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We present a quantum Monte Carlo study for Heisenberg spin- 1
2 two-leg ladder systems doped with

nonmagnetic impurities. The simulations are applied to the doped spin-ladder compound Sr(Cu1−xZnx)2O3,
where a large broadening of the 65Cu NMR lines has been observed in experiment at low temperatures but far
above the Néel temperature. We find that interladder couplings with a sizable coupling in the stacking direction are
required to describe the line broadening, which cannot be explained by considering a single ladder only. Around
a single impurity, spin correlations cause an exponentially decaying antiferromagnetic local magnetization in
a magnetic field. We develop an effective model for the local magnetization of systems with many randomly
distributed impurities, with few parameters which can be extracted out of quantum Monte Carlo calculations with
a single impurity. The broadening arises from a drag effect, where the magnetization around an impurity works
as an effective field for spins on the neighboring ladders, causing a nonexponentially decaying magnetization
cloud around the impurity. Our results show that even for impurity concentrations as small as x = 0.001 and
x = 0.0025, the broadening effect is large, in good quantitative agreement with experiment. We also develop a
simple model for the effective interaction of two impurity spins.
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I. INTRODUCTION

SrCu2O3 is a spin- 1
2 Heisenberg spin-ladder compound

that has been studied intensely both experimentally and
theoretically. The crystallographically determined structure1,2

consists of planar Cu-O trellis lattices with intercalated Sr ions.
These trellis lattices contain the spin ladders which are almost
perfectly decoupled due to frustration. The unpaired electron
of the Cu2+ ion carries a spin-1/2 and the spin dynamics arises
from the Cu-O-Cu interaction via superexchange over the
oxygen ions. The hyperfine interaction couples the magnetic
moments of the spins to the nuclear magnetic moments
of the Cu ions and in turn influences the local magnetic
resonance field. Upon doping with very small amounts of
nonmagnetic impurities, e.g., 0.25% of Zn, which occupy
Cu sites, a surprisingly large broadening of the Cu NMR
spectrum with decreasing temperature has been observed.3,4

A satisfactory theoretical explanation is still missing. It is
known that an impurity in a single spin ladder causes an
exponentially decaying staggered effective local magnetic
moment profile around this impurity.5–13 However, fitting the
NMR spectra on the basis of this exponential behavior requires
much larger correlation lengths than found in theoretical
studies of single spin ladders.11,14 For a reasonable fit with
an impurity concentration of x = 0.0025, Ref. 3 suggested a
correlation length of about ξx ∼ 100, and for a concentration
of x = 0.001–0.003, Ref. 4 estimated ξ ∼ 20–50. Theo-
retical studies suggest, however, that the correlation length
of undoped ladders is much smaller, and they show that it
barely changes upon introduction of a few impurities.8,9,11,12

For BiCu2PO6, a differently structured material with large
interladder coupling inside one layer, an exponentially de-
caying cloud model12,15 (∼ exp[−(ξx/rx + ξy/ry)]) and a

stacked ladder version (∼ exp[−(ξx/rx + ξy/ry + ξz/rz)]) are
reported to show qualitative agreement with experiment for
impurity concentrations around x = 0.02, but fail to explain
the broadening at very small dilutions (x � 0.005).

In the present paper we perform quantum Monte Carlo
(QMC) simulations for single and stacked spin ladders within
the parameter range suggested in the report by Johnston
et al.16 We develop an effective model for the magnetization
on systems of stacked ladders with random impurities which
needs only a few parameters measured by QMC and permits
an efficient calculation of the NMR spectrum. We find that the
coupling of adjacent stacked spin ladders strongly influences
the NMR spectrum, and a value at the upper end of the range
suggested in Ref. 16 is required to describe the experimentally
found low-temperature NMR line broadening down to very
small impurity concentrations, consistent with a study on the
chain material Sr2CuO3.17

In Sec. II, we briefly summarize the results of NMR
experiments on SrCu2O3 with nonmagnetic impurities. In
Sec. III, we specify the Heisenberg model which we use to
describe this material. Section IV contains results on single
ladders, including an effective model for the interaction of two
impurities, and Sec. V contains our results on stacked ladders.
Section VI discusses the effects on NMR spectra, and Sec. VII
contains our conclusions.

