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Steady-state and quench-dependent relaxation of a quantum dot coupled to one-dimensional leads
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We study the time evolution and steady state of the charge current in a single-impurity Anderson model,
using matrix product states techniques. A nonequilibrium situation is imposed by applying a bias voltage
across one-dimensional tight-binding leads. Focusing on particle-hole symmetry, we extract current-voltage
characteristics from universal low-bias up to high-bias regimes, where band effects start to play a dominant
role. We discuss three quenches, which after strongly quench-dependent transients yield the same steady-state
current. Among these quenches we identify those favorable for extracting steady-state observables. The period of
short-time oscillations is shown to compare well to real-time renormalization group results for a simpler model
of spinless fermions. We find indications that many-body effects play an important role at high-bias voltage and
finite bandwidth of the metallic leads. The growth of entanglement entropy after a certain time scale ∝�−1 is the
major limiting factor for calculating the time evolution. We show that the magnitude of the steady-state current
positively correlates with entanglement entropy. The role of high-energy states for the steady-state current is
explored by considering a damping term in the time evolution.
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I. INTRODUCTION

Over the past decade, experimental control over quantum
systems has increased considerably. Possible realizations reach
from model Hamiltonians1,2 using ultracold atoms in optical
lattices to experimental setups of nanoscopic devices such as
molecular junctions, quantum wires, or quantum dots.3,4 Many
of these systems show remarkable properties, often due to
reduced effective dimensionality and many-body interactions.
A prominent example is the Kondo effect,5 which plays an
essential role in transport across quantum dots. A theoretical
understanding of transport in out-of-equilibrium conditions
is highly interesting for applications in nanoelectronics and
molecular electronics and even in biological systems.

Electron-electron interactions render the theoretical de-
scription of nonequilibrium dynamics one of the most
challenging problems in today’s condensed matter physics.6

However, with the advent of efficient numerical techniques
to simulate one-dimensional (1D) quantum systems,7–12 many
physical problems are well within grasp of theoretical physi-
cists. Even nonequilibrium setups in regimes where the
potential bias is large with respect to the energy scales of
the unperturbed systems are now feasible to study.13–15

In this work, we obtain the steady-state charge current
of a single interacting quantum dot under voltage bias,
modeled by a single-impurity Anderson model (SIAM).16

This model is commonly discussed in the wide-band limit17

approximation, tailored towards a universal, low-bias transport
description. Here, we extend the discussion to the case of a
finite (semicircular) conduction band in the leads, which has
not been explored specifically. A particular realization could
consist of two one-dimensional leads such as nanowires18–21

and a junction between them comprised of a magnetic impurity,
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i.e., the quantum dot. We use generic one-dimensional tight-
binding leads with finite electronic bandwidth which mimic
the electronic properties of, for example, carbon nanotubes.22

In such a device, the electronic density of states (DOS) of the
leads would have a bandwidth on the order of 15 eV (Refs. 22
and 23) and effects arising from their specific structure are to
be expected when using corresponding bias voltages which are
larger than those typically applied in current experiments with
nanoscopic devices.

The steady state is obtained by combining density ma-
trix renormalization group7,11 (DMRG) and time evolving
block decimation9,11 (TEBD) techniques to perform real-time
evolution of the system after several different quenches.
This technique is known to yield reliable results for a wide
parameter range of one-dimensional models12–14,24–34 and to
agree with analytical data.13

We focus on the particle-hole-symmetric point which shows
the most pronounced many-body effects.35 The bias voltage
for most of our data is much larger than the equilibrium Kondo
temperature (see Sec. V A), so that Kondo correlations should
not influence the steady-state current. We show that the same
steady-state current is reached independent of the type of
quench used and identify quenches which are superior to others
when it comes to extracting steady-state data. We investigate
quench-induced oscillations in the transients and compare to
real-time renormalization group results. We have performed
a careful convergence study in all auxiliary numerical and
system parameters and found the major limitation to be the
truncation of the many-body state space in each iteration. The
method is well suited for reaching relevant time scales to study
the steady-state current. We find that our approach is capable
of yielding unbiased results valid in the thermodynamic limit.
Data presented in this work reproduce analytical results in the
noninteracting system. In the low-bias region, our results for
the current-voltage characteristics agree with previous data
(Heidrich-Meisner et al. 14). We are able to extend earlier
results14,36–41 to a wider parameter regime and discuss the
interplay of finite lead bandwidth and electronic correlations.
We find evidence for pronounced many-body effects at
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high-bias voltages in interplay with finite electronic band-
widths of the leads.42 Finally, we discuss the role of
high-energy states for the steady-state current in low- and
high-bias-voltage regimes.

The text is organized as follows: In Sec. II we introduce
our model and describe in detail the different quenches to
be performed. We present data for the transient response in
Sec. III. Results for the steady-state current are presented in
Sec. IV where we also outline how to extract steady-state
data from time-evolved quantities. We analyze time scales of
individual parameter regimes in Sec. V. The role of high-
energy states in different bias regimes is discussed in Sec. VI.
A detailed convergence analysis is presented in Appendix A.

II. SETUP

In this section, we define our notation for the SIAM which
we use to model a quantum dot. We are interested in electron
transport across the quantum dot after each of the several
quenches to be described in detail in the following. We explain
how we calculate the ground state using DMRG and the real-
time evolution using TEBD.

A. Single-impurity Anderson model

We consider a model for a quantum dot including charge
as well as spin fluctuations described by the SIAM, consisting
of an interacting site connected to a bath of noninteracting
electrons. We choose a setup where the quantum dot is located
in the middle of a one-dimensional chain of tight-binding
electrons. The dynamics is governed by

Ĥ = Ĥdot + Ĥres + Ĥcoup, (1a)

Ĥdot = −U

2

∑
σ

f †
σ fσ + U n̂

f

↑ n̂
f

↓ , (1b)

Ĥres =
∑
α,σ

⎛
⎝εα

∑
i

c
†
iασ ciασ − t

∑
〈i, j〉

c
†
iασ cjασ

⎞
⎠ , (1c)

Ĥcoup = −
∑

α

t ′α
∑

σ

(c†0ασ fσ + f †
σ c0ασ ) (1d)

(see Fig. 1) where U parametrizes the onsite interaction
strength on the quantum dot, t ′α,α ∈ {L,R} is the coupling
strength between the quantum dot and the left and right leads.

