
phys. stat. sol. (b) 242, No. 7, 1406–1413 (2005) / DOI 10.1002/pssb.200440019 

© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

Quantum Monte Carlo approach to the Holstein polaron problem 

Martin Hohenadler*, Hans Gerd Evertz, and Wolfgang von der Linden 

Institute for Theoretical and Computational Physics, Graz University of Technology,  
Petersgasse 16, 8010 Graz, Austria 

Received 21 December 2004, revised 16 February 2005, accepted 23 February 2005 
Published online 11 April 2005 

PACS 2.70.Ss, 63.20.Kr, 71.27.+a, 71.38.Ht 

A recently developed quantum Monte Carlo approach to the Holstein model with one electron [Phys. Rev. 
B 69, 024301 (2004)] is extended in several aspects. In addition to a straight-forward generalization to 
higher dimensions, a checkerboard breakup for the hopping part of the Hamiltonian is introduced, which 
allows significantly faster simulations. Moreover, results are extrapolated towards the limit of continuous 
imaginary time to remove the error due to the Trotter–Suzuki approximation. The performance and accu-
racy of the current approach are compared to existing quantum Monte Carlo methods. To demonstrate the 
applicability of our method for almost arbitrary parameters, we study the small-polaron crossover in one 
to three dimensions by calculating the electronic kinetic energy. 

© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

1 Introduction 

In recent years, a lot of experimental evidence has been given for the importance of electron–phonon 
interaction in strongly correlated systems such as the cuprates [1] or the manganites [2]. Although con-
siderable theoretical progress has been made in understanding and describing many details of the physics 
of these compounds, the quantum nature of the phonons has often been neglected in actual calculations 
[3, 4]. However, a quantum-mechanical treatment of the lattice degrees of freedom has been shown to 
give significantly different results in certain parameter regimes [2]. 
 Due to the complexity of the models for the above-mentioned classes of materials, and the absence of 
exact analytical results, numerical methods have been used extensively. One very powerful approach is 
the quantum Monte Carlo (QMC) method, which allows simulations on relatively large lattices and gives 
quasiexact results (i.e., exact apart from statistical errors which can be systematically reduced) also at 
finite temperature. The latter point represents a major advantage over, e.g., the density matrix renormali-
zation group (DMRG) or exact diagonalization (ED) – usually restricted to the calculation of ground-
state properties at least for the parameters of interest – since fascinating phenomena such as high-
temperature superconductivity and colossal magnetoresistance can be investigated. Additionally, for 
coupled electron–phonon systems, the infinite-dimensional Hilbert space of the boson degrees of free-
dom represents a substantial difficulty for ED and DMRG, in contrast to QMC. Despite these advan-
tages, QMC methods are often limited by (1) the minus-sign problem, restricting simulations to high 
temperatures and/or small systems, (2) the fact that the calculation of dynamical properties, such as the 
one-electron Green function, requires analytic continuation to the real-time axis which is an ill-posed 
problem, and (3) by strong autocorrelations and large statistical errors. 
 In a recent paper [5], we have proposed a new QMC approach to the Holstein model, which is based 
on the canonical Lang–Firsov transformation [6] and a principal component representation of the phonon 
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degrees of freedom. The resulting algorithm completely avoids the problem of autocorrelations and 
strongly reduces statistical errors [5]. The aim of this work is to extend this method to more than one 
dimension and to improve its accuracy and performance by suitable modifications. This includes the 
extrapolation of results to remove the Trotter discretization error, and the use of a checkerboard breakup 
for the hopping term. In contrast to some existing approaches, the method thus obtained yields very ac-
curate results over an extremely large range of the electron–phonon interaction strength and the phonon 
frequency, especially in the important adiabatic regime of small phonon frequencies realized in many 
polaronic materials. Moreover, owing to the reduced computer time, finite-size effects can be minimized 
by using larger clusters. Although we shall present some results for the small-polaron crossover, this 
paper is rather methodological in character. 
 The single polaron case (the Holstein polaron problem) considered here is expected to apply to semi-
conductors with low carrier density and doped insulators (see, e.g., [7]). While the understanding of the 
model with one electron is fairly complete, the present algorithm can also be applied to the challenging 
many-electron problem [8], and to the Holstein–Hubbard model with two electrons [9]. Although single-
polaron models are frequently used to describe strongly correlated materials such as the manganites [2], 
the principle shortcomings of such approaches have recently been illustrated [8] (see also [2]). 
 The paper is organized as follows. In Section 2 we review previous work, while in Section 3 we 
briefly discuss the QMC method introduced in [5]. Results are presented in Section 4, and Section 5 
contains our conclusions. 

