltonian, Eq. (1), does not involve µ in any way).
The physical grand potential is given by the stationary
point of Ω(∆, λi), and the single-particle Green’s func-
tion is then calculated by

Gq(ω) =
[

G′(ω)−1 − T q

]−1
(8)

with the Fourier-transformed matrix elements Tq,a,b.
31

After applying a residual Fourier transformation31 one
finally obtains the fully momentum-dependent Green’s
function G(k, ω) for the infinite size system.

Since calculations are not done at half filling, the chem-
ical potential is not known a priori. However, the knowl-
edge of µ is important for the evaluation of the grand
potential, as discussed above. For this purpose one can
calculate µ from the condition

n =
2

L

∑

k

∫ µ

−∞

dωA(k, ω), (9)

where the spectral function A(k, ω) is given by

A(k, ω) = −
1

π
Im G(k, ω + iη) (10)

and η is a small Lorentzian broadening. This looks like
a self-consistent procedure, since for the calculation of µ
the Green’s function G(k, ω) is needed, and for the de-
termination of G(k, ω) one has to know µ. This cycle
can be avoided by as follows. One can infer the chem-
ical potential directly from the energies of the excited
states obtained by the ED. An approximate value for the
chemical potential is then given by

µED =
EIPES

min + EPES
max

2
, (11)

with EIPES
min the minimal energy of inverse-photo-emission

(IPES) states and EPES
max the maximum energy of photo-

emission (PES) states. This value only weakly depends
on the mean-field and variational parameters, and as dis-
cussed below we found in all our calculations a well es-
tablished gap between the PES and IPES states yield-
ing a constant density n in a reasonably large neighbor-
hood of the physical chemical potential µ, in agreement
with quantum Monte Carlo calculations.35 Therefore µED

gives a reasonable approximation for our calculations.
For the details of this method and the calculation of the

grand potential we refer the reader to Refs. 30,31,33,34
and references therein.

III. RESULTS FOR SINGLE LADDERS

A. Critical coupling

We start our investigations with decoupled ladders,
i.e., txy = 0 and Vxy = 0 (Fig. 1). Before we turn to
the spectral function, we study the charge-ordering tran-
sition as a function of V . Since we will apply a mean-field
decoupling of the nonlocal Coulomb interactions across
cluster boundaries as described in Sec. II, we first study
the effect of this approximation. For this purpose we con-
sider the EHM without coupling to the lattice in the limit
of exactly one electron per rung and tb = 0. In mean-field
approximation this case results in a second-order phase
transition between a disordered state and a zig-zag or-
dered state at a critical interaction of V MF

c = 1.0. On
the other hand this case is exactly solvable by a mapping
to an Ising model in a transverse field,22 yielding a criti-
cal interaction of V exact

c = 2.0.36 Thus we expect strong
mean-field effects, since in this special limit we found
V exact

c = 2V MF
c . Since it can be assumed that a finite

value of the hopping between adjacent rungs tb weakens
the charge ordering, the actual critical value Vc is pre-
sumably located slightly above 2.0 when tb is included.

In order to determine the order of the transition within
the framework of V-CPT it is sufficient to calculate the
grand potential Ω, Eq. (7), as a function of the mean-
field parameters.34 Since our system is quarter filled we
consider only one parameter δ giving mean-field electron
densities 〈n〉 + δ and 〈n〉 − δ on sublattices A and B,
respectively. For second-order phase transitions it can
in addition be important to include a fictitious staggered
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FIG. 2: Grand potential Ω(δ) as a function of the mean-field
parameter δ with a 6 × 2 cluster serving as reference system,
and without coupling to the lattice. Upper panel: V = 1.5.
Lower panel: V = 1.7.

chemical potential as a variational parameter.34 This field
is included via the single-particle operator O(R), Eq. (6),
with

∆a,b = εδa,be
iQra , (12)

where ε denotes the variational parameter, ra is the lat-
tice vector of site a, and Q = (π, π). Initial calculations
showed that in the present case the inclusion of such a
field does not have any significant effect and the relative
change in Ω is at most of the order of 10−4. For this
reason all further calculations have been done without a
staggered chemical potential.