FIG. 1. (Color online) Illustration of the three quenches per-
formed for the SIAM: (i) QT I: quenching of both quantum dot-
reservoir tunnelings t ′

L and t ′
R , (ii) QT II: quenching the bias voltage

VB , and (iii) QT III: quenching the dot-lead tunneling t ′
R to one lead.

Lead α is characterized by intralead hopping t and onsite
potential εα . Particle-hole symmetry is enforced for all chosen
parameters. When needed, the onsite energy of the quantum
dot will be denoted by εf .

We choose t = 1 and symmetric couplings t ′L = t ′R =
0.3162 t [Eq. (1d)] for all simulations, yielding a bandwidth
of D = 4 t of the leads and an equilibrium Anderson width5

of � ≡ π t ′2α ρreservoir(0) = t ′2α
t

≈ 0.1 t . We choose t = 1 and
symmetric couplings t ′L = t ′R = 0.3162 t [Eq. (1d) for all sim-
ulations. This yields a bandwidth of D = 4 t of the leads and
an equilibrium Anderson width5 of � ≡ π t ′2α ρreservoir(μ) =
t ′2α
t

≈ 0.1 t , where the reservoir DOS at the chemical potential
is denoted by ρreservoir(μ). We will display all energies in
units of � (h̄,kB and e = 1). We restrict ourselves to the
zero-temperature case. Real time will be denoted by τ . In
Appendix A we show that within the simulation time τ

accessible, the finiteness of the leads does not affect our results.

B. Quench preparation

We are interested in the steady-state current43 of Eq. (1a)
under a finite-bias voltage VB .44,45 Our strategy to obtain the
steady state is by quenching the Hamiltonian parameters x0 =
{U,t,t ′α,εα} at τ = 0 from some initial to their final values
Ĥ(x0) → Ĥ(x) and evolve an initial state |	0〉 with Ĥ(x).
|	0〉 is chosen to be the ground state of the initial Hamiltonian
Ĥ(x0) in the canonical ensemble at half-filling with total spin
projection Sz = 0.

It has been shown that the steady state is independent of the
quench rate.30,31 We apply all quenches at an instant of time,
i.e., without a ramp. It could, however, be interesting to study
the entanglement growth as a function of the quench ramp.

We consider three different quench types (see Fig. 1) which
will be explained in detail below. Unless stated otherwise,
we choose a system of L = 150 sites with the quantum dot
located at site 75. To drive the system out of equilibrium, a bias
voltage VB is applied by setting the respective onsite energies
of the leads in an antisymmetric fashion to εL = −εR = VB

2 .
For all quenches, the final parameters are x = {U,t = 1, t ′α =
0.3162 t, εL = VB

2 , εR = −VB

2 }, with variable U . The initial
setup is quench-type (QT) dependent (see Fig. 1):

1. QT I: Hybridization quench to both leads t ′
α = 0 → 0.3162 t

For τ < 0 we take x0 = {U,t,t ′α = 0, εα = ±VB/2}, i.e., no
quantum dot-to-leads coupling, but the bias voltage is already
applied. We prepare the ground state of Ĥ(x0) at half-filling in
the left and right leads and a single up electron on the quantum
dot. At τ = 0 the tunneling t ′α is quenched to its finite value.
Note that due to the splitting into three disconnected parts
(t ′α = 0), Sz is not zero on the quantum dot and on the right
lead initially.

2. QT II: Quenching the bias voltage εα = 0 → ±VB/2

At τ < 0, x0 = {U,t,t ′α = 0.3261 t, εα = 0}. The system is
prepared in the ground state |	0〉 at half-filling with overall
Sz = 0 zero. At τ = 0 the bias voltage is quenched to its
desired value. As compared to QT I, this setup has the
advantage that no subsystems with finite values of Sz exist in
the ground state. Furthermore, correlations between the three
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regions are already present in the ground state. Note that the
initial state is much more complicated than for QT I. This type
of quench has also been used by the authors of Ref. 25.

3. QT III: Quenching the hybridization t ′
R = 0 → 0.3162 t

to the right lead

The initial parameters are chosen x0 = {U,t,t ′L =
0.3261 t, t ′R = 0, εα = ±VB/2}, and the system is again
solved for the ground state |	0〉 at half-filling. At τ = 0, we
quench t ′R = 0 → 0.3162 t and evolve |	0〉 with the quenched
Hamiltonian.

C. Methods

To prepare the system in the ground state of the initial
Hamiltonian, we employ the DMRG (Ref. 7) algorithm in
its two- and single-site formulations. Our implementation
exploits conservation of spin projection (Sz) and charge
(N ), which is crucial for obtaining high-precision data. Time
evolution is done using the TEBD (Ref. 9) algorithm, within a
second-order Suzuki-Trotter decomposition of the propagator

e−iĤT = (e−iĤδτ )
T
δτ = (

e
δτ
2 Ĥo eδτĤe e

δτ
2 Ĥo

)Nτ + O(δτ 3),

where Nτ = T
δτ

is the number of time slices, T is the total
simulation time, and δτ the length of a single time step. The
operators Ĥe and Ĥo act on even and odd bonds of the bipartite
lattice, respectively. Unless stated otherwise, we use a TEBD
matrix dimension of χTEBD = 2000 and a Trotter time step
of δτ = 0.05 t−1. For additional details including studies of
convergence in system size L and all auxiliary numerical
parameters, we refer the reader to Appendix A.

The calculations carried out in this work set very high
computational demands (≈one million CPU hours) and were
only possible due to a parallel code46–48 which respects
quantum-number (N , Sz) conservation.

III. TRANSIENT RESPONSE

In this section, we present results for the transient current
response of the three quenches. We discuss individual bias
regimes and identify oscillations in the time evolution of the
current which are reminiscent of results for an interacting
resonant level model of spinless fermions. We show that QT II
leads to much larger initial oscillations than the other two QTs.

A. Low-, medium-, and high-bias regimes

In our simulations, we identify three regimes of bias voltage
VB with qualitatively different behavior. Within each regime,
the general features of the time evolution of the current are only
moderately dependent on interaction strength. For that reason,
we first discuss results for U/� = 12 only (see Fig. 2).