II. NMR EXPERIMENT

In their experimental investigation, Fujiwara et al.3 reported
NMR studies on undoped and doped SrCu2O3. The results are
shown in Fig. 1. For a doping of x = 0.0025 a massive broad-
ening of the Cu NMR spectrum is observed upon lowering
the temperature, while in the undoped specimen this effect is
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FIG. 1. Experimental NMR spectra from Fujiwara et al. (Ref. 3).
The right panel shows the NMR linewidth broadening in doped
SrCu2O3, while for the undoped sample (left panel) this effect is
almost absent.

almost absent. Similar experimental results have been obtained
for SrCu2O3 by Ohsugi et al.,4 and also for other spin-ladder
systems YBa2(Cu1−xZnx)3O6+y ,18,19 YBa2(Cu1−xZnx)4O8,20

and Bi(Cu1−xZnx)2PO6.21

NMR measures the distribution of magnetizations in a
system exposed to an external magnetic field. We note that
quantitatively, the broadening of the NMR signal corre-
sponds to relatively small magnetizations on the order of
0.001 . . . 0.01 μB (see Sec. VI A). At first sight an increasing
linewidth for decreasing temperature is counterintuitive. It
suggests that the observed broadening is due to the temperature
dependence of correlations along and between the spin
ladders, and Refs 3 and 4 phenomenologically described the
broadening with very large spin correlation lengths. However,
the broadening takes place at temperatures far above the 3d
ordering temperature of about 1 K in SrCu2O3 at the same
impurity concentration,22,23 where long-range correlations
would be expected.

In the following we will therefore investigate the distribu-
tion of magnetizations in a model for SrCu2O3 with impurities.
We find that the spin correlation length is indeed barely
affected by impurities in the temperature range of the NMR
experiments, but the magnetization profiles around impurities
is strongly influenced by the coupling of stacked ladders.

III. MODELING SrCu2O3

The unsaturated spins of the Cu2+ ions in the Cu-O planes
in SrCu2O3 form spin ladders which are visualized in Fig. 2,
where the spins along the ladder couple antiferromagnetically.
Within the Cu-O planes the ladders form a trellis lattice,24

while normal to the Cu-O planes the ladders are stacked. The
trellis lattice is responsible for an effective decoupling of the
ladders due to frustration. We model SrCu2O3 like in Refs. 16
and 25 as a system of stacked ladders with spin- 1

2 Heisenberg
interactions,

Ĥ = kB

∑
ij

Jij
�Si

�Sj − μBgH
∑

i

Sz
i , (1)

FIG. 2. Model structure for SrCu2O3. Left panel: Trellis lattice in
the Cu-O plane. The effective ladders (solid lines) are decoupled by
frustration, symbolized by the dashed lines. We denote by S0 (cross)
a spin located on the same rung as a nonmagnetic impurity (open
circle). Right panel: Stacked ladders coupled via J3.

with nearest-neighbor couplings Jij and an external magnetic
field H ,26 kB � 1.38 × 10−23J/K , μB � 9.27 × 10−24J/T ,
and g = 2.

Inside the ladder the interaction is described by the coupling
JL along the ladder leg and JR along the rungs. The difference
in the electronic structure of the oxygen ions on the rungs and
on the ladder legs causes an anisotropy of the spin coupling
constants JL and JR .27 In the stacking direction the interaction
is described by a coupling J3. We denote the x direction to
be along the ladder and the z direction along the stacking
direction. Doping by a Zn atom introduces a nonmagnetic
impurity, i.e., a missing site in the model.

We simulate the model using a highly parallelized28 Quan-
tum Monte Carlo code with a directed loop algorithm29–32

in stochastic series expansion (SSE) representation of the
associated path integral. We employ the spin-ladder structure
as outlined in Fig. 2, periodic boundary conditions in the chain
(=x) direction, and for stacked ladders also in the stacking
(=z) direction.

We follow the results of Johnston et al.16 for the size of
interactions.33 For a single ladder we use JR/JL = 0.4–0.6
with JL = 1905 K. For stacked ladders, we employ JR/JL =
0.5 and J3/JL = 0.001–0.03 with JL = 1920 K. The magnetic
field used in the NMR experiments is O(10) T; i.e., H/JL �
0.003.

IV. SINGLE LADDER

A. Magnetization profile of a single impurity

To describe the impact of an impurity in a spin ladder one
may first consider the case of JR � JL (or vanishing JL) which
leads to the so called rung picture,34 in which the rungs are
seen as independent from each other (Fig. 3). The spins of a
rung form a singlet separated by a spin-gap of energy JR/2
from the triplet state that prevents the system from responding
to a small external magnetic field. By introducing an impurity,
one singlet is broken up and leaves a spin-1/2 free to respond
to an external magnetic field (free spin). The picture remains
useful even at large JL, where the presence of an impurity still
breaks a singlet and leaves a free spin.13

In a magnetic field, the antiferromagnetic correlations on
the ladder cause a staggered local magnetic moment profile to
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FIG. 3. Rung picture of a spin ladder without (left) and with
(right) an impurity. Spins form singlets with a spin gap which prevents
the system from responding to a small external field. An impurity
breaks one singlet and leaves a free spin-1/2 which responds to small
external fields and couples to surrounding spins.

develop around the impurity. In Fig. 4 the absolute values of the
local spin expectation values are plotted for two temperatures
within the experimental range (see Fig. 1). The profiles have
their maximum at the spin S0 residing on the same rung as the
impurity and drop exponentially with the correlation length ξx

of the undoped system8,9,11,12 as
〈
Sz

i,j

〉 = 〈
Sz

0

〉
(−1)i+j e

− |i|
ξx . (2)

Here, Sz
0 = Sz

0,0 is the spin on the same rung as the impurity
and i is the distance in the leg direction and j = {0,1} in
the rung direction from S0. Plotting |〈Sz

i,j 〉| on a logarithmic
scale (Fig. 4) shows the nearly perfect exponential dependence.
Some deviations occur close to the impurity, at large magneti-
zations not directly relevant for the observed broadening (see
Sec. VI A). The absolute value of the spins on the same ladder
leg as the impurity (j = 1) is somewhat smaller than on the
other leg at small distance i, but it appears to approach the
values of the j = 0 leg at large distances i.