Fig. 2 shows the dependence of Ω(δ) on the mean-
field parameter δ calculated with a 6 × 2 cluster as ref-
erence system. For simplicity we set Va = Vb = V .
One can see that the system undergoes a continuous
phase transition,34 which is located between V = 1.5
and V = 1.7. This value for the critical interaction is
considerably smaller than the above mentioned value of
the analytical solution, but the agreement is much bet-
ter than the result of the purely mean-field calculation,
V MF

c = 1.0.
In order to study the finite-size dependence of the

critical Coulomb interaction we performed calculations
on clusters of different length, and the results are de-
picted in Fig. 3. The steps in V in our calculations were
∆V = 0.01, which results in error bars of ∆Vc = 0.005.
As expected, Vc is strongly finite-size dependent. From
Fig. 3 we can expect that for larger cluster sizes the crit-
ical interaction Vc increases further and reaches the ex-
pected value of slightly above 2.0, but for a more sophis-
ticated finite-size scaling our cluster sizes are too small.
Nevertheless it is possible to study the spectral function
both in the disordered and the ordered phase. Since the
calculations for the 8 × 2 ladder are very time consum-

0 0.1 0.2 0.3 0.4 0.5
1 / N

rungs

1.3

1.4

1.5

1.6

1.7

1.8

1.9

V
c

FIG. 3: Finite-size dependence of the critical Coulomb inter-
action Vc without lattice coupling. Error bars are due to the
finite step ∆V = 0.01 in the calculations. Dotted line: Lin-
ear extrapolation of the 8 and 6 rung cluster. Dashed line:
Quadratic extrapolation of the 8, 6, and 4 rung cluster.

ing, all single-ladder spectra presented in this paper have
been determined with a 6× 2 ladder as reference system.

B. Disordered phase

We start our investigations of the spectral function
with the disordered high-temperature phase. Since α′-
NaV2O5 may be near a quantum critical point between
ordered and disordered phase, we choose the nearest
neighbor interaction to be slightly below the critical
value. We set V = Va = Vb = 1.3, tb = 0.5, and we do not
include diagonal hopping, i.e. td = 0. The result of this
calculation is shown in Fig. 4. An additional Lorentzian
broadening of η = 0.1 has been used for all spectra shown
in this paper. The dashed vertical line marks µED cal-
culated from Eq. (11), and the dotted line denotes µCPT

determined from the condition Eq. (9). For the latter
quantity the sum over momentum vectors had to consist
of about 80 vectors in order to get a well converged re-
sult. It is easy to see that µED = 1.71 lies exactly in
the middle of the gap, whereas µCPT = 1.23 is located at
its lower boundary. But since there are no in-gap states
both values of µ give approximately the same average
density n, and the ground-state energy E0 = Ω + µN
hardly depends on whether we use µED or µCPT. These
facts confirm that our approximation to use µ = µED as
chemical potential gives correct results, and in addition
the numerical effort for this procedure is much less than
for the above described self-consistent determination of
µ.

As one can easily see in Fig. 4, the spectral function
exhibits a well defined gap around the chemical poten-
tial, a clear indication of insulating behavior. In order
to check if the insulator is only stable above some criti-
cal inter-site Coulomb interaction, we calculated the gap



5

-4 -2 0 2 4 6 8 10 12
ω / t

a

k
a
 = 0

k
a
 = π

k
b
 = 0

k
b
 = 0

k
b
 = π/2

k
b
 = π

k
b
 = π/2

k
b
 = π

µ
ED

µ
CPT

FIG. 4: Single-particle spectral function A(k, ω) calculated
with a 6× 2 cluster in the disordered phase at Va = Vb = 1.3.
Top panel: Momentum ka = 0 perpendicular to the ladder.
Bottom panel: ka = π. The dashed line marks the chemical
potential calculated by Eq. (11), the dotted line marks the
result obtained from Eq. (9).
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FIG. 5: Gap ∆ in the spectral function as a function of Va.
Squares: Vb = 0. Diamonds: Vb = Va.