For low-bias voltages [VB/� ∈ (0,18)], a steady-state
current plateau6,49 is reached within τ ≈ �−1. In a region
of medium-bias voltages [VB/� ∈ (18,28)], we observe a
fast increase in current over a time scale of τ ≈ 0.3 �−1

followed by a rather slow decay which, for some model
parameters, is too slow to reach a steady-state plateau within
accessible simulation times (see below). In the high-bias region
[VB/� ∈ (28,40)], the time evolution of the current shows a

sharp peak followed by fast decrease of the current into a
steady-state plateau within τ ≈ �−1.

Our data indicate that within a simulation time of τ =
3 �−1, approximately one particle is transferred from the left
reservoir to the right one. As discussed in detail in Sec. IV, all
three QTs eventually approach the same steady state, although
in quite different manner. QT II, for example, leads to the
largest transient current spike, which is one reason for the
lower accuracy in determining the steady state for this quench.
We also find that quenching the hybridization(s) (QT I or
III) yields much cleaner steady-state plateaux as compared
to quenching the bias voltage (QT II), which leads to more
pronounced oscillations in these plateaux.

B. Characteristic oscillations of the current

The time evolution of the current exhibits oscillations
which are more or less pronounced depending on the type
of quench. These oscillations become more explicit with
increasing interaction strength (not shown). Their period is
of the order of 0.5 �−1 for low-bias voltages and decreases to
about 0.3 �−1 for higher-bias voltages, in a range of interaction
strengths U = [0,20] �. These oscillations compare nicely to
results from real-time renormalization group (rtRG) for the
interacting resonant level model [see Ref. 50, Eq. (107)], which
predicts a sinusoidal behavior [∝ sin ( τ

τC
)] with a period of

τC(U,V ) = 2

VB + U
.

In Fig. 3, we plot τC(U,V ) as a function of interaction strength
and find remarkable agreement with rtRG results at higher-
bias voltages. The period was extracted from the TEBD time
evolution data in three ways: (i) by fitting a sine function,
(ii) by identifying the dominant Fourier amplitudes, and (iii) by
identifying local maxima. These data were combined and their
individual uncertainty taken into account. Error bars in Fig. 3
(not shown) would be sharply growing below VB = 25 �. In
the lower-bias regime, our data are not significant for a reliable
extraction of the period.

IV. STEADY-STATE CURRENT

In this section, we present the current-voltage character-
istics of quantum dot. We outline a scheme to extract the
steady-state current and investigate the dependence on the
type of quench used. The current-voltage characteristics in
the low-bias region is compared to existing data obtained with
other methods. Furthermore, we present a detailed comparison
between an interacting and a noninteracting quantum dot for
finite as well as infinite lead bandwidth.

A. Extracting the steady-state current

We identify the steady-state current as the mean value of
the time-dependent current taken over a suitable time domain
[τS,τE] over which the current shows an almost constant
behavior (apart from small oscillations). τS typically depends
on the model parameters and was chosen by hand, and τE

is taken to be the largest time for which simulations yield
reliable results (see Fig. 2). Beyond τE the current becomes
numerically unreliable, resulting in an artificially decaying
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FIG. 2. (Color online) Time dependence of the current [Eq. (A1)] at U/� = 12 for the three different QTs and for different bias voltages.
The curves are plotted as solid lines up to the last reliable point in the TEBD calculation (see text). Larger times are plotted as dashed-dotted
lines. Solid horizontal lines are fits to extract the steady-state currents. The time domain for these fits starts at τ ≈ �−1 and ends at a point
which is identified as the last reliable data point (symbols, see text). Dashed horizontal lines indicate the uncertainty. The insets in the mid row
show respective zooms onto short-time regions, which are not visible in the main part of the figure.

current (see Appendix A for discussion). We find that in
most of the parameter regions, the transients have decayed
at τS ≈ �−1. On the other hand, the end point of the plateau
strongly depends on the parameter region under consideration.
We define it by two distinct measures. One is the time τ

(1)
E for

which the truncated weight ε [see Eq. (A3)] reaches a threshold
of εc = 3 × 10−6 at any bond (marked by + in Fig. 2). The
second definition (τ (2)

E marked by ◦ in Fig. 2) is given by the
time for which two different definitions of the current, namely
the expectation value of the current operator [Eq. (A1)] and
the time derivative of the particle number [Eq. (A2)], deviate
by more than 7 × 10−4, the latter being more susceptible to
accumulation of errors. Both times are in good agreement with
each other and can be combined into an effective simulation
time τE = min(τ (1)

E ,τ
(2)
E ) + α|τ (1)

E − τ
(2)
E | (marked by triangles

in Fig. 2). We choose a value of α = 0.1. Results do not depend
on this particular choice. It turns out that this procedure is very

robust and does also agree with the point at which the TEBD
current starts to deviate from the exact time evolution in the
noninteracting system (see Appendix A 5).

The steady-state plateaux obtained in this way usually show
oscillations and/or small, parameter- and quench-dependent
drifts. We quantify the quality of convergence within the
plateau region [τS,τE] by the slope of a linear fit to the current.
A large slope indicates that it is not possible to reach the steady
state within the given simulation time τE , i.e., the physical
relaxation time is too long or the reached simulation time
is too short. This is further discussed in Sec. V. For these
parameter values, we can only provide a likely upper bound for
the steady-state current, given by the current at the last reliable
simulation time. This is justified because we find the current
to always decrease as a function of time (apart from small
oscillations). Note that although for some of these parameters
the current in some QTs may appear converged but is still
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FIG. 3. (Color online) Period of the sinusoidal oscillations of the
current in QT II for various values of interaction strength U/� =
0,4,8,12, and 20 (symbols). Solid lines indicate the predicted form
for the interacting resonant level model (Ref. 50).

considered not converged according to our strict criteria. We
consider the current to be converged when the relative slope
is below a threshold of ≈5 × 10−2 �. Each curve in addition
was inspected by hand for convergence. When we consider the
steady-state current converged, we estimate its error as three
times the standard deviation taken over the data points in the
fitting interval [τS,τE] (plotted as dashed lines in Figs. 2 and 4).
This coincides most of the time with the maximal deviation of
the time-dependent current from its mean value.

