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Abstract
We investigate the effect of strong interactions on the spectral properties of quantumwires with strong
Rashba spin–orbit (SO) interaction in amagnetic field, using a combination ofmatrix product state
and bosonization techniques. Quantumwires with strongRashba SO interaction andmagneticfield
exhibit a partial gap in one-half of the conductingmodes. Such systems have attractedwide-spread
experimental and theoretical attention due to their unusual physical properties, amongwhich are
spin-dependent transport, or a topological superconducting phasewhen under the proximity effect of
an s-wave superconductor. As amicroscopicmodel for the quantumwirewe study an extended
Hubbardmodel with SO interaction andZeeman field.We obtain spin resolved spectral densities
from the real-time evolution of excitations, and calculate the phase diagram.We find that interactions
increase the pseudo gap at k=0 and thus also enhance theMajorana-supporting phase and stabilize
the helical spin order. Furthermore, we calculate the optical conductivity and compare it with the low
energy spiral Luttinger liquid result, obtained from field theoretical calculations.With interactions,
the optical conductivity is dominated by an excotic excitation of a bound soliton–antisoliton pair
known as a breather state.We visualize the oscillatingmotion of the breather state, which could
provide the route to their experimental detection in e.g. cold atom experiments.

1. Introduction

Electron–electron (e–e) interactions have drastic effects on the physics of 1D electron conductors. The low
energy properties of interacting 1D systems are described by the Luttinger liquid (LL)model which gives a
qualitative picture of the static and dynamic properties [1–4]. The LL parameters rK , sK , rv and sv for a given
microscopicmodel are, however, not easy to obtain in general. Furthermore, simplifications like the linearDirac
dispersion impede the application of LL theory away from the low energy regime8.

In the present paperwe use densitymatrix renormalization group (DMRG) [7, 8] techniques to investigate
the combined effect of Rashba spin–orbit (SO) interaction [9] andZeemanfield on one-dim. Interacting
quantumwires in amicroscopicmodel, at all energies. It is known that the combination of SO andZeeman field
in a 1Dquantumwire, with superconductivity induced by the proximity effect, supportsMajorana zeromodes
—elusive quasiparticles which are their own antiparticles—at the boundaries of the system [10, 11]. Due to their
non-Abelian exchange statisticsMajorana zeromodes are promising candidates for the implementation of
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topologically protected quantum information processing [12, 13]. Considerable experimental effort is currently
underway to investigate the physics ofMajorana zeromodes in 1D semiconductor nanowires with strong SO
andZeemanfields [14–17].

In the non-interacting case, the SO interaction generates spin-split bands, with crossing points of two bands
of orthogonal spin at k=0. AZeeman field then lifts the degeneracy at the crossing points, leading to the
formation of a SO gap. Experiments in high-mobility GaAs/AlGaAs hole and InAs electron quantumwires have
observed this gap [18, 19]. Apart from topological quantum computation, these propertiesmake such systems
also ideal candidates for spintronic devices [20] like spin filters [21, 22] orCooper pair splitters [23].
Furthermore, the effects of strong correlations in SO chains can be investigated in artificially engineered cold
atoms chains [24, 25].

One of the goals of this work is to compare the properties of ourmicroscopicmodel to those of the popular
LLmodels [26–37], specifically, the spiral LL and the helical LL. The spiral LLwasfirst introduced byBraunecker
et al [38, 39] to describe a LL embedded in a lattice of nuclear spins. The hyperfine interactions between the
nuclear and electron spins trigger a strong feedback reaction that gives an effective helicalmagnetic field
spiraling along thewirewhich opens a partial gap like the SO gap. Later it was realized [40] that the same low
energymodel applies to systemswith SO interaction andZeeman field if themomentum shift of the SO
interaction is commensurable with the Fermimomentum: =k k2F SO. Indeed, theHamiltonians underlying
these two systems are linked by a simple gauge transformation [40]. The spectral properties of the spiral LLwere
further investigated [41, 42] and it was shown that they can be approximated by a simpler helical LL for energies
much smaller than the gap. In this limit the system thus becomes effectively spinless, which is reflected by our
results. Furthermore, the transport properties of the spiral LLwith andwithout attached leads have been studied
[43]. Experimental evidence for the spiral LL has been given in [44].

The paper is organized as follows. In section 2we introduce themicroscopicmodel and describe themethod
used to determine the spectral functions. Results are discussed in section 3. In particular, we present a detailed
analysis of the phase diagram and show that the helical phase is stabilized by the interactions.We also show
results for the charge, spin and current structure factors as well as for the optical conductivity, which exhibits
peculiar breathermodes. Based on our numerical studywe compare the results tofield-theoretical predictions
and discuss the applicability of the LL description.We concludewith a summary and an outlook in section 4.

2.Model andmethods

2.1.Microscopicmodel
In this workwe consider a one-dimensional quantumwire, with strong Rashba SO coupling in amagnetic field.
In addition, we are interested in the effects of strong electronic interactions, whichwemodel using an
interaction of the extended-Hubbard type. TheHamiltonian for this system is then given by
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where =  ( )† † †c c c,j j j are spinors and sy as well as sz are the Paulimatrices acting in spinor space. Here,Ht

corresponds to the kinetic and potential energy,HSO to the Rashba SO coupling, andHB to themagnetic field.
Hint contains local and nearest-neighbor interactionU and ¢U , respectively, with the densities =s s sˆ †n c cj j j and

= + ˆ ˆ ˆn n nj j j . The Zeeman fieldB is applied in z direction, andwe choose the quantization axis of the SO
coupling in the y direction. In the present paper all parameters are constant throughout thewire, the inclusion of
disorder, to account for amore realisticmodel of a quantumwire [45, 46], will be part of futurework.
Throughout the paper wewill use t=1 as the unit of energy. Ourmodel can also be seen as a low energy
description of the conduction band in a semiconductor nanowire, discretized on a coarser lattice than the actual
atomic positions. Via rescaling the energies and discretization length scale, our results can be directly applied for
awide range of experimental parameters [47].