2 The Holstein model 

The Holstein Hamiltonian [10] with dimensionless phonon variables reads [5] 

 ( )† 2 2ˆ ˆ ˆ ˆ
2
������� ����������

i i ii j i
i j i i

P IK

H t c c p x n x
w

a

· , Ò

= - + + - ,Â Â Â  (1) 

where we have introduced the abbreviations K, P and I for the kinetic, phonon and interaction terms, 
respectively. Owing to the spin symmetry of the one-electron problem, a spin index has been suppressed, 
resulting in a model of spinless fermions. In Eq. (1), †

ic ( ic ) creates (annihilates) a spinless fermion at 
lattice site i , ˆ ix ( ˆ

ip ) denotes the displacement (momentum) operator of a harmonic oscillator at site i , and 
†ˆ i i ic cn = . The coupling term I  describes the local interaction of the single electron considered here with 

dispersionless Einstein phonons. In the first term, the symbol i j· , Ò  denotes a summation over all hop-
ping processes between neighboring lattice sites .i j,  The parameters of the model are the hopping inte-
gral t , the phonon energy w  ( 1� = ), and the electron–phonon coupling constant a . We define the  
dimensionless coupling constant 2 ( ),Wl a w= /  where 4W tD=  is the bare bandwidth in D dimensions. 
We shall also use the dimensionless phonon frequency tw w= / , often called the “adiabatic ratio”, and 
express all energies in units of t . Consequently, the model can be described by two independent param- 
eters, w  and l . Periodic boundary conditions in real space have been applied. 
 Since the literature on the Holstein polaron problem is vast, we restrict our discussion to work in more 
than one dimension, while the 1D case has been reviewed in [5]. Moreover, we will focus on recent pro-
gress in the field, and on numerical methods. A comprehensive overview of earlier analytical work can 
be found, e.g., in the books of Alexandrov and Mott [11] and Mahan [12]. The Holstein polaron in 1D >  
has been studied using a large variety of numerical techniques. In contrast to many perturbative ap-
proaches [11, 12], the latter can also accurately describe the physically most interesting regime of small 
but finite phonon frequency (0 1w< < ) at intermediate-to-strong electron–phonon coupling ( 1l ª ). 
Much information about the Holstein polaron has been obtained using QMC. De Raedt and Lagendijk 
[13–15] applied Feynman’s path-integral technique to the lattice problem of Eq. (1), by integrating out 
analytically the phonon degrees of freedom. The only approximation of this method – applicable for one 
or two electrons only – consists of a Suzuki–Trotter discretization of the imaginary time [14]. As the 
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phonons have been completely eliminated from the problem, accurate simulations on large lattices even 
in higher dimensions are possible [13–16]. Extending this work, Kornilovitch developed a QMC ap-
proach formulated in continuous imaginary time and on an infinite system, which is capable of directly 
measuring the polaron band dispersion ( )E k  and the density of states [17, 18]. Although the method 
gives very accurate results and can also be applied to more general models with, e.g., long-range interac-
tion, it is limited to the regime of intermediate and strong electron–phonon coupling as well as 1w �  by a 
minus-sign problem [17, 18]. Similar to the present approach, the methods of [13–16] are free of auto-
correlations but, unfortunately, cannot be extended to the important many-electron case. The same seems 
to be true for the diagrammatic QMC approach [19, 20]. 
 Apart from QMC, several other methods have been successfully applied to the Holstein polaron prob-
lem. This includes ED in combination with a truncation of the phonon Hilbert space [21–23], finite-
cluster strong coupling perturbation theory (SCPT) [24], cluster perturbation theory (CPT) [25], DMRG 
[26], and a variational diagonalization method [27]. For realistic parameters, standard ED is restricted to 
rather small systems, while results of DMRG (in one dimension) [26] and the variational method of [27] 
are only weakly influenced by finite-size effects. The same is true for SCPT and CPT, which exactly 
diagonalize small clusters – for which enough phonon states can be included in the calculation – and 
extrapolate the results to the thermodynamic limit by treating the rest of the system as a perturbation [24, 
25]. Remarkably, the Holstein polaron problem has been solved exactly in infinite dimensions [28–32]. 
Finally, it has been investigated recently using weak- and strong-coupling perturbation theory [33, 34], 
and a variational approach [35]. 