As an important test, we obtained the current-voltage
characteristics for the noninteracting case and compared it
to analytical results51 (see Fig. 4), finding excellent agreement
(see also Appendix A 5). Another indication for the reliability
of the scheme outlined above is that all three types of quenches
investigated yield the same steady-state current within the
uncertainty. We note that this is not a priori clear since
quench-dependent steady states have been reported in different

FIG. 4. (Color online) Current-voltage characteristics of the
quantum dot. The steady-state currents shown are obtained by a fit of
the expectation value of the current operator within the steady-state
plateau. Regions where only a likely upper bound for the steady-state
current could be obtained are indicated by pedestals (see text).

systems.52 As noted in Appendix A, the position of the plateau
is also stable with respect to variations of technical parameters
of the simulation. The quality of the steady-state plateau,
however, depends strongly on the values of interaction and
bias voltage and may be obscured by initial oscillations or
shortened at the end by the truncated weight breakdown.

The behavior of the spin current strongly depends on the
quench type and it is even identical to zero for QT II. In this
respect, the steady-state charge current does not depend on the
properties of the spin current since all three quenches yield
the same steady state for the charge current. This turns out to
be very advantageous since the time scales in the spin sector
are much larger than in the charge sector.53,54

From our calculations, we find QT I and QT III to yield
more reliable data for the extraction of the steady-state
current than QT II. Reasons for this behavior are (i) the much
more pronounced oscillations in the data of QT II which
enlarge the statistical uncertainty of steady-state values and
(ii) the much higher transient spike in QT II accompanied
by a slightly higher initial entanglement and shorter τE .
Entanglement growth is in general parameter dependent and
converges towards the same value for all quench types.54

In the following, we will present steady-state data extracted
from QT I and QT III.

B. Current-voltage characteristics

The current-voltage characteristics of the quantum dot for
interaction strengths of U/� = 0,4,8,12, and 20 are shown
in Fig. 4. We plot data as obtained from QTs I and III (other
QTs would give the same results but with larger error bars,
as discussed in Sec. IV A). Results for the noninteracting case
agree with analytic results for an infinite system.51 In some
regions, only a likely upper bound for the steady-state current
can be provided. This region does not lie on the extreme end of
the parameter space. It shows nontrivial dependence on U and
VB , which is discussed in detail in Sec. V. The current-voltage
characteristics has an approximately semicircular shape, with
decreasing maximum as a function of interaction strength U .
At small bias VB , the current is linear in VB and agrees with
the linear response result jlin = 2G0VB (see also Fig. 5). At
higher bias, it departs from the linear response result. With
increasing U , this departure occurs already at smaller bias
VB , which can be attributed to an exponential thinning of the
Kondo resonance with increasing U .

In intermediate-bias regions, we observe a flattening in the
current-voltage curve. The maximum steady-state current is
obtained in a bias regime from VB ≈ 15 � to 19 �. Increasing
the interaction from U = 0 to 12 � appears to shift the position
of the maximum to higher-bias voltages. For larger values of
U our data are not significant to conclude on the behavior of
the position of the maximum. We find the maximum current
to decrease quadratically with increasing interaction strength:
jmax

�
 1.675 − 0.003(U

�
)2. Note that these features will likely

depend on the actual reservoir DOS.
The decrease of the steady-state current for high-bias

voltages can be attributed to the diminishing overlap of the
DOS of the two reservoirs.49 Both have a semicircular DOS
with a bandwidth of D = 40 �. In the wide-band limit, the
curves behave similarly inside the low-bias regime but should
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FIG. 5. (Color online) Comparison of the current-voltage characteristics of the SIAM obtained with different methods in the low-bias
regime. Some of the methods use a wide-band limit and others a semicircular reservoir DOS which (for equal �) become comparable in the
low-bias region shown. The methods are (1) diagrammatic QMC for T = 0 in the wide-band limit (dQMC) (Ref. 36), (2) fourth-order Keldysh
perturbation theory for T = 0 in the wide-band limit (PT4) (Ref. 37), (3) time-dependent DMRG for T = 0 using a semicircular DOS (tDMRG)
(Ref. 14), (4) TEBD for T = 0 using a semicircular DOS (TEBD, this work), (5) nonequilibrium fRG for T = 0 using a wide-band limit
(fRG) (Ref. 38), (6) nonequilibrium cluster perturbation theory for T = 0 using a semicircular DOS (nCPT11) (Ref. 39), (7) nonequilibrium
variational cluster approach for T = 0 using a semicircular DOS (nCPT7

T ) (Ref. 39), (8) imaginary-time QMC for T = 0.2 � in the wide-band
limit (cQMC) (Ref. 40), (9) iterative summation of real-time path integrals for T = 0.2 � in the wide-band limit (ISPI) (Ref. 41), and (10) the
linear response result for the Kondo regime jlin = 2G0VB (lin. resp.).

saturate as a function of VB for higher-bias voltages (see
Fig. 6).

We discuss three simple limits. The TEBD results for
the current respect the linear response (jlin) for very low-
bias voltages which gives the conductance quantum G0.
Furthermore, they respect the high-bias voltage band cutoff
where the current has to go to zero (here at VB = 40 �) due
to diminishing overlap of the DOS of the reservoirs. The
third limit is the noninteracting case (nontrivial for the used
numerical method), where we obtain perfect agreement with
analytical results for the thermodynamic limit.

C. Comparison to previous results

In the low-bias region, results from other techniques are
available for the SIAM out of equilibrium. In the following,
we discuss our results for various values of interaction
strength U together with data previously obtained (see
Fig. 5) by diagrammatic quantum Monte Carlo (QMC),36

fourth-order Keldysh perturbation theory,37 time-dependent
DMRG,14 TEBD for temperature T = 0 (this work), nonequi-
librium functional renormalization group (fRG),38 nonequilib-
rium cluster perturbation theory,39 the nonequilibrium varia-
tional cluster approach,39,55 imaginary-time QMC,40 iterative
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FIG. 6. (Color online) Comparison of the current-voltage char-
acteristics of a noninteracting, resonant level device with onsite
potential εf = −U

2 (solid lines) with the TEBD data for the
interacting quantum dot (symbols). Both devices have the same
specifications with only the interaction U missing in the first case.
The comparison is done for four values of interaction strengths resp.
onsite potentials: U

�
= {4,8,12,20} resp.

