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We improve a recently developed expansion technique for calculating real-frequency spectral functions of any
one-dimensional model with short-range interactions, by postprocessing computed Chebyshev moments with
linear prediction. This can be achieved at virtually no cost, and in sharp contrast to existing methods based on the
dampening of the moments, improves the spectral resolution rather than lowering it. We validate the method for
the exactly solvable resonating level model and the single impurity Anderson model. It is capable of resolving
sharp Kondo resonances, as well as peaks within the Hubbard bands when employed as an impurity solver for
dynamical mean-field theory. Our method works at zero temperature and allows for arbitrary discretization of the
bath spectrum. It achieves similar precision as the dynamical density matrix renormalization group, at lower cost.
We also propose an alternative expansion, of 1 − exp(−τH ) instead of the usual H , which opens the possibility of
using established methods for the time evolution of matrix product states to calculate the spectral functions directly.
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I. INTRODUCTION

For one-dimensional (1D) strongly correlated quantum sys-
tems, the density matrix renormalization group (DMRG) [1,2]
and matrix product states (MPS) in general [3,4] have emerged
as a powerful tool for the calculation of ground-state and
excited-state properties. Since its invention, the DMRG has
been extended to treat dynamical correlation functions [5,6] as
well as real-time evolution [7–10], and nowadays is considered
the method of choice for tackling 1D quantum systems.

Regarding spectral functions, the first attempt with DMRG
involved a continued fraction expansion [11]. This method
failed, however, to produce reliable results for large systems.
A major improvement was the introduction of the correction
vector (CV) method [5] and its variational dynamical DMRG
(DDMRG) formulation [6]. Both methods are known to
give highly accurate spectral functions for 1D systems. They
suffer, however, from two major drawbacks: First, one has
to invert a large, non-Hermitian and possibly ill-conditioned
system of equations in a DMRG-like fashion, and second,
one has to do full DMRG-like calculations for every single
ω value. A similar approach has also been proposed by the
authors of [12], where the CV method was used as an impurity
solver within dynamical mean-field theory (DMFT) [13–16]
for a multi-orbital system.

More recently, the continued fraction expansion has been
combined with an MPS parametrization of the Krylov
vectors [17,18], yielding decreased computational cost as
compared to the DDMRG [6] method while giving results of
comparable accuracy. In other recent work [19], MPS methods
were combined with the Chebyshev expansion technique of
the Kernel polynomial method (KPM) [20] to obtain highly
accurate spectral functions for the isotropic Heisenberg model.

In the present paper, we propose to extend the KPM by
postprocessing computed Chebyshev moments with linear
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prediction, which drastically improves the spectral resolution
while the Chebyshev moments are accessible with far lower
computational effort compared to DDMRG [19]. We also
extend the approach to treat interacting quantum impurity
problems and implement a DMFT self-consistency cycle with
the improved KPM as an impurity solver. Our approach avoids
the simultaneous targeting of ground state and excited state
necessary in DDMRG, which may be especially important
for multi-orbital impurity solvers. For the single impurity
Anderson model (SIAM) [21], we obtain accurate results
over a broad parameter range. For the DMFT, our results
show a sharp peak within the Hubbard bands of the Hubbard
model in the vicinity of the Mott-Hubbard transition. We
also introduce an expansion in powers of 1 − exp(−τH )
instead of H , which completely avoids an energy truncation
necessary in the original KPM method and leads to improved
stability. In general, the advantages of the proposed Chebyshev
expansion of MPS are as follows: (i) the spectral function
can be calculated directly for real frequencies, also at zero
temperature; (ii) the flexibility to arbitrarily discretize the
hybridization function allows for good energy resolution at
all frequencies, and results as precise as DDMRG; and (iii) the
method is applicable not only to impurity models, but to any
1D model with short-range interactions.

II. METHODS AND MODELS

A. Kernel polynomial method

The kernel polynomial method [20,22,23] is a numerical
method for expanding Green’s functions G(k,ω) and spectral
functions A(k,ω) of many-body quantum systems in orthogo-
nal Chebyshev polynomials Tn(ω) = cos[nacos(ω)]. To make
this document self-contained, we will in the following describe
the basic properties of the KPM. In the mathematical literature,
two types of Chebyshev polynomials are used: those of the
first and those of the second kind. For the spectral function,
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we will only need those of the first kind, which will be called
Chebyshev polynomials henceforth.

For a quantum system with Hamiltonian H at temperature
T = 0, the spectral function for the unoccupied part [A+(ω)]
and occupied part [A−(ω)] of the spectrum has the form

A+(ω) = 〈�0|c δ(ω − (H − E0)) c†|�0〉, (1)

A−(ω) = 〈�0|c† δ(ω − (H − E0)) c|�0〉, (2)

where we shifted the (nondegenerate) ground state |�0〉 to
zero energy; c and c† are bosonic or fermionic annihilation
and creation operators, respectively. The Chebyshev expansion
converges only in the interval [−1,1] since the Chebyshev
polynomials Tn(ω) are unbounded as a function of their order n

for all |ω| > 1. The Hamiltonian therefore has to be rescaled by
some factor a, such that the single-particle excitation energies
are moved into the interval [−1,1]

H → f (H ) ≡ H̃ ≡ H − E0

a
, (3)

where we have defined a mapping function f (H ). Henceforth,
we assume that H has been rescaled to H̃ (see also Secs. II B
and II C).

