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Nonequilibrium spatiotemporal formation of the Kondo screening cloud on a lattice
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We study the nonequilibrium formation of a spin screening cloud that accompanies the quenching of a
local magnetic moment immersed in a Fermi sea at zero temperature. Based on high-precision density matrix
renormalization-group results for the interacting single-impurity Anderson model, we discuss the real-time
evolution after a quantum quench in the impurity-reservoir hybridization using time-evolving block decimation.
We report emergent length and time scales in the spatiotemporal structure of nonlocal correlation functions in
the spin and the charge density channel. At equilibrium, our data for the correlation functions and the extracted
length scales show good agreement with existing results, as do local time-dependent observables at the impurity.
In the time-dependent data, we identify a major signal which defines a “light cone” moving at the Fermi velocity
and a ferromagnetic component in its wake. Inside the light cone we find that the structure of the nonequilibrium
correlation functions emerges on two time scales. Initially, the qualitative structure of the correlation functions
develops rapidly at the lattice Fermi velocity. Subsequently the spin correlations converge to the equilibrium
results on a much larger time scale. This process sets a dynamic energy scale, which we identify to be proportional
to the Kondo temperature. Outside the light cone we observe two different power-law decays of the correlation

functions in space, with time- and interaction-strength-independent exponents.
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I. INTRODUCTION

Quantum impurities are among the most fundamental
paradigms of strongly correlated quantum systems. Equilib-
rium properties of such systems have been subject to intense
investigation and are nowadays well understood. A famous
example is the Kondo effect, where a local Spin—% degree of
freedom interacts with the spins of a sea of free electrons [1].
The ground state of this system is a delocalized spin singlet,
formed by the local moment and the spin of the free electrons,
also called a screening cloud. The present work investigates
how such a screening cloud develops over time when a local
moment comes into contact with a free electron reservoir.

Quantum impurity systems, quite generally, feature an
emergent screening length scale at low temperatures which
provides the basis for their complex physics. In the 1950s,
magnetic impurities have already been identified as the cause
for a large resistivity anomaly at low temperatures when
immersed in metallic hosts in dilute quantities [2,3]. It was
found theoretically that the impurity’s local magnetic moment
becomes quenched below a certain temperature, known as the
Kondo temperature [1,4], Tk, to form a local Fermi liquid
[5]. Increased spin-flip scattering between pairs of degenerate
spin—% states then leads to an increase in resistivity below Tk.

Meanwhile, the Kondo effect has been observed also
in nanoscopic devices like quantum dots [6—12], carbon
nanotubes [13], and molecular junctions [14]. Here, the
narrow, zero-energy resonance in the local density of states
of the impurity, the Kondo-Abrikosov-Suhl resonance, leads
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to a well-defined unitary conductance in linear response.
The Kondo effect has also proven essential to understanding
tunneling into single magnetic atoms [15], adsorption of
molecules onto surfaces [16], or defects in materials such as
graphene [17]. On the theoretical side the Kondo effect lies at
the heart of our current understanding of correlated materials,
notably within the very successful dynamical mean-field
theory [18-20].

Insight into the details of the screening cloud is important
not only for the understanding of the physics of a single
impurity but also for the understanding of the interplay of many
magnetic impurities. Many impurities result in competing
effects among conduction electrons and local moments, which
form the basis for spin exhaustion scenarios [21,22] as well
as for the Doniach phase diagram [23,24], which describes
the relationship between Kondo [1] and RKKY interaction
[25-27].

Experimental characterization of the structure of the singlet
ground state, which is a bound state of the impurity spin and
the reservoir electron “screening cloud,” has proven difficult
so far. Several proposals exist for how to measure the spatial
extent of the spin screening cloud or its antiferromagnetic
correlation with the impurity spin [28,29]. In principle, the
real-space structure could be probed by performing nuclear
magnetic resonance/Knight shift [30-32] measurements on
bulk metals hosting dilute magnetic impurities, but the
approach remains challenging [28]. Indirect observation by
measurement of the Kondo resonance, for example, by photo
emission, also remains elusive due to the too narrow resonance
at the Fermi energy [33]. Other proposals suggest the use of
scanning tunneling microscopy [34] and scanning tunneling
spectroscopy to analyze adatoms or surface defects with Kondo
behavior [35,36]. In the realm of nanodevices, proposals
include experiments based on persistent currents [37] or in
confined geometries [38,39]. Some progress has been made
recently using single magnetic atoms [15], quantum corrals
[40], or impurities beneath surfaces [35].
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On the theoretical side, however, the structure of the screen-
ing cloud has been characterized, at least in the equilibrium
spin-spin correlation function [41] and the charge density-
density correlation function [42,43]. Theoretical results
[44-47] in equilibrium include studies employing quantum
Monte Carlo (QMC), [48] numerical renormalization group
(NRG) [49-51], and density matrix renormalization group
(DMRG) [52], as well as, in the noninteracting system, also
exact diagonalization [53].

The fascinating question of how the spatial structure of
the Kondo screening cloud develops in the first place, i.e.,
whether and how it is approached in a nonequilibrium time
evolution starting from an initial state without Kondo physics,
has recently come under investigation [55-57]. The present
work extends previous equilibrium DMRG calculations [52]
by investigating the dynamic nonequilibrium formation of
Kondo correlations. We study the physical behavior of the
single-impurity Anderson model (SIAM) [58] based on results
obtained with the DMRG [59-61] and the time-evolving block
decimation (TEBD) [62] for matrix product states [63]. The
system is sketched in Fig. 1. At time v = 0 [54] we start
from an unentangled state of a singly occupied impurity and
a half-filled Fermi sea (FS) of conduction electrons, |V) =
[1)impurity ® FS) teservoir- Then, after connecting the impurity to
the reservoir, we follow the evolution of correlation functions
over time as the system equilibrates and the “impurity spin
gets transported to infinity.” In this way, we obtain information
about the spatiotemporal structure of the screening cloud.

Recently, studies of the time-dependent behavior of length
scales in strongly correlated impurity systems were performed
for the Toulouse point of the anisotropic Kondo model, where
it maps onto a noninteracting system [55,56], and for the
symmetric Kondo model [57]. In both these systems a “light
cone”-like propagation of excitations with the Fermi velocity
was observed and the regions inside as well as outside the
light cone were investigated. Both studies identified a common
low-energy scale: the inverse Kondo temperature as a time
scale, which was seen in a spin correlation function outside
the light cone at the Toulouse point [55,56]. For the symmetric
Kondo model such a time scale was observed in an equilibrium
linear response calculation to a magnetic perturbation [57]. We
extend these studies to the STAM, which shares a common low-
energy behavior with the symmetric Kondo model. Whereas
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FIG. 1. (Color online) The model consists of a fermionic im-
purity with local Coulomb repulsion U, which is coupled to a
one-dimensional half-filled tight-binding chain in a particle-hole
symmetric fashion. At time 7 = 0 [54] we switch on the tunneling ¢’
and study the evolution of the spin and charge correlation functions,
S(r,7) and C(r,7).
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FIG. 2. (Color online) Schematic summary of results of this
paper. The time evolution of the spin correlation function S(r,7)
exhibits three characteristic regions in space and time. These are
divided by (i) a major signal following the quench, which propagates
at the lattice Fermi velocity vy and defines a light cone (dashed
line), and (ii) the spread of the Kondo spin screening cloud. Region
1 (green) lies inside the light cone and inside the Kondo screening
cloud. Here Kondo correlations develop on two characteristic time
scales. The main structure of the Kondo singlet correlations is formed
rapidly, at vr. Then these correlations approach their equilibrium
values exponentially slowly in time for T — oo, with an exponent
al ' that is proportional to the Kondo temperature Tk . Region 2 (red)
lies inside the light cone but outside the Kondo screening cloud. Here
the spin correlations decay as a power law in space [53]. In region
3 (blue), which lies outside the light cone and outside the Kondo
screening cloud, the correlation function at odd/even distances decays

_,5/C . .
as apower law o¢ r~ "/ in space with exponents that are independent
of time and interaction strength.

in the Kondo model, only spin interactions survive and charge
fluctuations are treated on an effective level [64], we take them
into account explicitly. To our knowledge, our study is the first
one analyzing the nonequilibrium properties of the screening
length in the interacting STAM.