3 Quantum Monte Carlo method 

The extension of the algorithm proposed in [5] to higher dimensions is straight forward. Therefore, we 
shall provide only a brief review of the most important ideas, and discuss the improvements announced 
above. 
 The cornerstone of the new approach is the canonical Lang–Firsov transformation [6] with the unitary 

operator 
ˆˆ

e
j jj

i png

n
Â

= , which removes the direct coupling term I between the electron density and the 
lattice displacement in Eq. (1). The transformed model with one electron takes the form [5] 
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with P as defined in Eq. (1), and the polaron binding energy 2PE Wl= / . The parameter ,g  which corre-
sponds to the atomic-limit lattice displacement in the presence of an electron [5], is given by 

2 2 .PEg w= /  The method employs a Trotter decomposition of the imaginary time axis into L  intervals of 
size Lt bD = / , where 1

B( )k Tb -

=  is the inverse temperature. The resulting partition function, obtained 
by integrating out the phonon coordinates [5], is given by 

 2NL
L b fZ C pw w C w t= , = p/ D ,ÚD  (3) 

where pÚD  denotes an DLN  dimensional integral over all phonon momenta p , and N  is the linear size 

of the lattice in D dimensions. The bosonic weight bw  is defined by e bSt-D  with the bosonic action 
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Here i  and t  run over all lattice sites and Trotter times, respectively. The electronic weight fw  is given 
by [5] 
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where �K
t
 is �K  with the phonon operators ˆ

ip , ˆ
jp  replaced by the values ip

t,
, jp

t,
 on the t th Trotter slice. 

The exponential of the hopping term can be written as 
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where tbh  is the D DN N¥  tight-binding hopping matrix [36] for the lattice under consideration. In fact, 
this is the only nontrivial change compared to the one-dimensional case. The matrix k  is not sparse but 
needs to be computed only once, as it does not depend on the random phonon fields .jp

t,
 

 The most time-consuming part of the simulation is the evaluation of the matrix product in Eq. (5). To 
reduce the computer time, we make use of the so-called checkerboard breakup of the hopping term K, 
which takes the form [37] 

 
† †

e e
i ji j i j

t c c t c c

i j

t
t· , Ò

D D

· , Ò

Â
ª ,’  (7) 

and reduces the numerical effort roughly by a factor DNµ  (see Sec. 4). The error due to this additional 
approximation is of the same order 2( )tD  as the Trotter–Suzuki error. However, using Eq. (7), the com-
putational effort is significantly reduced, since for each pair i j· , Ò  one is left with a 2 2¥  matrix. 
 For a single electron, the fermionic trace can easily be calculated from the D DN N¥  matrix represen-

tation of W  as f ii
i

w W=Â  [5]. Due to the complex-valued hopping term, fw  is  not  strictly  positive, 