The lower inset of Fig. 4 shows the temperature dependence
of the correlation length. It remains almost constant11,12,14

below T � 0.05JL � 100 K. The upper inset in Fig. 4
compares the profiles for varying JR/JL. Upon decreasing
JR/JL, the correlation length increases, however even at
JR/JL = 0.4 the resulting correlation length is much smaller
than the values fitted to the NMR spectra in earlier studies.3,4
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FIG. 4. (Color online) Local spin expectation value (absolute
value) of a single ladder for JR/JL = 0.5, H = 0.01JL with a single
impurity, at two different temperatures. Upper curve (red/blue) T =
0.02JL � 40 K, lower curve (black/green) T = 0.05JL � 100 K. The
different colors refer to magnetic moments located on the undoped
ladder leg (red and black circles) and on the doped ladder leg (blue and
green triangles), respectively. For the two temperatures considered,
the correlation length remains almost constant (lower inset). The
upper inset shows the spin expectation values at T/JL = 0.02 for
different values JR/JL. The correlation length ξx(JR/JL) becomes
5.9, 7.45, and 9.75 for JR/JL = 0.6, 0.5, and 0.4, respectively.
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FIG. 5. (Color online) (a) Total magnetization versus T/JL for a
system in a magnetic field, without (blue up-triangles) and with (black
circles) an impurity. System parameters: 200 × 2 ladder, JR/JL = 0.5,
H = 0.005JL (�14.3 T). To observe the effect caused by the impurity
only, the difference between the undoped and doped systems is also
shown (green down-triangles). The red dashed line is the analytical
solution for a free spin in a magnetic field. Blue and black lines are
guides to the eye. In the insets, the staggered distributions of local
magnetic moments around the impurity at (b) T = 0.005JL � 9.6 K
and (c) T = 0.09JL � 173 K are plotted. (For each inset: ladder leg
with impurity on the right, leg opposite impurity on the left.)

Correspondingly, the exponentially decaying clouds around
impurities on independent ladders shown in Fig. 4 produce
only a very small broadening of the NMR signal (see
Sec. VI A).

B. Temperature and magnetic field dependence

We analyze the temperature dependence of spin
magnetizations9 in systems with a single impurity and without
impurities. We observe two mechanisms which have a direct
impact on the NMR spectrum. In Fig. 5, both effects are
demonstrated for the total magnetization Mtotal = g

∑
ij 〈Sz

ij 〉
of the doped and undoped systems. The undoped system (blue
up-triangles) exhibits a collective excitation of all the spins as
a response to the external field at temperatures above about
0.04JL � 80 K (blue line in Fig. 5). This collective excitation
causes a temperature-dependent shift of the NMR peak without
changing its width, in quantitative agreement with the NMR
results in Fig. 1. The second effect is the creation of a local
cloud of magnetic moments around the impurity [Figs. 4 and 5
(insets)] which causes the total magnetization to grow again at
sufficiently low temperatures, corresponding to a shift back of
the NMR signal in Fig. 1 at temperatures of 40 K (0.02JL) and
below. By plotting the difference of the total magnetization
between the undoped and the doped systems we find that the
total magnetization caused by the impurity corresponds to one
spin- 1

2 moment5,9,35 at low temperature, in agreement with
experiment,22 and that it closely follows the analytic solution
of a free spin in a magnetic field (dashed red line in Fig. 5)
Mtotal � g〈Sz

free〉, with

〈
Sz

free

〉 = 1

2
tanh

(
μBH

kBT

)
, (3)
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FIG. 6. (Color online) Spin expectation values of the spins op-
posite of the impurity (i = 0) and at a distance of 10 lattice sites
(i = 10) and 20 lattice sites (i = 20) versus T/JL, all on the ladder
leg opposite the impurity. The dashed lines correspond to a free spin
in a magnetic field times a proportionality factor. System parameters:
200 × 2 ladder, JR/JL = 0.5, H/JL = 0.005. The inset shows the
factor A(ξx), measured at T = 0.02JL.

independent of the size of couplings, in the range studied.
Indeed, we find that the individual local magnetic moments
also show a tanh behavior, modulated by the exponential decay
of Eq. (2),

〈
Sz

i,j (T )
〉 = A(ξx)(−1)i+j e

− |i|
ξx

1

2
tanh

(
μBH

kBT

)
(4)

with a proportionality factor A(ξx) which depends on the
correlation length.