Our results are summarized in Fig. 2, which also serves
as a guiding map for this work. We identify a major signal
following the quench, which propagates with the lattice Fermi
velocity vy and defines a light cone for the propagation of
information [55-57,65-69]. Inside the light cone the time-
evolved correlation functions converge to their equilibrium
counterparts which exhibit the Kondo length scale. We find
that Kondo correlations develop on two characteristic time
scales. The main structure of the Kondo singlet is formed
rapidly at vr. These correlations approach their equilibrium
values exponentially in time, defining a dynamic energy scale
ozg/e, which is proportional to the Kondo temperature Tk.
Outside the light cone, we find that correlation functions at
odd/even distances decay as a power law Fok in space,
with exponents which are independent of time and interaction
strength.
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The structure of this paper is as follows: We summarize the
specific model used in Sec. II. We define the Kondo singlet
in Sec. III, present our numerical approach in Sec. IV, and
provide an overview of the equilibrium situation in Sec. V. We
start our presentation of nonequilibrium phenomena in Sec. VI,
where we discuss the evolution of local observables. The main
findings of this work are available in Sec. VII. There we discuss
the nonequilibrium formation of the Kondo screening cloud in
Sec. VIT A. The situation outside the light cone is presented
in Sec. VII B. The quality of our numerical data is assessed in
Appendix A.

II. MODEL
We study a lattice realization of the SIAM [58],

ﬂSIAM = ﬂimp + ﬂtunn + ﬂres’ (D

which consists of a single fermionic spin-% impurity coupled
via a standard hopping term to a reservoir of noninteracting
tight-binding fermions (see Fig. 1). In particular, we consider
a particle-hole symmetric impurity with on-site interaction U':

Y A
Himp = _E Xg: fzj fa +Unanf¢ (2)

The electronic annihilation (creation) operators f, (f,) obey
the usual anticommutation relations with spin o = {1, |}, and
Alfe = f; £, is the particle number operator [70]. The impurity
is coupled via a tunneling term,

’thunn = _t/ Z(le-a fa + foI cla)’

to a one-dimensional tight-binding chain,

- 2(% eto L i)
o

such that the overall system, including the impurity, is of
length L. We always take the reservoir FS ﬂres half-filled. For
large L, the reservoir mimics a semi-infinite one-dimensional
tight-binding reservoir [71] with a semicircular density of
states at the first site and bandwidth D = 4¢ [72]. Studies
of finite-size effects are available in Refs. [33,37,45], and
[73-76]. The hopping parameter of the reservoir ¢ is taken to be
unity, and its coupling to the impurity #' = 0.3162¢ combine to
an equilibrium Anderson width [1] of A = 7 1 preservoir(0) =
? ~ 0.1t, where preservoir(w) denotes the density of states of
the reservoir.

At equilibrium, many characteristics of the SIAM are
known, although it poses a difficult interacting problem.
Seminal results for the ground-state and thermodynamic
properties of the SIAM at equilibrium are available from
perturbation theory [77-80], renormalization group [81-84],
and the Bethe ansatz (BA) [85-87]. The Hirsch-Fye QMC
[48,88] and the continuous-time QMC [89] accurately describe
the imaginary time dynamics. Further, some physical results
can be inferred from the Kondo Hamiltonian, which is related
to the SIAM by the Schrieffer-Wolff transformation, to obtain
its low-energy realization, in which charge fluctuations are
integrated out [64,81].
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III. THE KONDO SINGLET

at equilibrium, the STAM features a characteristic length
scale which, for finite interaction strength, is the Kondo length
scale and is expected to correspond to the size of the singlet
screening cloud. This length scale is defined as &x = T—F
[28,41,49,90-92]; i.e., it is proportional to the Fermi ve10c1ty
vr ~ 2t and the inverse Kondo temperature ﬁ [1,86,87]. Tk
can be extracted from many observables; most intuitive is
the definition as the temperature at which the local moment
becomes quenched, i.e., when the impurity entropy goes from
In(2), indicating the local moment regime, to In(1), indicating
the singlet state [93]. A scale proportional to Tk is also
available from the zero-temperature self-energy [94] or from
the width of the Kondo resonance in the spectral function
[95]. An analytic expression for Tk, as obtained from the
spin susceptibility, is available for the SIAM at particle-hole
symmetry in the wide band limit with a linear dispersion [96]
by the BA [85-87]: TBA VAUe 7:Y. The Kondo singlet,
therefore, is exponentlally large in the interaction strength U:

2t g
etox V. 3)

BA ~
K VAU

For typical Kondo materials, like dilute magnetic impurities in
free electron metals [97], one finds vy &~ 10° m/s and Tk ~
1 K valid, for example, in gold with dilute iron impurities [98].
Thus, the screening length becomes macroscopic, g & 1 um
[49].

Here, we extract the screening length scale £x directly from
correlation functions, and not via the Kondo temperature. The
spin correlation function is defined as

S(r,7) = (So - S, )(x), 4)

where S, = (S’j‘ ,S’;‘}S‘f) [99] and r denotes the distance from
the impurity in units of the lattice spacing (see Fig. 1). Due
to the oscillations of S, it is convenient to distinguish between
the spin correlation function for odd [S,(r, 7)] and that for even
[Se(r,7)] distances.

Length scales can be extracted from the crossover in the
functional dependence of S,(r,7) or via determining zeros or
minima in Sc(r,7) [49,50,53]. Its charge analog is defined as
[100]

Cr,v) =Y (oo irg)(T). )

oo’

Correlation functions without a time argument, S(r) and C(r),
refer to the ground state of the equilibrium system, Eq. (1), i.e.,
an impurity coupled to the free electron reservoir. Steady-state
correlation functions are indicated with t — oo. Later we
show that in this limit the time-dependent correlation functions
converge to the equilibrium correlations, S(r,7 — 00) = S(r),
as expected from the fact that the quench is intensive. An
intuitive measure which quantifies how much of the singlet
correlations is contained inside a distance r is the integrated
spin correlation function,

() =Y S0 (©6)

r'=0
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FIG. 3. (Color online) Equilibrium correlation functions. The equilibrium correlation functions for spin, S(r) [left; Eq. (4)], and charge,
C(r) [right; Eq. (5)], are shown for short distances from the impurity r. The correlation functions at even [odd] distances, S.(r) [So(r)], are
indicated explicitly in the left panel. The key is valid for both panels: data for the noninteracting system [(brown) crosses] are compared to
data for interaction strengths of U = 3 A [(blue) circles] and U = 6 A [(red) triangles]. The alternating behavior, present for all data sets, is

indicated by the dotted line in the U = 0 data.

