
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 129.27.161.140

This content was downloaded on 03/11/2015 at 13:57

Please note that terms and conditions apply.

Time evolution within a comoving window: scaling of signal fronts and magnetization plateaus

after a local quench in quantum spin chains

View the table of contents for this issue, or go to the journal homepage for more

2015 J. Phys.: Condens. Matter 27 425602

(http://iopscience.iop.org/0953-8984/27/42/425602)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/27/42
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1 © 2015 IOP Publishing Ltd Printed in the UK

1. Introduction

Signal propagation in one-dimensional (1D) strongly inter-
acting quantum lattice systems has been of longstanding 

general interest in both condensed matter and quantum-
computational physics, where it provides a basis for coherent 
information transfer via quantum wires. A signal can be cre-
ated, e.g. as a local excitation from a stationary state, or as 
a domain wall or a topological excitation [1, 2]. Often hard 
to pursue by analytical methods, many studies have become 
feasible in 1D due to matrix product state (MPS) [3–5] based 
numerical methods [6–8]. Thus, the non-equilibrium time 
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Abstract
We present a modification of Matrix Product State time evolution to simulate the propagation of 
signal fronts on infinite one-dimensional systems. We restrict the calculation to a window moving 
along with a signal, which by the Lieb–Robinson bound is contained within a light cone. Signal 
fronts can be studied unperturbed and with high precision for much longer times than on finite 
systems. Entanglement inside the window is naturally small, greatly lowering computational effort. 
We investigate the time evolution of the transverse field Ising (TFI) model and of the S  =  1/2 XXZ 
antiferromagnet in their symmetry broken phases after several different local quantum quenches.

In both models, we observe distinct magnetisation plateaus at the signal front for very large 
times, resembling those previously observed for the particle density of tight binding (TB) fermions. 
We show that the normalised difference to the magnetisation of the ground state exhibits similar 
scaling behaviour as the density of TB fermions. In the XXZ model there is an additional internal 
structure of the signal front due to pairing, and wider plateaus with tight binding scaling exponents 
for the normalised excess magnetisation. We also observe parameter dependent interaction effects 
between individual plateaus, resulting in a slight spatial compression of the plateau widths.

In the TFI model, we additionally find that for an initial Jordan–Wigner domain wall 
state, the complete time evolution of the normalised excess longitudinal magnetisation agrees 
exactly with the particle density of TB fermions.

Keywords: strongly correlated systems, quantum quenches, tensor network states, unitary time 
evolution, particle propagation, integrable systems
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evolution of such signals after global [9–23] and local [24–43] 
quantum quenches has been the subject of intense theoretical 
interest in recent years. In particular for tight binding (TB) 
fermions initially in a domain wall (DW) state, intriguing pla-
teaus in the fermion density have been found to develop at 
large times with well-defined scaling behaviour [41–43] and 
have only been fully understood recently [44].

If an initial state for such a study is prepared within a finite 
system, boundary effects such as Friedel oscillations interfere 
with a passing signal. System boundaries also limit the time 
span for signal tracing before non-trivial reflections occur at 
the boundaries. The maximum time is even more severely 
restricted by entanglement which develops across the system 
and which requires a computational effort that can drasti-
cally increase with time [45, 46]. This has greatly hampered 
the analysis of large time asymptotic behaviour [19, 28, 34]. 
Boundary effects do not appear in infinite systems, for which 
the ground state and its time evolution can be efficiently calcu-
lated with MPS methods [6, 47–49]. However, these methods 
require complete translation invariance and can therefore not 
be applied to studying signal propagation.

In this paper we present a simple method to simulate the 
propagation of local signals on an infinite chain using MPS 
time evolution, without any finite size effects distorting the 
signal front. For related approaches to boundary effects, see 
[50–52]5. We study the time evolution of the transverse field 
Ising (TFI) model and of the spin-1/2 XXZ chain after local 
quantum quenches up to large times, which were not acces-
sible before using conventional MPS techniques. In both 
models we observe distinct magnetisation plateaus developing 
over time close to the signal front similar to the case of TB fer-
mions [41, 42, 44], and which also exhibit similar asymptotic 
scaling. Surprisingly we find an exact agreement at all times 
and positions between the magnetisation in the TFI model and 
the density of TB fermions for a particular type of signal. For 
the XXZ chain we observe interaction effects between indi-
vidual plateaus, which can be tuned via the model parameters.

For our method we consider a spin chain of infinite size 
with nearest neighbour interactions, initially prepared in a state, 
such as the ground state, which is translation invariant for sites 
n  >  n0 to the right of some site n0. At time zero, the system is 
excited by a quantum quench like one or more spin flips at sites 

⩽n n0 or a modification of the Hamiltonian at ⩽n n0. For local 
interactions it is known from the Lieb–Robinson bound [53, 54] 
that wave fronts generated by such quenches can at most propa-
gate with a characteristic maximum velocity vmax, i.e. within a 
‘light cone’ even in a non-relativistic system, as recently also 
seen experimentally [1]. Any correlations beyond the light cone 
are exponentially suppressed. In the following we will consider 
right moving signals for the sake of concreteness.

2. Method

Our approach is to introduce a division of the system into 
three parts, namely a comoving window (CMW), which moves 

towards the right with the wave front, and two half-infinite parts, 
a uniform one in front (i.e. to the right) of the window, and an 
arbitrary one to the rear. The window is chosen wide enough to 
contain the complete signal front, including the exponentially 
damped part to the right of the main front, to high precision. The 
signal therefore does not affect the uniform system to the right 
of the window. Likewise, when the window moves with vmax, 
modifications in the rear part do not affect the CMW and need 
not be calculated. The method is therefore fit for studying fronts 
of propagating signals, in particular those generated by local 
quenches. Since bipartite entanglement [14, 26, 55, 56] spreads 
at most with vmax, the bipartite entanglement entropy is signifi-
cantly lower around the wave front than in the bulk, allowing for 
reduced computational effort when using the CMW.

We mark the left and right boundary of the CMW with 
indices ℓ and r, respectively, and divide the system into left 
part ⩽ ℓj , CMW ℓ ⩽ ⩽+ j r1 , and right part ⩾ +j r 1. The 

Hamiltonian ˆ ˆ= ∑ +H hj j j, 1 subdivides correspondingly into

H H h H h H .r rL , 1 M , 1 Rˆ ˆ ˆ ˆ ˆ ˆℓ ℓ= + + + ++ + (1)

Low energy states of the overall system are well approximated 
by Matrix Product States (MPS) [4, 5] and we write the wave 
function as an MPS in the so-called mixed canonical form as

({ })    
ℓ ℓ ℓψ λ= … … … …− + + + +s L L A A B B R R ,j

s s s s k s s s sk k r r r1 1 1 1 2

 (2)

where sj labels the spins, ⩽ℓLsj  are left-orthogonal matrices 

( L Ls
s sj j 1†

ℓ
∑ = ) defined on the left part, ⩽+Rsr j1  are right-orthog-

onal matrices 1( )†∑ =R Rs
s s

j

j j  defined on the right part, ℓ ⩽ ⩽+As j r1  

and ℓ ⩽ ⩽+Bs j r1  are left- and right-orthogonal matrices, respectively, 
defined inside the CMW, and ℓ⩽ ⩽λ k r are diagonal matrices con-
taining the Schmidt values of a bipartition at bond (k, k  +  1). For a 
finite system, the left and right ends of (2) are terminated by con-
tractions with boundary vectors; we however consider the infinite 
size limit. For a graphical representation of this MPS see figure 1.

The matrices Rsj describe the uniform half-infinite system 
in the front and are therefore constrained to be transla-
tion invariant. We use a 2-site unit cell, i.e. =+R Rs sj j2 . The 
matrices Asj and Bsj describe the CMW and are site dependent. 
For the matrices Lsj, which describe the left part, we impose 
no uniformity restrictions. They represent initial conditions 
for the left boundary of the CMW and remain unchanged 
throughout the simulation. Additional matrices are added to 
this collection of Lsj whenever the CMW is moved.

Let us consider one step of unitary time evolution for the 
entire system. Inside the CMW, between sites ℓ+ 1 and r, we 
employ the time-dependent Density Matrix Renormalisation 
Group (tDMRG [8]), using a second-order even–odd 
Suzuki–Trotter decomposition [57] with local operators 

u ej j
h

, 1
i j j, 1ˆ ( ) ˆτ = τ

+
− +  and small time steps τ.

In order to connect time evolution inside and outside the 
CMW we introduce two different approaches, which we 
now sketch for the case of the right (front) and the left (rear) 
boundary, respectively. Details can be found in appendix A.

In Method I (Uniform Update), applied to the right 
boundary, the matrices Rsj of the right part are first updated 
by infinite system time evolving block decimation (iTEBD 

5 The original preprints of [50–52] (arXiv:1207.0652, 1207.0678, 1207.0691) 
and of the present work (arXiv:1207.0862) appeared at the same time.
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[47]). We then evolve the junction bond (r, r  +  1) by applying 
ˆ +ur r, 1 and we exploit the right-orthogonality of +Rsr 1 to update 
Bsr and to ensure the gauge consistency of the MPS matrices 
around the junction bond.

For Method II (Renormalised Update), applied to the left 
boundary, we adapt the algorithm of Cazalilla and Marston 
[58] (Method II is similar to the algorithm introduced in 
[50, 51]6,) and construct a renormalised representation for 

ℓ ℓ+ +H hL , 1 to approximate the evolution of the left part and 
the left junction bond (ℓ ℓ )+, 1 , such that all changes in the 
left part are compressed into the boundary matrix ℓ+As 1, and 
the matrices ⩽ℓLsj  remain unchanged.