By inserting a representation of the Dirac delta function in
terms of the orthogonal Chebyshev polynomials

δ(ω − H̃ ) = 1

π
√

1 − ω2

(
1 + 2

∞∑
n=1

Tn(H̃ )Tn(ω)

)
(4)

into Eq. (1), one arrives at

A+(ω) = 1

π
√

1 − ω2

⎛
⎜⎝〈�0|cc†|�0〉︸ ︷︷ ︸

μ+
0

+ 2
∞∑

n=1

〈�0|c Tn(H̃ )c†|�0〉︸ ︷︷ ︸
μ+

n

Tn(ω)

⎞
⎟⎠ . (5)

The method amounts to computing the expectation values
μ+

n = 〈�0|c Tn(H̃ ) c†|�0〉 of the nth Chebyshev polynomial.
For many-body systems, this is of course a highly nontrivial
task.

The Chebyshev polynomials satisfy the recursion relation

T0(H̃ ) = 1,

T1(H̃ ) = H̃ , (6)

Tn(H̃ ) = 2H̃Tn−1(H̃ ) − Tn−2(H̃ ).

The computation of μ+
n = 〈�0|cTn(H̃ )c†|�0〉 can therefore be

performed through a corresponding recursion relation for the
many-body quantum states

|t0〉 = c† |�0 〉,
|t1〉 = H̃ |t0〉,

(7)
|tn〉 = 2H̃ |tn−1〉 − |tn−2〉,
μ+

m = 〈t0|tm〉.

If H̃ has been properly rescaled, then this recursion relation
will converge. The product relations of the Chebyshev poly-
nomials allow the moments μ+

2n and μ+
2n+1 to be calculated

already from the states |tn〉 and |tn+1〉 using [20]

μ+
2n = 2〈tn|tn〉 − μ+

0 ,
(8)

μ+
2n+1 = 2〈tn+1|tn〉 − μ+

1 .

If not stated otherwise, the results in this paper were obtained
from these reconstructed moments. The above procedure
requires only the ability of applying an operator H̃ to a state
|tm〉 and of computing overlaps of the resulting states with |t0〉
or |tm−1〉. The moments for the occupied part of the spectrum
(μ−) can be generated by changing c† to c in the first line
of Eq. (7). The full spectral function A(ω) is obtained by
combining μ+

n and μ−
n , and using Tn(−ω) = (−1)nTn(ω):

A(ω) = A+(ω) + A−(−ω)

= 1

π
√

1 − ω2

(
[μ+

0 + μ−
0 ]

+ 2
∑

n

[μ+
n + (−1)nμ−

n ]Tn(ω)

)

= 1

π
√

1 − ω2

(
μ0 + 2

∑
n

μnTn(ω)

)
, (9)

where μn ≡ μ+
n + (−1)nμ−

n . Note that the decay of the
positive (negative) moments μ+ (μ−) with n is qualitatively
different from that of μn: The spectral function A+(ω) [A−(ω)]
has a step at the Fermi energy ω = 0, which corresponds to
an algebraic decay of μ+ (μ−) [24] of order 1 (μ+ ∝ 1

n
). The

added moments μn, on the other hand, correspond to a smooth
analytic spectral function for which the moments converge
much faster (exponentially) to zero [24].

B. MPS implementation and energy truncation

The recursion relation given by Eq. (7) can be implemented
straightforwardly in an MPS framework [19]. For this purpose,
the Hamiltonian H̃ is brought into a matrix product operator
(MPO) form [3,25], formally similar to the MPS representation
of a quantum state. The auxiliary dimension DMPO of the
corresponding MPO matrices is typically between 4 and 6. In
general, the application of an MPO of bond dimension DMPO

to an MPS of bond dimension χ (denoted |χ〉 in the following)
leads to an MPS with increased bond dimension χ ′ = DMPOχ .
To make successive applications like in Eq. (7) feasible, the
state is then compressed by a variational procedure [3] back
to bond dimension χ . This is the same procedure as done in
standard DMRG calculations. The corresponding systematic
error is quantified by the fidelity ε = |||χ〉 − |χ ′〉||/|||χ ′〉||,
which measures the relative distance of the compressed and
original state, and can be estimated by the truncated weight,
which is the sum of the discarded eigenvalues of the density
matrix [3,4].

When H̃ has not been rescaled over the full bandwidth
of H , compression reintroduces modes with energies outside
the convergence interval (|E| > 1), which would result in a
rapidly diverging recurrence. To overcome this divergence, an
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energy-truncation scheme has to be used to project out such
high-energy modes, at the cost of introducing a new systematic
error and extra computational effort. In Sec. II C we present
a generalization of the KPM method without any need for
energy truncation.

Energy truncation is done similar to a DMRG run [19]
by sweeping back and forth (Esweep times each) through the
system. At each site, high-energy modes are projected out by
applying a projection operator. It is obtained by a Lanczos
tridiagonalization, which yields a set of approximate eigenen-
ergies En and eigenstates |En〉. The projection operator P
projecting out modes with |En| > 1 is then given by P = 1 −∑Dmax

|En|>1 |En〉〈En|. Dmax is the number of steps in the Lanczos
procedure. For a detailed study on the effect of the Dmax on the
accuracy of the moments μm see [19]. The appropriate size of
Dmax depends on the rescaling parameter a, which determines
the level-spacing of H/a. If the recurrence relation shows
divergence, Dmax is increased until the recursion becomes
stable. Further runs with different a and Dmax are required to
ensure the parameter independence of the results. We typically
used a equal to 10–20 times the bandwidth 2D, and Dmax =
5–30. When a is chosen too small, it cannot be compensated
by increasing Dmax or Esweeps, and the results become unstable.

An additional drawback of the energy truncation approach
is that in contrast to ground-state or compression algorithms,
it is not variational in character, hence no notion of optimality
can be associated with it, and the convergence of the method
is not guaranteed. Energy truncation has been speculated to be
the major limiting factor of accuracy [19]. In our calculations,
we find that both the usual matrix compression and energy
truncation limit the accuracy of a simulation.