In the temperature range T < 0.05JL � 100 K where most
of the broadening takes place in experiment, ξx is independent
of temperature (Fig. 4, lower inset). In this range, A(ξx) can
be obtained from a single QMC simulation by measuring 〈Sz

0〉
at a reference temperature Tref and a magnetic field Href :

A(ξx) = 〈Sz
0(Tref/JL)〉

1
2 tanh

(
μBHref

kBTref

) . (5)

Figure 6 shows a comparison between the analytical model
Eq. (4) and QMC results for three different lattice sites on
the ladder leg opposite to the impurity (j = 0). A(ξx) was
extracted from a single QMC simulation at Tref = 0.005JL �
10 K. In the broadening temperature regime (ξx ∼ const.) and
even beyond, the analytical model (dashed lines) matches the
QMC data very well.

On the ladder leg containing the impurity (j = 1), the
magnitude of local spin expectation values is somewhat
smaller than specified in Eq. (4) (see Fig. 4), consistent with
the total homogeneous magnetization of the ladder to be that
of a single free spin without a factor A. [Eq. (3) and Fig. 5].

In Fig. 7 we compare Eqs. (3) and (4) to QMC results as a
function of magnetic field H at fixed temperature. The match
to local spin expectation values (inset) is very good. QMC
results for the total magnetization (blue triangles) match the
free spin solution perfectly for fields H/JL � 0.07. Above
H/JL = 0.07 (corresponding to an applied magnetic field of
about 200 T) the magnetization starts to rise significantly,
which indicates that the applied magnetic field is large enough
to break up the singlets. In simulations of the NMR response
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FIG. 7. (Color online) Total magnetization versus H/JL for a
system with a single impurity (blue up-triangles). System parameters:
300 × 2 ladder, JR/JL = 0.5, Tref/JL = 0.02083. The red dashed line
corresponds to the solution of a free spin in a magnetic field. The inset
compares Eq. (4) with the QMC results for 〈Sz

i,0〉, with A(ξ ) measured
at Href = 0.01JL and the same Tref .

(discussed below), the magnetic fields never exceeds H/JL =
0.01, so that Eq. (4) remains valid.

C. Two impurities: Effective interaction

The present work is primarily concerned with small
impurity concentrations x � 0.0025. We therefore focus our
investigation of impurity interaction on pairs of impurities,
since for combinatoric reasons already three close impurities
occur with very small probability.

We find the magnetic moment profile of two impurities to be
close to a simple superposition of single-impurity profiles, but
with a modified overall amplitude 〈Sz

0〉2imp instead of A(ξx).
At small temperatures where Eq. (5) is valid, we find that the
T and H dependence is again just a tanh, and with Eq. (4) the
single-impurity profiles to be superposed are〈

Sz
i,j (T )

〉
2imp = 〈Sz

0(Href/Tref,d)〉2imp

×(−1)i+j e
− |i|

ξx

tanh
(

μBH

kBT

)
tanh

(
μBHref

kBTref

) , (6)

where d is the distance between the impurities in the x

direction,〈
Sz

0

(
Href

Tref
,d

)〉
2imp

= 〈Sz(i = 0,j = 0)〉QMC

1 + e
(− d

ξx
) + e

(− Nx−d
ξx

)
, (7)

and 〈Sz(i = 0,j = 0)〉QMC is measured by QMC calculation
for 2 impurities. The normalization is such that the superposi-
tion will reproduce 〈Sz(i = 0,j = 0)〉QMC. Figure 8 illustrates
the quality of this description by plotting Eq. (6) together with
QMC results for two different impurity distances such that the
impurities reside on (i) the same and (ii) different sublattices
of the underlying antiferromagnetic structure. Changing the
impurity distance by one lattice site and thus changing the
sublattice leads to very different magnetization profiles. This
is a consequence of the antiferromagnetic order around the
impurities, which can be described by two ferromagnetic
sublattices that are shifted by one lattice site with respect to
each other. If the impurities are an even number of lattice sites
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|

FIG. 8. (Color online) Magnetic moment profiles with two im-
purities on the same ladder leg. Full lines: description according to
Eq. (6), symbols: QMC results. Upper curve: impurities are located at
positions 123 and 137 on the same sublattice. Lower curve: impurities
are located at positions 123 and 136 on different sublattices. QMC
simulation for JR/JL = 0.5, Href/JL = 0.01, Tref/JL = 0.02083.

apart (same sublattice) their magnetization profiles enhance
each other (Fig. 8, upper curve). If the impurity distance is
an odd number (different sublattice), the profiles interfere
destructively leading to the lower curve in Fig. 8. This latter
case also resembles the formation of a domain wall.