εf

�
= {−2,−4,−6,−10}

(blue/circles, green/triangles, red/stars, cyan/squares, respectively).
In addition, we show the U = 0 result (black/no symbols). The
dashed-dotted lines indicate data for a noninteracting device in the
wide-band limit.

summation of real-time path integrals,41 and the linear re-
sponse result for the Kondo regime jlin = 2G0VB . All methods
work at or close to zero temperature. Some of the methods use a
wide-band limit and others a semicircular reservoir DOS which
(for equal �) become comparable in the shown low-bias region
(see Fig. 6 for a comparison). The newly obtained TEBD
results agree very well with the unbiased dQMC (Ref. 36)
and quasi-exact tDMRG (Ref. 14) data. An earlier comparison
including more details but fewer techniques is available in
Ref. 56.

D. Comparison to a noninteracting device: Identifying
correlation effects from the steady-state charge current

To gain further understanding of the role of correlations, we
compare the steady-state current of the interacting quantum dot
(U , onsite potential εf = −U/2) to the one of a corresponding
noninteracting (resonant level) device with U = 0 and onsite
potential εf = −U

2 (see Fig. 6). Data for the resonant level
device are obtained analytically.51

From the plots in Fig. 6, one can see clear differences in the
low-bias region between the noninteracting and interacting
device for all interaction strengths, which can be attributed
to the presence of the low-energy Kondo resonance in the
interacting case. For low bias, the Kondo resonance fixes
the linear response current to a U -independent constant and
causes a higher current than for a noninteracting quantum
dot at the same onsite potential. Furthermore, the curvature
of the current-voltage characteristics in the low-bias region
is negative in the interacting case as compared to positive
in the noninteracting system. For larger values of U =

12 � and 20 �, the negative curvature turns into a positive
one in the low-bias region.

For low values of interaction strength (see data for U =
4 �) we observe deviations in both the low- and high-bias
regions. For the latter, this hints at possible many-body effects
which may also be important in the high-bias regime. Data in
the medium-bias region are almost indistinguishable from the
noninteracting case. For high values of interaction strength,
the picture changes and many-body effects are present in the
whole bias regime.

Summing up, we find that effects of interaction are most
pronounced in the low- and also in the high-bias regime, where
a larger current is obtained than in the noninteracting device.
Because of the small remaining overlap of the DOS of the
leads, this larger current may be due to some low-energy
spectral weight in the interacting device, consistent with low-
energy excitations observed in Ref. 39 using a nonequilibrium
variational cluster approach calculation.

V. DISCUSSION OF TIME SCALES

In the following, we argue that Kondo correlations do
not influence the steady-state charge current in the parameter
regime under study (large bias VB compared to Kondo scale).
However, our simulations show that depending on bias voltage
and interaction strength, the steady-state charge current can
not always be reached within the simulation time τE (see
Sec. IV A), due to (i) weak spots of the method (i.e., small
τE) and/or (ii) long physical relaxation times. To obtain insight
into physical mechanisms as well as the parameter dependence
of the performance of TEBD, also relevant for future studies,
it is desirable to disentangle these two effects. We identify
parameter regimes with such long physical time scales to be at
U + VB > D (low charge-current regime), where we find our
method to perform well, as opposed to parameter regimes with
high currents, where only smaller times τE can be reached, as
shown in Appendix B.

A. Finite simulation size/time and Kondo correlations

At the particle-hole-symmetric point of the SIAM, Kondo
correlations are especially pronounced. In equilibrium they in-
troduce a characteristic energy scale, the Kondo temperature5

TK which translates into a length scale of the Kondo singlet
ξK , given by Bethe ansatz57

ξK ∝ vF

kBTK

∝ 2t

√
2

�U
e

π
8�

U . (2)

Due to the exponential dependence on interaction strength,
these spin correlations can not fully develop on a
finite-size system,58,59 already for moderate interaction
strength. For the parameters used in this work, the
equilibrium Kondo correlations have a spatial extent
(screening cloud) of approximately ξK ≈ 50 sites for U =
4 �, ξK ≈ 200 sites for U = 8 �, ξK ≈ 900 sites for U =
12 �, and ξK ≈ 16 000 sites for U = 20 � [see Eq. (2)].
These amount to equilibrium Kondo temperatures of TK ≈
3 × 10−1 �, 9 × 10−2 �, 2 × 10−2 �, and 1 × 10−3 �,
respectively.
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For very small bias voltages VB � TK (and large U ), the
Kondo effect introduces a large time scale. In this work,
however, we focus on parameters for which VB � TK . (An
exception is U = 4 � and VB < 10 �, where the Kondo cloud
does fit into our finite-size system.60) For the parameter regime
under study, recent numeric61 and analytic62–64 studies provide
strong indications for suppression of the equilibrium Kondo
effect.

It is argued in literature that one expects a splitting of the
Kondo resonance, possibly a pinning at the lead potentials65,66

and/or a suppression61 of the Kondo effect similar to the effect
of temperature4,61,63 or magnetic field.67 Renormalization
group studies concluded that bias voltage is a relevant energy
scale in the problem.62–64 Recent results for the electron
dynamics in the steady state indicate a splitting of the Kondo
resonance away from zero with bias voltage which further
supports our observation that the Kondo induced time scale
is not relevant for charge transport at large bias voltages.39

Note that even in the presence of Kondo correlations, charge
relaxation should be orders of magnitudes faster than spin
relaxation.53

From our current simulation we made the observation that
an initial system with Kondo correlations (to be precise, their
finite-size remnants) as in QT II yields the same steady-state
charge current (after a short, and different transient regime)
as an initial system without them as in QT I. This indicates
that in QT II the Kondo correlations are washed away by bias
voltage. We thus conclude that although finite-size systems are
not able to capture the full equilibrium Kondo singlet,58 the
steady-state transport in the charge channel is not noticeably
affected in the parameter regime under investigation.

B. Time scales in the high-bias regime

We find that relaxation times in the model under discussion
are strongly parameter (U , VB) dependent. These relaxation
time scales are estimated by the slope of a linear fit to
the plateau region [τS,τE] (see Sec. IV A). In particular,
we identify three regions [see Fig. 7 (top)]: region I is
characterized by short physical relaxation times and region
II exhibits longer relaxation times. Region II overlaps with the
regime in which TEBD restricts us to small final simulation
times τE (high steady-state current regime, see Appendix B
for discussion). In region II, we did not obtain a converged
steady-state current. In region III, the current is small and the
maximum reachable simulation time (see Appendix B) was
large enough to determine the steady-state current.