The Uniform Update has some immediate advantages. It is 
easier to implement and it is also applicable in case of a time-
dependent HR. It does, however, require translation invari-
ance of the right part. The Renormalised Update does not 
preserve the structure of the Suzuki–Trotter decomposition at 
the boundary and therefore continually introduces small per-
turbations there. In appendix D we compare both methods to 
analytical results and to a reference simulation on a very large 
stationary lattice and show that both methods work well. As 
errors in our new Uniform Update, when applied to the right 
boundary, are only of order ( )−O 10 8  and thus smaller by sev-
eral orders of magnitude than for the renormalised update, we 
use the uniform update for the right boundary.

For the left boundary, the simplest approach is to discon-
nect the left part by setting h 0, 1

ˆℓ ℓ =+ , which already works 
quite well (see appendix D) when the window moves with 
vmax, as then any perturbations are confined to the neighbour-
hood of the rear boundary. Since the perturbations there are, 
however, smallest with the Renormalised Update, we use this 
method for the left boundary in the present paper For further 
details on the boundary updates and how to move the CMW 
along with a propagating signal see appendix A.

3. Results

3.1. Transverse field Ising (TFI) model

The spin-1/2 TFI model [9–18, 24–27] on an infinite chain 
defined by

ˆ ˆ ˆ ˆ∑ ∑= − −+H S S h S
n

n
x

n
x

n
n
z

1 (3)

can be solved exactly [59, 60] (see also appendix B), and 
the time evolution of local observables can in principle be 

calculated [10, 11]. For the longitudinal magnetisation Sx(n, t)  
(order parameter), analytical calculations are, however, dif-
ficult and some results have become available in the litera-
ture only recently [10, 12], but to our knowledge not for local 
quenches on infinite systems. In the ferromagnetic phase 
h  <  hc  =  0.5 the ground state is twofold degenerate and there 
is long-range order in Sx.

We prepare the system in the maximally symmetry broken 

ground state ⟩|⇓  (appendix A.1) with ⟨ ˆ ⟩= <S S: 0x
n
x

GS  using 
iDMRG [6, 48] and study the time evolution of several initial 
states excited from ⟩|⇓ . In figure 2 we show the results for a 
Jordan–Wigner (JW) excitation

( ) ⟩ ( ˆ )( ˆ ) ⟩† ∏+ |⇓ = − |⇓
<

c c S S2 2n n
n n

n
z

n
x

0 0

0

0 (4)

on site n0 inside the window, where †c c,  are JW fermion 
operators (see [61] and appendix B). This corresponds to a 
spin flip in the z-direction at site n0 and a domain wall in the 
x-direction between sites n0  −  1 and n0. Window movement 
is triggered by bipartite entanglement entropy, resulting in 
window velocities consistent with exact maximum velocities 
(appendix B). We use a second order Suzuki–Trotter decom-
position with a step size of τ = 0.002 and maximum matrix 
dimension =m 120max  during time evolution. The time evo-
lution inside the CMW (figure 2) shows that boundary effects 
are indeed removed at both ends of the CMW. In appendix D 
we show that results inside the CMW are unperturbed to very 
high accuracy (about 10−8) at all times.

When the window is not moved (figure 2, inset), the signal 
is absorbed by both boundaries temporarily, but reflections 
emerge eventually with both methods. This remains true 
also for additional models studied in appendix F, in all cases.  
We also investigate a pure domain wall (DW) excitation 

( ˆ ) ⟩∏ |⇓< S2n n n
z

0
 between sites n0  −  1 and n0 and a spin flip in 

the x-direction (FlipX) ( ˆ ) ⟩|⇓S2 n
z

0
 at site n0.

3.1.1. Step structure. Despite different global shapes (see 
appendix E) for the different excitations, we find that a step 
structure always develops in Sx(n, t) at the signal front at large 
times (figure 3), similar to the time evolution from an initial 
DW state for TB fermions [41, 42, 44]. The step structure 
takes much longer to develop for FlipX and DW excitations 
than for the JW case. The transverse magnetisation Sz(n, t) 
does not show such a step structure.

The step structure is expected to be related to the ballistic 
nature of propagation at the signal front [36, 37, 44], like 
for TB fermions, where the steps are now fully understood 

Figure 1. Graphical representation of the MPS describing the overall system state, which is divided into the comoving window (CMW), 
left and right part.

6 see footnote 5
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as individual propagating particles [44]. For the TFI model, 
in different quench scenarios where two initially separate 
chains are joined, the beginnings of steps were previously 
visible in the results of [27], but were not investigated fur-
ther. We are not aware of other occurrences for the symmetry 
broken phase. In the paramagnetic phase at large 2h  =  10, 
TB-like scaling was observed in [25] for the transverse mag-
netisation Sz(n, t) after joining two initially separate chains 
at different temperatures. No steps occurred for the longi-
tudinal magnetisation. Due to their quantum origin these 

steps appear not to be accessible [44, 62] by semi-classical 
approaches such as in [13].

We find that the proper quantity to analyse our results is the 
normalised excess longitudinal magnetisation

( ) [ ( ) ]  ≡ − | |M n t S n t S S, , / 2 .x x x
GS GS (5)

Figure 3 shows that at large times this quantity indeed 
obeys the same scaling behaviour as the particle density of 
TB fermions [44] at the signal front. For the DW and FlipX 
cases, there is an additional proportionality factor ≠C 1. The 

Figure 2. Time evolution of magnetisations Sx(n, t) and Sz(n, t) in the TFI model at h  =  0.45 after a JW excitation. We show times only up 
to t  =  500 in order to keep the structures resolvable to the eye, while the simulations were performed up to t  =  1000. Inset: Time evolution 
of Sx(n, t) without window movement, showing eventual reflections.

Figure 3. Scaled normalised excess magnetisation M y t C M y t vt, , /2˜ ( ) ( ) ( )= × × α (left axis) and scaled bipartite entanglement entropy 
S y t C S y t vt, , /2ent ent˜ ( ) ( ) ( )= × × α (bottom only, right axis) versus scaled position ( ) ( )= − − × −y n n vt vt /20

1/3 at the signal front for the 
TFI model at different h for various signal types (the arrows point towards the respective relevant axes), where v is the signal velocity and 
n0 is the site of the initial perturbation. The values of α and C are given in the inset. G y y y yAi Ai2 2( ) [ ( )] ( )= −′  and H(y) are the density 
and entropy scaling functions for TB fermions [44]. The lines are successively offset by 0.25 in the vertical direction.

J. Phys.: Condens. Matter 27 (2015) 425602
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asymptotic scaling function G(y) for TB fermions [44] is 
approached from different directions for different excitations. 
For DW and FlipX excitations, the exponent α with the best 
data collapse depends on h, whereas for the JW case it is inde-
pendent of h.

3.1.2. Exact identity. In fact, for the JW excitation we find 
a surprisingly much closer identity with TB fermions: the 

complete time evolution of the normalised excess longitudinal 
magnetisation obeys

( ) ( )=M n t N n vt, ,TB (6)

where v  =  h is the TFI signal velocity (appendix B.2) and 
( )N n vt,TB  is the particle density of TB fermions at time vt after 

a DW excitation (steplike initial density as in [44]). We find 
this identity to hold up to the numerical precision of our data 

Figure 4. Time evolution of bipartite entanglement entropy ( )S n t,ent  and staggered magnetisation ˜ ( )S n t,z  in the XXZ antiferromagnet at 
∆ = −4 after a JW excitation. We show times up to t  =  200 in order to keep the structures resolvable to the eye, while the simulations were 
performed up to t  =  1000. Inset: Magnification of the signal front at t  =  200 showing an internal step structure due to pairing.

Figure 5. Scaled staggered normalised excess magnetisation ˜ ( ) ( ) ( )= × ×M y t C M y t vt, , /2 1/3 (left axis) and scaled bipartite entanglement 
entropy ˜ ( ) ( ) ( )= × ×S y t C S y t vt, , /2ent ent

0.25 (bottom only, right axis) versus scaled position ( ) ( )= − − × −y a n n vt vt /20
1/3 at the signal 

front for the XXZ model at different ∆ for various signal types (the arrows point towards the respective relevant axes), where v is the signal 
velocity and n0 is the site of the initial perturbation. The values of a and C are given in the centre inset. G( y) and H( y) are the same scaling 
functions as in figure 3. The lines are successively offset by 0.25 in the vertical direction. Left Inset: Horizontal scaling parameter a as a 
function of ∆ for JW excitations.

J. Phys.: Condens. Matter 27 (2015) 425602
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for all sites n and times t for <h hc, i.e. in the ferromagnetic 
phase, but for the longitudinal magnetisation only.

The steps in ( )N n t,TB  have been shown to correspond to 
individual propagating particles [42, 44] and we note that in 
the case of the TFI model a similar interpretation in terms 
of individual quasi-particles can only be given to the scaled 
excess longitudinal magnetisation M(n, t) after a JW excita-
tion in the ferromagnetic phase. Due to the twofold degen-
eracy of the ground state in this phase the application of a 
local perturbation in the fermion picture generates a topologi-
cally non-trivial excitation by creating a domain wall (plus 
spin flip) in the spin picture, which then decays like a domain 
wall of TB fermions with time scale vt. In the paramagnetic 
phase the same excitation would create a local excitation also 
in the spin picture, i.e. no domain wall.

Other observables, however, are different between the 
TFI model and TB fermions. The transverse magnetisation 
⟨ ˆ ⟩S

z
 is finite in the TFI model (see appendix B) while the 

corresponding quantity ⟨ ⟩†+c c  vanishes for TB fermions. 
The bipartite entanglement ( )S n t,ent  in the TFI model also 
develops a step structure, but it is at all times smaller than 
for TB fermions (see appendix E) and it exhibits different 
scaling behaviour (see figure 3). This fact only becomes fully 
apparent at large enough times, which our approach can pro-
vide. It would be interesting if the above identity between 
TB fermions and the TFI model could be understood in more 
detail analytically.