∆ at (ka, kb) = (0, π/2) as a function of the intra-rung
interaction Va. We studied two cases with Vb = 0 and
Vb = Va, respectively, and the results are shown in Fig. 5.
Note that for Vb = 0 no mean-field decoupling is needed,
since there are no interaction bonds between different
clusters. At Va = 0, where both cases are equivalent, we
found a finite value of the gap, ∆ ≈ 0.55. We checked the
finite size dependence by calculating the gap on a 4 × 2
cluster giving ∆ ≈ 0.59. By applying a linear 1/Nrungs

extrapolation to Nrungs = ∞ one gets ∆ ≈ 0.47, indicat-
ing that the curves in Fig. 5 somewhat overestimates the
value of the gap for the infinite ladder. Nevertheless we
conclude from our calculations that the system is insulat-
ing already for small values of Va. This is consistent with
DMRG calculations,27 where for ta > tb a homogeneous
insulating phase has been found for V = 0. The behav-
ior of the spectral function is also in agreement with ED
calculations on small clusters for V = 0, where for large
enough ta an insulating state has been found.26 Similar
results have been obtained by Kohno37 for the U = ∞
Hubbard ladder.

In the case Vb = 0, which means that there is no
Coulomb interaction between adjacent rungs, we found
that ∆ increases linearly with Va. For Vb = Va the gap is
slightly larger and the deviation increases with increas-
ing Va. Here, with a 6 × 2 cluster as reference system,
the system starts to order at Vc ≈ 1.625, which results
in the kink in ∆ around this critical value. Note that for
Vb = 0 such a phase transition is not possible.

Let us now discuss the spectral features for ka = 0 as
shown in Fig. 4. The spectral function looks very sim-
ilar to that of the half-filled one-dimensional Hubbard
model with a totally filled lower and an empty upper
band. Different from the 1D Hubbard model the gap
between these two bands is not only determined by the
onsite interaction U , but mainly by the intrarung inter-
action Va, as discussed above. At k = (0, 0) one can see
signatures of spin-charge separation, where the band is
split into a low energy spinon band (at approximately
ω − µ ≈ −1.5) and a holon band at slightly higher en-
ergy (ω − µ ≈ −2.0). This splitting has not been seen
directly in experiments,11,12 since it is small and tem-
perature effects did not allow a high enough experimen-
tal resolution. However, by studying the temperature
dependence of ARPES spectra, it was argued that sub-
tle spectral-weight redistributions can be related to spin-
charge separation.13 Some spectral weight can also be
found at very high energies of about (ω−µ) ≈ 8.5, which
is close to the onsite energy U = 8 and can thus be re-
lated to doubly-occupied sites.

Infrared (IR) experiments probe transitions near the Γ
point, that is between even (0, 0) and odd (0, π) states
in the language of single ladders. From Fig. 4 one can
extract an excitation energy of roughly 3ta, which is in
good agreement with the experimentally found 1 eV ab-
sorption peak.38

The lower and upper band disperse with period π in-
dicating a doubling of the unit cell in real space, sim-
ilar to the 1D Hubbard model. In order to determine
the origin of this doubling we have calculated the real-
space spin correlation function Sr = 〈Sz

1Sz
1+r〉 within the

cluster by exact diagonalisation, where Sz
1 and Sz

r are
the z-components of a spin on the cluster boundary and
on a rung with distance r to the boundary. In the up-
per panel of Fig. 6 this correlation function is shown for
two different paths, where the solid line is Sr along one
leg of the ladder, and the dashed line is Sr on a zig-
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FIG. 6: Magnetic properties of a single ladder at Va = Vb =
1.3. Upper panel: Spin correlation function Sr = 〈Sz

1Sz
1+r〉

calculated on an isolated 6 × 2 cluster. Lower panel: Grand
potential Ω as a function of the strength of the fictitious field
Eq. (13).

zag path through the ladder. Both correlation functions
show clear antiferromagnetic correlations along the lad-
der similar to results obtained by the finite-temperature
Lanczos method.25 By applying a fictitious symmetry-
breaking magnetic field via the operator O(R), Eq. (6),
we can estimate whether this ordering is of long-range
type or not. Similar to Ref. 33 we choose for this field

∆a,b = hδa,bzσeiQ̃ra , (13)

where zσ is ±1 for spin ↑, ↓ in the orbitals a, b, and h is the
field strength. The wave vector Q̃ is set to (0, π) yielding
a staggered field along the ladder. The dependence of Ω
on this fictitious field is depicted in the lower panel of
Fig. 6. Similar to the one-dimensional Hubbard model at
half filling,33 there is only one stationary point at h = 0,
which means that the system does not show long-range
antiferromagnetic order, but is rather in a paramagnetic
state with short-range antiferromagnetic correlations.