C. Expansion of 1 − exp[−τ H]

For convergence of the Chebyshev recurrence, any one-
to-one mapping f (H ) of the spectrum of H into [−1,1]
is sufficient. A natural choice for f (H ) is to employ the
exponential function, exp[−τ (H − E0 + ε)], where E0 is the
ground-state energy, and ε > 0 is a small energy shift which
avoids getting too close to the boundary f = 1. Due to the
boundedness of the exponential function, energy truncation
can be omitted. Another advantage of this approach is that
one can use a Trotter-decomposition of exp[−τ (H − E0 +
ε)], with sufficiently small τ , which is a standard tool for
solving time-dependent many-body systems [7–9]. For small
τ , exp[−τ (H − E0 + ε)] ≈ 1 − τ (H − E0 + ε), and thus the
spectral resolution is approximately constant. Note that 1/τ is
similar to a rescaling parameter a. In the present paper, we use
τ = 0.01 and calculate exp[−(τH − E0)] in a single breakup.
For larger τ one could either use a higher-order Trotter scheme
or use a breakup with τ ′ = τ/n, applied n times.

However, the positive and negative branches of the zero
frequency peak of A(ω) now have to be calculated separately
and then patched to give the full spectral function. A substantial
drawback of this procedure is that both patches contain a jump
at the Fermi energy ω = 0 (which is mapped to ω̃ = 1). Using
Eq. (9) on the moments μ̃±

n of f (H ) results in a spectral
function where the Fermi edge of the hole part is mapped to
ω̃ = −1 and the Fermi edge of the particle part is mapped to
ω̃ = 1. Thus, the resulting function has two jumps. The added

moments μ̃n then decay only algebraically, which requires
many moments to be calculated and which is not well suited
for linear prediction (see below).

The disadvantages are avoided by calculating the Cheby-
shev moments of f (H ) = 1 − exp[−τ (H − E0)]. Then the
spectral function is smooth over the whole expansion interval.
As a result, Eq. (9) can be used to good advantage and the full
spectral function Ã(ω̃) of f (H ) can be obtained via moments
μn = μ+

n + (−1)nμ−
n . It can be mapped back to A(ω) by

plotting τ (1 − ω̃)Ã(ω̃) vs. − ln(1 − ω̃)/τ . We show the initial
results with this improved expansion in Sec. III B 4.

D. Linear prediction

Steps and sharp features of A(ω) will quite generally lead
to ringing artifacts, known as Gibbs oscillations, due to the
necessarily finite expansion order of the moments μn. The
usual remedy [20] is to multiply μn by damping factors gn, i.e.,
μ̂n = μngn, and using μ̂n instead of μn in Eq. (9). Different
damping factors gm are related to different constraints on the
expansion of A(ω) (like causality, smoothness, and so on),
and have been extensively discussed in the literature [20]. A
common choice [20] is Lorentz damping

gL
n (γ ) = sinh

[
γ
(
1 − n

K

)]
sinh(γ )

, (10)

where K is the finite number of Chebyshev polynomials
employed and γ is a parameter.

While removing unwanted Gibbs oscillations to an extent
depending on γ , this damping also leads to a reduction
of spectral resolution. In the following we will present a
different approach to correct Gibbs oscillations by numerically
predicting the decay of the moments μm, using a linear
prediction algorithm [26,27].

Linear prediction is a simple yet powerful tool to predict
the behavior of a time series of equidistant data points. It is
based on the ansatz that a data point xn can be approximated
by a fixed linear combination of the previous L data points:

xn ≈ x̃n ≡ −
L∑

j=1

ajxn−j . (11)

The fixed coefficients {aj } are obtained (“trained”) by mini-
mizing the cost function

F =
T∑

n=L+1

wn|x̃n − xn|2, (12)

using a training window of T known data points. Here, wn

is a weighting function which we choose to be constant.
The minimizing condition ∇a∗F = 0 yields a set of linear
equations, also known as the normal equations:

Ra = −r,

Rij =
T∑

n=L+1

wnx
∗
n−ixn−j , (13)

ri =
T∑

n=L+1

wnx
∗
n−ixn,
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with 1 � i,j � L. The coefficients in a are obtained by
inverting the matrix R, i.e., in vector notation a = R−1r.
For reasons of numerical stability of the algorithm, we use
a pseudo-inverse with a cutoff δ instead of the full inverse of
R. Once the coefficients aj have been found, the data points
at L + k (k > 0) can be predicted as

x̃L+k =
L∑

j=1

[Mk]1 j xL+1−j , (14)

where M is the companion matrix [28]

M =

⎛
⎜⎜⎜⎜⎝

−a1 −a2 −a3 . . . −aL

1 0 0 . . . 0
0 1 0 . . . 0
...

. . .
. . .

. . .
...

0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎠ .

The sequence of predicted data points will diverge if M

has eigenvalues >1. These divergences can arise due to
numerical inaccuracies in the training moments, or when the
spectral function has some weight outside the interval [−1,1].
In the present paper, we renormalize such eigenvalues to
unity by λi → λi/|λi | [28]. Linear prediction is best suited
to reproduce time series (which may contain oscillations)
with an exponentially decaying envelope. It is therefore
advantageous to use the prediction on the added moments
μ = μ+ + (−1)nμ−, which will indeed decay exponentially
when A(ω) has no singularities in the expansion interval [24]
(see above), rather than on μ+ and μ− separately. Similar to
the authors of [27], we subdivided our data as L = T/2, which
we found to give stable and accurate results.