3.2. XXZ model

Inspired by the above observations in the TFI model in the 
symmetry broken ferromagnetic phase, we also investigate the 
XXZ antiferromagnet [19–23, 28–38, 39],

ˆ ( ˆ ˆ ˆ ˆ ˆ ˆ )∑= − + +∆+ + +H S S S S S S ,
n

n
x

n
x

n
y

n
y

n
z

n
z

1 1 1 (7)

in the gapped symmetry broken phase for several ∆<−1, 
where the ground state is also twofold degenerate. We prepare 
the system in the maximally symmetry broken ground state 

⟩|⇓  with staggered magnetisation ˜ ( ) ⟨ ˆ ⟩= − <S S1 0
z n

n
z

GS  using 
iDMRG and again study the evolution of a JW excitation

( ) ⟩ ( ˆ )( ˆ ) ⟩† ∏+ |⇓ = − |⇓
<

c c S S2 2n n
n n

n
x

n
z

0 0

0

0 (8)

at site n0 inside the window (figure 4).
Notice that due to =S 0x

GS  a JW excitation is locally indis-
tinguishable from a simple domain wall according to the 
magnetisation and that the roles of x and z are interchanged 
with respect to the TFI results. Additionally, we also study a 
spin flip in the z-direction at site n0 (FlipZ). Window move-
ment is triggered by bipartite entanglement entropy, resulting 
in window velocities consistent with exact results (see 
appendix C). During the time evolution we use a second order 
Suzuki–Trotter decomposition with a step size of τ = 0.01 
and maximum matrix dimensions of =m 150max  for ∆ = −4, 

=m 160max  for ∆ = −3 and =m 180max  for ∆ = −2 with 
discarded weights of at most ( )−O 10 8 .

The signal front again develops a step structure. To our 
knowledge this had not been realised before our study, how-
ever it was recently confirmed [36, 39] after the preprint 
version of our study, but not further investigated. We also 
observe a pairing effect between neighbouring spins, leading 
to an additional internal step structure, which stems from the 
spinon like nature of elementary excitations created by the 
quench (figure 4 inset). Due to the dynamics generated by (7),  
elementary spinons can only hop by two lattice sites at a time.

We find that at very large times, which are virtually impos-
sible to access with conventional MPS techniques [28, 34], the 
staggered normalised excess magnetisation

( ) [ ˜ ( ) ˜ ] ˜= − | |M n t S n t S S, : , / 2z z z
GS GS (9)

at the signal front shows the same scaling behaviour as TB fer-
mions, albeit with an additional horizontal scaling constant a, 
which is parameter dependent and increases with |∆| (figure 5 
and inset). We therefore again interpret magnetisation steps as 
due to individual propagating quasi-particles, which, however, 
show interaction effects by getting squeezed together more and 
more around the signal front with increasing |∆|. This behaviour 
can be explained by the fact that particles repel each other more 
with increasing interaction, but at the same time they are con-
fined within the light cone dictated by the Lieb–Robinson bound. 
Since the particle density is much lower around the signal front, 
more and more particles are pushed towards the signal front and 
get squeezed together there. Our data, however, suggest that this 
effect saturates around |∆| ≈ 5 (see inset of figure 5). It would be 
very interesting to understand these interaction effects between 
individual steps in more detail analytically.

The asymptotic scaling function G( y) is approached differ-
ently for different ∆, but the scaling exponents appear to be 
independent of ∆ for all the quenches investigated. For M(n, t) 
they are equal to the TB case with value 1/3, whereas we again 
find a different effective exponent of ≈ 1/4 for the bipartite 
entanglement entropy (figure 5).

4. Conclusions

We have introduced an easy-to-implement method combining 
finite and infinite system MPS techniques that can follow the 
propagation of a signal front on an infinite spin chain unimpeded 
and free from finite size effects for very long simulation times 
and with very high precision, considerably improved over other 
approaches. We note that even when the window is not moved, 
local signals can be simulated on the background of an infinite 
system, without perturbations emanating from the boundary. 
In this scenario the signal can be temporarily absorbed by the 
boundary, although it is always reflected eventually.

Furthermore, the method is not restricted to the evolution 
of excitations under uniform Hamiltonians. For example, the 
AKLT model [63] with inhomogeneous bond interactions or 
1D quantum systems under exponential or hyperbolic defor-
mation [64, 65] have uniform ground states, whereas the 
Hamiltonians are not uniform.

J. Phys.: Condens. Matter 27 (2015) 425602
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To simulate the time evolution of a signal front of width 
L propagating with velocity v up to some time t, our method 
requires a numerical effort of the order ( )LtO , whereas for the 
same calculation using standard finite size MPS techniques 
the numerical effort would scale as ( )+Lt vtO 2 , i.e. with an 
additional v-dependent factor which scales quadratically 
in simulation time. We want to emphasise that additionally, 
standard finite size MPS techniques would also suffer from 
finite size effects such as boundary effects or the absence of 
exact ground state degeneracies in symmetry broken phases.

We have found that for all local quenches investigated in the 
symmetry broken phases of the TFI and the XXZ model, dis-
tinct magnetisation plateaus develop at the emerging signal front 
at very large times, where the scaled excess magnetisations in 
both models show the same long time limit scaling behaviour as 
the particle density of TB fermions after an initial domain wall 
excitation. For TB fermions these plateaus have recently been 
understood as being due to individual propagating particles [44]. 
Because of their quantum origin these plateaus cannot be studied 
[44, 62] by means of semiclassical approaches such as in [13].

Our method has enabled us to calculate the time evolution 
of the order parameters of both models around the signal fronts 
generated by local quenches and investigate their features, 
which to our knowledge are available neither analytically nor 
semi-classically. In all cases it is important to reach very large 
simulation times, which are easily accessible through our 
approach, in order to reach the proper scaling regimes.

In the XXZ model we have observed an additional internal 
step structure due to the spinon nature of the involved elemen-
tary excitations, as well as parameter-dependent interaction 
effects between individual plateaus in the form of increasing 
spatial compression of the plateau width close to the signal 
front. This effect appears to saturate for �|∆| 1. For the TFI 
model we have additionally found a surprising exact agreement 
of the normalised excess longitudinal magnetisation after a 
JW excitation with the density of TB fermions after a domain 
wall excitation. This exact mapping, however, does not apply 
to other observables such as, e.g. bipartite entanglement.

It would be interesting to understand both the interaction 
effects between plateaus in the XXZ model and the exact 
agreement between the TFI model and TB fermions in more 
detail analytically.
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Appendix A. CMW time evolution and boundary 
update methods

In this appendix we illustrate one time evolution step for 
the entire system when following a right moving signal. We 

describe the procedure in the following order. We first evolve 
the part of the system contained within the CMW (appendix 
A.2) before updating the right part using Method I (appendix 
A.3) and updating the left part using the more involved 
Method II (appendices A.4 and A.5). Note that this is the setup 
used in the main text; however, in principle any of the two 
methods can be used at any boundary. A detailed assessment 
of different setups is given in appendix D. We also describe 
the process of moving the CMW along with a propagating 
signal (appendix A.6). A short sketch of both boundary update 
methods, illustrating their advantages and restrictions, along 
with a motivation of the above choice is given in the main text.

A.1. System initialisation

In the main text in particular we use a setup dividing the 
system into a semi-infinite, initially translation invariant left 
part, a finite-size CMW (inside of which a signal will be cre-
ated) and a semi-infinite, at all times translation invariant right 
part. We initialise the system by first determining a uniform 
MPS representation of the respective model’s ground state on 
an infinite chain using iDMRG [6, 48]. We then set all MPS 
matrices inside the CMW (matrices σA j and σB j), the semi-
infinite right part (matrices σRA and σRB forming this part’s 
two-site unit cell) and the semi-infinite left part ( all matrices 
σL j) to this uniform MPS ground state representation after 

appropriate (left or right) orthonormalisation [5, 48], i.e. we 
initialise the entire system to be in the infinite system’s trans-
lation invariant ground state. Subsequently, we locally excite 
the system out of its ground state to generate several different 
kinds of local signals by applying suitable operators to one or 
more MPS matrices inside the CMW.

For other purposes the generalisation to different initial 
conditions is straightforward.

A.2. Time evolution within the CMW (CMW update)

Without loss of generality we consider a CMW with an even 
number of sites and first-order, even–odd, Suzuki–Trotter 
decomposition [57] with local operators ˆ ( ) ˆτ = τ

+
− +u ej j

h
, 1

i j j, 1 
and finite time steps τ. The generalisation to higher order 
Suzuki–Trotter decompositions and windows containing an 
odd number of sites is straightforward. All the simulations in 
this work were performed using second-order Suzuki–Trotter 
decomposition and windows with an even number of sites.

For one time step inside the CMW we use tDMRG [8] and 

apply ˆ ( ) ˆτ = τ
+

− +u ej j
h

, 1
i j j, 1 to the bonds from (ℓ ℓ )+ +1, 2  

until (r  −  1, r) and update matrices Asj and Bsj contained within 
the CMW. The junction bonds (ℓ ℓ )+, 1  and (r, r  +  1) at the 
left and right boundary of the CMW are updated separately.

We first update all odd bonds { ( ) ( )}… − − −r r r r, 3, 2 , 1,  
and then all even bonds { ( ) ( )}… − − − −r r r r, 4, 3 , 2, 1 . The 
junction bonds (ℓ ℓ )+, 1  and (r, r  +  1) are thus defined to be 
even bonds (see figure A1). By choosing this order we pre-
serve the structure of the Suzuki–Trotter decomposition of the 
CMW and the right part, when Method I is used to update the 
right boundary.
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At this stage all the even and odd bonds have been updated, 
except for the junction bonds (ℓ ℓ )+, 1  and (r, r  +  1), i.e. the 
boundary matrices ℓ+As 1 and Bsr are not yet fully updated.