For the purpose of analyzing the spectral functions for the interactingmodel, it is illuminating tofirst discuss
the spectral properties of the non-interacting part = + +H H H H0 t SO B [10, 11, 48]. Figure 1 shows the
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dispersion ofH0 for two different cases. The dashed lines show the dispersionwith non-zero SO coupling and no
Zeemanfield (B= 0). Due to the SO coupling, the twoKramers degenerate bands ofHt split up into two
branches, one for each eigenstate of Ŝ

y
. The branches are shifted to the left, respectively right, by amomentum

a
= ⎜ ⎟⎛

⎝
⎞
⎠ ( )k

t
arctan . 2.2SO

Upon turning on the Zeeman fieldB, a gap opens at the crossing points of the two branches at k=0 and p=k ,
due to the nownon-zero coupling between the two branches. The so-called SO gap at k=0 is of size B2 . The
ground state has either two Fermi points (2F phase)when the chemical potential is tuned to lie inside the SO gap,
or four Fermi points (4F phases)when the chemical potential lies below or above the SO gap (and below the
second gap at p=k ). In the so-called helical 2F phase opposite Fermi points have approximately orthogonal
spin directions. This is the regimewe focus on in this paper. The approximately opposite spin direction at the
two Fermi points has some interesting physical implications for e.g. low energy electronic transport, where only
excitations close to the Fermi points are relevant. Due to the opposite electron velocities at opposite Fermi
points, the charge transport in this regime is highly spin dependent. A right-moving current can only carry
negative Ŝ

y
electrons, and vice versa for a left-moving current. Another implication is the appearance of a

topological, superconducting ground state if an s-wave pairing term + 
† †c c h.c. is added to theHamiltonian. In

this case, the systembecomes a topological p-wave superconductor, since only electrons at+kF and-kF are
available for pairing. It has been shown that the quantumwire in this case hostsMajorana fermions at its edges
[10, 11, 49]. To optimally access this phase, the Fermi energy has to be tuned to the center of the SO gap, which is
the case if the Fermimomentum =k k2F SO. Like for spinless fermions, the relation between the average number
of electrons per site n and the Fermimomentum is simply p=k nF inside the SO gap. For a = 1 (see
equation (2.2)), we get p=k 4SO and hence themiddle of the 2F phase is reached at quarterfilling n= 0.5. One
goal of this work is to investigate the effects of electronic correlations on the stability of this 2F phase (see also
[48, 50–52] for relatedwork).

Interactions can be included in several different ways. In this work, we use time-dependentMPS techniques
to compute spectral functions, and compare our results to analytic approaches using bosonization techniques.
To obtain better comparability to the LL results, we choose a nearest neighbor interaction ¢ =U U 2 in our
numerical calculations (apart from appendix B). This choiceminimizes two particle backscattering (scattering
from+kF to-kF), which is amajor source of deviation fromLL behavior infinite size systems. The two-particle
backscattering parameter for the extendedHubbardmodel is approximately given by = + ¢^ ( )g U U k2 cos 21 F

[53], which vanishes for ¢ =U U

2
for p=k 2F . Formost of the present work numerical results are obtained for

quarterfilling, amounting to p=k 2F in the 2F phase.
In the 2F phase, the low energy physics of ourmodel is capturedwell by LL theory. In this respect, there exist

two related approaches, the helical and the spiral LL [41]. The underlying free dispersions are shown in
figures 1(b) and (c). In the case of the helical LL, the similarity to the dispersion infigure 1(a) in the 2F phase is

Figure 1. (a)Dispersion  ( )k of the non-interactingHamiltonianH0 with a = 1, forB=0.2 (solid line) andB=0 (dashed line).
The arrows indicate the spin direction of the eigenvectors (shown only forB= 0.2), with positive (negative) á ñŜ

y
eigenstates displayed

in red (blue). The inset shows the dispersion in the gauge transformed basis (equation (2.3)). Figures (b) and (c) show the dispersions
of the corresponding low-energy LLs. The chemical potential ismarked by the horizontal dashed lines.
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evident. Figures 1(b) and (c) have orthogonal spin directions at opposite Fermi points. The spiral LL figure 1 (c)
additionally includes gappedmodes. The helical LLmay be seen as a low energymodel of the spiral LL as long as
the relevant excitation energiesω are smaller than the gap B2 . The helical LL is very similar to the spinless
fermion LL andmany properties like density–density correlations are indeed the same.