The unpaired spins interact with each other via the stag-
gered interaction, which decays exponentially with the spin
correlation length. One may try to describe their interaction
with an effective two-site Heisenberg model8,36–38 for the two
spins located on the same rungs as the impurities, with coupling
Jeff and a magnetic field H . We use the ansatz

Jeff = C

(
JR

JL

)
(−1)d−1 e−(d−1)/ξx . (8)

Figure 9 compares the spin expectation values resulting
from this model to QMC results for 〈Sz

0(d)〉2imp as a function
of distance d at different JR/JL. We find excellent agreement
down to very small distances for the case of odd distances,
where the two spins form effective singlets. The fitted constants
C(JR/JL) are 0.19, 0.245, and 0.29 for JR/JL = 0.4, 0.5, 0.6,
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FIG. 9. (Color online) 〈Sz
0(d)〉2imp versus distance of two impuri-

ties on the same ladder leg. QMC results (black error bars) are com-
pared to an effective two-site Heisenberg model (red triangles). The
blue dotted line corresponds to a simple exponential superposition
of two magnetic moment profiles calculated from a single impurity.
(T/JL = 0.02083,H/JL = 0.01, system size 200 × 2.)
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L
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FIG. 10. (Color online) Absolute values of the local spin expec-
tation values induced by a single impurity (� 0.083̇%) for different
J3/JL with JR/JL = 0.5. The system size is 100 × 2 × 6 spins
with periodic boundary conditions in leg and stacking direction.
T = 0.02083JL � 40 K and H = 0.01JL � 30 T. The impurity
resides on the right leg (j = 1) of ladder 1 (k = 0). For the magnitude
of spin expectation values see the inset, where the legs with j = 0
of the same three stacked ladders are plotted at J3/JL = 0.019 on a
logarithmic scale, demonstrating the nonexponential behavior found
on neighboring ladders.

respectively. For the FM case the agreement is good at large
distances, while for small d, the two-spin model saturates
whereas the magnetization on the full ladder continues to
increase. Overall, the simple model Eqs. (6) and (8) describes
the magnetization data in Figs. 8 and 9 very well.

V. STACKED LADDERS

A. Effective model, single-impurity case

QMC calculations of up to 8 stacked ladders have been
performed using the parameters from Johnston et al.16 In these
systems there is an interaction of spins on neighboring ladders
via the exchange constant J3. Spins are now denoted as Si,j,k ,
where k is the distance in stacking direction from the ladder
containing the impurity.

Figure 10 shows the spin expectation values on a six-ladder
stack with increasing interaction strength J3 and a fixed ratio
JR/JL = 0.5. We use periodic boundary conditions in stacking
direction; it is thus sufficient to plot only three ladders.
For J3/JL � 0.001 the stacked ladders behave almost like
independent single ladders; the observed tiny magnetization
variations in the neighboring ladder are within the numerical
noise. With growing J3/JL, an increasing influence on the
neighboring ladders is seen. Ladder 1 which contains the
impurity keeps a simple exponential behavior, with a slowly
increasing correlation length, from ξx = 7.45 at J3 = 0 to ξx =
9.75 at J3/JL = 0.03. However, the effective local magnetic
moment distributions on the neighboring ladders do not follow
a simple exponential decay law. Instead, the cusp which
appears at Sz

0 on the central ladder becomes progressively
smeared out on neighboring ladders.

In Fig. 11 the spin expectation values |〈Sz
0,0,k〉| are plotted

for different J3/JL in stacking direction, from QMC calcula-
tions with 8 stacked ladders. With increasing J3 the deviation
from a simple exponential decay increases. This deviation is
illustrated in the inset of Fig. 11 where |〈S0,0,k〉| is compared
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FIG. 11. (Color online) |〈S0,0,k〉| for a stacked ladder system
(k = 0,1,2, . . . ,7). JR/JL = 0.5, H/JL = 0.01, T/JL = 0.02083
and (from bottom to top) J3/JL = 0.01,0.015,0.02,0.025,0.03. The
inset compares the QMC results for J3/JL = 0.02 to a hyperbolic
cosine, demonstrating the nonexponential behavior. Lines are guides
to the eye.

with a cosh for J3/JL = 0.02. We find that for distant ladders
the deviation from the hyperbolic cosine behavior increases. It
thus becomes obvious that a simple exponential cloud model
cannot be used to describe the complete profile caused by an
impurity in a stacked ladder system.

Instead we developed a simple effective model, related to
the one used in Refs. 17 and 39, for the actual distribution of
magnetizations on stacked ladders. The ladder containing the
impurity (k = 0) shows essentially the same profile as a single
ladder and can therefore be described by Eq. (4) (with different
normalization).