We proceed by providing an intuitive single-particle picture
of the transition from region I to II in a Hubbard-I-type
description [Fig. 7 (bottom)]. Then, the leads (assuming
infinite reservoirs) are described by semicircular bands of
bandwidth D, asymmetrically shifted against each other with
increasing bias voltage VB . The quantum dot consists of a
single (noninteracting) level, located at the single-particle
energy −U

2 . We find that the transition occurs when this
single-particle level of the quantum dot leaves the overlap
region of both lead DOS (blue line, Utrans ≈ D − VB). We
conclude that the existence of an appreciable spectral weight
in the overlap region of the lead DOS leads to faster relaxation.

FIG. 7. (Color online) (Top) Parameter regions in the U − VB of
short (I) and long (II) physical relaxation scales as well as a regime
of more complex behavior III. Data from the TEBD calculation are
indicated with black and gray markers. For region II, pedestals are
shown in Fig. 4. (Bottom) Single-particle DOS and single-particle
dot level in a Hubbard-I-type picture at U = 20 �, for (a) VB = 6 �,
(b) VB = 20 �, and (c) VB = 36 �. The electronic DOS of the left
(right) lead is shown in red (blue) and their overlap in brown. The
single-particle level of the quantum dot is indicated at −U

2 in magenta.

VI. ROLE OF HIGH-ENERGY STATES

To study the role of high-energy states during the time
evolution we add a damping term to the propagator

Û(τ ) = e−iĤτ (1−i), (3)

which gradually reduces the contribution of high-energy states.
In Fig. 8, the effects of damping of high-energy modes on

the current is visualized. We show results for very low-bias
voltage (VB = 2 �) as well as high-bias voltage (VB = 32 �).
The different influence of overdamping (dashed lines) on
low-bias setups in contrast to high-bias setups yields insight
into the role of high-energy states in the two respective cases.
In low-bias settings, strong overdamping (here  = 10 �)
leads to lower current while in the high-bias case it leads
to higher current with respect to the true one. This indicates a
qualitatively different role of high-energy states for these two
settings.

This result can be made plausible by a simple argument. In
the case of small-bias voltage (VB � t), the dominant energies
should be the kinetic ones and neglecting high-energy states
amounts to eliminating those with highest kinetic energy. Such
states contribute much to the current and neglecting them leads
to a lower total current. On the other hand, for very high-bias
voltage (VB � t), potential energy is expected to dominate.
High-energy states are then those with a lot of particles in the
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FIG. 8. (Color online) Effects of damping  of high-energy
modes on the time evolution of the current (U = 0,χTEBD = 500,
QT I). Data shown are obtained for very low-bias voltage (VB = 2 �,
group of gray curves in lower part of figure) and high-bias voltage
(VB = 32 �, group of orange curves in upper part of figure). For
each bias voltage, we compare data obtained by a standard ( = 0)
time evolution (full lines), data using an (empirically) optimally
damped time evolution ( = �, dashed-dotted lines) as well as for
an overdamped evolution ( = 10 �, dashed lines).

high-bias reservoir. Eliminating them reduces the available
state space for hopping of particles back to the side of high
potential. Therefore, the current is increased due to less back
flow. From a technical point of view, such an approach may
reduce entanglement growth (the limiting quantity in real-time
evolution using matrix product states), thus reducing the
required matrix dimensions of the MPS. Using such an ansatz,
however, suffers from two drawbacks. (i) On the one hand, we
have just seen that high-energy states can be important for the
steady-state current and, on the other hand, estimating a priori
a suitable magnitude of the damping  is not straightforward
since it should in principle be dynamically adjusted during
the time evolution taking into account energies and truncated
weight. Due to these reasons, we refrain from using such an
approach in general. However, we show in Fig. 8 that by
choosing a phenomenologically good value for the damping
( = �), one can indeed somewhat prolong the stable time
evolution.

VII. CONCLUSIONS

We studied the single-impurity Anderson model out of
equilibrium beyond the linear response regime by means of
density matrix renormalization group. Real-time evolution was
performed making use of the time-evolving block decimation
algorithm which allows us to access relevant time scales to
reach the steady state. Within this framework, we investigated
three different quenches: (i) quenching the hybridization
with already applied bias voltage, (ii) quenching the bias
voltage, and (iii) quenching the hybridization at one side
only.

Calculated current-voltage characteristics agree very well
with established results which are available in the low-bias

region. We find that the period of characteristic oscillations in
the time evolution of the charge current is already very well
described by renormalization group results for a different
model, the interacting resonant level model of spinless
fermions. After an initial transient regime, where on the
order of one particle is transferred through the quantum dot,
the steady-state current agrees among the three quenches
investigated. For the identification of steady-state plateaux in
time-dependent quantities, the type of quench is however very
important. We show that quenching the lead-dot tunnelings
is the most suitable one, contrary to expectations whereas
quenching the bias voltage results in large initial oscillations
of the current. We furthermore show that limitations of
the method such as its inherent finite size do not pose a
problem for simulations of the setup discussed here within
accessible times. Our findings indicate that the steady-state
charge current is not influenced by finite-size effects, hinting
that incompletely developed Kondo correlations in the spin
channel do not influence charge transport noticeably. We
find that a large entanglement entropy correlates positively
with a large steady-state current amplitude. By studying a
damped time evolution, we find that high-energy states have
very different significance in the low- and high-bias regimes,
respectively.

Aside from reproducing the universal low-bias physics, we
open up new perspectives for devices in which a large-bias
voltage is combined with a finite electronic DOS of the leads,
such as nanotubes. For such devices, we predict that effects of
electron-electron interactions are important even at high-bias
voltages.

Interesting extensions within the presented approach may
be the application of a gate voltage to study stability diagrams,
evaluation of spin correlations which could hint on Kondo
correlations, to study effects of asymmetric couplings, the
interplay of bias and magnetic fields as well as to investigate
correlated leads.34 On the technical side, it would be interesting
to evaluate whether more gently ramped quenches over a
finite-time interval further decrease oscillations or even en-
tanglement and further improve the extraction of steady-state
data.
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APPENDIX A: METHOD SETUP, CONVERGENCE
ANALYSIS, AND PRELIMINARY CONSIDERATIONS

Here, we present some preliminary considerations concern-
ing the convergence and quality of our data. Uncertainties
arise from the approximations made within the method and
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from numerical precision. In addition, our setup contains leads
of finite size, with two effects in principle. First, this finite
size affects the ground state at time zero. We will show in
the following that the effect on the current is negligible; it
converges already at much smaller lead size than used here.