The relation between the helical and spiral LL approach can be clarified in ourmodel by applying a gauge
transformation [40]

 s- ( )c ce 2.3j
k j

j
i y SO

to ourmodelHamiltonian equation (2.1). In the non-interacting case, this yields amodified dispersion relation,
as depicted in the inset offigure 1(a), fromwhich the relation to the spiral LL becomes apparent. By applying this
transformation to equation (2.1), the SO interaction vanishes, =H̃ 0SO , while Ht and HB in equation (2.1)
become
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Note how the site independentmagnetic field transforms into a helical field spiraling around the quantumwire,
hence the name spiral LL [38, 39, 41]. The kinetic energy gets rescaledwith a +t t 2 2 . SinceHint is
unaffected by this transformation, our results are valid for both cases in the commensurate case =k k2F SO.

2.2. Spectral functions from real-time evolution
In this workwe are analyzing the effect of e–e interactions on the spectral properties of a quantumwire, using
matrix product state (MPS) [54, 55] techniques.MPS are nowadays routinely used in calculations of spectral
functions in 1d quantum system. Recent advances includeChebyshev [56–61] and Lanczos [62, 63] expansion
techniques.Here, we obtain real-frequencyGreens functions using real time evolution employing the time
dependent block decimation (TEBD) [64, 65] and subsequent Fourier transformation [66–69]. The object of
interest is theGreens function
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where ˆ ( )A tj and ˆ ( )B tj are operators acting on site j at time t, = +{ ˆ ˆ} ˆ ˆ ˆ ˆA B AB BA, is the anticommutator and ñ∣0
is the ground state. For our case of spinors, with =Â cj j and =ˆ †B c0 0 , we obtain the spectral function w( )†S k,cc .
The computation proceeds as follows: first, we compute the ground state ñ∣0 usingDMRG. ( )†S k w,cc is then
computed fromFourier transformation of the time dependent functions
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which are calculated by evolving y ñ º ñs
-

¢∣ ( ) ∣t ce 0Ht
j

i forward in time, and calculating the overlapwith á s∣ †c0 i .
The phase factor e E ti 0 can be removed by shifting the ground state energy E0 of ñ∣0 to 0 prior to the evolution.

A common feature shared by allMPSmethods for calculating spectral functions is the finiteω-resolution. In
our case it is due to the fact that only short tomoderately long time scales can be reachedwithMPS time
evolution. This is due to rapid entanglement growth following (local) quenches of the system. Theω-resolution
can be substantially improved by using extrapolation techniques for the time series. In this paperwe use the so-
called linear prediction technique to achieve this [66–68], see also appendix A. For our studywe use system sizes
of up to L=256 sites, andmatrix dimension up tom=600 andm=1200 forDMRGand during time
evolution, respectively, whichwas large enough to ensure that our results did not depend on the bond dimension
m anymore. In our codewemake use of total charge conservation (note that total S z is not conserved during the
time evolution). For the time evolution, we use a second order Suzuki–Trotter splitting scheme, with a time step
of 0.05 (0.01 for breather calculations, see below). The dominant error is due to the truncation of theMPS
matrices during time evolution. A possiblemeasure of this error is the cumulative truncatedweight [66]

 åå t=
t= =

( ) ( ) ( )t , 2.7
t

j

L

jtot
0 1

where the sums run over lattice sites j and time slices τ. Note that the growth of entanglement, and hence  ( )ttot

depend on the particular kind of quench that is applied to the system. For example, for single-particle spectral
functions entanglement growth is stronger than for the charge and spin structure factors or the current-current
correlation function. Furthermore, for strong interactions the entanglement growth during the time evolution is
more pronounced than forweak interactions, while ground states for stronger interactions typically require
smaller bond dimensions.
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An advantage of ourmethod is the direct accessibility of real frequency spectrawithout the need of an
analytic continuation like inQMCbased approaches [70]. It is also considerablymore efficient than previous
approaches like dynamical DMRG [71] or the correction vectormethod [72]. In our approach, spectra at all
momenta can be calculated froma single time evolution.

3. Results and discussion

3.1. Spectral functions
Wenowmove on to analyze the effect of e–e interaction on spectral functions of the quantumwire. Results are
shown infigure 2. The datawas obtained from evolving equation (2.6) up to =t 25max on a systemwith L=128
sites. Using linear prediction, the time series was extrapolated to =t 275LP .We note that at larger interaction
strengths the truncation error  ( )ttot growsmore rapidly with t9.We have checked all our results for
convergence inm. The spectrum infigure 2(a) atU= 0.5 exemplifies the spectral resolution of our approach.
Figure 2(a) shows the evolution of the spectral functionwith theCoulomb interactionU, for a = 1,B= 0.1, and
at ¢ =U U 2 for which the two-particle backscattering is suppressed at quarter filling. For comparison spectral
function for ¢ =U 0 are shown in appendix B.With increasing interaction, the two noninteracting branches get
significantly broadened, but remain visible up to large values ofU=6. Close to the Fermi energy, the spectral
functions remain sharp, as predicted by the LL theory. The bandwidth increases with the interaction, and so does
the SO gap. This is shown infigure 2(b).Within the spiral LL approximation, the correlation-induced
enhancement of the gap in the is found to be [38, 39, 73, 74]

* x= k- ( )B B2 2 , 3.11 2

Figure 2. (a) Spectral function w( )†S k,cc for n=0.5, a = 1,B= 0.1 and several values ofU (with ¢ =U U 2, system size L=128
andN= nL fermions). The dotted red line is the Fermi energy, determined from the ground state energies as = + -( ( )E E L N, 1F

-( ))E L N, 1 2. (b) SO gap parameterB* as obtained from the gap of size *B2 in the spectral functions (shownuntil theMI phase
sets in atU = 4). Results for ¢ =U 0 are reported in appendix B.