E. Single impurity Anderson model

In general, an impurity model consists of a local interacting
quantum system which is in contact with an infinite bath of
noninteracting degrees of freedom, typically fermionic ones.
In this paper we will focus on the single impurity Anderson
model (SIAM) [21], an archetypal impurity model. It consists
of a single impurity with interaction, immersed in a sea of
noninteracting spin-half fermions, given by the Hamiltonian

H = εf

∑
σ

n0σ + Un0↓n0↑ +
∑
kσ

εknkσ

+
∑
k,σ

Vkc
†
0σ ckσ + H.c. (15)

Here, U denotes the interaction, εk the energy-momentum
dispersion of the bath, nk(0)σ = c

†
k(0)σ ck(0)σ , and Vk is the

hybridization between impurity states with creation operator
c
†
0σ and bath states k with annihilation operator ckσ . The

impurity potential εf contains the chemical potential μ.
The effect of the bath can be fully described by the spectrum

of the hybridization function (ω + iη) = ∑
k

|Vk |2
ω+iη−εk

, with

an imaginary part ̃(ω) ≡ − 1
π

Im[(ω)] = ∑
k |Vk|2δ(ω −

εk).
Equation (15) can be mapped onto a chain geometry by

discretizing this spectrum, and within each subinterval, ex-
panding ckσ in plane waves [29]. In the case of a k-independent

hybridization Vk = V and a flat, particle-hole symmetric
bath-spectral function ρ(ω) = ∑

k δ(ω − εk) = 1/(2D) for
ω ∈ [−D,D], this mapping can be done analytically when
employing a logarithmic discretization En = ±D�−n (note
that the discretization becomes exact only in the limit � →
1) [30]. Using D = 1 (unless stated otherwise), one obtains

H = εf

∑
σ

n0σ + Un0↓n0↑ +
√

ξ0

∑
σ

(c†0σ c1σ + H.c.)

+
∞∑

σ,n=1

tn(c†nσ cn+1σ + H.c.), (16)

where ξ0 = V 2 is the norm of ̃(ω). V determines
the hybridization strength � = πV 2ρ(0) and tn/D = (1 +
�−1)(1 − �−n−1)�−n/2/(2

√
(1 − �−2n−1)(1 − �−2n−3)).

To make it amenable to a numerical treatment, the infinite
chain is cut at finite length N , which is equivalent to a
low-energy cutoff of the bath degrees of freedom. For other
hybridization functions and arbitrary discretizations, one has to
resort to numerical techniques [29] with high-precision arith-
metics for the mapping of the higher-dimensional impurity
problem onto a chain geometry.

The SIAM Hamiltonian in Eq. (16) is the starting point for
various numerical schemes [29,31–36] designed to compute
ground-state properties as well as dynamical properties of
the impurity model, the most famous one being Wilson’s
numerical renormalization group (NRG) [29,37]. One of
the most significant effects of a finite interaction is the
redistribution of spectral weight of the impurity spectral
function into three distinct features, the so-called upper and
lower Hubbard satellites, and a zero-frequency peak, the
Abrikosov-Suhl (or Kondo) resonance. The latter shows an
exponentially decreasing width with increasing interaction,
and determines the low-energy physics of the model. Though
NRG yields highly accurate results for this low-energy part
of the spectrum, the high-energy features of the spectral
function are usually poorly resolved due to the small number
of points used in the logarithmic bath discretization at high
energies. Typical values of the discretization parameter range
from � = 1.5 to 2. Smaller values drastically increase the
computational effort for finding the ground state of the system
since an increasing number of states has to be kept during
the NRG iterations, which eventually becomes impossible to
continue. Also, the central assumption of scale separation of
energies is no longer valid. Using more sophisticated methods,
the resolution at finite frequencies can be improved. In [31,38],
the spectral function was obtained by averaging over many
different discretizations (z averaging [39]) in combination with
using a very narrow broadening of the delta peaks obtained
from NRG. This averaging procedure smoothes out the peaked
structure of each single NRG spectrum.

An advantage of MPS-based methods over NRG is the
possibility to use an arbitrary discretization of the energy mesh
for the bath spectral function, which can be used to increase
the resolution of high-energy features of the spectral function.
In particular, the use of a linear instead of a logarithmic mesh
at high energies helps to resolve high-energy features of the
spectral function.
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Another shortcoming of the NRG is the exponential
increase of computational cost with the number of impurity
orbitals. For an Np-orbital model, every orbital couples to
its own bath of free electrons. In NRG, all local degrees of
freedom have to be treated as a single site, giving a scaling of
N (dNpχ )3, where d is the local Hilbert space dimension of a
single orbital. In contrast, for MPS, a simple unfolding of the
problem can reduce the complexity down to NpN (dχ )3 for
suitable models [40,41]. For the SIAM, one can separate the
two spin degrees of freedom by unfolding the chain of spinful
electrons into two chains of spinless fermions, interacting
which each other at the central sites. All calculations in this
paper have been obtained using such a mapping. Thus, in
all MPS calculations, the actual chain length used in the
simulations was 2N .

F. Dynamical mean-field theory

Dynamical mean field theory (DMFT) [13–16] is a powerful
method for the calculation of properties of strongly correlated
models and materials. The central object of this theory is
the local Green’s function G(ω) of the full model at a given
site. The basic idea of DMFT is to approximate the effect of
the interacting lattice electrons surrounding a given site by
an appropriately chosen bath of free electrons at energies εν

and hybridization of strength Vν with the local site, yielding
a hybridization function (ω+ ≡ ω + iη) = ∑

ν
|Vν |2

ω+−εν
. The

lattice problem is thus mapped onto an impurity problem of
SIAM type.

In the DMFT self-consistency cycle, from the self-energy
�(ω+), the lattice Green’s function G(ω+) is calculated
through the standard Dyson equation of the lattice. Then a non-
interacting impurity Green’s function [G0(ω+)]−1 = �(ω+) +
[G(ω+)]−1 defines a SIAM with hybridization (ω+) = ω+ −
εf − [G0(ω+)]−1. We obtain the Green’s function G(ω+) of
this SIAM by our MPS solver; from G(ω+) a new self-energy
�(ω+) = [G0(ω+)]−1 − [G(ω+)]−1 is calculated. With this
new self-energy the self-consistency cycle is iterated until
convergency.