The above considerations show that the system ex-
hibits short-range antiferromagnetic spin correlations
along the ladder, which can produce the doubled unit
cell. Nevertheless it is also possible that the doubling
of the unit cell is due to short-range charge correlations
and not due to spin correlations. In order to clarify this
point we calculated the spectral function at Vb = 0 and
finite Va, where no charge ordering is possible. Also in
this case the periodicity of the bands with largest spec-
tral weight is π at ka = 0 and 2π at ka = π. This shows
that below the phase transition at Va = 1.3, the doubling
of the unit cell is mainly due to short-range spin corre-
lations, and charge correlations play only a minor role in

this context.

When turning to ka = π, the spectral function looks
totally different. As on can easily see in Fig. 4 there is
hardly any spectral weight below the chemical potential,
which means that there are no occupied states in the
channel ka = π. This can be understood, because ka =
π corresponds to an antibonding state within a rung,
which has energy 2ta relative to the bonding orbital and
is therefore not populated in the ground state.

An obvious difference between the spectra for ka = 0
and ka = π is that in the latter case the excitations
with largest spectral weight located between ω ≈ 3 and
ω ≈ 4.5 disperse with periodicity 2π instead of π. Quali-
tatively this can be understood as follows. When insert-
ing a particle with ka = 0, this electron will occupy a
state in the bonding orbital. Since one of the two states
in this orbital is already occupied, the additional par-
ticle must have opposite spin, and thus this particle is
connected to the antiferromagnetic background. A par-
ticle with ka = π occupies a state in the antibonding
orbital, and since this orbital is not occupied, both spin
directions possess equal possibility. Therefore an electron
with ka = π is not influenced by the antiferromagnetism
in the ground state.

C. Disordered phase including diagonal hopping

So far we have studied single ladders only with hop-
ping parameters ta and tb and neglected additional diag-
onal hopping processes td, as indicated in Fig. 1. These
hopping processes have been important in first-principle
calculations in order to fit the LDA bands correctly.39

Moreover td has been important in C-DMFT calculations
in order to describe the insulating state in the disordered
phase properly.28 In this section we study the effect of td
within the V-CPT framework.

In Fig. 7 the spectral function is shown for Va = Vb =
1.3, tb = 0.25 and td = 0.25, where the hopping parame-
ters are chosen similar to Ref. 28. Whereas the spectrum
at ka = 0 is almost indistinguishable from Fig. 4, we see
a big difference at ka = π. There is still hardly any spec-
tral weight below the Fermi energy, but the band with
largest spectral weight above the Fermi level is now lo-
cated at approximately ω − µ ≈ 2.0 and can be regarded
as dispersionless.

From a qualitative point of view this can be explained
by the dispersion of non-interacting fermions on a two-
leg ladder in the presence of diagonal hopping, which is
given by

ε(k) = − ta cos ka − 2tb cos kb

− 2td cos ka cos kb,
(14)

where the values for ka are restricted to 0 and π, and in
these two cases the dispersion can be written explicitly
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FIG. 7: Spectral function A(k, ω) when the diagonal hopping
is included, tb = 0.25, td = 0.25. The Coulomb interaction
was Va = Vb = 1.3. The dotted line marks the chemical
potential.

as

ε(ka = 0, kb) = −ta − 2(tb + td) cos kb (15a)

ε(ka = π, kb) = +ta − 2(tb − td) cos kb. (15b)

This means that for ka = 0 the bandwidth is determined
by the sum of tb and td, whereas for ka = π it is set by the
difference of these two hopping processes. Since we used
tb = td = 0.25, this fits perfectly to the spectrum shown
in Fig. 7. The sum is equal to the value of tb used for
the calculations without diagonal hopping in Sec. III B,
and the difference is equal to zero, which explains the
dispersionless band at ka = π.