9
Form=1200 states the total cumulative truncatedweight   0.1tot for U 4 (with ¢ =U U 2), while  = 0.25tot forU=6

(and ¢ =U 3).
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where k = +r s
-K K 1 is determined from charge and spin LL parametersKρ andKσ and a correlation length ξ.

For the noninteracting system, = =r sK K 1and * =B B. Repulsive interactions, for which <rK 1and
>sK 1, lead to k < 2. As a consequence, the SO gap is enhanced by the interactions, which is confirmed by

figure 2(b).
ForU=6, the opening of a gap atkF indicates the emergence of aMott insulating (MI) phase at quarter

filling [1, 75–77], as described in section 3.2.We note that theMI phase is absent for ¢ =U 0, see appendix B.
If themomentum shift of the SO interaction is removed by the gauge transformation equation (2.3)10, the

similarity to the dispersion of theHubbardmodel facilitates the interpretation of the other features of the
spectral functions. Figure 3(a) shows that below the Fermi level several dispersing branches appear, originating
from the spin-charge separation. The distinctivemain branch and the twoweaker ones below can be attributed
to the collective spinon and holon excitations [78, 79], respectively. The spectral weight of both increases with
increasing interaction.

Infigure 3(b)we show the spin-resolved components of the spectral functions for the parallel and
antiparallel directionwith respect to the SO interaction (see arrows infigure 1), as determined by equation (2.5)
for = +  ( )† † †c c ci 2 and = -¬  ( )† † †c c ci 2 . These directions are of particular interest, since they
determine the spin-dependent transport properties. Each spin direction contains only a single Fermi point with
non-negligible spectral weight. Thuswefind that the helical spin order is robust with respect to electronic
correlations and that spin transport is still polarized. Since n= 0.5, the SO gap opens at kF like for the spiral LL
dispersion displayed infigure 1(c).

Summarizing, the correlation effects observed for themicroscopicmodel are in agreement with the LL
predictions of an enhanced SO gap in the spectral functions and of the preservation of the helical spin order with
spin-dependent transport within themetallic 2F phase [38, 39, 42, 48].

3.2. Phase diagrams
3.2.1. Spiral and helical phases
Inmany applications—likeMajoranawires, spinfilters andCooper pair splitters—it is crucial that the system is
in the helical 2F phase [10, 11, 20, 21, 23]. Therefore, and in order to guide experimental realizations, we
investigate the phase boundaries between the ordinary 4F phases and the helical 2F phase. In principle, the
number of Fermi points can be obtained by simply counting them in the spectrum.However, the calculation of
spectral densities atmany sets of parameters is computationally rather expensive as compared to e.g. ground
state calculations. Therefore, a reliablemethod tofind the number of Fermi points based only on ground state
properties is favorable. To this end, we use amethod based on the calculation of the static density–density
correlation function º á ñ( ) ∣ ˆ ˆ ∣ˆ ˆC r n n0 0nn r 0 .Within the 2F phase, our system is described by a spinless fermion LL,

Figure 3. (a) Spectral function in the gauge-transformed basis, at n= 0.5, a = 1,B= 0.1, L=128 and different values ofU. (b)
Spectral functions for individual spin components, parallel or antiparallel to the SO interactions, for the same couplings as in (a). The
spectra in (a)were obtained from the sumof the spectral functions of (b) shifted bykSO.

10
This can be achieved by shifting

¬ ¬
†Sc c and

 
†Sc c inmomentumby-kSO, respectively +kSO, and summing themup.
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and the asymptotic behavior (  r L1 ) of the density–density correlations is given by [80]
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with amodel-dependent constantA. The second expression contributes only logarithmically and is neglected.
After a Fourier transformation,Kρ can be obtained from the derivative at k=0 in the thermodynamic limit, or
from a finite size extrapolation of  ¥L :
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In the 4F phase on the other hand, the low energy physics is no longer described by the simple LL for spinless
fermions. Nevertheless, the leading large-distance behavior of the density–density correlations is still quadratic,
namely pr ( )K r 2. Thus the change in the prefactor of r1 2, by a factor of 2, can be used to distinguish the 2F and
4F phases.

The phase diagrams obtained in this way are shown infigures 4(a) and 5(a). For the phase boundaries
between 2F and 4F phases (red lines infigures 4(a) and 5(a))we used a system size of L=128 (the results for
L = 256 are indistinguishable from L = 128). Infigure 4(a), the phase boundary to theMI (green line)was

Figure 4. (a)Phase diagram (α,U), for n=0.5,B= 0.1 and L=128. The phase boundaries between the 2F and 4F phases are
obtained from the discontinuity inKρ (equation (3.3)). The phase boundary of theMIwas obtained from the closing of the two
particle charge gap inDMRG. The red and green lines are polynomialfits (using second order for the lower red line and first order for
the upper red and green lines). (b) Spectra in the 4F and 2F phases atU=2 for different SO interactionsα.

Figure 5. (a)Phase diagram (n,U), for a = 1,B= 0.1 and L=128. The phase boundaries between the 2F and 4F phases are obtained
from the discontinuity inKρ (see equation (3.3)). The inset shows the behavior ofKρ for different values ofU=0, 0.5, 1, 2, 3 from top
to bottom. The red lines are polynomialfits of second order. (b) Spectra in the 4F and 2F phases atU=2, for different fillings n.
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obtained from the closing of the two particle charge gap (see below). The inset infigure 5(a) shows the behavior
of the LL parameterKρ as determined by equation (3.3), with the jump at the phase boundaries between the 2F
and 4F phases. Except forU=0, the actual jump of rK between the two phases is in general smaller than a factor
of 211.