For the other ladders, let us first look at legs with j = 0
(opposite the impurity) We find that the spin expectations
value 〈Sz

i,0,1〉 on the next-neighboring ladder (k = 1) can be
calculated by treating the spin on each site of the k = 0 ladder
as a separate source of magnetization, with an exponentially
decaying cloud in leg direction around it on the k = 1 ladder.
Subsequently, the magnetizations on the k = 2 ladder are
determined in the same way from those at k = 1, and so on for
larger k. Thus, our ansatz is

〈
Sz

i,0,k

〉 = e
− 1

κz

Lx
2∑

l=− Lx
2

(−1)|l|+1
〈
Sz

i+l,0,k−1

〉
e
− |l|

ξx , (9)

where Lx is the length of the ladders and 〈Sz
i,0,0〉 can be com-

puted like in Eq. (2). This approach treats the magnetization
on ladder k like a constant field for the spins on neighboring
ladders, without back-action because of the small value of J3.
It describes the three-dimensional clouds of magnetizations
around impurities very well, as we show below.

The strength of the coupling between the ladders is taken to
be a ladder-independent factor exp(−1/κz) with an effective
correlation length κz. Equation (9) is to be applied iteratively
in k, up to the middle ladder in stacking direction, with the
remaining ones determined by symmetry

〈
Sz

i,j,−k

〉 = 〈
Sz

i,j,k

〉
. (10)

0

0.01

0.02

100 300 500 700 900 1100
lattice site
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z >
|

FIG. 12. (Color online) Local spin expectation values (absolute
values) for 6 stacked ladders with 3 impurities. Spin sites 1–200
correspond to ladder 1, 201–400 to ladder 2, and so on. The
red line (open circles) is the result of our model function; the
underlying blue solid line is the corresponding QMC simulation.
Upper panel: impurities located on 3 different ladders [(27,0,0),
(50,0,1), (46,0,4)]. Lower panel: 2 impurities located on the same
ladder [(44,1,4), (92,1,4)] and one on a different ladder [(59,1,5)]

For the other ladder legs (j = 1), we approximate the spin
expectation values as 〈

Sz
i,1,k

〉 = −〈
Sz

i,0,k

〉
(11)

for k � 1.
To determine κz we apply Eqs. (4) and (9) to get

〈
Sz

0,0,1

〉 = −〈
Sz

0,0,0

〉
e
− 1

κz

⎛
⎝1 + 2

Lx
2∑

l=1

e
− 2l

ξx

⎞
⎠ (12)

with 〈Sz
0,0,1〉, 〈Sz

0,0,0〉, and ξx taken from a QMC simulation with
one impurity on stacked ladders. For the interladder couplings
J3/JL between 0.01 and 0.03 studied in Sec. VI B, we find κZ to
be small, ranging from 0.22 to 0.28. The magnetization profile,
Eq. (9), is thus computed from only these three measured
quantities.

B. Multiple impurities

Similar to single ladders, multiple impurities on stacked
ladders can be described by superimposing single-impurity
profiles, Eq. (9). When the impurities are located on the same
ladder, we account for their interaction by using 〈Sz

0(d)〉2imp,
Eq. (6), measured on the stacked ladder system, in place of
〈Sz

0,0,0〉. Since J3 is very small, two impurities located on
different ladders do not influence each other much, and we
use the single-ladder results in this case. Larger numbers of
close-by impurities are extremely rare at small concentrations
x, so that we can omit the effect of their coupling on the NMR
spectrum.

In Fig. 12, we compare our model to QMC results for two
distinctly different impurity distributions, namely 3 impurities
distributed over 3 ladders (upper panel), and 2 impurities on
the same ladder and one on an adjacent ladder (lower panel).
We find excellent agreement. Let us emphasize that even such
complex spin profiles require only very few parameters for
the model function, calculated at a reference temperature and
reference external magnetic field, namely ξx , 〈Sz

0〉, 〈Sz
0,0,1〉,
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and 〈Sz
0(d)〉2imp. Only the last of these depends on impurity

positions.

VI. NMR

A. Magnetic moment profile and calculation of
the NMR spectrum

To obtain the Cu2+ NMR spectrum influenced by a
magnetic moment profile one has to consider the spin-ion
hyperfine coupling in the resonance condition40

νRF

γN

= H0(i,j,k) + AHFμBg
〈
Sz

i,j,k(H0(i,j,k))
〉
. (13)

H0(i,j,k) is the value of the external field H0 matching the
resonance condition at site i,j,k. Here, νRF is the frequency
of the RF field, γN is the nuclear gyromagnetic ratio, AHF

is the hyperfine coupling (−12 T/μB for SrCu2O3
3), and

〈Sz
i,j,k(H0(i,j,k))〉 is the expectation value for the z component

of a spin at site i,j,k induced by an external field H0.
The dependence on temperature and magnetic field of

the spin expectation value is the tanh discussed before, so
that QMC calculations need only be done at some reference
temperature Tref and reference field Href :

νRF

γN

= H0(i,j,k) + AHFμBg
〈
Sz

i,j,k(Href)
〉

× tanh
(

μBH0(i,j,k)
kBT

)
tanh

(
μBHref

kBTref

) . (14)

The NMR spectrum is then obtained by collecting the values
of H0(i,j,k) from all lattice sites (i,j,k) into a histogram. To
account for the natural linewidth we convolute the histograms
with a Gaussian of 0.02 T half linewidth.