Note that an implementation of this update using time 
evolving block decimation (TEBD [7]) is equivalent. For a 
graphical representation see figure A1.

A.3. Method I (uniform update).

We use this easy to implement procedure for the right 
boundary. Due to the assumed translation invariance over a 
2-site unit cell, this part can be described by two right-orthog-
onal matrices RA

sj and RB
sj, such that the wavefunction in MPS 

representation around the right boundary reads

… …− + + + +B B R R R R .s s
A
s

B
s

A
s

B
sr r r r r r1 1 2 3 4 (A.1)

The evolution of the matrices RA
sj and RB

sj is performed by 
iTEBD (or variations thereof) using local operators ˆ ( )τuA  and 
ˆ ( )τuB  [47, 66], where ˆ ( )τuA  acts on odd bonds and ˆ ( )τuB  acts 
on even bonds.

In a first step, we apply an odd bond iTEBD update in the 
right part to get

( )( )( )∑ τ
° °

=
′ ′

′ ′
′ ′

R R u R R ,A
s

B
s

s s
s s s s
A

A
s

B
sA B

A B

A B A B
A B

 (A.2)

where ° denotes matrices having received an odd bond update. 
Here the decomposition of the result of the right-hand side of 
(A.2) is implicitly assumed. It can be done by an SVD either 
involving a division by Schmidt values following [47] or 
avoiding the division by Schmidt values by using the approach 
of [66].

The wavefunction at this point reads

…
° ° °

…− − + +B B B R R ,s s s
A
s

B
s

• •
r r r r r2 1 1 2 (A.3)

where • denotes matrices having received both odd and even 
updates.

Special attention has to be paid to the operation of ur r, 1ˆ ( )τ+  
at the junction bond in order to update 

°
Bsr. For this we form 

Φ
°°

=
° °

+ +B R:s s s
A
sr r r r1 1 and act with ur r, 1ˆ +  to get Φ +s s

••
r r 1. In parallel we 

perform an even bond iTEBD update in the right part to get

( )( )( )∑ τ=
° °′ ′

′ ′
′ ′

R R u R R .B
s

A
s

s s
s s s s

B
B
s

A
s

• •
B A

A B

B A B A
B A

 (A.4)

where again the decomposition of the result of the right side 
is implicitly assumed.

All the bonds have now been updated. Since there is neg-
ligible influence of the signal around the right boundary by 
construction, the state of the right part should be the same as 
for a time evolved uniform system without signal up to high 
precision, i.e. we can also assume Φ =+ +B Rs s s

A
s

•• • •
r r r r1 1, where 

both Bs
•
r and +RA

s
•

r 1 are right-orthogonal and +RA
s
•

r 1 is obtained 
from (A.4). We extract Bs

•
r from Φ +s s

••
r r 1 by exploiting the right-

orthogonality of +RA
s
•

r 1:

†∑= Φ
+

+ +B R .s

s

s s
A
s

• •• •
r

r

r r r

1

1 1

 (A.5)

The wavefunction in MPS form is now completely updated 
around the right boundary and reads

… …− − + +B B B R R .s s s
A
s

B
s

• • • • •
r r r r r2 1 1 2 (A.6)

We note that in general, the decomposition ˜ ˜Φ =+ +B Rs s s s
•• • •
r r r r1 1 

into right-orthogonal matrices is not unique, but involves a 
gauge freedom B R B x xR

s s s
A
s

• • •
1

•
r r r r1 1˜ ˜ = −+ +  with x a unitary matrix 

(Exploiting the right orthogonality of both ˜ +R
s
•
r 1 and +RA

s
•

r 1 we 

have R R x R R x xxs
s s

s A
s

A
s

• • • •
r r r r1 1 1 11 ˜ ˜ † † † †=∑ = ∑ =+ + + + . Since x is 

square this also means † =x x 1 and thus x is unitary).
If the decomposition B Rs s s s

•• • •
r r r r1 1˜ ˜Φ =+ +  was carried out in the 

standard TEBD/tDMRG way (i.e. by means of an SVD), then 
a different gauge ˜ ≠+ +R R

s
A
s

• •
r r1 1 and thus ˜ ≠B B

s s
• •
r r would result 

in general, since ˜ +R
s
•
r 1 was produced algorithmically in a dif-

ferent way than +RA
s
•

r 1. In that case, i.e. if B
s
•
r˜  was used instead 

of Bs
•
r, incompatible basis sets would meet at the junction 

bond, which would result in perturbations spreading from the 
boundary. By use of (A.5) we ensure that the correct gauge is 
chosen automatically.

This concludes one time step for the right part and right 
boundary. For an algorithmic summary see table  A1, for a 
detailed graphical representation see figure A2.

Figure A1. One time step of the CMW update in the case of first-order Suzuki–Trotter decomposition and a CMW with an even number of 
sites.

Table A1. Algorithm for Method I updating the right boundary of 
the CMW.

(i) Apply odd iTEBD update to get 
°

RA
sA , 

°
RB

sB .

(ii) Use 
°

RA
sA  to form B Rs s s

A
sr r r r1 1Φ

°°
=
° °

+ +

(iii) Apply ˆ +ur r, 1 to get s s
••
r r 1Φ + .

(iV) Apply even iTEBD update to get RB
s
•

B , RA
s
•

A .
(V) Use RA

s
•

A  to obtain †∑= Φ
+

+ +B Rs

s

s s
A
s

• •• •
r

r

r r r

1

1 1 .

Note: For a graphical representation see figure A2.
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The procedure can also be easily translated to the left 
boundary exploiting left orthogonality, where the translation 
invariance of the left-orthogonal matrices Lsj is then required.

Method I is also applicable when HR is time dependent, 
e.g. in case of a global quench.

A.4. Method II (renormalised update)

We use this procedure for the left boundary. For this Method 
we follow a similar approach as introduced by Cazalilla and 
Marston [58] (Method II is similar to the algorithm intro-
duced in [50], where preprints of [50] and of the present paper 
appeared at the same time), such that matrices Lsj in the left 
part remain unchanged at all times during time evolution.

The effect of the left part is encoded in a renormalised for-
mulation of ˆ ˆ ˆ◃ ℓ ℓ ℓ= ++ +H H h:, 1 L , 1, which is exactly the renor-
malised Hamiltonian used in standard DMRG formulations 
(see e.g. [4, 5]). All changes in the left part are then solely 
encoded in an update of the boundary matrix ℓ+As 1. Note that 
for this method the matrices Lsj in the left part need not be 
translation invariant.

Since matrices Lsj are not changed during this 
update, we rewrite the wavefunction in MPS form after 
the CMW update in terms of the auxiliary basis states 

⟩ ( ) ⟩ℓ ℓ ℓ⩽ℓ
ℓ ℓ

ℓ| = ∑ … |… −−a L L s ss
s s

a 1
j

1  connecting ℓLs  and ℓ+As 1:

( ) ( )ℓ ℓ ℓ
ℓ ℓ

ℓ
Ψ | ° … =

°
…+ +

+ +a s s t A A; ,s s
a1 2

•
•

1 2 (A.7)

where ℓa  is the left index of matrix As 1ℓ

°
+ . The right-hand side of 

(A.7) is formally just the semi-infinite product of all matrices 
to the right of site ℓ. The overall state vector after the CMW 
update can thus also be written

( )⟩ ( ) ⟩ ⟩ℓ ℓ ℓ ℓ ℓ
ℓ ℓ

∑ ∑|Ψ = Ψ | ° … | | …
…

+ + +
+

t a s s t a s; .
a s

1 2
•

1

1
 (A.8)

Here • and ° again mark sites which have received a complete 
and incomplete update, respectively. Notice that in Method 
II the basis { ⟩}ℓ|a  will remain unchanged at all times. For a 
graphical representation of (A.7) see figure A3(a).

We now need a renormalised representation H , 1
eff
◃ ℓ+  of 

H , 1ˆ◃ ℓ+  formulated in the block-spin basis a s 1{ 〉}ℓ ℓ| + . A pos-
sible method to calculate H , 1

eff
◃ ℓ+  is outlined in appendix 

Figure A2. Graphical representation for updating the right boundary of the CMW with Method I according to the steps in table A1.

Table A2. Algorithm for Method II updating the left boundary of 
the CMW.

(i) Perform only once for each CMW position:

(a) Determine renormalised expression ◃ ℓ+H , 1
eff  of 

ˆ◃ ℓ+H , 1, formulated in the block-spin basis { ⟩}ℓ ℓ| +a s 1 .

(b) Calculate ( ) ( )◃ ℓ ◃ ℓτ τ= −+ +U Hexp i, 1
eff

, 1
eff .

(ii)
Update ℓ

°
′
+As 1 using ◃ ℓ+U , 1

eff  in each time step to get 

( )◃ ℓ
ℓ

ℓ

ℓ ℓ ℓ∑ τ=
°+

′

′ ′
+

+

+ + +A U As

s

s s s
• , 1

eff,1

1

1 1 1.

Note: For a graphical representation see figure A4.
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A.5. Once we have such a renormalised expression we can 
determine the renormalised time evolution operator for the  
left part

( ) ( )◃ ℓ ◃ ℓτ τ= −+ +U H: exp i ,, 1
eff

, 1
eff (A.9)

where we use the same small time step τ as for the Suzuki–
Trotter updates. This time evolution operator is then used to 
update ( )ℓ ℓ ℓΨ | ° …+ +a s s t;1 2

• . However, as it is a unitary oper-
ator defined in the block-spin basis { 〉}ℓ ℓ| +a s 1 , it only updates 

ℓ

°
+As 1 and we get

( )◃ ℓ
ℓ

ℓ

ℓ ℓ ℓ∑ τ=
°+

′

′ ′
+

+

+ + +A U A .s

s

s s s
• , 1

eff,1

1

1 1 1

 (A.10)

This concludes one time step for the left boundary. Notice 
that the matrices in the left part are not updated as all changes 

in the left part are compressed into the boundary matrix 
ℓ+As 1 with constant basis { ⟩}ℓ|a . In this sense the update is 

non-adaptive.