As for the MPS implementation, let us note that the
impurity Green’s function can be obtained from the Chebyshev
moments [20] through

Gimp(ω+ ≡ ω + iη) = −i√
1 − (ω+)2

×
(

μ0 + 2
∞∑

n=1

μn exp[−in arccos(ω+)]

)
. (17)

In the calculations, the small imaginary shift η acts as a
regularization parameter. It is set to a small nonzero value
(≈ 10−5) to make sure that the spectral density remains
positive even in the presence of small Gibbs-like oscillations
at the band edges.

In the present paper, we consider the Hubbard model on a
Bethe lattice with infinite connectivity, for which the DMFT
gives the exact solution [13,15]. In this special case, the new
SIAM hybridization function can also be calculated directly

from the last iteration’s Green’s function

(ω+) = D2

4
G(ω+), (18)

where D is half the bandwidth of the free lattice model.

III. RESULTS

A. Benchmark: Resonating level model

As a first test for our method, we study the SIAM in the
noninteracting limit (U = 0), also known as the resonating
level model (RLM), which is exactly solvable. We note that
in this case the model is equivalent to a spinless fermion
model. Each spin component can be treated independently, and
unfolding is not necessary. Each component of our method
can therefore be benchmarked separately and the calculated
quantities can be compared to exact results. For U = 0
the Hamiltonian in Eq. (15) contains only quadratic terms,
which makes it diagonal in its single-particle eigenbasis. It is
therefore easy to perform the recursion relation in Eq. (7) for
finite systems of moderate size [N ∼ O(102)] to generate the
exact Chebyshev moments to any order.

Furthermore, for an infinite system, the local Green’s
function and its spectral function A(ω) can be computed
analytically using an equation-of-motion approach [42]. For
a flat density of states of the bath electrons and a constant
hybridization V , the exact result is

A(ω) = − 1

π
Im

(
1

ω − εf + (ω)

)
,

(19)

(ω) = �

(
i + 1

π
ln

(
1 − ω/D

1 + ω/D

))
,

where � = πV 2ρ(0) and 2D is the bandwidth of the bath
spectral function [31,42]. The results for the RLM are obtained
with such a bath, with bandwidth 2D = 2, � = 0.005, and
εf = 0 (particle-hole symmetric point). The moments of this
function can be obtained using numerical integration, and will
be referred to as N = ∞ results.

1. Linear prediction

We start by comparing the moments obtained by linear
prediction with exact moments. In Fig. 1(a), 200 moments to
the left of the solid black line were calculated directly from
Eq. (7), for an N = 100 chain. We used a rescaling of a = 5.
Note that this is implies a rescaled bandwidth D′ = D/a. The
linear prediction algorithm was trained by predicting the 100
moments between the dashed and the solid lines. Subsequently,
we predicted 10 000 moments. We note that the exact high-
order moments for the finite N = 100 chain would contain
drastic finite size effects for an order of n � 2500 and for
a rescaling of a = 5 (essentially from boundary reflections
of the signal generated by applying c†), visible as a sudden
increase in the absolute values of the moments. We also note
that much smaller finite size effects are already present for the
low-order moments due to finite size effects in the ground state.
These become sizable at an order of n � 1000. We therefore
compare the predicted moments to the exact N = ∞ ones.
Figure 1(a) shows that the predicted moments are very close
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FIG. 1. (Color online) (a) Linear prediction using exact Cheby-
shev moments of an N = 100 site RLM chain (circles), compared to
exact N = ∞ moments (crosses). Only even moments are plotted.
The prediction was trained on the 100 moments between the two
vertical bars. For better visibility, only every 20th moment is plotted
at n > 200 (note the logarithmic scale). The inset shows the difference
of the computed/predicted moments at N = 100 from the exact N =
∞ results. (Parameters: � = 1.05, � = 0.005, εf = 0, δ = 10−5). (b)
Spectral function without (dash-dotted blue line, using 200 moments)
and with (solid green line) linear prediction. The dashed black line
shows results obtained with Lorentz damping. The red dots represent
the exact N = ∞ result [Eq. (19)], which is very close to the results
with linear prediction. The difference is shown in the inset.

to the exact ones, demonstrating the ability of the method
to produce accurate results for Chebyshev moments. For the
case εf �= 0 (not shown), where the decay of the moments is
superimposed on oscillations, we get similar accuracy.

Figure 1(b) shows the corresponding spectra. It should be
noted that with increasing expansion order K , i.e, including
more Chebyshev moments, the energy resolution of the KPM
approximation improves like 1/K . Linear prediction vastly
increases the achievable resolution and also removes spurious
oscillations that would result from a hard cutoff of the KPM
approximation. We note that the low-energy bath resolution
using � = 1.05 and N = 100 is approximately �−N/2/a ≈
0.017, which is comparable to the width of the Lorentzian
in Fig. 1(b). However, the N = 100 results for the spectral
function agree very well with the N = ∞ exact results; they

FIG. 2. (Color online) Same as Fig. 1, but with MPS-computed
Chebyshev moments. (MPS matrix dimension χ = 250, rescaling
a = 5, Dmax = 20, Esweep = 5) Lower inset in (a) truncated weight of
the first 200 MPS-computed moments.

do not show any broadening on the scale of the bath energy
resolution with respect to the exact results.

2. MPS-computed moments

We now turn to the MPS computation of the Chebyshev
moments [19]. The RLM is a nontrivial problem to MPS
algorithms, even though it is exactly solvable, because of
nontrivial entanglement between the orbitals of the chain (see
the Appendix). Finite entanglement gives rise to compression
errors at finite matrix dimension, and also to energy truncation
errors (Sec. II B). These errors can be estimated at each step
in the iterative procedure, but to evaluate the overall error,
including the effect of error cancellation, one needs the exact
Chebyshev moments to compare with. Figure 2(a) shows a
comparison of the MPS-computed moments with the exact
ones (N = ∞). The upper inset shows the difference between
the exact and MPS-computed moments and the growth of the
truncated weight, respectively. For the noninteracting RLM,
the MPS method does in fact yield quasi-exact results. The
lower inset shows the truncated weight for the first 200
moments.