The phase boundaries in a( )U, (figure 4)were obtained at quarterfilling n= 0.5, and in (n,U) at a = 1
(figure 5). In the noninteracting case, the boundaries of the 2F phase in a =( )U, 0 (at n= 0.5) are at

a- < < + ( )t Bt t Bt2 2 , 3.42 2

and in =( )n U, 0 forfixedα at

a
a

p
a

a
- +

+
< <

- -
+

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )t Bt

t
n

t Bt

t
arccos

2
arccos

2
. 3.5

2 2

2 2

2 2

2 2

The phase boundaries atU=0 obtained from equations (3.4) and (3.5) lie within the error bars of the
numerically obtained ones infigures 4 and 5.

Remarkably, wefind that with interactions the parameter range of the 2F phase gets greatly enhanced [48],
which is in accordancewith the interaction-enhanced gapwe already found for the spectral functions in
figure 2(a). Examples for spectral functions in the different phases are given infigures 4(b) and 5(b).We show the
spectral functions in the proximity of the phase boundaries. Note how the SO gap gets enhanced as soon as the
Fermi energy slips inside the 2F phase. Therefore, we predict repulsive e–e interactions to be beneficial to
applications depending on the 2F phase, likeMajorana zeromodes [48, 58, 81, 82] or spin-filters.

For both phase diagrams (figures 4 and 5), the jump inKρ (only shown infigure 5) is no longer visible in the
strong coupling regime, indicating that the LL picture breaks down there.

3.2.2.Mott phase
At quarterfilling, the strong coupling phase is aMott Insulator [1, 75]. To detect theMI phase transition in our
model, we use two different approaches, to be detailed in the following. Thefirst one is via the calculation of the
two-particle (charge) excitation gap above the ground state,

D = + + - -[ ( ) ( ) ( )] ( )E L N E L N E L N
1

2
, 2 , 2 2 , , 3.6L

2

withN being the absolutefilling =N nL. In the absence of pairing effects, the two particle and the single particle
excitation gapwill scale to the same value in the thermodynamic limit, but the two particle excitation gap is
robust to even/odd effects.DL

2 is calculated from ground state energy of three differentDMRG runs, one for
each totalfilling +N N2, and -N 2. Complementary to this, we use the evolution of rK with increasingU to
detect theMI phase transition. For quarterfilling, there is a critical value * =rK 0.25 belowwhich the system is in
aMI state [1]. Note that the value ofKρ from equation (3.3) in the 4F phase, equation (3.3), differs by a factor of

Figure 6. (a)The boundary to theMI as a function ofUwas determined from the charge gap (upper left panel) D =¥L
2 aswell as from

the critical value of * =rK 0.25 (lower left panel). Thefinite-size extrapolations are shown for a = 1 in the right panel (using system
sizes = {L 16, 32, 64, 128}). (b) Local density of states at the chain boundary forU=2 (in the LL phase) andU=6 (in theMI
phase), both at a = 1. The dotted red line is the Fermi energy. For all panels the other parameters are n=0.5,B=0.1 and L=128.

11
This is also true after afinite size extrapolation, as it was performed e.g. infigure 6(a).
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two as compared to the 2F case, see the discussion in section 3.2.1. For both approaches, the values in the
thermodynamic limit  ¥L were obtained by a polynomialfit in L1 , as shown in the right columnof
figure 6(a). The left column infigure 6(a) shows the results in the thermodynamic limit = ¥L . The phase
boundaries obtained from the two approaches agree within the error bars and are shown as the green line in
figure 4(a). Note how the phase boundary to theMImoves to larger values ofUwith increasing SO interaction.
This can be understood from the contribution of the SO interaction to the kinetic energy of the system, which
lowers the effective interaction at fixedU and drives the system away from theMI.

The charge gap in theMI is also clearly visible in the local density of states (LDOS) w= ( )j 1 at the left chain
boundary, as shown infigure 6(b). In the LL phase wefind a pronounced interaction-induced suppression of the
local spectral weight [83, 84], while in theMott phase a gap opens around the Fermi energy. The high-energy
peak in the LDOS corresponds to the upperHubbard band, see alsofigure 2.

Away fromquarterfilling, a strong coupling region emerges at strong interactionswhich is further examined
in appendix C.

3.3. Breathers, structure factors and optical conductivity
3.3.1. Breather bound states
In themathematical formulation of the spiral LL, the gappedmodes are described by a sine-Gordonmodel
(SGM). The elementary excitations in the SGMare solitons and antisolitonswith themassB* of half the SO gap.
In the attractive regime of the SGM (which amounts to repulsive interactions in the spiral LL), additional
soliton–antisoliton bound states appear, which are so-called breather states [85, 86]. In the spiral LL theory their
masses are given by [42]