Notice also that ◃ ℓ+U , 1
eff  breaks the structure of the even–

odd Suzuki–Trotter decomposition in the left part. This intro-
duces an additional error, which is of the same order as the 
Suzuki–Trotter error and can in principle be made arbitrarily 
small by using higher order Suzuki–Trotter decompositions 
and smaller time steps τ at the cost of increased computational 
time. The effect of this additional error is investigated in detail 
in appendix D. It could be avoided by using the renormalised 
imaginary-time transfer matrix, as used in finite temperature 
DMRG [67], to update ℓ

°
+As 1. For an algorithmic summary 

see table A2, for a graphical representation of this update see 
figure A4.

Figure A3. (i) Graphical representations of the definition of ( )ℓ ℓ ℓΨ | ° …+ +a s s t;1 2
•  in (A.7). Note that the matrices Lsj within the left part 

and the basis { ⟩}ℓ|a  remain unchanged during the simulation for Method II. (ii) Graphical representation of the construction of the initial 
element [ ]E k

init defined in (A.19) to approximate the semi-infinite product [ℓ]E .

Figure A4. Graphical representation for updating the left boundary of the CMW with Method II with the steps listed in table A2. (i) 
Constructing the renormalised Hamiltonian H , 1

eff
◃ ℓ+  as outlined in appendix A.5 and there defined in (A.17). (ii) Using the renormalised time 

evolution operator ( )◃ ℓτ +U , 1
eff  as defined in (A.9) to update the left boundary matrix As 1ℓ+  according to (A.10).

J. Phys.: Condens. Matter 27 (2015) 425602



V Zauner et al

11

A.5. Renormalised Hamiltonian for Method II

For determining H , 1
eff
◃ ℓ+  used in Method II, we first assume a 

left part that is semi-infinite. Consider Ĥ in MPO form [68–72]

s sH W ,
s j

j
s sj jˆ 〉〈[ ]∑ ∏= | |′

=−∞

∞
′

 (A.11)

where [ ]
′

W j
s sj j are matrices of some dimension ×d dW W containing 

operator elements ′Os sj j. This decomposition can also be written 

in operator form, where we define W W s s:j s s j
s s

j jj j

j jˆ 〉〈[ ] [ ]=∑ | |′′
′

 as 

×d dW W matrices containing operators. We can then simply 

write H W .j jˆ ˆ[ ]=∏ =−∞
∞  For finite size (or semi-infinite) opera-

tors, this product of MPO matrices is terminated by dW-dimen-
sional operator-valued boundary vectors ˆ⟨[ ]w j  and (or) ˆ [ ]⟩w j .

An example for an MPO decomposition for the transverse 

field Ising (TFI) Hamiltonian ˆ ˆ ˆ ˆ= −∑ − ∑+H S S h Sj j
x

j
x

j j
z

TFI 1  

is given by

1

1

ˆ

ˆ

ˆ

ˆ ˆ ˆ
[ ]

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= −

−

W S

hS S

0 0

0 0j

j

j
x

j
z

j
x

j

 (A.12)

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ〈[ ] [ ]〉
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥= − = − −w hS S w S hS .j j

z
j
x

j j j j

x

j

z
T

 (A.13)

For the TFI Hamiltonian we thus have dW  =  3.
We can express ˆ◃ ℓ+H , 1 in terms of an MPO as

ˆ ˆ ˆ ˆ◃ ℓ [ℓ ] [ℓ] [ℓ ]〉= …+ − +H W W w ,, 1 1 1 (A.14)

where we have terminated the semi-infinite product of MPO 
matrices with the boundary vector w 1ˆ [ℓ ]〉+ .

In order to get H , 1
eff
◃ ℓ+  we use matrices Lsj to renormalise 

ˆ◃ ℓ+H , 1. For this, consider the ×d dW W dimensional MPO 
transfer matrix defined as

¯[ ] [ ]∑= ⊗
′

′ ′−

−
F W L L: ,j

b b

s s
j b b

s s s s
,

j j

j j

j j

j j j j1

1 (A.15)

containing ×m m2 2 matrices, where m is the matrix dimension 
of the MPS matrices Lsj and L̄sj denotes the complex conjugate 
of Lsj.

H , 1
eff
◃ ℓ+  can then be written as

H F ws s

b

d

j
j

b

b
s s

, 1
eff,

1
1 ,

W
1 1 1 1

◃ ℓ
⩽ℓ

[ ] [ℓ ]〉
ℓ ℓ

ℓ ℓ

ℓ
ℓ ℓ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑ ∏=+

=
+

′ ′+ + + + (A.16)

[ℓ] [ℓ ]〉
ℓ

ℓ
ℓ

ℓ ℓ∑=
=

+
′+ +E w ,

b

d
b

b
s s

1
1 ,

W
1 1 (A.17)

where we have defined the semi-infinite product

E F: .b

j
j

b

[ℓ]
⩽ℓ

[ ]ℓ

ℓ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∏= (A.18)

◃ ℓ
ℓ ℓ
+

′+ +H s s
, 1

eff, 1 1 is then a set of ×m m matrices labelled by ℓ+s 1 and 

ℓ′ +s 1 and [ℓ]E  can be understood as a dW-dimensional vector 
containing ×m m matrices. For a graphical representation of 

these steps see figure A4(1). Note that the vector element [ ]E j
1  

accumulates the renormalised Hamiltonian containing all sites 
⩽k j (see e.g. [69]).

To determine (A.17) we need a way to calculate the semi-
infinite matrix product [ℓ]E . For the moment we consider the 
case where both ĤL and the matrices Lsj are translation invar-
iant. In this case F[ j] is also translation invariant and [ℓ]E  can 
be calculated by, e.g. finding the dominant left eigenvector of 
F[ j], as explained in [72].

However, here we follow an approximate but sufficiently 
accurate approach for calculating [ℓ]E , which is inspired by 
standard DMRG formulations. For this we relax the condition 
of semi-infinity for the left Hamiltonian ˆ◃ ℓ+H , 1 and approxi-
mate it with a finite size Hamiltonian, which we increase in 
size until we get a converged result. The finite size version of 
ˆ◃ ℓ+H , 1 in MPO form is thus contracted also on the left side by 
ˆ⟨[ ]w k  for some � ℓk . We first compute an initial E[k] as

[ ] ⟨[ ]
†∑=

′

′ ′
E w L L ,k b

s s
k b

s s s s
,

init
,k

k k

k

k k k k
 (A.19)

exploiting the left-orthogonality of the matrices Lsj. For a 
graphical representation see figure A3(b).

We can now iteratively calculate E E Fj j j1 1[ ] [ ] [ ]=+ +  many 
times until this process has converged. As a convergence cri-
terion we can use, e.g. the ground state energy per site of the 

renormalised Hamiltonian which is accumulated in E j
1
[ ]. Using 

the converged result as an approximation for [ℓ]E  we can then 

easily determine H , 1
eff
◃ ℓ+  from (A.17).

In the case where MPS matrices Lsj and/or MPOs [ ]
′

W j
s sj j are 

site dependent for some sites ⩽ ⩽ ℓk j , we can first calculate 

E[k] up to site k approximately as described above and then 
calculate the finite product

E E F .k
j k

j
init

1
[ℓ] [ ]

ℓ

[ ]∏=
= +

 (A.20)

Notice that we can in principle even define the left part to 
be finite altogether, with site dependent matrices ⩽ℓLsj  and/or 

site dependent MPOs W j
s sj j
[ ]
′
, such that E Fj j1[ℓ]

ℓ
[ ]=∏ =  is also 

a finite product. In this case one would have to specify left 
boundary conditions. In our simulations we do not consider 
this case.

If Method II is used at the right boundary, we use the uni-
form matrices Rsj to construct a renormalised expression for 
ˆ ˆ ˆ ˆ▹ = + =∑+ =

∞
+H h H h:r r r j r j j, , 1 R , 1.

Generally the computational effort for calculating ◃ ℓ+H , 1
eff  

is dictated by the computational effort for calculating [ℓ]E . In 
case of a translation invariant left part, its calculation is very 
similar to the renormalisation steps of an iDMRG simulation 
[6, 48] (no eigenvalue/SVD steps). The number of renormali-
sation steps is dependent on the effective correlation length 
induced by the uniform MPS matrices Lsj.
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In practice, it takes about 75 renormalisation steps for the 
TFI model at h  =  0.45 (m0  =  30) and about 100 steps for the 
XXZ model at Jz  =  −2 (m0  =  88) for convergence in energy 
up to an accuracy of 10−15, where m0 is the bond dimension 
of the ground state MPS representation. The overall computa-
tional effort here is comparable to a few time evolution steps 
within the CMW.

A.6. Window movement

We describe the window movement by a single site. For a shift 
by a 2-site unit cell, the same procedure as for a single site is 
applied twice.