Figure 13 illustrates the resulting NMR spectrum arising
from two impurities on a single ladder, with magnetic field
strengths as used in the experiment by Fujiwara et al. (Fig. 1).
Note that the broadening seen in experiment corresponds
to very small values of 〈Sz

i,j,k〉, up to about 0.01. Larger
spin expectation values, which occur on only few sites close
to impurities, contribute only little to the histogram, in its

intensity
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-0.03
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<
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FIG. 13. (Color online) Relation between local magnetic mo-
ment profiles and the corresponding NMR spectrum. Left panel:
Spin expectation values (left and right leg) of a ladder containing
two impurities on the left leg. Right panel: The corresponding NMR
spectrum reflects the histogram of spin expectation values. The
experimentally observed broadening corresponds to small values of
〈Sz

i,j,k〉 up to about 0.01.
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6.8 7.2
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FIG. 14. (Color online) NMR spectra with three impurities at
fixed positions. Left panel: Influence of the stochastic noise on
the width. Impurities at positions (7,1,2), (51,2,6), (73,1,5), with
QMC simulations of 10k (red dashed line) and 500k (black solid
line) sweeps. The inset shows the dependence of the FWHM on the
number of steps. Right panel: Two NMR spectra of two systems only
differing in impurity configuration (250k steps). Black solid line:
same as left panel; blue dashed line: positions (35,1,1), (52,1,4),
(86,2,5). (JR/JL = 0.5, J3/JL = 0.017, T/JL = 0.02083, H/JL =
0.003828.)

outliers. For the understanding of the NMR signal such
large spin expectation values may therefore be treated more
approximately, as we do in our model descriptions.

Figure 14 illustrates two effects which influence the calcu-
lated distribution. The left panel shows that stochastic noise of
small spin expectation values in the QMC calculation produces
an effective broadening. Therefore QMC calculations of
high precision are necessary in order to get reliable NMR
histograms. In the right panel of Fig. 14 we show the influence
of different impurity positions on the linewidth and line shape,
which demonstrates the necessity to average over a large
number of impurity configurations.

If each impurity configuration needed to be simulated in
a separate QMC simulation, the computational effort would
be too large. Instead, we employ the effective analytical
description given in Sec. V A, which allows us to calculate
the NMR spectra for many impurity configurations on the
basis of only a few parameters measured in QMC simulations.
For each set of couplings JR/JL and J3/JL we calculated
ξx , 〈Sz

0〉, and 〈Sz
0,0,1〉 on a 200 × 2 × 6 system of coupled

ladders with one impurity (200 × 2 × 8 for J3/JL = 0.03). We
calculated 〈Sz

0〉1imp and 〈Sz(d)〉2imp for distances d = 1 . . . 40
of two impurities on the same leg of a ladder at J3/JL = 0.01
on 200 × 2 × 4 coupled ladders. Since this calculation was
very time consuming, we used the ratio between 〈Sz(d)〉2imp

and 〈Sz
0〉1imp also at other values of J3. All QMC calculations

for the NMR spectra were done at the reference values
Tref = 0.02083JL = 40 K and Href = 0.01JL � 19 T.

B. Results

We used our effective model to generate NMR spectra
for given impurity concentrations and for different couplings,
based on the QMC simulations described above. 104 random
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6.7 6.8 6.9 7.0
H

0 
[Tesla]

FIG. 15. (Color online) Simulated NMR spectra for x = 0.25%
impurities at T = 40 K, JL = 1920 K, and JR/JL = 0.5 with
stacked ladder couplings J3/JL = 0.01 (red dot-dot-dashed line)
and J3/JL = 0.03 (solid red line), compared to experiment (Fig. 1)
(black dashed line). Sizeable broadening occurs only for the larger
interladder coupling. At high temperature (340 K), all spectra are
narrow. For reference, we show an undoped system (green dotted
line, Gaussian line shape) and the doped system (blue dot-dashed
line) at J3/JL = 0.03.

vacancy configurations were generated on systems of up to
400 × 2 × 20 sites for each set of couplings JR/JL and J3/JL.
The NMR spectrum was calculated for each vacancy configu-
ration using our model, and the results were superimposed to
obtain spectra comparable to realistic NMR signals.