which gives rise to a moderate minus-sign problem. The dependence of the latter on the system param- 
eters has been discussed in [5] for the one-dimensional case. Most importantly, we reported that it dimin-
ishes with increasing system size, and therefore does not affect simulations significantly. A similar be-
havior is found in higher dimensions, although the average sign reduces with increasing dimensionality 
for the same linear system size and parameters b , w  and l  [38]. We would like to mention that, in con-
trast to standard determinant QMC methods [39], the evaluation of the L -fold product in Eq. (5) does not 
require a time-consuming numerical stabilization since the matrices are sufficiently well conditioned. 
 In [5], we have introduced the so-called principal component representation for the phonon degrees of 
freedom. In terms of the latter, the bosonic weight takes a simple Gaussian form, and the phonons can 
therefore be sampled exactly. Moreover, the efficiency of the QMC algorithm can be greatly improved 
by using only the bosonic weight bw  for generating phonon configurations, and taking into account the 
fermionic weight fw , the evaluation of which is numerically expensive, by the use of a reweighting of 
the probability distribution. The calculation of observables in this case has been outlined in [5]. 
 Due to the analytic integration over the phonon coordinates x  used here, interesting observables such 

as the correlation functions ˆ ˆi i
i

n x
d+

· ÒÂ  are difficult to measure accurately. At zero temperature, the qua-

siparticle weight, and the closely related effective mass [21], both of which have been used in the past to 
identify the small-polaron crossover (see, e.g., [27]), can be determined as the weight of the slowest-
decaying exponential from the time-dependent one-electron Green function [40]. This would require an 
extension of the present approach to a projector QMC method [39], which is possible but has not been 
done here due to the existence of more accurate techniques [27]. From the one-electron Green function, 
and using the maximum entropy method (for a review see [41]) one can also calculate (inverse) photo-
emission spectra, which have recently been studied for the polaron problem using CPT [25]. In the pre-
sent work, we have restricted ourselves to the kinetic energy of the electron. However, in the demanding 
many-electron case, an extension of the current method has recently been used to obtain comprehensive 
results, e.g., for the one-electron density of states and spectral function [8]. 
 The error due to the Trotter decomposition is proportional to 2( )tD  (see I). In contrast to the one-
dimensional case [5], here we perform simulations at different values of tD , typically 0 1tD = . , 0 075.  
and 0 05. , and extrapolate results to 0tD = . This is a common procedure in the context of discrete- 
time QMC methods [39], and allows one to remove the Trotter error if the values of tD  are sufficiently 
small. 
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4 Results 

The most interesting observable, which is easily accessible with our method and allows us to investigate 
the small-polaron crossover, is the one-electron kinetic energy ,kE K= · Ò  given by the expectation value 
of the first term in Hamiltonian (1). In order to compare results for different dimensions, we define the 
normalized quantity 

 ( 2 )k kE tDE = / -  (8) 

with 1kE =  for 0T =  and 0l = . Due to the large amount of work that has been devoted to the Holstein 
polaron in the past, we restrict ourselves to a demonstration of the capability of the present method and a 
brief discussion of the physics behind the small-polaron crossover. The kinetic energy of the one-
electron problem has been calculated before by several authors [13, 14, 16, 22, 26, 27, 33, 34, 42]. 
 We have fixed the inverse temperature to 10,tb =  which is low enough to identify the small-polaron 
crossover. Calculations at even lower temperatures can easily be done for 1w > , while similar simula-
tions in the adiabatic regime 1w <  require a large number of measurements to ensure satisfactorily small 
statistical errors. System sizes were 32 sites in 1D, a 12 12¥  cluster in 2D, and a 6 6 6¥ ¥  lattice in 3D. 
While results in one and two dimensions are well converged with respect to system size for these pa-
rameters, nonnegligible finite-size effects (maximal relative changes of up to 20% between 5N =  and 