If no boundary update is used at the left boundary, the 
matrix ℓ+As 1 is discarded. If Method II is used, we incorporate 

ℓ+As 1 into the left part by using it to calculate a renormalised 
expression for ˆ ˆ ˆ◃ ℓ ◃ ℓ ℓ ℓ= ++ + + +H H h:, 2 , 1 1, 2. More precisely, 
we construct [ℓ ]+F 1  as defined in (A.15) using ℓ+As 1

¯
[ℓ ] [ℓ ]

ℓ ℓ

ℓ ℓ
ℓ ℓ

ℓ ℓ ℓ ℓ∑= ⊗+ +
′

′ ′
+

+ +

+

+ + + +F W A A: .b b

s s
b b

s s s s
1 1 ,

1

1 1

1

1 1 1 1
 (A.21)

With [ℓ]E  from earlier calculations we can then construct 

[ℓ ] [ℓ] [ℓ ]=+ +E E F1 1 , calculate ◃ ℓ+H , 2
eff  as defined in (A.17) and 

determine ( ) ( )◃ ℓ ◃ ℓτ τ= −+ +U Hexp i, 2
eff

, 2
eff .

At the right boundary we introduce +RA
sr 1 as a new rightmost 

matrix +Bsr 1.
After the window has been moved by a single site according 

to these steps, we redefine ℓ ← ℓ+ 1, ← +r r 1 (and we 
exchange labels ↔A B in the case of iTEBD).

Notice that for the left boundary the dimension of the 
block basis { ⟩}ℓ|a  can grow with successive window shifts. 
An impinging signal can therefore be partly absorbed such 
that immediate perturbations are considerably suppressed (see 
also appendix F).

We trigger the window shift when the relative change of 
the bipartite entanglement entropy at some site sufficiently far 
away from the right boundary rises above a certain threshold. 
The margin between this site and the right boundary should be 
large in comparison to the correlation length of the initial state 
such that the exponentially suppressed correlations reaching 
beyond the Lieb–Robinson light cone [53] are negligible. For 
all simulations in the main text we use a margin of 24 sites and 
a threshold of 1%. If known beforehand, the window can also 
be moved directly with vmax.

Appendix B. Analytic results for the TFI model

In this appendix, we collect some known results and we derive 
an exact expression for the transverse magnetisation in the 
TFI model after a Jordan–Wigner excitation.

B.1. Diagonalisation of the Hamiltonian

The TFI model

ˆ ˆ ˆ ˆ∑ ∑= − −+H S S h S
j

j
x

j
x

j
j
z

TFI 1 (B.1)

can be solved exactly [59, 60] by first transforming to spinless 

fermionic operators †c j, cj via a Jordan–Wigner (JW) transfor-
mation [61]

ˆ ( ) ˆ ( )† † †∏ ∏= − = −
+

<

−

<

S c c c S c c c1 2 , 1 2 ,j
n j

n n j j
n j

n n j (B.2)

where ˆ+S j  and ˆ−S j  are the spin raising and lowering operators. 

With ˆ ( ˆ ˆ )= +
+ −

S S Sj
x

j j
1

2
 and ˆ ˆ ˆ= −

+ −
S S Sj

z
j j

1

2
 the Hamiltonian 

becomes

H c c c c h c c
1

4

1

2
.

j
j j j j

j
j jTFI 1 1ˆ ( )( )† † †⎜ ⎟

⎛
⎝

⎞
⎠∑ ∑= − − + − −+ + 

(B.3)

Here we have already taken the thermodynamic limit while 
considering periodic boundary conditions (a boundary term 
arising from the JW transformation and periodic boundary 
conditions is neglected as it is of the order ( )LO 1/  where L is 
the system size).

A subsequent Bogoliubov transformation [73] to fermionic 

operators ηk, 
†ηk in momentum space

( )†∫π η η= −
π

π

−
−c k a b

1

2
d e ij

kj
k k k k

i (B.4)

then diagonalises the Hamiltonian. The coefficients ak and bk 
are real and satisfy

= = − + =− −a a b b a b, , 1k k k k k k
2 2 (B.5)

and can be determined as

( )
( )

( )

ε

ε ε
=

− −

− −
a

k h

k h

cos

2 cos
k

k

k k

1

2

1

2

 (B.6)

( )
( )

( )ε ε
= −

− −
b

k

k h

sin

2 cos
k

k k

1

2

1

2

 (B.7)

( )ε = + +h k h
1

4
cos .k

2 (B.8)

The Hamiltonian then reads

ˆ †∫π ε η η= −
π

π

−
⎜ ⎟
⎛
⎝

⎞
⎠H k

1

2
d

1

2
k k kTFI (B.9)

and the ground state corresponds to the vacuum state ⟩|0  in 

terms of the fermionic operators ηk and †ηk.

B.2. Signal velocity in the TFI model

The propagation of a signal induced on top of the ground state 
⟩|0  of the TFI model can be understood as the excitation and 

propagation of a superposition of non-interacting particles 

with momenta k and corresponding energies εk created by †ηk. 
In this picture, the maximum velocity vmax of the signal can be 
exactly calculated as the maximum of the group velocity
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( )ε
ε

= =v
k

h k
:

d

d 2

sin
.k

k

k
 (B.10)

A short calculation shows that vk takes its extrema at 

( ) =k hcos 2  and ( ) =kcos
h

1

2
, which gives

⩽
⩾

=
⎧
⎨
⎩

v
h h h
h h h

,
,max

crit

crit crit
 (B.11)

where =hcrit
1

2
.

B.3. Analytic results for a JW excitation

Consider a Jordan–Wigner (JW) excitation at site ℓ on top of 
the thermodynamic limit ground state ⟩|0 , defined as

⟩ ( ) ⟩ℓ ℓ
†

ℓψ| = + |c c 0 (B.12)

( ) ⟩ℓ †∫π η= + |
π

π

−

−k a b
1

2
d e i 0 .k

k k k
i (B.13)

Using the results from the previous sections  for the TFI 
model, the time evolution of the magnetisation in z after such 
an excitation

⟨ ˆ ( )⟩ ⟨ ( ) ( ) ⟩ℓ ℓ
†

ℓψ ψ= | | −S n t c t c t,
1

2
.

z
n n (B.14)

can be calculated analytically.
Solving the Heisenberg equation of motion for ( )η tk  yields 

( )η η= ε−t ek
t

k
i k . Using (B.4) then allows one to write

( ) ( ( ) ( ) )†∫π α η β η= +
π

π

−
−c t k t t

1

2
d en

kn
k k k k

i (B.15)

with ( )α = ε−t a ek k
ti k  and ( )β = − εt bi ek k

ti k . Plugging (B.15) 
and (B.13) into (B.14) yields after some calculation

⟨ ˆ ( )⟩
( ) ( )

( )ℓ
ℓ ℓ

π
= +

−
S n t S

I n t I n t
,

, ,

2
,

z z
A B

GS 2 (B.16)

where

⟨ ˆ ⟩ ∫π= | | = −
π

π

−
S S k b0 0

1

2
d

1

2
z

j
z

kGS
2 (B.17)

is the ground state magnetisation and

( ) ( )ℓ
[ (ℓ ) ]∫= +

π

π
ε

−

− − +I n t k a b a, d e iA k n t
k k k

i
2

k (B.18)

( ) ( )ℓ
[ (ℓ ) ]∫= +

π

π
ε

−

− − −I n t k a b b, d e i .B k n t
k k k

i
2

k (B.19)

In appendix D we use (B.16) to compare with results 
obtained from a CMW simulation.

Appendix C. Analytic results for the XXZ model

We derive an exact expression for the group velocities in the 
XXZ model and calculate the signal velocity vmax.

C.1. Bethe ansatz solution for the ground state

The XXZ model defined by the Hamiltonian

H S S S S S S
j

j
x

j
x

j
y

j
y

j
z

j
z

XXZ 1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ∑= − + +∆+ + + (C.1)

can be solved, e.g. by means of the coordinate Bethe ansatz 
[74].

We seek solutions for the ground state and elementary 
excitations of the XXZ antiferromagnet with ∆<−1 in the 
thermodynamic limit, which can be found, e.g. in [75].

In the thermodynamic limit the roots of the Bethe equa-
tions become dense and their distribution for the ground state 
is characterised by a density function g0(x), which for ∆<−1 
satisfies the following integral equation

( ) ( ) ( )
( ) ( )∫π

+
Φ

Φ − −
′ ′

′π

π

−
g x

g x x

x x

sinh 2

2

d

cosh 2 cos0
0

 (C.2)

( )
( ) ( )

=
Φ

Φ − x

2 sinh

cosh cos
, (C.3)

where ( )Φ = −∆cosh .
The solution to this integral equation is given by

( ) ( ) ( )
π π

π π= − < <⎜ ⎟
⎛
⎝

⎞
⎠g x

K m K m
x m x

2
dn , , .0

0 0
0 (C.4)

Here ( )x mdn ,  is a Jacobian elliptic function [76], K(m) the 
complete elliptic integral of the first kind

( ) ∫=
−

π

K m
x

m x

d

1 sin0

2

2
 (C.5)

and the parameter m0 the solution of the equation

( )
( )

π
−

=
Φ

K m

K m1
.0

0
 (C.6)

The root density g0(x) can then be used to calculate various 
quantities such as the ground state energy and elementary 
excitations.

C.2. Signal velocity in the XXZ model

To calculate the maximum signal velocity vmax as a function of 
∆ we first determine the dispersion relation εk for the elemen-
tary excitations. As for the TFI model in appendix B.2 we then 

obtain vmax as the maximum of the group velocity = εvk k

d

d
k .

Table C1. Values for the maximum signal velocity vmax in the XXZ 
model for various values of the interaction strength ∆<−1.