Second, the finiteness of the reservoirs means that no energy
or particle dissipation occurs and eventually the system will
show oscillatory behavior. We note in passing that during our
simulation time only approximately one particle traverses the
quantum dot. The earliest time at which the current can be
affected by the finite system size arises from a perturbation
which propagates after the quench to the end of a lead and
back to the quantum dot. The velocity of this signal is limited
by the Lieb-Robinson bound,68 up to exponentially suppressed
parts, and in our case is v ≈ 2t , which can also be clearly seen
in the time evolution of local charge expectation values.54 The
perturbation will hit the left and right ends of the chain and
return back to the quantum dot after a time of about τ ≈
2(L/2)/(2t) = L/(2t), i.e., τ/�−1 ≈ L�/(2t) ≈ 7.5 for L =
150. This is far beyond the times τE (see Sec. IV A) up to which
we calculate the steady-state current, which is therefore not
affected. This conclusion is confirmed by the convergence of
the current with respect to system size L, discussed below. The
measured current may, however, be affected by other possible
errors within our approach: (i) the procedure to measure it,
(ii) the Trotter error, and (iii) the limited matrix dimension
χTEBD (i.e., truncated weight).

In the following, we will show that the major uncertainty
arises from the limited matrix dimension χTEBD, while other
sources are negligible. The definition of the time intervals
from which the steady-state current is evaluated (Sec. IV A) is
also relevant. A similar conclusion has been drawn before in
the framework of adaptive tDMRG (Ref. 25) and for different
systems in the framework of TEBD.49

1. Obtaining the current

Within the TEBD time evolution, the steady-state current
may be obtained via the expectation value of the current
operator at each time step24,69

ĵij (τ ) = i tij
∑

σ

(a†
iσ ajσ − aiσ a

†
jσ ),

where i and j denote adjacent sites and aiσ and a
†
iσ are

annihilation and creation operators for fermions onsite i with
spin σ which depend at time τ and tij is taken to be real. To
obtain the current through the quantum dot, a symmetrized
version of the inflow and outflow is used:

ĵ (τ ) = ĵLf + ĵf R

2

= i π t ′
∑

σ

((
f †

σ cL
endσ − c

L†
endσ fσ

)− (
f †

σ cR
0σ − c

R†
0σ fσ

))
,

(A1)

where cL
endσ , c

†L
endσ denote operators on the last site of the left

reservoir (number 74 in Fig. 1) and cR
0σ , c

R†
0σ denote operators

on the first site of the right reservoir (number 76 in Fig. 1).
Another way of computing the current is by calculating the

time derivative of the total particle number to the left of the

site under consideration:

jii+1(τ ) = d

dτ

〈
i∑

m=1

∑
σ

n̂mσ (τ )

〉
.

Again, a symmetric combination of the dot’s ingoing and
outgoing current yields the current under consideration

j (τ ) = 1

2

(
d

dτ

〈∑
m∈L

∑
σ

n̂mσ (τ )

〉

+ d

dτ

〈 ∑
m∈L∪f

∑
σ

n̂mσ (τ )

〉)
. (A2)

The current through the dot may be evaluated at each TEBD
time step using Eq. (A1) or by computing a finite-difference
approximation to the differential Eq. (A2) every two successive
time steps.

Aside from the expected additional source of error by
evaluating the time derivative numerically, this method is
expected to perform less well due to the influence of all sites in
the system on the result for the current, the occupation number
of each site having its own limited accuracy. A comparison
of the current evaluated by means of Eqs. (A1) and (A2)
for various values of interaction strength U and applied bias
voltage VB as well as all QTs (I, II, III) shows good agreement
in the beginning of the time evolution [see Fig. 9 (left)]. Due to
an accumulation of errors in the particle-number expectation
values of the individual sites, the results start to deviate at some
time τ

(2)
E . We do not use results beyond τ

(2)
E (see the discussion

in Sec. IV A). Numerical values of all steady-state currents
will be obtained using the current operator [Eq. (A1)] which
yields a much more stable estimator.

2. Finite-size effects: L

In this section, we discuss the dependence of the results
for the current on the length of the system L.49,70 We
quench both dot-lead tunnelings (i.e., QT I). The qualitative
behavior for the other QTs (II and III) is virtually identical.
Results for the steady-state current for system sizes of L =
20,40,60,80,100,120, and 150 sites are shown in Fig. 9 (right)
in the noninteracting case. We find that the final results for
the steady-state current agree with the analytically available
results for an infinite system in all cases within the numerical
error. This ensures a reliable determination of steady-state
properties even on finite-size systems. As mentioned before,
the system size limits the maximum simulation time due to
signals back-propagating from the borders. In the main part
of this work, all calculations are performed for a system
size of L = 150 to provide a nice long plateau (maximum
simulation time) in the steady-state current. It has been noted
in Ref. 71 that in the particle-hole-symmetric half-filled model,
the steady-state current is independent of system size. A
detailed discussion of finite size and time scales in a model of
spinless fermions can be found in Ref. 70.

For completeness, we note that it is possible to extend
the available simulation time, when it is limited by the
hard boundary conditions of the leads, by applying modified
boundary conditions.34,69,72,73 Exponentially decreasing the
matrix elements of the Hamiltonian towards the end of the
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FIG. 9. (Color online) Convergence of the current with respect to several auxiliary numerical parameters. Left: Solid lines denote results
obtained evaluating the expectation value of the current operator (A1), while dashed lines indicate data obtained by evaluating the time
derivative of the expectation value of the particle number (A2) (U = 12 �, L = 150, χTEBD = 2000, QT I). Center: Matrix sizes χTEBD =
250 (dotted line),500 (dashed-dotted line),2000 (dashed line), and 4000 (solid line) are presented (U = 20 �, L = 150, QT I). Right: We show
system sizes L = 20,40,60,80,100,120, and 150 (dotted, dashed-dotted, dashed, dashed-dashed-dotted-dotted, long-dashed-short-dashed,
dashed-gap-dashed, and solid lines) at U = 0, L = 150, χTEBD = 2000 for QT I. The constant solid lines indicate the exact steady-state
currents of the respective thermodynamic system.

reservoirs ultimately corresponds to a Wilson chain with
logarithmic discretization.73 In this work, we do not apply any
modified boundary conditions because our simulation time is
not limited by the size of the chains but the TEBD matrix
dimension χTEBD.