We then predicted 10 000 moments from the first 200 MPS-
computed moments, and compare the resulting spectrum to
the exact result given by Eq. (19), as shown in Fig. 2(b).
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Like in Fig. 1(b), with the training moments alone it is not
possible to properly resolve the sharp resonance at the Fermi
energy. The results are on top of each other, demonstrating
that linear prediction based on the MPS-calculation of 200
moments essentially gives exact results for the RLM.

B. Single impurity Anderson model

We now turn to the case of finite interaction strength U > 0,
which renders the solution of Eq. (15) a highly nontrivial
task. This situation is interesting both from a physical point
of view and as a numerically demanding benchmark for our
method. The calculations in this section are performed for
a semicircular bath density of states (DOS) with bandwidth
2D ≡ 2, � = 0.5, and εf = −U/2 (particle-hole symmetric
point) in the regime U � D. As a consequence of the large
U , there is no conduction electron bath at the energy scale of
the Hubbard bands, which results in extremely sharp Hubbard
bands. A linear energy discretization corresponding to N =
120 sites [29] is used in the calculations throughout this section
to properly resolve all the spectral features. For prediction, we
used a cutoff δ = 10−6.

Additional benchmark calculations which focus on the
more standard situation of a flat and wide (D > U ) DOS
and employ a logarithmic discretization can be found in the
Appendix.

1. MPS-computed moments

In Fig. 3 we plot the Chebyshev moments μn as obtained
from MPS calculations for different values of the interaction
strength U/� = 2,4,6,8. For small U/� � 4, the moments
decay to zero quickly, which indicates a rather featureless
spectral function. In such cases, the moments obtained from
the MPS calculations already produce good resolution. For
U/� > 4, on the other hand, there is a slower decay,
related to the emergence of sharp features in the spectral
function [36] (see below); hence the linear prediction can
significantly improve the energy resolution for the impurity
spectral function. For large values of U/�, the ground state

FIG. 3. (Color online) MPS-computed Chebyshev moments of
the SIAM for U/� = 2,4,6,8. At large U/�, the moments show
a much slower decay to zero. (Other parameters: a = 12, χ = 200,
Dmax = 25, Esweeps = 5.)

of the system exhibits strong spin fluctuations along the chain,
resulting in a strong growth of the site entanglement (see
Appendix). In contrast to the noninteracting limit and to the
model studied in [19], for the SIAM this entanglement can
give rise to serious truncation errors.

2. Linear prediction

While the training moments obtained from the MPS
calculation of the noninteracting RLM in Sec. III A were
almost exact, the rapid growth of the truncation errors in the
interacting case makes the accurate calculation of high-order
moments more difficult and the linear prediction even more
important. One also needs to consider the effect of truncation
errors on the moments within the training window of the
linear prediction. That is, the information gained by adding an
additional training moment is offset eventually by its numerical
error which is passed to the linear prediction. When the

FIG. 4. (Color online) (a) Linear prediction using MPS-
computed Chebyshev moments for the SIAM at U/� = 8, � = 0.5.
Moments to the left of the black dashed line were taken as input data;
moments between the dashed and the solid line were used as training
data for the linear prediction algorithm. Only the even moments are
plotted. (b) The spectral function (blue line) corresponding to 16 400
linearly predicted moments generated from all 400 MPS-computed
moments shown in (a). This is compared to a Lorentz dampened
spectrum using γ = 3.5 and the 400 MPS moments (red dashed
line). Inset: Magnified region at small frequencies. (Other parameters
as in Fig. 3).
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truncation errors are small, a large training window can be
employed with an excellent result. In Fig. 4(a), we compare
MPS-computed Chebyshev moments (blue line) with the ones
obtained by linear prediction (red circles), where we used
the first 200 moments (black solid line) to train prediction.
Figure 4(b) then shows the spectral function obtained with
linear prediction trained on all 400 moments. For comparison,
we show the spectrum obtained by using Lorentz damping
Eq. (10) on the original 400 MPS-computed moments, with
damping parameter γ = 3.5 just high enough to remove
oscillations. The figure clearly demonstrates the increase in
spectral resolution achieved by linear prediction.

3. Comparison to correction vector method

The correction vector (CV) method [5] and its variational
formulation, the DDMRG [6], are considered the methods of
choice for high-precision calculations of dynamical spectral
functions of 1D quantum systems. Their results are assumed
to be quasi-exact in many cases. The drawbacks of CV
(DDMRG) are the need for a separate expensive calculation
to be done at each frequency ω and an ill-condition matrix
inversion which has to be regularized by a finite (large)
broadening of the spectral function, after which sharp spectral
features need to be extracted by a deconvolution procedure. As
a proof of principle, we benchmark our method against results
of the CV (DDMRG) [36] in Fig. 5, for U/� ∈ {2,4,6,8}. The
results at U/� = 8 are the same as in Fig. 4(b).

We observe the development of sharp side peaks (Hubbard
satellites) upon increasing U/�. The inset of Fig. 5 shows a
zoom onto the zero-frequency region, where with increasing
U a narrowing of the zero-frequency peak at U/� = 2 into
a sharp (Kondo) resonance is observed. The agreement with
the CV (DDMRG) data [36] for U/� = 2,4 is excellent. For
larger U/� = 6,8, we observe deviations in the heights of (i)

FIG. 5. (Color online) Impurity spectral function of the SIAM for
different values of the interaction U , � = 0.5. Solid lines: Spectral
function with 400 MPS-computed moments and 16 400 further
moments from the linear prediction. Symbols: DDMRG results [36]
for comparison. Inset: Magnified region at small frequencies. The
vertical order of lines in the inset is the same as in the key. (Other
parameters as in Fig. 3).