∆ vmax ∆ vmax

−1.5 1.781 734 04 −3.5 1.959 201 77

−2.0 1.875 595 02 −4.0 1.968 758 00

−2.5 1.920 144 92 −4.5 1.975 312 55

−3.0 1.944 491 13 −5 1.980 002 06

Note: These values are obtained from numerically finding the maximum of 
(C.12) with a numerical precision of 10−8.
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The dispersion of the elementary excitations is given by 
[75]

( ) [ ( ( )) ( )] ( )ε π= Φ − + ∆g x k g G
1

2
sinh ,k 0 0 0 (C.7)

where ( )∆G  is the finite energy gap present in this phase and 
x0(k) has to be determined by inverting

( ) ( ) ⩽ ⩽∫π π π= − −⎜ ⎟
⎛
⎝

⎞
⎠k x g x x x

1

2
d ,

x

0
0

0 0
0

 (C.8)

for a given momentum k.
From this we can calculate the group velocity

ε ε
= =

−⎛
⎝
⎜

⎞
⎠
⎟v

k x

k

x

d

d

d

d

d

d
k

k k

0 0

1

 (C.9)

where we need

( )
( )ε

= Φ = −
x

g

x

k

x

g xd

d

1

2
sinh

d

d
,

d

d 2
.k

0

0

0 0

0 0
 (C.10)

Using some properties of Jacobian elliptic functions [76] and 
defining ( )=K K m0 0  we get

π π π
= − ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

g

x
m

K K x
m

K x
m

d

d
2 sn , cn ,0

0
0

0
2

0 0
0

0 0
0 (C.11)

where ( )x msn ,  and ( )x mcn ,  are also Jacobian elliptic func-
tions. Defining

( )
π π

= ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠S x K m

K x
m

K x
m, , : sn , cn ,0 0 0

0 0
0

0 0
0 (C.12)

we can then write

( )
( )

( )
π

=
Φ

⎜ ⎟
⎛
⎝

⎞
⎠v

m

g x

K
S x K m

2 sinh
, , .k

0

0 0

0
2

0 0 0 (C.13)

We determine the maximum of this function numerically 
to get vmax as a function of ∆. The values of vmax for various 

interaction strengths ∆<−1 are listed in table  C1 and are 
obtained with a numerical precision of 10−8.

Appendix D. Test of precision of results

To assess the accuracy of the CMW approach, we compare it 
with a reference system on a very large lattice and with exact 
results obtained in appendix B.3. We investigate simulations 
of a JW excitation on top of the infinite system ground state 
in the TFI model at h  =  0.45 for windows of different sizes, 
different boundary update methods and different margins 
between signal and right boundary for triggering the window 
shift. Note that the correlation length of this system is ξ≈ 4.36 
sites. It can be obtained from the second largest eigenvalue in 
magnitude λ2 of the MPS transfer matrix ¯= ∑ ⊗T A As

s s as 
( )ξ λ= −− log1

2  [4, 77]. For all simulations we use second-
order Suzuki–Trotter decomposition with time step τ = 0.002 
and maximum bond dimension =m 120max . These are the 
same simulation parameters as used for the investigation of a 
JW excitation in the TFI model in the main text.

The reference simulation is also performed using the 
CMW algorithm, but starting with the translation invariant 
initial state inside a non-moving window of very large size of 
N  =  1000 sites. This means that the window is never shifted. 
Boundary effects are removed by using Method I for both 
boundaries. For the reference simulation we perform time 
evolution up to t  =  800, such that the signal induced in the 
centre of the system at t  =  0 does not reach the boundaries. 
For a plot of the reference simulation see figure D1. There we 
show the transverse magnetisation Sz(n, t) and the bipartite 
entanglement entropy ( )S n t,ent . It can be seen that boundary 
effects are indeed removed for the non-moving window with 
Method I (otherwise disturbances would constantly radiate 
from the boundaries) and that the signal is still about ≈150 
sites away from the boundaries at t  =  800.

Figure D1. Plot of the reference simulation used for comparison to CMW simulations with different setups described in table D1. The 
bipartite entanglement entropy ( )S n t,ent  and the transverse magnetisation Sz(n, t) of a JW excitation in the TFI model at h  =  0.45 are shown. 
We use a non-moving window (boundary effects are completely removed by using Method I at both boundaries) with N  =  1000 sites 
and perform time evolution using second-order Suzuki–Trotter decomposition with time step τ = 0.002 and maximum bond dimension 

=m 120max  up to t  =  800.
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We compare results from setups with different CMW sizes 
N and different numbers of margin sites between signal and 
right boundary (in sites, see appendix A.6), as well as dif-
ferent setups for using Method I and II for the updates at the 
left boundary (LB) and right boundary (RB). We find that the 
accuracy of the simulation strongly depends on the boundary 
update method used at the right boundary and the margin 

between the signal and right boundary, whereas the window 
size N has virtually no impact on the accuracy. For a selection 
of compared setups see table D1.

For comparison we will consider the transverse magneti-
sation, since only this quantity is available analytically. We 
display the absolute value of the difference in transverse 
magnetisation,

Figure D2. Comparison of results from different selected setups described in table D1 to (a) results from a reference simulation (left 
column) and (b) analytic results (B.16) (right column). We plot the absolute differences in measured transverse magnetisation ( )∆M n t,  
(D.1) versus absolute position n for various times ⩽ ⩽t380 800 . The black dashed lines mark the values of the largest absolute differences 
inside the CMW away from the left boundary. We note that comparisons of the longitudinal magnetisation and the entanglement entropy to 
the reference simulation yield very similar results (not shown).
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( ) ( ) ( )[ ]∆ =| −M n t S n t S n t, : , ,z z
janal./ref. (D.1)

between the reference simulation (ref.) or the analytic result 
(anal.) (B.16), respectively, and the individual setups [j]. We 
plot this quantity versus absolute position n at various times 

⩽ ⩽t380 800 in figure  D2. For other observables, analytic 
results are not available, but we can compare to the reference 
simulation. We find that comparison of the magnetisation in 
x direction Sx(n, t) and of the bipartite entanglement entropy 

( )S n t,ent  to the reference simulation yield results that look very 
similar to figure D2 and the obtained absolute differences are 
also of the same orders of magnitude. We note in addition that 
comparison between left and right column in figure D2 con-
firms the absence of boundary effects in the reference simula-
tion to high precision.

In the following we discuss the comparisons of the 3 cases 
listed in table D1.

Case (1) corresponds to the same CMW setup as used for 
data analysis in the main text. Comparison to the reference 
simulation yields differences of at most ( )−O 10 9 , whereas 
a comparison to analytic results yields differences of at 
most ( )−O 10 8  everywhere inside the CMW. Around the left 
boundary differences are of ( )−O 10 5  for both cases due to per-
turbations arising from the impinging left going part of the 
signal. These perturbations however remain confined around 
the left boundary at all times.

In case (2), where Method II is used at the right boundary, 
differences inside the CMW rise up to ( )−O 10 5  for both com-
parisons, i.e. they are considerably higher by about 3–4 orders 
of magnitude in comparison to case (1), where Method I is 
used. This can be explained by the fact that Method II breaks 
the structure of the Suzuki–Trotter decomposition at the 
boundary, which introduces additional perturbations. These 
perturbations can in principle be reduced by using higher 
order Suzuki–Trotter decompositions and smaller time steps 
and thus increasing computational effort, but they are always 
present. Method I, however, is completely devoid of this kind 
of perturbations. Also, the renormalised Hamiltonian ▹Hr

eff 
necessary for Method II is only calculated up to a finite preci-
sion. We, however, find the perturbations to be largely inde-
pendent of the precision used to calculate ▹Hr

eff as described 
in appendix A.5. We conclude that using Method I at the 

right boundary yields results which are better by about 3–4 
orders of magnitude in precision than using Method II when 
employing second-order Suzuki–Trotter decomposition with 
a time step of τ = 0.002.

In case (3) the left part has been disconnected from the CMW 
altogether by setting h 0, 1

ˆℓ ℓ =+  (‘cut’) as described in the main 
text. Also the margin between signal and right boundary is 
reduced to 3 sites. Due to the cut, perturbations around the left 
boundary are now considerably higher and go up to ( )−O 10 2  
both for the comparison to analytic results and the reference 
simulation. These perturbations, however, again remain con-
fined around the left boundary at all times. Differences inside 
the CMW are now ( )−O 10 6  for both comparisons. This can be 
explained by the fact that the margin of 3 sites is now smaller 
than the correlation length ξ≈ 4.36 and the exponentially sup-
pressed correlations reaching beyond the Lieb–Robinson light 
cone [53] induce perturbations at the right boundary.

In conclusion, both Method I (Uniform Update) and Method 
II (renormalised update) work quite well. Furthermore, the 
easy to implement Method I yields results with a precision 
of about 10−8, still better by several orders of magnitude than 
Method II when used at the right boundary. For the methods 
to work, the margin between the signal and right boundary 
needs to be considerably larger than the correlation length. At 
the left boundary the easiest approach, a simple cut, already 
works well when the very rear of the CMW is not of interest.

Overall we have shown that the error produced by the CMW 
approach, especially with Method I, is very small and remains 
virtually constant for large times during the simulation when 
the margin between the signal and right boundary is kept suf-
ficiently larger than the correlation length in the initial state.

Appendix E. Unscaled time evolution results

In this section we show time evolution results before scaling 
for the TFI model and the XXZ model, for the signals investi-
gated in the main text.

E.1. TFI model

In our simulations we use a Trotter step size of τ = 0.002 
and a maximum matrix dimension =m 120max . The unscaled 

Table D1. Precision of different CMW simulation setups, for the case of a JW excitation on top of the infinite system ground state in the 
TFI model at h  =  0.45.

N Margin LB RB Pref. Panal.