As discussed below and in Refs. [48] and [52], the screening
length &; can be extracted from X(r,t) by defining it as the
length scale at which a certain fraction f (here we use f =
95%) of the correlation lies inside a given distance; i.e.,

X(.1) =1 = HX, ). (N

IV. METHOD

Here we outline how the correlation functions, Eq. (4) and
Eq. (5), are evaluated. We start with a short discussion of the
noninteracting system in equilibrium. In this case we find

_ . . 1
SU=0r) = (o) i) + 7 D (Coyers) Bdor — (€],
- 2(cj;cog)) (®)
= 3(che, )60 — (cley)), )
where (11,) = %(ﬁrT — f1,}), and the last result holds for the

unpolarized case. Here, cf /¢, denote operators for any one of
the spin directions o = {1, | }. The opposite spin direction is
denoted & = —o. For U = 0 at equilibrium [48]

SU=00) + ) v

In the particle-hole symmetric and non-spin-polarized case the
asymptotic limits can be analytically evaluated, using results
of Ghosh et al. in Ref. [53], to be

A a7

I

= ([ )7

c'=(r) = (10)

forrA — 00,

§U=0()|=
|SV=00)|= Lo

an

for re

for odd r, with y & 0.577 216 the Euler-Mascheroni constant.
The correlation function becomes 0 for even distances r. The
behavior of the spin correlation function exhibits a crossover

at distance &Y =0 ~ ”KF, which defines a length scale in the
noninteracting system.

We obtain both S(r,7) and C(r,t) for zero temperature
from computer simulations using matrix product state [63]
techniques. First, to study ground-state correlations, we em-
ploy the DMRG [59-61] on a system of length L, which is
typically < 500 sites. Second, to study the dynamic formation
of the Kondo singlet, we start from a decoupled system in the
state W) = |1)impurity ® |FS) reservoirs With anon-spin-polarized
half-filled FS, at time T = 0, and then switch on the tunneling
term ¢" = 0.3162¢ for times t > 0. The evolution in real time
is obtained from TEBD [62].

Matrix-product-state-based time evolution has proven to
be a highly accurate method to evaluate the properties of
one-dimensional strongly interacting quantum systems out of
equilibrium [102-114]. The combination DMRG and TEBD
is quasiexact as long as the quantum entanglement stays
tractable. It has been shown that the main limitation arises
due to the growth of entanglement after the quench [103,115],
which ultimately restricts the available simulation time. Fur-
thermore, since we are interested in the physics resulting from
an infinite bath, the maximum available simulation time is
restricted by reflections at the lattice boundary and therefore by
the finite spatial extent of the system. We have been able to reli-
ably evolve the system long enough to reach a local steady state
for all presented data sets. We have checked the convergence of
our correlation functions carefully by (i) making comparisons
to exact data in the U = 0 system, (ii) systematically studying
the dependence on the TEBD matrix dimension x for finite U,
and (iii) carefully analyzing the entanglement entropy. These
analyses as well as details of the numerical approach and
parameters are provided in Appendix A.

V. EQUILIBRIUM

We start our discussion by presenting the equilibrium spin
[S(r)] and charge [C(r)] correlation functions. S(r) was first
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studied by lishi [41], and C(r) by Griiner et al. [42,43],
who determined the basic spatial dependence and properties.
Seminal QMC data [48] have been extended with the use of
the NRG [49,50] and recently also the DMRG [52]. Here
we summarize the most important findings, relevant for the
subsequent discussion, and we provide details specific to the
finite-size model and numerical method used. In particular,
we identify a length scale in the equilibrium spin correlation
function and show later that our nonequilibrium correlation
functions converge to the equilibrium correlation function for
long times 7.

As shown in Fig. 3, both S(r) and C(r) exhibit an oscillating
behavior, o< sin (kgr). Since the system is half-filled, the Fermi
wave vector 18 kp = % and the oscillation period is r = 2
sites. We first discuss the spin correlations for U =0 using
Eq. (9). In this case we find SY=°(0) = 3 (i) (1 — (fipy)) = 3
Furthermore, SY=%(r) vanishes for even distances r, Wthh
follows from general properties of tight-binding fermions
[116]. The odd-r correlations S,(r) are negative and therefore
antiferromagnetic with respect to the impurity. For U > 0,
So(r) stays negative and increases in magnitude [117]. At the
same time, the spin correlation function for even distances
Se(r) gradually develops ferromagnetic correlations at short
distances, while it is antiferromagnetic at longer distances. On
the one hand, it is the antiferromagnetic component which
reflects the screening cloud and signals the formation of the
singlet ground state. On the other hand, the ferromagnetic
component can be attributed to Coulomb repulsion of opposite
spins [48]. Neither the period nor the phase of the oscillations
is changed by the presence of interactions [48].

The charge correlation for U = 0 is linked to the spin
correlation via Eq. (10). There is oscillatory behavior between
even and odd sites. For even sites the correlation function is
unity, while for odd sites it increases monotonically towards
unity. For finite interaction strengths we observe a suppression
of these Friedel-like oscillations [118] with increasing U
[119]. At even distances the charge correlations show behavior
similar to that of the odd channel, however, of a smaller
magnitude. The suppression due to the interaction can be traced
back to the change in the impurity spectral weight, which
develops a narrow Kondo resonance with a width proportional
to Tk at the Fermi energy [42,43].

While at U = 0 the characteristic length scale is £V=0 oc %
for finite U, long-range correlations develop, which change the
behavior at a distance £ ;—Z This crossover, characterizing
the size of the Kondo spin compensation cloud, is visible
in the spin correlation function S(r). Figure 4 (top) shows
that the antiferromagnetic spin compensation is visible in the
spin correlation function at odd distances, So(7). So(7) changes
from a logarithmic dependence at small r% to a power-law

behavior at large r% [see Eq. (11)] [53,120]. We note that
this is different from the Kondo model, where the behavior is
S(r)ocr~@ for r < &g to S(r) oc r~9FD for r > &g, with d
being the dimensionality of the conduction electron reservoir
[49,50].

The crossover is difficult to extract directly from numerical
data for S,(r) since very large system sizes and small A are
required to reach the low- r— limit. We nevertheless found
two ways to obtain an estimate for the crossover scale. First,
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FIG. 4. (Color online) Extraction of the equilibrium screening
length &x. Results are shown for U = 1A (brown line) U = 3A
(blue line), and U = 6A (red line). Top: Spin correlation function for
odd distances, S,(r) (solid line), which displays a crossover between
two behaviours at small and large r. This is particularly obvious
in the U = 0 results, shown in the inset. There, SU=(r) displays
the asymptotic behavior given in Eq. (11). The large-r behavior
is shown by the dashed black line. Our interacting matrix product
state calculations are determined for A = 0.1, which corresponds
to the thickest (green) line in this plot for U = 0. Middle: Integrated
correlation function X (r) of Eq. (6). Dashed vertical lines indicate the
distances £ 7 inside which 95% of the singlet cloud is contained, which
we use to estimate the screening length. Bottom: Spin correlation
function for even distances, S.(r). The position &; of the minima
(circles and dashed vertical lines) is used as the alternative definition
for £k . Inset: These &5, [(green) squares] and &E [(orange) triangles].
As reference data we show the BA result and data obtained from an
NRG calculation [101]; see text.
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a screening length scale can be extracted from the integrated
correlation function X () [see Fig. 4 (middle)]. Similarly to
Refs. [48] and [52], here we denote & 1? the distance at which
95% of the singlet correlations are covered, i.e., by Eq. (7).
Second, we extract a length scale &5 from the spin correlation
function at even distances S.(r), which, for finite U, contains
both a ferromagnetic component at short distances and the
decaying antiferromagnetic one at large distances. As shown in
Fig. 4 (bottom) the function S, () displays a 0 and a minimum
and is fit well by a Morse potential [121]. We take the position
of the minimum as a measure for the crossover scale £5. The
numerical results obtained with these two crossover scales
agree very well and they also agree qualitatively with that
obtained by locating the crossover length between »~'+ and
r~+14) behavior in the So(r) data, which can be estimated
from Fig. 4 (top).