*
pk

k
D =

-
⎜ ⎟⎛
⎝

⎞
⎠ ( )B

l
2 sin

8 2
, 3.7l

with = ¼l l1, , max and k= -( )l int 4 1max different breathers (for k < 2, with k = +r sK K1 ).
In our latticemodel the breathers correspond to bound states of a particle excitation (soliton) and a hole

excitation (antisoliton) on the gappedmodes (see figure 7 for an illustration). They are charge neutral but carry a
positive Ŝ

z
magnetization. The electron and the hole are bound together by the interaction, with an energy

smaller than the SO gap *B2 . In the real-time evolution, breathers oscillate back and forth around their ‘center of
mass’, whichmotivates their naming. The breather contributions to one-particle Green functions, like the
spectral function or the LDOS, are found to be negligible [42]. However, the breathers strongly couple to the
current density Ĵ , hence the optical conductivity

s w
w

> =
= >

( )
( ( ))

( )
ˆ ˆS k w

L
0

Im 0, 0
3.8J J

is an excellent choice for observing breather bound states.
In the following, wewill compare the optical conductivity s w( ) of ourmicroscopicmodel to the optical

conductivity s w( )SLL of the spiral LL, which has been calculated in [42].Wewill determine the necessary
parametersB*,Kρ,Kσ and the charge and spin velocities vρ and vσ for the calculation of s w( )SLL fromour
microscopicmodel. This comparisonwill serve as an important test for the consistency and validity of the spiral
LL approach and our numerical calculations.

Figure 7. Illustration of breather bound states on the gappedmodes, consisting of a particle excitation (soliton) on the upper branch
and a hole excitation (antisoliton) on the lower branch. The spectral function shownhere was obtained for n= 0.5, a = 1,U=1,
B= 0.3 and L=128.
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Sincewe are now focusing on the physical behavior taking place at energies smaller than the SO gap, it is
advantageous to use a stronger Zeeman field ofB= 0.3 for awider gap. The other parameters are as before,
a = 1and n= 0.5, different interactionsU, and ¢ =U U 2. The highermagnetic fieldB= 0.3 causes theMI
phase to set in earlier (from U 2 on there are hints of a quarter filledMI order).We extracted the values of the
spiral LL parameters from several different observables.

3.3.2. Local density of states
The renormalized size *B2 of the SO gapwas extracted from the LDOS infigure 8.Due to the local nature of the
LDOSwewere able to use longer time evolutions than for themomentum-resolved spectra in the same systems,
reaching from =t 30max up to =t 90max depending on the interaction. The small scale oscillations visible in
figure 8 at lower values of the interaction are consistent with the energy spacing for an L=128 site system.
Results forB* are shown in table 1.

3.3.3. Structure factors
Weobtain the velocities vρ and vσ from the corresponding structure factors w( )ˆ ˆS k,nn and w( )ˆ ˆS k,S S

y y . The
structure factors are shown infigure 9. Since the spectra are symmetric, values for <k 0 are not shown.Near

w= =k 0, the dispersions are approximately linear (at least for the considered U 2) and the velocities were
obtained from fits to their slopes. Table 1 shows that for the interactions considered, »r sv v .

The structure factors themselves contain very interesting physics. In theweak coupling regime, the nearly
linear dispersions starting at w= =k 0 visible in w( )ˆ ˆS k,nn , w( )ˆ ˆS k,S S

y y and w( )ˆ ˆS k,J J result from the
ungappedmodes of theHamiltonian. The approximately quadratic dispersion at w = D1 and k=0 in

w( )ˆ ˆS k,S S
x x , w( )ˆ ˆS k,S S

y y and w( )ˆ ˆS k,J J corresponds to the breathermodes. Note that their dispersion starts at an
energyD1, which is smaller than the SO *B2 gap obtained from the single-particle spectra. The breather
dispersion gainsmore spectral weight with increasing interaction but smears out in theMI phase from U 2
on.Unlike spin charge separation, which also gives rise to two low energymodes [87], themodes here are not
separated because of interactions but due to the interplay of Zeemanfield and SO interaction (eachmode is a
combination of spin and charge degrees of freedom).

Figure 8. Local density of states in themiddle of a L=128 site chain for n= 0.5, a = 1,B= 0.3 and different values ofU. The dashed
red line is the Fermi energy, whereas the dotted–dashed green linesmark the boundaries of the SO gap.

Table 1.ParametersKρ,Kσ, vρ, vσ andB
* as used for thefield-theoretical

calculations, and themass of thefirst breather D1.Kσwas extracted
from the energy of thefirst breather peak D1 using equation (3.7),
whereD1 was obtained from the position of the peak infigure 10. The
value in parentheses is obtained from the oscillation frequency in
figure 11. The estimated uncertainties in these values are about 5%
(10% for the velocities).

U Kρ Kσ vρ vσ B* D1

0 1.00 1.00 1.0 1.0 0.30 —

0.5 0.87 1.20 1.0 1.0 0.41 0.75 (0.75)
1 0.76 1.28 1.0 1.1 0.50 0.83 (0.83)
2 0.59 1.29 1.2 1.3 0.62 0.89 (0.90)
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In contrast to an ordinaryMI, at quarter filling there is no antiferromagnetic order at p=k 2 in the spin
structure factors. Instead, the Zeeman field induces afinitemagnetization. Therefore, w( )ˆ ˆS k,S S

z z and w( )ˆ ˆS k,nn

show the same diverging behavior at p=k and w = 0 for strong interactions. Deep in theMI phase,
w( )ˆ ˆS k,S S

x x and w( )ˆ ˆS k,S S
y y consist almost solely of a constant energy level at w = B2 , indicating that all

movement of the spins freezes except for a simple precession around the Zeemanfield. w( )ˆ ˆS k,nn and w( )ˆ ˆS k,S S
z z