(1) 120 24 II I × −7.3 10 9 × −2.1 10 8

(2) 120 24 II II × −1.0 10 5 × −1.0 10 5

(3) 120 3 cut I × −2.3 10 6 × −2.3 10 6

ref. 1000 - I I - × −2.0 10 8

Note: We compare CMW results on N  =  120 sites with analytic results (anal.) and with results from a reference simulation on N  =  1000 sites (ref.). ‘Margin’ 
specifies the number of sites kept between the signal and the right boundary of the CMW as explained in appendix A.6. The precision Pref./anal. is the resulting 
maximum absolute difference in transverse magnetisations (D.1) inside the CMW away from the left boundary, between the CMW simulation and the 
reference simulation or analytic result (black dashed lines in figure D2). All simulations were performed using =m 120max  and second-order Suzuki–Trotter 
decomposition with time step τ = 0.002 up to t  =  800. Case (1) corresponds to the setup used for data analysis in the main text. For (3), ‘cut’ means that the 
CMW is disconnected from the left part by setting ˆℓ ℓ =+h 0, 1 , corresponding to the simplest to implement setup, as described in the main text. A comparison 
between cases (1) and (2) shows that Method I yields very precise results, better by several orders of magnitude than Method II.
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magnetisation Sx(n, t) in the TFI model for the three different 
quenches employed is shown in figure E1 for times t  =  0 and 
t  =  90. The global shapes are quite different, while devel-
oping plateaus are visible for all three quench types at t  =  90. 
It can also be seen that around the signal front, the magnetisa-
tion of a single spin flip is always larger than of a domain wall, 
which in turn is always greater than the magnetisation of a JW 
excitation. This fact is reflected in the different values for the 
constant C in figure 3 of the main text.

The unscaled Sx(n, t) at h  =  0.45 after a JW excitation in the 
infinite system ground state versus absolute position n at large 
times 500  <  t  <  1000 is shown in figure E2. The ballistic prop-
agation of the signal front as well as magnetisation steps near 
the front are clearly visible. No such steps appear in the trans-
verse magnetisation. A scaling behaviour of the magnitude and 
distance to the signal front of the steps can be conjectured. This 
scaling behaviour is discussed in detail in the main text.

Other observables and signals, such as single spin flip and 
domain wall excitations qualitatively show the same propagation, 
shape and step structure. Their scaling behaviour, however, varies 
in scaling exponents and quality with varying field strength h.

We also show the bipartite entanglement entropy ( )S n t,ent
TFI  

after a JW excitation at h  =  0.45 in figure  E3. It is smaller 
than the entanglement entropy for tight binding fermions 

after a domain wall excitation at all times. In the latter case, 
( )S n t,ent

TB  approaches the asymptotic scaling function H( y) 
without any scaling in time. In fact, ( )S n t,ent

TFI  decreases in 
time, whereas ( )S n t,ent

TB  approaches H( y) from below. The 
exact relation between the scaled excess longitudinal mag-
netisation ( ) ( ( ) )= − | |M n t S n t S S, , / 2x x x

GS GS  and the fermion 
density NTB(n, t) described in the main text therefore does not 
carry over to the entanglement entropy.

E.2. XXZ model

For the XXZ simulations we use a Trotter step size of 
τ = 0.01 and maximum matrix dimensions of =m 150max  
for ∆ = −4, =m 160max  for ∆ = −3 and =m 180max  for 
∆ = −2. We show a representative plot of the unscaled stag-
gered magnetisation ˜ ( ) ( ) ( )= −S n t S n t, 1 ,z n z  at ∆ = −3 after 
a JW excitation on top of the infinite system ground state 
versus absolute position n at various times 800  <  t  <  960 
in figure E4. Again we observe a ballistic propagation of the 
signal front as well as magnetisation steps near the front as in 
the TFI model case. For the XXZ model an additional micro 
step structure appears due to ‘pairing’ of neighbouring sites, 
which is due to the spinon nature of the elementary excitations 
created by the signal (see section 3.2).

Figure E1. Unscaled magnetisation Sx(n, t) of the TFI model at h  =  0.45 versus absolute position n. At t  =  90 (red) from top to bottom on 
the right side: single spin flip in the x-direction (dot symbols), a domain wall excitation (+symbols), and a JW excitation (×symbols). The 
initial state at t  =  0 was a delta spike (green) for the single spin flip and a step function (blue) for the two other excitations.
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Figure E2. Unscaled magnetisation Sx(n, t) of the TFI model at h  =  0.45 versus absolute position n after a JW excitation for times 
500  <  t  <  1000 in time steps of 50.
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The scaling behaviour of the larger step structure is inves-
tigated in detail in the main text. The overall shape of the 
unscaled staggered magnetisation ˜ ( )S n t,z  looks similar to the 
shape of the longitudinal magnetisation Sx(n, t) of the TFI 
model with a JW excitation as shown in figure E1. Different 
signals such as single spin flips yield similar results.

Appendix F. Boundary reflections

In this appendix we consider the case of signals impacting 
the boundaries of a non-moving window for several different 
models. We study the time evolution beyond the time where a 
signal reaches the boundaries, both with Method I and Method 
II. In all cases we observe reflections from the boundary after 
some time. The nature of these reflections generally depends 
on the boundary update method as well as the initial uniform 
state and the type of the signal.

The models and signals that have been studied in particular 
are the TFI model with a JW excitation and a single spin flip 
in the x-direction, the XXZ model with a JW excitation and a 

single spin flip in the z-direction, the S  =  1 Heisenberg model 
with a spin up excitation (this particular case is also studied in 
[50] with a method similar to Method II, but only for shorter 
times), and the S  =  1 AKLT model [63] with a spin up exci-
tation. We observe reflections from the boundary after some 
time in all cases.

In the following we show results for the two cases of the 
TFI model with a JW excitation and the S  =  1 AKLT model 
with a spin up excitation, where we have used Method II for 
the left boundary and Method I for the right boundary to see 
their respective behaviour.

F.1. TFI model with a JW excitation

We again consider the TFI model at h  =  0.45 after a JW 
excitation in the infinite system ground state. We use a non-
moving window with N  =  50 and maximum bond dimension 

=m 120max , where the ground state MPS representation has 
bond dimension m0  =  30. The time evolution of the bipartite 
entanglement entropy ( )S n t,ent  and the magnetisation Sx(n, t) 

Figure E3. Unscaled bipartite entanglement entropy ( )S y t,ent
TFI  of the TFI model h  =  0.45 after a JW excitation versus scaled position y, 

which is at all times smaller than the entanglement entropy ( )S y t,ent
TB  for tight binding fermions, which approaches the scaling function H( y) 

without any scaling (see figure 3 in [44]).

−10 −8 −6 −4 −2 0 2

0

0.4

0.8

1.2

y = (n − n
0
 − vt) × (vt/2)−1/3

S
en

t(y
,t)

 

 

H(y)
t=100
t=500
t=600
t=700
t=800
t=900
t=1000

Figure E4. Unscaled staggered magnetisation ˜ ( )S n t,z  of the XXZ model at ∆ = −3 after a JW excitation versus absolute position n at 
times 800  <  t  <  960 in time steps of 20.
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can be seen in figure F1. The signal reaches the boundaries at 
≈t 40 and reflections start to emerge at ≈t 90.

We compare the magnetisation Sx(n, t) of this simula-
tion with the magnetisation ( )S n t,x

ref  of the reference simu-
lation of appendix D and show their absolute difference 

( ) ( ) ( )∆ = −M n t S n t S n t, , ,x x
ref  in figure  F2, where subplot 

(a) shows ( )∆M n t,  at the left and right boundaries of the 
N  =  50 non-moving window (n  =  1 and n  =  50, respectively) 
versus time t and subplot (b) shows ( )∆M n t,  versus position n 
inside the non-moving window at various times t.

In figure F2(a) it can be seen that initially the deviations at the 
right side (Method I) are much lower than at the left side (Method 
II) until ≈t 50. The deviation at both boundaries then increases 
exponentially further until ≈t 100, where it becomes of the 
order ( )O 1 . We notice that the deviations for the right boundary 
are always a bit lower than for the left boundary. We conclude 

that for the investigated case Method I performs slightly better 
than Method II in absorbing a signal for a limited time.

F.2. AKLT model with spin up excitation

We also consider the S  =  1 bilinear, biquadratic chain at the 
AKLT point [63] defined by the Hamiltonian

H S S S S
1

3
.

j
j j j j1 1

2ˆ ˆ ˆ ( ˆ ˆ )∑= ⋅ + ⋅+ + (F.1)

The ground state is a valence bond state and has an exact MPS 
representation with bond dimension m0  =  2 (see, e.g. [5]). We 
induce a signal on top of the infinite system ground state by 

applying the spin ladder operator +Sn0
. We use a non-moving 

window with N  =  60 sites and maximum bond dimension 
=m 200max . The time evolution of the bipartite entanglement 

Figure F1. Time evolution of the bipartite entanglement entropy ( )S n t,ent  (left) and the magnetisation Sx(n, t) (right) in the TFI model at 
h  =  0.45 after a JW excitation within a non-moving CMW of size N  =  50. Time evolution is continued after the signal has impacted the 
boundaries at ≈t 40. Reflections emerge at ≈t 90 at both boundaries, where we use Method I at the right and Method II at the left boundary.

Figure F2. Difference M n t S n t S n t, , ,x x
ref( ) ( ) ( )∆ = −  between magnetisation Sx(n, t) of figure F1 and magnetisation ( )S n t,x

ref  of the 
reference simulation of appendix D. (a) Difference at the immediate left and right boundaries of the N  =  50 non-moving window (n  =  1 
and n  =  50, respectively) versus time t. (b) Difference ( )∆M n t,  versus position n inside the non-moving window for various times t.
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entropy ( )S n t,ent  and the magnetisation Sz(n, t) can be seen in 
figure F3.

Here the signal impacting at ≈t 35 is reflected almost 
immediately. This stems from the fact that the MPS matrices 
at the boundary sites have to absorb all the information about 
excited states contained within the propagating signal. Here 
these matrices, however, have bond dimension m0  =  2, which 
is much too small for the matrices to absorb this information 
for a long time span.
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