In the inset in Fig. 4 (bottom) we show that our two
estimates, E}g and &g, agree well with established results
for the equilibrium screening length. An analytical result,

BA [Eq. (3)], for the screening length is available via its
relation to the Kondo temperature, which can be obtained
from the BA in the wide-band limit by calculating the static
spin susceptibility, Eq. (3). A second benchmark is provided
by accurate numerical data from the NRG [101,122], where

TII;I RG.S s defined as the temperature at which the impurity

entropy reaches S = # [123]. However, while the large-U
behavior is universal for all these definitions, the small-U
expression, as well as the overall coefficient, depends on
the specific observable from which it is extracted (spin
susceptibility, entropy, etc.). Our data, £F and &5, agree well
with the NRG result, EERG’S; they are all compatible with a
simple exponential growth in U,

Ex ocems! (12)

For U > 2 A this agrees with the BA prediction, Eq. (3), which
features an additional factor of ~/AU. We note that for U <
2 A no well-defined local moment has formed [52]; i.e., U
is too small for the system to develop a pronounced local
moment regime in between the low- and the high-temperature
limit. Our data also compare very well with those presented
in an extensive study of length scales in the SIAM on a finite
lattice in equilibrium in Ref. [52].

These results indicate that the method presented here
is reliable in producing unbiased correlation functions in
equilibrium which exhibit the characteristic features of a
Kondo screening cloud. The cloud is well contained within
the numerically tractable lattice size L < 500 for U < 6A (see
Appendix A). Therefore, we focus our calculationson U < 6A
when discussing the time-dependent correlation functions.

VI. TIME EVOLUTION OF LOCAL OBSERVABLES

Before beginning the discussion of the temporal evolution
of spatial correlations we present the time evolution of the local
observables with a focus on the impurity site. At time 7 =0
we start with a spin-1 particle at the impurity and a non-
spin-polarized half-filled FS: [W) = |[1)impurity ® IFS)eservoir-
For the connected equilibrium system in the thermodynamic
limit we expect a uniform and non-spin-polarized density

PHYSICAL REVIEW B 91, 085127 (2015)

that is (no4)(t — 00) = 0.5, (ngy)(c0) = 0.5, {ng)(c0) =1,
and (S§)(co) =0. The impurity double occupation in a
noninteracting system or in the high-temperature limit is
(norng l)UZO(oo) = 0.25 [124]. For finite interaction strength
the evolution is nontrivial.

Figure 5(a) shows the expectation values of the spin-z
projection (S7)(t) = %((n,T)(r) — (n,,)(7)). Due to particle-
hole symmetry, the total charge density (n,)(t) is unity.

Indeed we find that, following the hybridization quench,
the excess spin-1 on the impurity is transported away. This
happens essentially at the Fermi velocity vp & 2¢, as shown
by the major signal in Fig. 5(a).

The resulting missing spin-1 density is exactly compen-
sated by the spin-| density due to particle-hole symmetry.
This compensation takes place simultaneously and completely
symmetrically in both spin channels as is evident from the
spin-1 and spin-|, currents shown in the inset in Fig. 5(a). The
time integral over the spin current reveals that half a particle
is transferred in or out of the impurity in a time of the order of
~3A~! for U = 3A.

Figure 5(b) shows the local evolution of expectation
values as a function of the time and interaction strength. All
expectation values converge to their respective, exactly known,
equilibrium values as noted above. The time-evolved double
occupancy also converges to the equilibrium results obtained
by DMRG. This indicates that our time evolution is accurate
and unbiased, at least for large times. For more convergence
checks and uncertainty estimates we refer the interested reader
to Appendix A.

At a certain distance r from the impurity, a resulting
signal arrives at T ~ # This signal is oscillating and strongly
damped in time [see Fig. 5(b)]. With increasing interaction
strength U, the initial spike becomes dampened in amplitude,
but the oscillating tail gains weight. The signal at r = 40 in the
double occupancy has the same structure on a scale of 1073
around its equilibrium value.

In the following we consider the temporal decay of the
spin-z density at the impurity in detail. Previous studies using
the time-dependent NRG for the STAM [125] and analytical
calculations at the Toulouse point of the anisotropic Kondo
model [126] found that the initial dynamics of (S7)(7) is

governed by a fast time scale, o« ~, while the eventual
L governed by

x>
relaxation exhibits a long time scale, T
Kondo physics. These results were confirmed by bold-line
QMC simulations [127] on the SIAM, which showed these
two time scales collapsing into one for an applied bias voltage.

From our data we find that, as expected, the spin-z density

at U = 0 decays in a single-exponential manner,
($2V=00r = 0,7)) =(0.561 = 0.001)¢~>1-090+00024
+ (0.0001 = 0.0001);

hence it features the fast hopping time scale 7y—y %. For
finite U, a double-exponential decay develops:

(S(r =0,7)) = c1e” "4 4 cre” T,

13)

In Figs. 5(c) and 5(d) we show the results of this data analysis
with respect to the interaction strength U in the available range
of U € [1,6]. We identify one fast, exponential decay, G, ~
2(1.4 £0.2), yielding a U-independent time scale Tg,q X %
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FIG. 5. (Color online) Time evolution of local expectation values. (a) Evolution of the spin-z density (S>(z)) as a function of the distance
r and time 7. We plot data for U = 3A and the color axes are cut off below the maximum for better visibility of fine structures. The vertical
black line indicates a cut at distance r = 40. Inset: Time-dependent spin current [115] (j, (7)) =i 7w t'( f; Clg — CL, f») at the bond next to the
impurity, j;(t) (red line) and j, (t) (blue line), and the total current j(7) (cyan line). (b) Local spin-z density at the impurity site r = 0 and at
r = 40 as a function of time. Note that the r = 40 data are shifted such that the light cone coincides with the origin. From the local double
occupancy at the impurity site r = 0 we subtracted the equilibrium values Dy(U) = {0.25,0.1745,0.1153} for U = {0,3,6}A as obtained by
DMRG. All data are plotted for three interaction strengths, U = {0,3,6}A, from lighter to darker color, as indicated by the black arrow. (c) Fit
coefficients ¢, of the double-exponential fit of the decay of (S*(r,7)) to its equilibrium value as a function of U [cf. Eq. (13)]. The magenta
line indicates a linear fit to the coefficient of the slow component ¢;. (d) Decay rates G/, of the double-exponential fit of the decay of S*
to its equilibrium value as a function of U. The magenta line indicates an exponential fit to the decay rate of the slow component G,. The
single-exponential behavior at U = 0 A is indicated in green.

similar to 7y —¢. The corresponding coefficient ¢, decreases in This implies that the Kondo physics manifests itself in the
magnitude with increasing U In contrast, the more interesting ~ local dynamic observable (S;)(r) in the form of a slow
slow exponential decay G has a coefficient ¢c; which becomes time constant, Tgoy, o €2©19%0.02% \which shows the same
more and more prominent with increasing U . In particular, the U behavior as the Kondo temperature [cf. Eq. (12)].

coefficient ¢; exhibits a linear behavior in U The double occupancy (o119, )(T) converges to its equi-