6N =  for 1;�w  much smaller changes otherwise) exist in three dimensions (see also Fig. 10 in [38]). 
Moreover, for small N, changes due to thermal population of states with nonzero momentum k – absent 
in ground-state calculations – are visible, as discussed below. Nevertheless, the main characteristics are 
well visible already for 6N = . A detailed study of both finite-size and finite-temperature effects can be 
found in [38, 43]. Error bars are always smaller than the symbol size. As pointed out before, the results 
shown here have been obtained by extrapolating to 0tD = . 
 Figure 1 shows kE  as a function of the electron–phonon coupling l  for different phonon frequencies 
varying over two orders of magnitude, in one to three dimensions. Generally, the kinetic energy is large 
at weak coupling, where the ground state consists of a weakly dressed electron or a large polaron (see 
below). It reduces more or less strongly – depending on w  – in the strong-coupling regime, where a 
small, heavy polaron exists, defined as an electron surrounded by a lattice distortion localized at the 
same site. The finite values of kE  even for large l  are a result of undirected motion of the electron inside 
the surrounding phonon cloud. In contrast, the quasiparticle weight is exponentially reduced in the 
strong-coupling regime (see, e.g., [27]), whereas the effective mass becomes exponentially large. 
 In all dimensions, the phonon frequency has a crucial influence on the behavior of the kinetic energy. 
While in the adiabatic regime 1w <  the small-polaron crossover is determined by the condition 

2 1PE tDl = / > , the corresponding criterion in the nonadiabatic regime 1w >  is 1PE w/ > . The former 
condition reflects the fact that the loss in kinetic energy of the electron has to be outweighed by a gain in 
potential energy in order to make small-polaron formation favorable. The latter condition expresses the 
increasing importance of the lattice energy for 1w > , since the formation of a “localized” state requires a 
sizable lattice distortion. As a consequence, for large phonon frequencies, the critical coupling shifts to 

1cl > , whereas for 1w <  we have 1cl = . Additionally, the decrease of kE  at cl  becomes significantly 
sharper with decreasing phonon frequency. 
 Concerning the effect of dimensionality, Fig. 1 reveals that, for a fixed w , the small-polaron crossover 
becomes more abrupt in higher dimensions, leading to a very sharp decrease in 3D. Nevertheless, there is 
no real phase transition [44]. Figure 1 also contains results for 6N =  in one and two dimensions, i.e., for 
the same linear cluster size as in 3D (dashed lines). Clearly, for such small clusters, the spacing between 
the discrete allowed momenta k is too large to permit substantial thermal population, so that results are 
closer to the ground state [e.g., ( 0) 1kE l = ª ], and exhibit a slightly more pronounced decrease near the 
small-polaron crossover. However, the sharpening of the latter with increasing dimensionality is still 
well visible (see also Fig. 11 in [38]). 
 We would like to point out that an interesting open question in the context of the Holstein polaron 
problem concerns the difference between the weak-coupling ground states in one and in higher dimen- 
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sions. While for 1D a large polaron – i.e., a polaron extending over more than one lattice site – is formed 
at any 0l > , the electron is expected to remain quasi-free in 1D >  for cl l< , and to undergo a crossover 
to a small polaron at cl  [45, 46]. However, in recent studies [27, 34], authors argue that the physics of 
the Holstein polaron is qualitatively the same in all dimensions. Unfortunately, this issue cannot be ad-
dressed using the current approach, owing to finite-size and finite-temperature effects, and the fact that 
correlation functions such as ˆ ˆi jn x· Ò  cannot be determined accurately (see Section 3). 
 The results for kE  presented here agree well with existing work. Apart from small quantitative differ-
ences owing to finite-size and finite-temperature effects, the behavior of the kinetic energy is in perfect 
accordance with previous calculations [13, 14, 16, 22, 26, 27, 33, 34, 42]. The statistical errors of the 
results presented depend on w , tb , N  and l . Away from 1l ª  (for 1�w ), error bars are use usually 
smaller than the line width, corresponding to relative errors of less than 0.5%. This is comparable to the 
accuracy of the results given by Kornilovitch [17] and significantly more accurate than the results by 
DRL [13, 14]. 
 We conclude this section by comparing our approach to other QMC methods for the Holstein polaron. 
As mentioned in Sec. 2, the world-line methods of de Raedt and Lagendijk [13–15] and Kornilovitch 
[16–18] are based on an analytic integration over the phonons. This separation of electronic and bosonic 
degrees of freedom – particularly effective for a single electron – greatly reduces the statistical noise due 
to phonon fluctuations. In contrast, in the many-electron case, the fermionic and bosonic degrees of free-
dom are of similar importance, and world-line methods usually require the sampling of both, bosons and 
fermions [47]. Furthermore, world-line QMC methods with more than two electrons of different spin 
suffer from a severe sign problem in one (for periodic boundary conditions) and higher dimensions [39]. 
The polaron problem has also been investigated using a diagrammatic QMC approach [19, 20] originally 