3. Trotter error: δτ

The Trotter error grows only linearly with simulation
time,25,74 and can be controlled by choosing sufficiently small
δτ . Therefore, usually the contribution to the total error arising
due to the Trotter approximation is negligible with respect to
other approximations. We investigated the influence of the
Trotter decomposition on the current. Results for δτ/t−1 =
{0.01,0.05,0.1} were found to agree to within 5 × 10−5. We
do not plot the results because they all lie on top of each other.
A good value for the time step was found to be δτ/t−1 = 0.05
which was used in the main section of the paper.

4. MPS matrix dimension: χ

The quality of the TEBD results is predominantly deter-
mined by the maximum matrix size χTEBD used. A bigger
χTEBD leads to fewer discarded states (i.e., less truncated
weight of the reduced density matrices) during the truncation
and therefore to a systematically better approximation.12 The
truncated weight is defined by74

ε = 1 −
χ∑

γ=1

λ2
γ , (A3)

where λ2
γ denote the eigenvalues of the reduced density

matrices. This quantity is zero if no truncation is done. The
computational cost of the TEBD algorithm scales essentially
like74

cost ∝ L(d χTEBD)3,

where L is the length of the chain and d = 4 the size of the
local fermionic Hilbert space. Therefore, it is essential to keep
χTEBD as low as possible. During the simulations we noticed

that at a certain time (long before signals propagating back
from the ends of the chain would reach the quantum dot), the
truncated weight starts to grow quickly and the results become
unstable,75 causing a decaying current. The effects of enlarging
χTEBD are shown in Fig. 9 (center). As the data indicate,
the effect of increasing χTEBD is to make larger simulation
times accessible, before the simulation breaks down due to
accumulation of truncated weight. Remarkably, no spurious
quasi-steady state is entered when χTEBD is relatively small.
The overall shape of the current appears to be unaffected
by enlarging χTEBD, making reliable predictions for χTEBD =
2000 possible. We checked our results in all parameter regions
for convergence. In the main part of the paper, we always used
χTEBD = 2000 as a good compromise between run time and
accuracy.

5. Comparison to analytical results

In the noninteracting setup U = 0, we compare TEBD data
to results from an exact time evolution (see Fig. 10). The exact
time evolution was obtained for the same system parameters
by time evolving the single-particle density matrix. We find
that the TEBD time evolution is reliable up to a system-
parameter-dependent time. This time (triangles) again is in
accordance with the criterion for the maximum reachable
simulation time as defined in Sec. IV A and has a nontrivial
dependence on bias voltage and interaction strength.

The noninteracting system is nontrivial for the TEBD
method. Our data for the entanglement entropy and the
truncated weight at low-, medium-, as well as high-bias
voltages for increasing interaction strength54 indicate that
indeed the U = 0 case does not exhibit a particular low
entanglement or truncated weight in comparison with higher
interaction strength. Since we reproduce the exact analytic
steady-state current in the noninteracting case, we conclude
that the agreement with exact results is not a peculiarity of the
noninteracting system and our way of data extraction can be
applied to finite values of U .
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FIG. 10. (Color online) Exact results for the noninteracting
system. Comparison of the TEBD current (dashed lines) to an exact
time evolution (solid black lines) for U = 0 �, L = 150,χTEBD =
2000, QT I. We show results for VB = 4 � (cyan), VB = 28 �

(magenta), and VB = 36 � (green). The respective maximum reliable
simulation times (see Sec. IV A for definition) are indicated as
triangles.

6. Setup

Based on the above considerations, all data in the main
part of the paper were obtained for the following parameters:
(i) The ground state was obtained by DMRG using a matrix size
χDMRG = 400 and undergoing 10 sweeps of two-site DMRG
before switching to 40 runs for single-site DMRG. (ii) The
model consists of L = 150 sites. Upon performing one of the
three above-described quenches (I, II, or III), we used bias volt-
ages in a range of VB/� = (0,42). We always started from an
overall half-filled system in the canonical ensemble with total
Sz = 0 and alternating up and down spins are chosen from left
to right. (iii) The time evolution was performed using a TEBD
matrix size of χTEBD = 2000, a trotter step of δτ/�−1 =
0.005 and evolving for 1000 time steps which yielded a
final simulation time of T/�−1 = 5. Requiring a maximum
truncated weight of εc = 10−15, we dynamically adjusted

FIG. 11. (Color online) Maximum simulation time reachable (QT
I, χTEBD = 2000) due to accumulation of entanglement entropy (left)
and steady-state current (right). The left plot shows the time until
a truncated weight of εc = 5 × 10−5 is reached at any bond of the
chain for the first time. The right figure corresponds to the data in
Fig. 4. Note the inverted color scale in the left image; dark regions
correspond to low values of the maximum time reachable.

the size of the TEBD matrices with a maximum matrix size of
χTEBD. We measured observables at each time step.

APPENDIX B: CORRELATION OF ENTROPY
AND STEADY-STATE CURRENT

The major limiting factor for time evolution using TEBD
is the increase of bipartite entanglement11

Si = −tr[ρ̂L ln (ρ̂L)] = −tr[ρ̂R ln (ρ̂R)],

where ρ̂L/R denotes the reduced density matrix to the left
(L) and to the right (R) of a bipartition at bond i. Using a
maximum matrix dimension χTEBD, we stop the simulation (for
Fig. 11) whenever the truncated weight at any bond exceeds a
threshold value of εc = 5 × 10−5, which defines our maximum
simulation time τ

(1)
E (see Sec. IV A). In Fig. 11, we plot τ

(1)
E as

a function of U and VB (left) and compare it to the magnitude
of the steady-state current for the same parameters (right).

From our data we conclude that reachable simulation times
due to accumulation of entanglement (and thus truncated
weight) are nonmonotonic in U and VB but can be charac-
terized roughly by the magnitude of current in the system. We
find this behavior to be generic to all investigated QTs.
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