The picture that evolves from our calculations is some-
what different to that obtained in first-principle and C-
DMFT calculations. To begin with, the bands obtained
from the LDA all disperse with periodicity 2π and not π,
as observed experimentally, along the b direction. More-
over we could not find any signature of a flattening of
the upper dxy bands in the direction k = (0, 0) → (0, π)
when a diagonal hopping is included, which was reported
in Ref. 39. The main difference of our calculations to C-
DMFT results is that C-DMFT finds a metal-insulator
transition at some finite value of V , and this transi-
tion point is shifted downward significantly when td is
included.28 In contrast we find an insulating state at rea-
sonable values of U already for V = 0, even without the
inclusion of td. The discrepancy to C-DMFT calculations
are very likely due to the fact, that the cluster used in
the C-DMFT calculations consisted only of a single rung,

and fluctuations along the ladders, which seem to be im-
portant in this system, have been neglected altogether.

D. Ordered phase

We investigate two different driving forces for the oc-
currence of a charge-order pattern, (i) the coupling of the
electrons to lattice degrees of freedom, and (ii) nearest-
neighbor Coulomb interaction, similar to Ref. 17.

Let us start our investigations with possibility (i), the
coupling to the lattice. In order to keep the calcula-
tions simple, we consider static lattice distortions, as dis-
cussed in Sec. II. The inclusion of dynamical phonon ef-
fects would state a severe problem to the diagonalisation
procedures, because for phonons the Hilbert space is a
priori of infinite size, and some truncation scheme has to
be applied.17 So far well converged results for the spectral
function in the presence of dynamical phonons could only
be achieved for the polaron and the bipolaron problem.41

We assumed a zig-zag charge order pattern, justified
by experimental evidence:9

zi = zeiQri . (16)

In Ref. 17 the optimal value of z was determined by the
minimum of the total energy. Here we minimize the SFA
grand potential, Eq. (7). Thus the grand potential is now
a function of two external parameters, the mean-field pa-
rameter δ and the static distortion z. In order to keep the
calculations simple and the number of independent vari-
ables small, we did not consider an additional variational
parameter like a staggered chemical potential.

Motivated by previous work,17 we set Va = Vb = 1.3,
since for this choice we expect the distortions to be close
to the experimental value of zexp ≈ 0.95 (in units of

0.05 Å). Indeed we found z = 0.911, which is close to
zexp, and the mean-field parameter was δ = 0.338. The
spectrum calculated with these values is shown in the top
plots of Fig. 8.

The spectral function shows similar features as in the
undistorted phase. For ka = 0 the bands disperse with
periodicity π, whereas for ka = π no evidence for a dou-
bling of the unit cell can be found, and the periodicity is
2π. Nevertheless, the gap at k = (0, π/2) is considerably
larger than for V = 1.3 without distortions, see Fig. 4.

An interesting quantity when considering charge-
ordering phenomena is the charge order parameter, which
we calculate as

mCDW =
1

Nc〈n〉

∑

j

(nj − 〈n〉) eiQrj . (17)

The factor 〈n〉 in the denominator assures that the order
parameter is normalized to the interval [0, 1]. For Va =
Vb = 1.3 and static distortions we obtained mCDW =
0.65, which means that the disproportion of charges is
rather large.
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FIG. 8: Spectral function A(k, ω) in the ordered phase. Top: Transition driven by coupling to the lattice. Bottom: Transition
driven by Coulomb interaction. For the interaction V = Va = Vb was used, with the values as given in the plots. The dotted
line marks the chemical potential.

Let us now consider possibility (ii), where the coupling
to the lattice is switched off, C = 0, κ = 0, and the charge
ordering is driven by the nearest-neighbor Coulomb inter-
action. In order to make a connection to the results ob-
tained with lattice distortions, we calculate the spectral
function at a similar value of the charge order parameter.
We found that for Va = Vb = 2.05 the order parameter is
mCDW = 0.66, close to the value found above.