U librium value with the same dominant slow decay (within
c1(U) =(0.014 + 0.0l)z + (0.185 £ 0.004). numerical uncertainty) as observed in the spin-z density for
finite U. At U = 0 the fast decay rate is twice the rate observed
The slow decay rate G is exponentially small in U': in the spin-z density at U = 0.
v Performing the same analysis for distances r away from the
G1(U) = (1.4 £ 0.1)e 72O 19025 4 (0.05 £ 0.04). impurity that considers (S7)(tr), we again observe the same
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FIG. 6. (Color online) Overall profile of the space-time evolution of the spin correlation function S(r,7), Eq. (4). (a) S(r,7) as a function of

distance r for four times: from bottom to top, T = 0.5A7!, 1 =3A~!, 1 =5.5A7!, and = 9A~!. The ferromagnetic contribution is shown
as (red) circles, while antiferromagnetic components are represented by (blue) triangles. Dashed horizontal black lines indicate the zeros. Far
behind the signal wake the antiferromagnetic component coincides with S,(r,7) and the ferromagnetic component with S.(r,7). The signal
front (light cone), traveling at speed vy = 2¢, is indicated as the dashed vertical black line. In all panels the signal at very small distances,
which is of order unity, has been cut off for better visibility. (b) Three-dimensional visualization of S(r,7). The color bar in (b) is also valid for
(c) and (d). (c) Spin correlation function at odd distances: |S,(r,7)| (top view). (d) Spin correlation function at even distances: |S.(r,7)| (top
view). (c, d) Horizontal black lines indicate times at which data are presented in (a). The light cone defined by v is represented by the thick

dashed black line. All data shown are for U = 3A.

decay as at the impurity site within the fit uncertainty [see
Fig. 5(b)]. This supports the quasiparticle picture introduced
in Ref. [56], which translates the physics at the impurity via
emission of spin-dependent quasiparticles to a given distance r.

VII. TIME EVOLUTION OF THE SCREENING CLOUD

A very interesting question is how the spatial structure of
the Kondo screening cloud develops, i.e., whether and how
it is approached in a nonequilibrium time evolution starting
from an initial state without Kondo physics. The question was
recently first studied in pioneering work on the case of an
exactly solvable model, namely, the anisotropic Kondo model
at the Toulouse point [55,56,128]. A complementary numeric

study using the time-dependent NRG [57] was performed
shortly afterward on the isotropic Kondo model, extending
and confirming the analytical results from the Toulouse limit.

Let us now investigate the formation of spatial correlations
S(r,t) [Eq. 4)] and C(r,7) [Eq. (5)] after switching on the
tunneling between the Anderson impurity and the reservoir
electrons. We first focus on the major characteristics of S(r,7),
displayed in Fig. 6. At time 7 = 0 the initial configuration
is a prOdUCt state |W(r = 0)) = |T>impurity ® |Fs)reservoir' Us-
ing Eq. (8), we find at the impurity SY=(» = 0,7 =0) =
%(ﬁo) - %(ﬁoﬂ(ﬁm) = 0.75, where g =) flg, since we
have (fig1) = 1 and (7igy) = 0.

After the quench in the hybridization ¢’, we observe a strong
signal in S(7, 7), traveling at the Fermi velocity vr & 2¢, which
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FIG. 7. (Color online) Detail of the time-evolved correlation functions. S(r,7) (bottom) and [C(r,7)] (top) for 7 = 2A~! (left column) and
T =4A"! (right column). The signal front, traveling at speed vg A 2t, is indicated as the dashed vertical black line. Results are shown for
different values of U as indicated in the key, which is valid for all panels. The alternating behavior is indicated by the dotted line in the U = 0

data.

defines a light cone. It has been attributed to the propagation
of quasiparticles in Ref. [56]. The propagating signal front
divides the space time into two regions: (i) a region at large
times and small distances, where the correlation function
is directly affected by the impurity and Kondo correlations
develop; and (ii) a region at small times and large distances,
where small structures from the quench are observed. In
Sec. VII A and Sec. VII B we discuss the detailed behavior of
the correlation functions within these two regions. The signal
front itself carries a large chaotic disturbance in its wake and
a small monotonic perturbation ahead of it.

As discussed below in detail, the time-evolved data S(r,7)
converge to the equilibrium correlation functions S(r) within
the light cone. Already a look at the almost-vertical structures
in Figs. 6(c) and 6(d) for times T > 8A~! and a comparison
of the line plots for T = 6.5A! and 7 = 9A~! for small
distances » hint at the convergence to a local steady state
within the light cone.

Figure 6(d) reveals that, as expected from the equilibrium
state, a ferromagnetic correlation develops for even distances
r in Sc(r,r) within the light cone for finite U, while
outside the light cone this correlation function is always

antiferromagnetic. As shown in Figs. 6(a) and 6(c), the wake
behind the light cone carries a ferromagnetic signal also at odd
distances r that is in the otherwise antiferromagnetic So(r,7)
for all U. We interpret this signal as remnant information
of the spin which occupied the impurity at T = 0 before
the quench. Following the signal wake, all characteristic
features of the equilibrium correlation function S(r) develop
quickly on a qualitative level. Far behind the signal wake the
antiferromagnetic component coincides with S,(r,7), and the
ferromagnetic component with S.(r, 7).

A closer look, as provided in Fig. 7, reveals that the
nonequilibrium correlation functions gradually develop the
characteristic features of the equilibrium correlation functions
S(r)and C(r) for r < vpt. As a precursor of the equilibrium
structure, the spin correlation function S(r,t) develops the
oscillatory behavior of its equilibrium counterpart inside the
light cone. That is, it oscillates from an antiferromagnetic
correlation at odd distances r to a ferromagnetic correlation at
even r for finite U or to 0 at U = 0. This structure of the phase
and period of these oscillations in space is fixed over time
inside the light cone. However, the light cone induces a phase
shift of 7 in the nodal structure of the correlation function. We
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FIG. 8. (Color online) Convergence of the nonequilibrium data to the equilibrium results inside the light cone. Spin correlation functions
S(r,7) at odd, So(r,7) (left), and even, S.(r,7) (right), distances are depicted as a function of the distance r for three times—t = 2.5A7",
7 =5A"", and T = 7.5A~'—in a log-log fashion (dashed lines). We plot —S,(r,7) since it is almost entirely negative, while S.(r,t) is positive
inside the light cone and negative outside (see Fig. 6). Blue lines represent |S.(r,7)| in regions where S.(r,7) is negative. The key depicted in
the left panel is valid for both panels. Green arrows mark the direction of increasing time t. Data from the equilibrium simulation are plotted
in solid black and referred to as T = oo in the key. The vertical cyan lines in the left panel mark those distances at which cuts through the data
as a function of t are presented in Fig. 9. All data shown are for U = 3A.

attribute this phase shift to the initial state of the FS. It takes
place across the broad signal behind the light cone visible at
around r ~ 30 in Fig. 7. As a function of U the same behavior
is present inside the light cone as in equilibrium, apart from the
chaotic disturbance at the light cone. The qualitative functional
form of the correlation functions develops quickly in the
wake of the light cone. However, its amplitude overshoots the
expected equilibrium value slightly and then gradually decays
to it at a much slower time scale (see discussion in Sec. VII A).

The charge correlation function C(r,t) gradually develops
reduced Friedel-like oscillations with increasing U, as ob-
served at equilibrium. We find C(r,7) < 1 except at distances
r < 3 and in the vicinity of the signal front.

In the following we investigate in detail the interplay of
characteristic time and length scales and their dependence on
the interaction strength.

A. Inside the light cone

Next we discuss the spin correlation function S(r,t) inside
the light cone. Figure 8 shows the convergence of S,(r,7) and
Se(7,7) to their equilibrium S,(r) and S.(r) values for large
times in detail. For large times the odd component is antifer-
romagnetic, while the even component exhibits a sign change
from ferromagnetic at small distances to antiferromagnetic at
large distances (blue curves) as discussed in the equilibrium
results. The vanishing ferromagnetic component represents a
related measure for the extent of a screening cloud [48].