FIG. 6. (Color online) Same as Fig. 5, but using a Chebyshev
expansion of 1 − exp[−τ (H − E0)] instead of H , with a first-
order Suzuki-Trotter decoupling (τ = 0.01,χ = 300). We used 1000
(U/� = 2,4), 1200 (U/� = 6), and 1500 (U/� = 8) moments to
train the linear prediction (δ = 10−6), and predicted 20 000 (U/� =
2), 80 000 (U/� = 4,6), and 120 000 (U/� = 8) further moments
(large number because of small τ ).

the Hubbard peaks and of (ii) the Kondo resonance. For the last
of these, the pinning criterion �πA(0) = 1 [30] is satisfied to
a higher accuracy using the Chebyshev expansion with linear
prediction than using a maximum entropy deconvolution of the
CV raw data. Since the Hubbard satellites are so sharp in this
parameter regime, their precise height converges rather slowly
with the number of training moments. Also, for U/� = 8, the
height of the Hubbard satellites is still very sensitive when
doubling the system size from N = 60 to N = 120. We can
thus not make any definite statement if the height is converged.

4. Expansion of 1 − e-τ H

From the previous discussion, the drawback of the energy
truncation scheme [19] is the introduction of a systematic
error which depends quite strongly on the choice of auxiliary
parameters a,Dmax and Esweeps. In this section, we present first
results for the alternate scheme introduced in Sec. II C which
employs the expansion of 1 − e−τ (H−E0). In Fig. 6 we compare
results for τ = 0.01 and a first-order Trotter expansion of
exp[−τ (H − E0)] against the same DDMRG data as in Fig. 5.
The results are virtually indistinguishable from those of Fig. 5
(except for a very slight difference in the height of the Hubbard
peaks), thus validating our new approach. The computational
time for such a spectrum was about a factor of 10 higher
than for the simple approach presented above. However, when
a second-order Trotter decomposition is employed, τ can
be increased substantially, and the required numerical effort
should become comparable to that of the energy truncation
scheme.

C. Dynamical mean-field theory

The DMFT maps the Hubbard model on the Bethe lattice
onto an iterative solution of the SIAM, with a hybridization
function determined by the impurity Greens function obtained
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FIG. 7. (Color online) Local spectral function of the Hubbard
model on the Bethe lattice for different interactions U . With
increasing U , the formation of Hubbard satellites can be observed.
Close to the transition, additional peaks develop at the inner edges
of the Hubbard bands. (Parameters: Upper panel: D = 1.00, a = 18,
Dmax = 5, Esweeps = 1, χ = 250, δ = 10−6, 400 moments calculated;
Middle panel: D = 0.25, a = 12, Dmax = 10, Esweeps = 2, χ = 200,
δ = 10−6, 600 moments calculated; Lower panel: D = 0.25, a = 6,
Dmax = 5, Esweeps = 1, χ = 280, δ = 10−6, 700 moments calculated.

from the previous iteration, as shown in Eq. (18). The DMFT
scheme provides the exact solution to this model with an
infinite number of neighbors once self-consistency has been
reached. Note that for obtaining an accurate DMFT spectrum,
additional care is required: The length of the bath chain N

needs to be large enough to avoid finite size artifacts and to
resolve sharp features that are of physical origin.

In Fig. 7, we show the initial results. They were obtained
with a linear discretization of the bath DOS with N = 120 sites
We see a narrowing of the quasiparticle peak at ω = 0 with
increasing interaction, and the formation of Hubbard satellites
at ω ≈ ±U/2 [15,31,38,43–45]. For U/D = 2.5, an additional
peak in the Hubbard band can be clearly identified. In previous
NRG [46] studies, this peak could not be resolved. Our
results are compatible with studies using improved resolution
NRG [31] and DDMRG [43] in which such a peak has been
seen, albeit with conflicting results regarding its sharpness.

IV. CONCLUSION

We proposed two extensions of a recently developed MPS-
based method for expanding spectral functions in Chebyshev
polynomials [19]. We used the linear prediction algorithm to
extrapolate moments up to high orders, which significantly
improved the achievable resolution at practically no computa-
tional cost. This is especially interesting in systems where
strong growth of site-entanglement (bipartite entanglement
entropy) prevents one from iterating the recursion to high
orders due to increasing truncation effects. We benchmarked
the method with the exactly solvable resonating level model,
where we obtained highly accurate results. We also inves-
tigated the single impurity Anderson model and obtained
results which compare very well with spectra obtained from
the correction vector method (CV, DDMRG) [36,47], at
significantly reduced computational cost [19]. We further
applied the method as a high-resolution impurity solver within
dynamical mean-field theory [15]. The particular advantages
are that (i) the method works at zero temperature and on the
real frequency axis, (ii) it works for an arbitrary discretization
grid of the bath density of states (different from NRG), which
allows for good energy resolution at all frequencies, and
(iii) it is applicable to any 1D model with short-range interac-
tion. The results confirmed the existence of pronounced peaks
at the inner edges of the Hubbard bands in the metallic phase of
the Hubbard model. To overcome the shortcomings of energy
truncation of the Chebyshev MPS method ([19], we proposed
a modified rescaling scheme which employs a Chebyshev
expansion of 1 − exp[−τ (H − E0)], for which the energy
truncation step [19] can be completely omitted, at a comparable
spectral resolution. The implementation of the scheme is very
similar to standard time evolution algorithms [7–10].