The spectral function is shown in the lower plots of
Fig. 8. The spectral features again look very similar to
Fig. 4. By comparing the upper and lower plots of Fig. 8,
one can see that in both cases the gap at k = (0, π/2) is
larger than in the disordered phase, Fig. 4. To be specific
we found a gap size of approximately 2.6ta in the presence
of lattice distortions and 3.4ta without lattice distortions,
whereas in the disordered phase the gap was 1.8ta. It is
interesting that the momentum-resolved single-particle
spectral features do depend on the driving force of the
transition, which was much less pronounced for, e.g., spin
and charge susceptibilities obtained by integration over
the electron states.17

The excitation energy near the Γ point, relevant for
IR experiments, can be read off from Fig. 8 to be roughly
4ta with lattice distortions and 5ta without distortions.
Although these excitation energies are not constant com-
pared to the disordered phase, calculations including the
lattice degrees of freedom give a better agreement to ex-
perimental IR absorption data,38 which show neither a
shift of the 1 eV peak nor the appearance of new peaks

related to electronic transitions.

IV. RESULTS FOR COUPLED LADDERS

So far we studied only single ladders and neglected
the inter-ladder couplings, since they are frustrated and
one might assume that they are only of minor impor-
tance. Nevertheless our approach allows us to include
these inter-ladder couplings by choosing an appropriate
cluster geometry, as indicated on the right hand side of
Fig. 1. Note that it is necessary to use a 2 × 12 super-
cluster which allows for a commensurate charge order
pattern across the cluster boundaries. For details of the
treatment of super-clusters we refer the reader to Ref. 34.

The parameter values for the intercluster coupling are
chosen in the following way. First-principle calculations
have shown that the effective hopping between different
ladders is very small, so we set txy = 0.1ta, and longer
ranging hopping processes are neglected since the linear
dimensions of the cluster are rather small. The values
for the other parameters are the same as used for the
calculations in Sec. III B.

In Fig. 9 the spectral function for Va = Vb = Vxy = 1.3
is shown. For k parallel to the b axis one can easily see
that the spectrum looks very similar to the spectrum of a
single ladder (upper panel of Fig. 4). The main difference
between single and coupled ladders is that the chemical
potential is much larger in the latter case (µ ≈ 3.0),
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FIG. 9: Spectral function A(k, ω) in the disordered phase at
Va = Vb = Vxy = 1.3 calculated on the 2 × 12 super-cluster.
Top: Momentum k along the ladder direction. Bottom: k

perpendicular to the ladder direction.

which is due to the frustrated inter-ladder bonds.
When turning to k parallel to the a axis the spec-

tral function looks very different. The most striking fea-
ture is that there is hardly any dispersion of the bands,
and the filled low-energy band can actually be considered
as dispersionless. The spectral weight of this excitation,
however, decreases significantly away from k = 0 and is
transfered to unoccupied states above the Fermi level at
approximately ω − µ ≈ 1.5.

Let us now compare our numerical results to experi-
mental data. Kobayashi et. al11 performed angle-resolved
photo-emission spectroscopy (ARPES) at room temper-
ature, where the system is in the disordered phase. For
momentum transfer parallel to the a direction they found
no dispersion of the V 3d bands, which fits perfectly well
to our results. For k along the b axis a band dispersion of
a 1D antiferromagnetic quantum system was found with
experimental band with of approximately 0.06–0.12eV.
This value is rather small compared to the band width
in our calculation of approximately 0.35 eV, see Fig. 9.
We checked that the band width scales with the hop-
ping along the ladder tb (not shown), and therefore this
discrepancy between calculations and experiment can be
shortened by choosing a smaller value for tb, which does
not significantly affect the charge ordering of the system.
Nevertheless the strong difference between spectra along
a and b direction are well described by our calculations.

V. CONCLUSIONS

In this paper we have applied the recently proposed
generalization of the V-CPT for extended Hubbard mod-
els to the case of quarter-filled ladder compounds. We
were thus able to perform the first theoretical study of
the spectral function of α′-NaV2O5 within the extended
Hubbard model.

For single ladders in the disordered phase we found
that in the channel ka = 0 the system behaves like a
one-dimensional antiferromagnetic insulator, and the gap
is mainly determined by the nearest-neighbor Coulomb
interaction on a rung. Our calculations suggest that the
system is in an insulating phase for all values of V .

This picture still holds when a diagonal hopping td
is included in the Hamiltonian, which was suggested to
be important by LDA and C-DMFT studies. We could
show that for ka = 0 hardly any changes can be seen
in the spectral function, whereas for ka = π the bands
become flat. These findings do not agree with LDA
considerations,39 where a flat upper band was observed
for ka = 0, thus requiring a finite value of td in a tight-
binding fit.