In the following we identify a time scale at which large
correlations with the impurity develop inside the light cone,
i.e., for distances r < vyt (see Fig. 2). In Fig. 9 (left) we show
the difference between the time-dependent spin correlation
function and the equilibrium result: AS,/e(7,7) = |Soe(r,T) —
So/e(r)|. This quantity exhibits contributions from the traveling
signal, which show up in the form of large spikes at times

TR # We first focus on the convergence in time at fixed
distances r. For times beyond the signal wake t U’—F, the
qualitative structure of correlations has established itself; i.e.,
Kondo correlations have reached the given distance r. We
find that soon after the signal wake S(r,7) converges to the
equilibrium result exponentially in time,

—TATS

o/e

ASose(r,T) o e U
[see Fig. 9(a), inset]. Note that this implies that the curves move
“as a whole.” We determine I'S /o by a single-exponential fit in
time of AS,.(r,T), successively for distances r € [40,120].
We observe that F;f/e(r,U ) is only weakly dependent on r,
with odd distances r being especially stable [see Fig. 9(b)],
while T'$ has larger uncertainties and some drift at large
r. The uncertainty increases slightly with distance r, which
is also due to the smaller available fit intervals in 7. A
two-exponential decay as in Sec. VI, featuring also a fast
time scale % and independent of U, might be present in
the data but cannot be identified due to the presence of the
signal at the light cone, which overshadows this fast decay.
In general, the fit quality improves with increasing U. Details
on the data analysis and uncertainty estimates are provided in
Appendix B.

In order to condense this information we consider a mean

value,

LY

Foe)i= 57 D ToenU),

" r=40(41)
with N, the number of distances in the respective odd or even
interval [see Fig. 9(b)].

Our first main result is that Fg/e(U ) shows exponential

behavior in U, like the Kondo scale, Eq. (12):

I5,(U) oc e s, (14)
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FIG. 9. (Color online) Identification of a dynamic time scale in the exponential convergence to equilibrium inside the light cone.
(a) Deviation of the time-dependent spin correlation function from the equilibrium spin correlation function at even (solid lines) and odd (dashed
lines) distances AS;,(r,7) as a function of time 7 for three distances: r = 20/19 (blue lines), r = 70/69 (green lines), and r = 120/119 (orange
lines). For better visibility we show —AS,(r, 7). The signal changes behavior at the light cone at 7 & Ur—F which is visible as a large hump. The
region inside the light cone is to the right of this hump. The semilogarithmic zoom to this region in the inset shows exponential convergence. To
separate the curves of the even and the odd components in the inset, data for odd distances are multiplied by a factor of 100. Data shown are for

U = 3A. (b) Extracted decay rates I'’

e/o

(r,U) as a function of distance r for three values of interaction strength: U = {2,4,6}A. (c, d) Spatially

averaged exponential decays at odd (c) and even (d) distances I'S /(U) as a function of the interaction strength U (circles). The dynamic scale
oef =0.28 £0.03 and af = 0.29 £ 0.04, Eq. (14) (solid black line), is extracted via a single-exponential fit of the respective data where only
data points for U > 1A are considered (blue circles) and data for U < 1A are excluded (orange circles). For details of the fits see Appendix B.

Figures 9(c) and 9(d) show the fit in U to Eq. (14) where
we find & = (0.28 £ 0.03) and & = (0.29 + 0.04), which is
similar to the BA result in the wide-band limit for the Kondo
temperature, TI?A x e’“BA%, apa = 0.196 [compare Eq. (3)].
The deviation of the effective exponent <)e§/e from aga may
be due to the fact that it is particularly difficult to reach the
common asymptotic limitin space and in time for large U . Note
that (S(0,7))(S(r,7)) < S(r,7), thus the connected correlation
function displays essentially the same behavior as S(r, 7).

We conclude that the formation of Kondo correlations
inside the light cone is a process which involves two major time
scales. The first time scale is fast and determined by the lattice
Fermi velocity vg, which defines the light cone and develops

qualitatively correct correlations in S(r,7) and C(r,t). The
second time scale is slow and depends exponentially on U. This
process sets in after the qualitatively correct correlations have
built up with vp and renormalizes the correlation functions,
which then converge at an exponential rate, Eq. (14), ozg/e x
Tk, to the equilibrium result.

The SIAM is related to its low-energy realization, the
antiferromagnetic, symmetric Kondo model via the Schrieffer
Wolf transformation [64], which effectively integrates out
charge fluctuations. The two models share common features
in their low-energy behavior, most prominently the Kondo
scale Tk . Note, however, that the correlation functions of the
two models have very different spatial structures in general.
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FIG. 10. (Color online) Correlations outside the light cone. Left: S(r, ) (blue, green triangles) and C(r, ) (orange, magenta circles) outside
the light cone with their t = 0 values subtracted and resolved by even and odd distances r. Data are depicted as a function of r for two
times: T = 2A~! and T = 4.5A~". Note that we only display data in the vicinity of the light cone (dashed vertical black lines). For reasons of
representation only, dataat T = 4.5A~! are scaled by a factor of 1.6. Middle: Modulus of the data in the left panel plotted in a double-logarithmic
representation. The key in the left panel is also valid. Straight lines represent power-law fits. Right: The extracted power-law coefficients yes/o
(dashed blue/green lines) and y.£ (dashed orange line) are plotted as a function of the time 7. Error bars, shown for some data points only,
are estimated from the nonlinear fit presented in the middle panel and its susceptibility to changing the fit intervals. Solid horizontal lines
indicate weighted time and interaction-strength averages: y5 = 1.9 £ 0.3, 5 = 4.8 £ 0.9, and ¥ = 1.7 £ 0.3. Data in all three panels are

for U = 3A.

It is therefore interesting to compare our results to recently
obtained ones for the Kondo model. In Ref. [57] Lechtenberg
et al. studied a coupling quench in the symmetric Kondo
model using the time-dependent NRG as well as second-order
perturbation theory. Similarly to our results for the STAM, they
found that in the Kondo model spin correlations develop rather
rapidly, on the scale of the Fermi velocity. In the linear response
to a magnetic field, at equilibrium they observed another,
slower time scale similar to ﬁ Our results unambiguously
and quantitatively identify this common slower scale ﬁ
beyond linear response, directly from the nonequilibrium time
evolution of correlation functions.

Charge correlations in equilibrium do not exhibit Kondo
physics. We observe that the charge-time-dependent corre-
lation functions C(r,7) do exhibit qualitatively the same
convergence to equilibrium as the spin correlations S(r,7),
that is, with a time constant exponentially large in U (not
shown). The same analysis as for the spin using Eq. (14) yields
respective coefficients for the charge correlation function
O‘S/e ~ (0.3 £ 0.1). That is, the exponent is the same as for the
spin, albeit with a larger uncertainty. We attribute this to the
resolution of the spin in the correlators present in C(r, 7). Note
that this is true neither for the local density, which does not
show such a scale, nor for the mean-field result, C™(r,7) o 1.

B. Outside the light cone

For distances r > vpt, i.e., outside the light cone (see
Fig. 2), we find decaying correlation functions S(r,7) and
C(r,7) as a function of r (see Fig. 10). As before, both spin and
charge correlation functions show alternating behavior from
site to site. The overall magnitude of both correlation functions
decreases over time and the charge correlation function is of
a smaller magnitude than the spin correlation function for all
except very early times. To identify the correlations generated
by the quench, we subtract the initial correlation S(r,7 = 0)
and C(r,7 = 0) from the time-dependent data.