are dominated by theMott instability for strong interactions. As soon as the interactions are turned on, spectral
weight at w = 0 and p= =k k2 F accumulates, indicating the charge order of the quarter filledMI. In theMI
phase, w( )ˆ ˆS k,nn and also w( )ˆ ˆS k,S S

z z diverge at this point.
The LL parameterKρ atB= 0.3was obtained from the static density–density correlations, as described in

section 3.2.We used system sizes from L=16 up to L=256 and extrapolated to = ¥L by a fourth order
polynomialfit in L1 . The spin parameter,Kσ, is known to be very susceptible tofinite size corrections [88].
Whenwe applied the samemethod toKσ, we found the extrapolation to the thermodynamic limit to be
unreliable, since it turned out to be nonmonotonic in L1 . Since all other parameters for thefield theory are
already fixed, we choose to obtainKσwith equation (3.7) from the energy of the breather peak in the optical
conductivity s w( ), whichwe discuss now.

3.3.4. Optical conductivity
According to equation (3.8) the optical conductivity can be obtained from ˆ ˆSJ J . For ourmodel, the usual
Hubbard current operator has to be adapted in order to include the SO interaction. It then reads as follows for
the current between the sites j and +j 1

å a
= - - + - - +

s
s s s s+ +  +  +    +  +  

⎡
⎣⎢

⎤
⎦⎥

ˆ ( ) ( ) ( )† † † † † †J
t

c c c c c c c c c c c ci
2 2

. 3.9j j j j j j j j j j j j j1 1 1 1 1 1

The further calculation of s w( ) is analogous to the spectral densities and structure factors.We calculated the
time evolutions on a L=200 site systemuntil =t 42.5max . Amatrix dimension ofm=1200was used.We
observed that the entanglement grows slower with a Ĵ excitation than a single particle excitation. Therefore,
longer simulation timeswere feasible at a comparable tot. Linear predictionwas used up to time 140.5. The time

Figure 9.Charge, spin andcurrent structure factors w( )ˆ ˆS k,nn , w( )ˆ ˆS k,S S
x x , w( )ˆ ˆS k,S S

y y , w( )ˆ ˆS k,S S
z z and w( )ˆ ˆS k,J J , forn=0.5, a = 1,

B=0.3,L=128 anddifferent values ofU. p w= =( )ˆ ˆS k , 0nn and p w= =( )ˆ ˆS k , 0S S
z z diverge in theMIphase ( >U 2) and exceed the

color range,withmaximal values inour analysis of 1.0, 20.4, 42.4 for w( )ˆ ˆS k,nn andof 0.5, 4.8, 7.9 for w( )ˆ ˆS k,S S
z z atU=2, 4, 6 respectively.
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series was thenmultipliedwith awindow function ofDolph–Chebyshev type. The optical conductivity s w( ) of
ourmicroscopicmodel is presented infigure 1012.

We are now ready to compare s w( ) to thefield theoretical result sSLL in a spiral LL [42]. The parameters for
thefield theoretical calculations are shown in table 1. Apart fromKσ, whichwas extracted from the energy of the
breather peak depicted by the dotted black lines infigure 10, all other parameters were obtained from
calculations independent of the optical conductivity.

Thefield theoretical result, s w( )SLL , was convolutedwith aDolph–Chebyshevwindow, the sameway as the
numerical data, and scaled such that the breather peakheights coincide, seefigure10. Its shape agrees verywellwith
thenumerical result both in the interacting and in thenoninteracting case. In the latter there is nobreather satisfying
equation (3.7), instead thepeak is givenby theonset of the soliton–antisoliton continuumat w = B2 . This onset is
moved to *w = B2 in the interacting case.The insets show the soliton–antisoliton continuum indetail.Webelieve
that the small-scale oscillations are artifacts originating fromthewindow function.At nonzero interactions, the
breather contribution at energies *w = D < B21 emerges,which in thefield theory takes the form d w~ - D( )1 .
Wenote thatwe are always in theparameter range  k <4 3 2, whereonly a single breather exists.Generally,we
observe that the intensity of thefield theoretical result dropsmore slowly at high energies than inournumerical
calculations,whichmayoriginate from the existenceof afinite bandwidth inour latticemodel. To sumup,we
conclude that our simulations for the optical conductivity are in good agreementwith thefield theoretical results.

3.3.5. Time evolution of breather bound states
It is interesting, and potentially relevant for experiments, to visualize the breather oscillations directly, by
examining the time evolution of the system after a local excitation from the ground state. A gaussian density
excitation, centered around k=0, is suitable for this task:

å

y = ñ= ñ

= +

= =

- -
 s

-

∣ ( ∣

( ) ( )

†

( ) † †( )

˜

t g g

g c c

0 0 , where

e e . 3.10

k k

k
j

j j k
j j

0 0

i
j j0

2

2 2 0

We take s =˜ 4, which corresponds to awidth of 0.25 in k-space. By employing an excitation in the eigenstate
direction + ( )† †c cj j with positive Ŝ

x
-eigenvalue, we ensure that the excitation can act on both branches of the

dispersion simultaneously. The breather state itself has a positivemagnetization Ŝ
z
, whichwe use as the

observable infigure 11. The zigzag oscillations of the breather state are clearly visible in the time evolution, with
the frequency of the oscillation corresponding to its energy. The oscillations atU=0 reflect the onset of the
soliton–antisoliton continuum at w = B2 . The breather energies in the optical conductivity and for the direct
excitation are in good agreement, see table 1.We observe that atU= 0.5 andU=1 the oscillations are longer
lived than atU=2, which is a sign of the onset of theMott instability in the latter case.