For the transition into the charge-ordered low-
temperature phase we considered two driving mecha-
nisms, the coupling to a static lattice distortion and the
nearest neighbor Coulomb interaction. With lattice cou-
pling we found, similar to Ref. 17, that for V = 1.3 the
distortion is close to the experimentally found size, ac-
companied by a large disproportion of charges. In or-
der to reach the charge-ordered phase solely by Coulomb
interactions, we had to use a large value of V (with
V = 2.05 for the same value of the order parameter),
which resulted in a large gap in the spectral function,
considerably larger than in the disordered phase and
in the ordered phase with lattice distortions. Since IR
experiments38 do not show such a discrepancy, we sug-
gest that for the description of the ordered phase, lattice
distortions cannot be neglected.

Within our approach it was straightforward to study
the effects of inter-ladder coupling on the spectral func-
tion. We found that the spectra along the ladder di-
rection are not significantly affected by these couplings.
Perpendicular to the ladders the calculated bands are al-
most dispersionless, in good agreement with experimen-
tal data.
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9 J. Lüdecke, A. Jobst, S. van Smaalen, E. Morre, C. Geibel,
and H.-G. Krane, Phys. Rev. Lett. 82, 3633 (1999).

10 P. Horsch and F. Mack, Eur. Phys. J. B 5, 367 (1998).
11 K. Kobayashi, T. Mizokawa, A. Fujimori, M. Isobe, and

Y. Ueda, Phys. Rev. Lett 80, 3121 (1998).
12 A. Damascelli, private communication.
13 K. Kobayashi, T. Mizokawa, A. Fujimori, M. Isobe,

Y. Ueda, T. Tohyama, and S. Maekawa, Phys. Rev. Lett.
82, 803 (1999).

14 J. Riera and A. Poilblanc, Phys. Rev. B 59, 2667, (1999).
15 R.T. Clay and S. Mazumdar, cond-mat/0305479.
16 E.Ya. Sherman, C. Ambrosch-Draxl, P. Lemmens,

G. Güntherodt, and P.H.M. van Loosdrecht, Phys. Rev. B
63, 224305 (2001).

17 M. Aichhorn, M. Hohenadler, E.Ya. Sherman, J. Spitaler,
C. Ambrosch-Draxl, and H.G. Evertz, Phys. Rev. B 69,
245108 (2004).

18 M. Fischer, P. Lemmens, G. Els, G. Güntherodt,
E.Ya. Sherman, E. Morre, C. Geibel, and F. Steglich,
Phys. Rev. B 60, 7284 (1999).

19 J. Spitaler, E.Ya. Sherman, C. Ambrosch-Draxl, and
H.G. Evertz, Physica Scripta T109, 159 (2004); Phys. Rev.
B, in print.

20 H. Seo and H. Fukuyama, J. Phys. Soc. Jpn. 67, 2602
(1998).

21 P. Thalmeier and P. Fulde, Europhys. Lett. 44, 242 (1998).
22 M. Mostovoy and D.I. Khomskii, Solid State Com-

mun. 113, 159 (2000); M.V. Mostovoy, D.I. Khomskii, and

J. Knoester, Phys. Rev. B 65, 064412 (2002).
23 M. Cuoco, P. Horsch, and F. Mack, Phys. Rev. B 60,

R8438 (1999).
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27 M. Vojta, A. Hübsch, and R.M. Noack, Phys. Rev. B 63,

045105 (2001); M. Vojta, R.E. Hetzel, and R.M. Noack,
Phys. Rev. B 60, R8417 (1999); R. M. Noack, S.R. White,
and D.J. Scalapino, Physica C 270, 281 (1996).

28 V.V. Mazurenko, A.I. Lichtenstein, M.I. Katsnelson,
I. Dasgupta, T. Saha-Dasgupta, and V.I. Anisimov,
Phys. Rev. B 66, 081104 (2002).

29 E. Orignac and R. Citro, Eur. Phys. J. B 33, 419 (2003).
30 M. Potthoff, M. Aichhorn, and C. Dahnken, Phys. Rev.

Lett. 91, 206402 (2003).
31 C. Gros and R. Valenti, Phys. Rev. B 48, 418 (1993),
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