The second main result of this work is that correlations
outside the light cone are power law suppressed,
IC(r,7) — Cr,0)] o< r %,

1S(r,T) — S(r,0)| oc r 7ok, (15)

with slightly time-dependent exponents yos/e and y£. Due to
the finite size of the system, we only have a limited set of
data available to extract the asymptotic decay outside the
light cone. We start the extraction of power-law exponents
at distances r; = vrT + 35 to avoid spurious contributions
from the light cone and end it at r, = L — 70 to avoid a
bias originating from the boundary at L = 450. From the
separate fits for odd/even distances we obtain y> ~ 1.9 +0.3
and y ~ 4.8 £ 0.9. The charge correlation function exhibits
a power-law decay y,” ~ 1.7 £ 0.3 for the odd component,
while the even component’s behavior cannot be identified
within our numerical accuracy due to the small magnitude
of the correlations. The fit has been performed in the same
fashion as presented in Appendix B but here we estimate the
uncertainty in the y’s from the fluctuations of the respective y
upon changing the start (7;) and end point (r,) of the fit. Within
this uncertainty, the values are independent of U and 7.

Considering the fact that extracting exponents from nu-
merical data is challenging, our results agree quite well with
two recent studies of similar models exhibiting comparable
low-energy physics. First, in Ref. [56] Medvedyeva et al.
obtained time-dependent correlation functions at the Toulouse
point of the anisotropic Kondo model with a linear dispersion.
In an analytic calculation in several limits, neglecting Friedel
oscillations, they showed that outside the light cone the
commutator spin-z correlation function ([S’é S'f (7)]-), which
is related to the linear response to a perturbation, vanishes.
For the anticommutator, which is proportional to our S(r,7)
[see Eq. (4)], however, they obtained a power-law decay r~>
at zero temperature (see Eq. 27 in their work). They found
the initial entanglement in the reservoir FS to be responsible
for the power-law decay of the anticommutator correlation
function.
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Moreover, second-order perturbation theory results [57]
suggest that initial correlations of the FS transfer to the time-
dependent correlations outside the light cone. Here again a r >
power-law decay outside the light cone was obtained, this time
for the isotropic Kondo model with antiferromagnetic coupling
J. Our study of the symmetric SIAM finds an r~2 decay for
So(r,7) outside the light cone, which we attribute to the same
structures of the electronic reservoir in the three studies. We
are not aware of any previous reports of even-distance decay
exponents y,5 oc r .

VIII. CONCLUSIONS

We studied the time-dependent formation of the spin
screening cloud in the SIAM. Starting from an unentangled
state we switched on the impurity-reservoir hybridization and
followed the subsequent dynamics in real time. We used
the DMRG to obtain ground states and TEBD to obtain
spin and charge correlation functions. From these correlation
functions we obtained characteristic time and length scales.
Our results agree with previous calculations at equilibrium
and, for local observables, out of equilibrium. We found
that the nonequilibrium correlation functions converge to the
equilibrium results for long times.

In the time-dependent data, we identified a linear spreading
of signals traveling at the lattice Fermi velocity, which has
been referred to as a light cone in recent literature on the
buildup of a screening cloud at the Toulouse point of the
anisotropic Kondo model [55,56]. We observed a ferromag-
netic response in the wake of the signal at the light cone. While
Refs. [55] and [56] identified the Kondo temperature as an
inverse time scale in the anisotropic Kondo model outside the
light cone, for the symmetric Kondo model it was observed
as a time scale in an equilibrium linear response calculation
to a magnetic perturbation following an initial fast decay [57].
We observe directly from the nonequilibrium time evolution
of correlation functions that, in the SIAM too, the structure of
the correlation functions inside the light cone emerges on two
time scales. The qualitative core of the correlation functions
develops rapidly, at the lattice Fermi velocity. This includes the
phase and period of oscillations as well as fixed ferromagnetic
and antiferromagnetic domains. These correlations then reach
their equilibrium values exponentially slowly in time, defining
a dynamic rate which has the same exponential U dependence
as the Kondo temperature.

Outside the light cone, We ﬁnd a power-law decay of the

correlation functions o« » ok , with essentially interaction-
strength- and time-independent exponents, Eq. (15). In ad-
dition to the r~2 decay also observed in the Kondo model
[55-57], we find a decay o r~>.

Our results could be experimentally verified in one-
dimensional optical lattices featuring two fermionic species.
By monitoring the evolution of the spin correlations in time,
our findings provide the basis for extracting information about
the dynamic scale and, therefore, indirectly about the Kondo
screening cloud dynamics as well as the system parameters.

Possible future extensions to this work include the study of
the inverse process. Starting from a coupled impurity-reservoir
system and investigating the Kondo destruction after switching
the hybridization to 0 would allow study of the time-reversed
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situation. It would also be very interesting to study the effects
of a bias voltage on the Kondo screening process using a two-
terminal setup as in Ref. [115]. Further interesting extensions
involve the study of conduction bands with singularities or
testing of implications of the nonequilibrium fluctuation-
dissipation theorem. Also, calculations away from particle-
hole symmetry or with applied magnetic fields are feasible.
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APPENDIX A: NUMERICAL DETAILS

In this Appendix we specify details about our numerical
analysis carried out viathe DMRG [59,60] and TEBD, [62] and
we present the DMRG and TEBD parameters used. In addition,
we discuss finite-size effects and the convergence as a function
of auxiliary parameters specific to the numerical method
applied, as well as the stability of the real-time evolution. Our
numerical implementation of the DMRG and TEBD is flexible,
is parallelized, and exploits two Abelian symmetries: particle
number N and spin projection $%. To find ground states we
use the two-site DMRG algorithm with successive single-site
DMRG steps. The time evolution is based on a second-order
Suzuki-Trotter decomposition of the propagator [61,63].

After extensive studies of the dependence of our results on
auxiliary system parameters we found converged results for a
Trotter time step of 87 = 0.05¢~!. We used DMRG and TEBD
matrix dimensions of y = 2000 states and always started the
DMRG optimization from a half-filled system in the canonical
ensemble where alternating up and down spins are chosen as
the seed. A detailed discussion is available in Ref. [115] in the
context of previous work.

Figure 11 shows the equilibrium DMRG calculation of the
correlation functions. The influence of the finiteness of the
lattice is twofold:

(1) The equilibrium spin correlation function S(r) displays
an even-odd effect as a function of the total system size L:
While for even L, S,(r) converges from above to its L — 00
value, for odd L it converges from below. S.(r) converges
in the opposite way. For odd L an extra spin-{ gives a
spurious total magnetization. For the equilibrium simulations,
in the main part of the paper, we have chosen L = 450, since
it supports a half-filled and non-spin-polarized system. The
spin correlation function at » < 150 is converged, as can
be seen in Fig. 11 by comparing the L = 450 and L = 300
results. Larger distances are influenced by L because S(r) is
a nonlocal quantity. Nevertheless, even for larger distances,
no qualitative differences are observed between the L = 450
and the L = 300 data. When performing the time evolution
we use Lequilibrium + 1 lattice sites, including the impurity, so
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FIG. 11. (Color online) Finite-size analysis and the imposed limits on interaction strength. Finite-size effects in the equilibrium spin
correlation function at even [ S.(r); left] and at odd [S,(r); middle] distances. For each one, we compare even total lattice sizes L = {150,300,450}
(blue lines) to odd L = {151,301,451} (green lines). The key in the left panel is valid for both the left and the middle panels. Both panels show
data for U = 3 A. Inset (middle): Evolution with U for a total system size of L = 450. Right: Evolution of S,(r) with increasing interaction

strength U = {0,2,5,10,20} A for L = 450. The correlation becomes qualitatively wrong if U is too large for a given L.

that the reservoir is nonmagnetized and half-filled. With this
choice the correlation functions of the equilibrium and the
nonequilibrium simulations become comparable.