In Fig. 15 we show results at x = 0.25% impurity doping
for two different stacked ladder couplings J3/JL = 0.01 and
J3/JL = 0.03. At high temperature (340 K), all spectra are
similar to the pure Gaussian line shape; i.e., no broadening
is visible, even at the larger ladder coupling J3/JL = 0.03.
This is due to the suppression of magnetic moments by the
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T/J

L

0.00

0.05

0.10

0.15

0.20

F
W

H
M

 [
T

es
la

]

0 0.05 0.1 0.15 0.2
T/J

L

0.00

0.05

0.10

0.15

0.20

F
W

H
M

x=0.0025

FIG. 16. (Color online) FWHM vs temperature for a stacked lad-
der system with JL = 1920 K, JR/JL = 0.5, and varying interladder
coupling J3/JL: 0.0 (black diamonds), 0.01 (red down-triangles), 0.02
(green up-triangles), and 0.03 (blue squares). The black crosses show
results with a different rung coupling JR/JL = 0.4 at J3/JL = 0.02.
Experimental values for the 65Cu central peak from Fig. 1 are given
by red open circles. The inset shows an expanded temperature range.

6.75 6.80 6.85 6.90 6.95
H

0
 [Tesla]

280K

200K

100K

40K

30K

20K

x=0.0025

FIG. 17. (Color online) Simulated NMR spectra at x = 0.0025,
with JL = 1920 K, JR/JL = 0.5, and J3/JL = 0.03 and different
temperatures compared to experiment (Ref. 3) (65Cu left peak, νRF =
83.55 MHz, filled circles).

factor tanh( μBH

kBT
). At low temperature, T = 40 K, the NMR

spectrum remains narrow for isolated ladders (not shown) since
an exponential decay with the small correlation length of the
undoped system (Fig. 4) does not contain enough sites with
the relevant range of magnetizations. The spectrum remains
narrow also for small interladder coupling J3/JL = 0.01.

The behavior changes drastically for the larger interladder
coupling J3/JL = 0.03. Then several stacked ladders obtain
magnetizations within the relevant range (cf. Fig. 11), resulting
in a broadened NMR spectrum in excellent agreement with the
experimental spectrum.

In Fig. 16 we study the broadening at x = 0.25% in more
detail. We show the FWHM (full width at half maximum)
versus temperature for different interladder couplings J3.
The couplings are JR/JL = 0.5 and J3/JL = 0.0 (resulting
in ξx = 7.45), 0.01 (ξx = 7.6, κz = 0.218), 0.02 (ξx = 8.6,
κz = 0.253), 0.03 (ξx = 9.75, κz = 0.278), as well as JR/JL =
0.4 with J3/JL = 0.02 (ξx = 11.3554, κz = 0.254). We find
that simulated spectra with a stacked ladder coupling slightly

9.0 9.5
H

0
 [Tesla]

203K

91K

40K

20K

4.2K

x=0.001

FIG. 18. (Color online) Simulated NMR spectra at x = 0.001,
with JL = 1920 K JR/JL = 0.5, and J3/JL = 0.03 and different
temperatures compared to experiment (Ref. 4) (65Cu left peak, νRF =
125.1 MHz, filled circles). The asymmetric experimental profiles
below 40 K are caused by an overlap of a 63Cu transition with its
main peak around 10.05 T. The experiment appears to have a larger
natural linewidth than assumed in our simulations.
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220K

150K

70K

x=0.01
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220K
150K

100K

x=0.02

FIG. 19. (Color online) Simulated NMR spectra (dashed lines)
at x = 0.01, with JL = 1920 K, JR/JL = 0.5, and J3/JL = 0.03 and
different temperatures compared with experiment (Ref. 4) (65Cu left
peak, filled circles). The inset shows the same system with an impurity
concentration of x = 0.02.

below 0.03JL, at the upper end of the couplings specified
in Ref. 16, match the experimental results well over the
whole temperature range. The correlation lengths and κz

were extracted at T = 0.02083JL = 40 K and assumed to
be temperature independent. This assumption is valid for
the low-dilution, low-temperature regime, while for higher
temperature there is little broadening so that the influence of
the correlation length becomes unimportant.

In Figs. 17, 18, and 19, we show a detailed comparison
of our simulated NMR spectra with experimental results at
impurity concentrations of 0.25%, 0.1% (which appears to
have a larger natural linewidth), and 1%, using JR/JL = 0.5

and J3/JL = 0.03. We find that our model is in very good
agreement with experiment in almost all cases.

VII. CONCLUSIONS

We studied impurity-containing systems of stacked spin
ladders by means of QMC simulations. Temperature and
field dependence of magnetizations are paramagnetic. We
developed an effective spin model for the interaction of un-
paired spins next to two impurities. In contrast to assumptions
made in earlier investigations we observed that the staggered
magnetization caused by an impurity does not follow a simple
three-dimensional exponential behavior. The spin distributions
on the ladders in stacking direction deviate progressively from
such an exponential dependence. We provided an analytical
description for the spin profiles in systems with multiple
impurities and used it to simulate the NMR spectra of lightly
doped SrCu2O3 with only a small number of parameters
determined by QMC. The resulting NMR spectra allowed us
to explain the drastic broadening of the 65Cu NMR line in
SrCu2O3 found in experiments3,4 at intermediate temperatures
to be a consequence of a sizable coupling between ladders in
stacking direction. which causes a nonexponential cloud of
small effective magnetic moments to occur around impurities.
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