Both methods are promising candidates for high resolution,
low-T impurity solvers for DMFT. Whereas in NRG more
than two orbitals become computationally too demanding,
extensions to multi-orbital systems and finite temperatures are
within reach of our approach.
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FIG. 8. (Color online) Spectral function of the SIAM for U/� =
2,6,10,14 in the wide band regime (� = 0.05,D = 1). In the central
region, one observes a successive narrowing of the zero-frequency
peak which results in the Kondo resonance. The outer Hubbard
satellites with peak position at ≈ U/2 are also clearly visible. The
inset shows a zoom onto the zero frequency region. (MPS parameters:
χ = 180,a = 5,Dmax = 30, Esweeps = 5).

APPENDIX A: Wide rectangular bath DOS

Here we examine the case of a wide band (U � D) and
focus on the low-energy scale associated with the Kondo
resonance. A logarithmic discretization mesh xn = �−n (� =
1.05), with a chain size of N = 100 is used to resolve the
sharp resonance (see also the discussion of energy resolution
at the end of Sec. III A 1). The results are obtained for a flat
conduction band

ρ(ω) =
{

1/(2D), ω ∈ [−D,D],
0 else, (A1)

with bandwidth 2D = 2, εf = −U/2 (particle-hole symmet-
ric point), and a hybridization strength � = 0.05.

Figure 8 shows impurity spectral functions for U/� =
2,6,10,14. With increasing U , one observes a narrowing of
the central conduction peak, accompanied by the formation of
Hubbard satellites at ω ≈ U/2. Note the different parameter
regime as compared to Fig. 5, where the Hubbard satellites
lie well outside the bandwidth of the bath. Now, in the wide
bandwidth regime U � D, the Hubbard satellites are much
broader. The inset shows a zoom onto the low-frequency re-
gion. Besides the narrowing of the Abrikosov-Suhl resonance,
we observe that with increasing U , the pinning criterion is
no longer obeyed. This is not unexpected since the lifetime
of the quasiparticle scales inversely with the resonance width,
leading to an exponential increase in the Chebychev expansion
order needed to resolve this resonance. Using linear prediction
increases the achievable resolution, but the results of course
also depend on the size of the training set as well as the
accuracy of the data. If the set is too small, so that signatures of
the resonance are not strong enough to be picked up properly
by prediction, it is not fully resolved by the method. Indeed,
the height at ω = 0 is sensitive to parameters like the size of
the training window and the cutoff δ for inversion. In some
cases, it can vary by 20–30%. The exact form of the resonance
also depends on the discretization of the band around ω = 0.
If the discretization is too crude, we observe in general an
underestimation of the height of the resonance.

The Hubbard peaks, on the other hand, are not sensitive
at all. Importantly, while the precise height at ω = 0 can be
sensitive to the parameters of the calculation, we observe that
the weight of the resonance, i.e., the integral over the resonance
peak, is very stable.

APPENDIX B: Entanglement and truncated weight growth

Time scales for MPS simulations are usually limited by
the growth of site entanglement between the separate parts
of the quantum system. One (nonunique) way of quantifying

FIG. 9. (Color online) Bipartite entanglement at different bonds (x axis) of the state |tn 〉 (n on y axis) obtained during calculation of the
Chebyshev moments for the up-spin, particle branch of the impurity spectral function of the SIAM (i.e., |t0 〉 = c

†
↑ |�0 〉). The impurity is

located at bond 120, with up-spins to the left and down-spins to the right. Left panel: RLM (U = 0). Right panel: SIAM for U = 0.5. (In both
plots, � = 0.05, a = 6, N = 120, χ = 300, Dmax = 5, Esweeps = 1.)
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site entanglement is the bipartite entanglement entropy SvN =
−trB (ρB logρB) [48], with ρB = trAρAB . ρAB is the full density
matrix of a bipartite quantum system A,B, and trA denotes the
partial trace over all degrees of freedom in part A of the system.
Using MPS with a maximum bond dimension amounts to
essentially introducing an upper bound ∼ log χmax to SvN . The
error of this approximation can be quantified by the truncated
weight

εtw = 1 −
χ∑

i=1

λ2
i , (B1)

where λi denotes the Schmidt-coefficients [49] belonging to
the bipartition A : B (i.e., λ2

i are the simultaneous eigenvalues
of ρA and ρB), and χ is the matrix dimension of the MPS
matrices. In our simulations we observed a strong increase of
truncated weight which limits the number of computable mo-
ments. In Fig. 9, we plot the entanglement entropy for the
states |tn 〉 obtained during the Chebyshev expansion of the
positive up-spin part of the spectral function of the SIAM (i.e.,
|t0 〉 = c

†
↑ |�0 〉). The left panel shows results for U = 0,� =

0.05 and a semicircular bath DOS with D = 1, discretized
into N= 120 sites (impurity included). Due to the unfolding,
the left side of the plot represents the up spins and the right
side the down spins. The added up-spin particle thus travels
along the chain and locally increases entanglement around
its position. However, after the particle has passed a certain
bond, entropy again decreases. Importantly, the signal travels
only in the up-spin branch due to the missing entanglement
between up and down spins in the initial ground state |�0 〉.
The truncated weight for this simulation never exceeds 1e–6.

The right panel in Fig. 9 shows the same plot for finite
U = 0.5. Again, we observe a propagating signal, but this time
it spreads in both directions, e.g., in the up- and down-spin
channel. Furthermore, after the passage of the signal at
a certain bond, the entropy increases and remains at this
higher value. Both effects are due to the presence of strong
correlations in the initial state. Oscillations on top of the signal
are due to the change in norm of |tn 〉 during the simulation.
For n > 300 the truncated weight already exceeds a value of
1e–3, and only results for n < 300 should be considered as
reliable in this simulation.
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[22] R. N. Silver and H. Röder, Int. J. Mod. Phys. C 05, 735 (1994).
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