(ii)) The size of the Kondo screening cloud becomes
exponentially large in U. It is therefore important to identify
the characteristics of finite-size effects with increasing U.
In Fig. 11 (right) we plot data with increasing U for fixed
L and study the behavior of S,(r). From U =0 to U =
6A the correlation function follows a monotonic trend and
qualitatively the same behavior. However, the curves for U =
10A and U = 20A are qualitatively different. This indicates
that these values of U are too large for the given L, as expected
from the size of £2*, which becomes of the order of L ~ 200
sites here [see Eq. (3)]. In the present work we therefore restrict
ourselves to values of U < 6A.

Next we show that our time evolution yields a controlled ac-

The bipartite entanglement w(i,7) = —tr[fr/r(T)In(f/r(T))]
[63] provides an estimate of the time when TEBD becomes
unreliable for a fixed y. This is signaled by a sharp increase
in w. Here pr,r denotes the reduced density matrix to the
left (L) or to the right (R) of a lattice bipartition at bond i.
Figure 12 (left) shows the entanglement increase, which turns
out to mostly affect the region next to the impurity and the
major propagating signal at » = vp7. In our simulations we
find that y = 2000 is sufficient to account for the additionally
generated entanglement, which is not much larger than in
the equilibrium case. In addition, we investigate the direct
influence of increasing x on the interacting spin correlation
function S, (r,7) by comparing results using x = 2000 with
results obtained at a smaller y. Figure 12 (middle) shows the
modulus of the deviation |Sxpo(r,7) — S, (r,7)|. We calculate
this deviation at each point in space r and time 7 and for

curacy using a DMRG/TEBD matrix dimension of x = 2000. U ={0,1,2,3,4,5,6}A. The deviation fluctuates over space

x10™ 5
[= 1 sx10” 1.4X10
10 ol 7] =2 TU>0 u=0
sHE | W -
= =1 T 12
14 g B i B / —— _ /\
. e T Y t 1
g 4 ¥ o= g = ——x=000  F
"q 3'; V% = £ 08 10”
® 1.0 Tg 3l{d o= 500 s =207
2 < — g s - e
s %) L 3 0. -
5 / 0.6 /
i
©
g ¥

N
N
\ s
mean_|S
050
N w oa

IS v
exa

200 0 time vA™
bondi 400

iy
\
\

\

|

100 200
distance r

4 6 8 10
time yA™

0 50 100 150 200 250 300 0 2 4 6 8 10 % 2
bond i time t/A7

FIG. 12. (Color online) Quality of the DMRG and TEBD data. Left: Bond- and time-resolved entanglement entropy w(i,t). We subtracted
the w(i,7 = 0) data to highlight changes caused by the time evolution. Inset: Cuts through the w(i,t) raw data at constant times. The black
line is the result of a corresponding equilibrium simulation. The area hidden by the inset is homogeneously dark blue, which corresponds to
w(i,7) — w(i,r = 0) = 0. Data shown is for U = 3A. Middle: Convergence of the interacting spin correlation function with increasing TEBD
matrix dimension x. Modulus of the residuals |Sxo(r,7) — S, (r,7)|, benchmarking the quality of the time evolution with increasing TEBD
matrix dimension x. We show results comparing x = 2000 with x = 500 (blue lines) and x = 2000 with x = 1000 (orange lines). We show
the residuals averaged over distance and interaction strength as a function of time 7. Inset: Spatially resolved residuals plotted at time T = 2A™!
and for U = 3A. Right: Comparison of the noninteracting spin correlation function as obtained by TEBD, S(r,7), and the noninteracting spin
correlation as obtained exactly, Sexact(7, 7). Spatially averaged absolute distance. Inset: Spatial resolution for two times, T = {2,6}A~!. Note
that each blue (orange) line belongs to one data set only, which is alternating.
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with systematic signatures at the light cone and beyond it,
while the interior of the light cone looks chaotic. The results
are almost independent of U. We find that the space r and
interaction U averaged deviation grows over time and becomes
of the order of O(5 x 10™*) for x = 500 and O(1 x 10™*) for
x = 1000 within the reachable simulation time. Furthermore,
for U = 0 we compare the correlation functions obtained via
TEBD with the numerically exact ones [Eq. (8)] in Fig. 12
(right). As one can see, the maximum deviation occurs at the
boundary far from the impurity, with a maximum error of
~1 x 1075,

We conclude that for simulations of nonlocal correlation
functions within the DMRG and TEBD in the SIAM the major
limiting factor is the computation time T oc L(x)*. This is due
to the large matrix dimensions x needed to achieve accurate
results and is, furthermore, complicated by the fact that the
SIAM exhibits exponentially long correlation lengths, which
require large lattice sizes L. The accuracy can be controlled by
benchmarking against exactly known U = 0 data and, for finite
U, by increasing the TEBD matrix dimension x. Furthermore,
all the scales extracted in the text, a /e and ycys, . are retrieved
from two subtracted correlation functions, in which we expect
errors to further compensate.

APPENDIX B: EXTRACTION OF THE
DYNAMIC ENERGY SCALE

In the following we provide details of the data analysis of
the dynamic scale o,/ as discussed in Sec. VII A, which is
valid for both even and odd distances. First, we obtain the time
dependence of the spin correlation function by performing
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a nonlinear fit in time t to the spin correlation function for
fixed distances r and given interaction U: AS(t|r,U) (see
Sec. VIIA), using f(¢ = (c;,['(r,U)),7) = c;e """ with
two fit parameters ¢. The data are single exponential plus
oscillations and exhibit an eventual systematic bias close to
the lattice border and due to the signal front at the light cone.
For each r we manually choose intervals [z,(r,U),.(r,U)]
for the fit in time in order to minimize these influences.
Typically we choose fit intervals which start r; & 10 sites
behind the light cone and extend up to r, =~ 250 for large
U. For small U the data become noise before this r, is reached
and we adjust the end points accordingly. We estimate the
fit uncertainty AT'(r,U) by A¢; ~ 4/C;;, where C = (J1J)n?
is the estimated covariance, J = % is the fit Jacobian,

and n% = N{(:;Ur)ﬂ) is the mean square error defined by the

residuals r; = AS(z;|r,U) — f(¢,7;) on N (r,U) data points
in time AS(t;|r,U). These estimates are consistent with those
obtained from fluctuations upon changing 7,(r,U) and 7. (r,U).
Second, we condense the r dependence by averaging I'(r,U)
over distances r. We make use of a Bayesian approach with
Gaussian error statistics We obtain the weighted mean value
rw) = ~1—T(r;,U) with P =", m and a
weighted error estimate AI'(U) = —P, where the weights are
obtained from AI'(r,U). Third, we obtain the U dependence
of the exponent considering data for ['(U) for N(U) =6
data points at U = {1,2,3,4,5,6}A. The data I'(U) can be
fitted very well by a single exponential in U: T'(U) = ce %Y.
The same scheme as in the first step is used to estlmate the
uncertainty AI'. We assume correlated data, i.e., n°> = &£

Nt,ff
with Neff ~ NEZ)‘” ~ gx <, which enlarges the uncertainty by

a factor of +/3 compared to the naive value.
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