Figure 10.Optical conductivityσ for n=0.5, a = 1,B= 0.3, L=200, and different values ofU. The numerical result (solid blue
line) is compared to thefield-theoretical result (dashed red line) [42]. The dotted–dashed green linemarks the SO gap *B2 as obtained
from figure 8. The dotted black line shows the extracted breather energy. The insets zoom into the soliton–antisoliton continuum for
better visibility.

12
Apart from the imaginary part of ˆ ˆSJ J , as in equation (3.8), one can also use the real part according to theKramers–Kronig relations [89] in

order to calculate s w( ). This was employed as a test; for w > 0 the two versions of s w( ) are identical.
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4. Conclusions and outlook

Wehavepresented adetailed analysis of the static anddynamicproperties of strongly correlatedquantumwireswith
RashbaSO interaction andZeemanfield.We investigated amicroscopicmodel,with SO interaction,Zeemanfield
and tunable interactions of extendedHubbard type, and calculated the static anddynamicproperties byDMRGand
TEBD.Weassessed the validity of thefield-theoretical descriptionby comparing the results for themicroscopic
model to thepredictions for the corresponding lowenergymodels, thehelical and spiral LL. Inparticular,we
confirmed the enhancement of the SOgapwith increasingCoulomb interaction. Furthermore, from theLL
parameterswedetermined thephase diagramof the system.We found that theparameter range (infilling,
respectively SO interaction)of themetallic 2Fphase increases in thepresenceof interactions, and that helical spin
order and spin-dependent transport are preserved.Thismeans that interactions are away to increase the SOgap
without disturbing thehelical spinorder (which a largermagneticfieldwoulddo). The interesting 2Fphase thus
becomesmore accessible inpresence of interactions,which is verywelcome in viewof future applications exploiting
thehelical spinorder like spin-filters,Cooper-pair splitters andMajoranawires [10, 11, 20, 21, 23]. Themain
predictionof ourworkwith respect toMajorana experiments is the interaction enhancement of the SOgap. In
principle, this couldbedetectedbymeasuring theLandé g-factor in thenanowires.Tomake adirect comparison,
more informationon the interaction strength in semiconductor nanowireswouldbe required, though. For very
strong interaction strengths, however, the 2Fphase is suppressed in favor of aMIphase in the commensurate case,
characterizedby theopeningof a charge gap.

Furthermore, we analyzed characteristic breather bound states in the optical conductivity s w( ) as predicted
for the spiral LL. Using the extracted LL parameters, the optical conductivity was found to be in good agreement
with thefield-theoretical results. Finally, we showed the presence of strong oscillatory behavior in the time
evolution of the bound states after an excitation, which can provide a route for their experimental detection i.e.
in cold atom systems.

While the present work focuses on the 2F phase, the LL theory predicts interesting phases hosting fractional
excitations if the chemical potential is tuned below the SO gap [43, 90–93]. Using ourmethods, a systematic
study of these fractional phases in amicroscopicmodel could be addressed.
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AppendixA. Linear prediction

The linear-prediction technique approximates future values of an equally spaced time series { }yi as a linear
combination of past values [66, 68, 94]

å» = -
=

-˜ ( )x x a x . A.1l l
j

N

j l j
1

The coefficients aj are determined byminimizing a least squares error. Linear prediction efficiently extrapolates
future data points as a sumof damped exponentials, respectively Lorentzians after the Fourier transformation,
which is justified inmany cases. Due to the large number of coefficients aj, other functions can be represented
with sufficient accuracy aswell.We use N 2max coefficients, with Nmax being the number of steps in our time
evolution. The numerical effort of the prediction is negligible compared to the time evolution itself.

Appendix B. Spectra forHubbard-type interactions

In this appendix, we provide the spectral functionswithout nearest-neighbor interaction ¢U , see figure B1,
whereas in the rest of the paper we have always taken ¢ =U U 2 in order tominimize backscattering. Similar
spectra, albeit forB=0, have been obtained byQMC in [95]. The interaction effects infigure B1 are less
pronounced than in the previous results, due to the overall reduction of the interaction. In particular, the
enhancement of the SO gap is reduced. The twomain branches of the spectral function preserve their general
shape and energy range for all values of the interaction. As expected [1]noMott phase develops untilU=6.We
note that there is now a disjunct upperHubbard band.

Figure B1. w( )†S k,cc for n= 0.5, a = 1,B= 0.1, L=128 and several values ofU ( ¢ =U 0). The dotted red line indicates the Fermi
energy.
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AppendixC. Strong coupling region at incommensuratefilling

InfigureC1we provide the spectral functions and structure factors for two differentfilling factors at a large value
ofU=6 in the strong coupling region. For both n= 0.41 and n= 0.61, the charge gap determined by
equation (3.6) vanishes, although the spectral functions shown infigureC1(a) exhibit a reduced spectral density
around the Fermi level. The charge structure factor w( )ˆ ˆS k,nn displayed infigure C1(b) presents its largest
contribution at =k k2 F and w = 0, indicating a tendency towards a charge density wave phase, while the spin
structure factor shows a qualitatively similar behavior as for commensurate filling at smaller interactions.
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