a) b) 

c) 

Fig. 1 Normalized kinetic energy kE  as a function of 
electron–phonon coupling l  for different phonon 
frequencies w  and different dimensions D of the lat-
tice. Here N denotes the linear cluster size, and b  
corresponds to the inverse temperature. Lines are 
guides to the eye, error bars are smaller than the sym-
bol size, and results have been extrapolated to 0tD =  
(see text). 



1412 M. Hohenadler et al.: Quantum Monte Carlo approach to the Holstein polaron problem 

© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

developed for the Fröhlich model which, given a convergent series of the polaron Green function, per-
mits accurate calculations at zero temperature even in three dimensions [48]. 
 In the present case, the Lang–Firsov transformation also yields a separation of polaron effects from 
the free-oscillator dynamics. However, the integral over the bosonic degrees of freedom is evaluated 
stochastically, thereby leaving us with a residual noise from the phonons. The numerical effort for calcu-
lations with our approach in the original form presented in [5] is proportional to 3 ,DLN  while the check-
erboard breakup yields a computer time 2 .DLNµ  Nevertheless, our algorithm is not as efficient as the 
method of [13–16], in which the numerical effort is proportional to ,LD  the number of fermionic de-
grees of freedom [49]. 
 The most time consuming calculations of this paper for two dimensions, 12N = , 0 1w = .  and 1l =  
took about 100 hours of CPU time on an Intel XEON 2600 MHz computer. To illustrate the advantage of 
the checkerboard breakup, we would like to mention that, using the full hopping term, the same simula-
tion takes about 2500 hours. For less critical parameters, e.g., 2l = , a similar accuracy of about 1% can 
be achieved within about 100 minutes. While a direct comparison with the calculations of de Raedt and 
Lagendijk [13–15] more than 20 years ago is not meaningful, Kornilovitch [16] reports simulation times 
of several hours on a workstation for a two-dimensional 32 32¥  cluster and similar accuracy. Thus, 
although our approach becomes increasingly slower with increasing system size compared to the meth-
ods of [13–18], it allows for accurate calculations on quite large systems with comparable CPU time in 

1D =  and 2. Finally, we would like to mention that the present algorithm can easily be parallelized, since 
no warm-up phase is required, and measurements are completely independent. 

5 Conclusions 

The quantum Monte Carlo algorithm for the Holstein polaron proposed in [5] has been extended to 
higher dimensions. Additionally, a checkerboard breakup of the hopping term has been introduced, lead-
ing to a significant reduction of computer time, and results have been extrapolated in order to remove the 
error due to the Trotter decomposition. The method has been applied to calculate the electronic kinetic 
energy in one to three dimensions, and a very good agreement with existing work has been found. 
 While yielding results with the same or better accuracy over a very large range of parameters, the 
present approach is not quite as fast as other QMC methods for the Holstein polaron [13–18], the main 
limitation being the restriction to smaller but still reasonably large lattices. But remarkably, the current 
method can also be generalized to the many-electron case [8], in contrast to the world-line methods of 
[13–18]. 
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