New jou r“al Of PhYSics Deutsche Physikalische Gesellschaft @ DPG I0P Institute of PhySiCS

The open access journal at the forefront of physics

PAPER « OPEN ACCESS Related content

Correlation effects in two-dimensional

Interaction effects in a microscopic quantum wire e —
model with strong spin—orbit interaction

- Charge dynamics of the
antiferromaqgnetically ordered Mott

insulator
To cite this article: G W Winkler et al 2017 New J. Phys. 19 063009 Xing-Jie Han, Yu Liu, Zhi-Yuan Liu et al.

- One-dimensional Fermi liquids
J Voit

View the article online for updates and enhancements.

This content was downloaded from IP address 193.174.246.194 on 15/09/2017 at 10:08


https://doi.org/10.1088/1367-2630/aa7027
http://iopscience.iop.org/article/10.1088/0953-8984/25/14/143201
http://iopscience.iop.org/article/10.1088/0953-8984/25/14/143201
http://iopscience.iop.org/article/10.1088/1367-2630/18/10/103004
http://iopscience.iop.org/article/10.1088/1367-2630/18/10/103004
http://iopscience.iop.org/article/10.1088/1367-2630/18/10/103004
http://iopscience.iop.org/article/10.1088/0034-4885/58/9/002

10P Publishing

@ CrossMark

OPENACCESS

RECEIVED
16 January 2017

REVISED
9 April 2017

ACCEPTED FOR PUBLICATION
28 April 2017

PUBLISHED
5June 2017

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

New]. Phys. 19 (2017) 063009 hitps://doi.org/10.1088,/1367-2630,/aa7027

New jou rnal of Ph sics Deutsche Physikalische Gesellschaft @ DPG Published in partnership
y with: Deutsche Physikalische
The open access journal at the forefront of physics I0P Institute of Physics Gf:s”S.Chaﬂ and the Institute
of Physics

PAPER

Interaction effects in a microscopic quantum wire model with strong
spin-orbit interaction

G W Winkler"?, M Ganahl**, D Schuricht*, H G Evertz>* and S Andergassen®’

' Theoretical Physics and Station Q Zurich, ETH Zurich, 8093 Zurich, Switzerland

* Institute of Theoretical and Computational Physics, Graz University of Technology, A-8010 Graz, Austria

* Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

* Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CE
Utrecht, The Netherlands

> Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, United States of America

Institute for Theoretical Physics and Center for Quantum Science, Universitit Tiibingen, Auf der Morgenstelle 14, D-72076 Tiibingen,

Germany

Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria

7
E-mail: winklerg@phys.ethz.ch

Keywords: spin—orbit interaction, strong correlations, DMRG, Luttinger liquid, Majorana, matrix product states, bosonization

Abstract

We investigate the effect of strong interactions on the spectral properties of quantum wires with strong
Rashba spin—orbit (SO) interaction in a magnetic field, using a combination of matrix product state
and bosonization techniques. Quantum wires with strong Rashba SO interaction and magnetic field
exhibit a partial gap in one-half of the conducting modes. Such systems have attracted wide-spread
experimental and theoretical attention due to their unusual physical properties, among which are
spin-dependent transport, or a topological superconducting phase when under the proximity effect of
an s-wave superconductor. As a microscopic model for the quantum wire we study an extended
Hubbard model with SO interaction and Zeeman field. We obtain spin resolved spectral densities
from the real-time evolution of excitations, and calculate the phase diagram. We find that interactions
increase the pseudo gap atk = 0 and thus also enhance the Majorana-supporting phase and stabilize
the helical spin order. Furthermore, we calculate the optical conductivity and compare it with the low
energy spiral Luttinger liquid result, obtained from field theoretical calculations. With interactions,
the optical conductivity is dominated by an excotic excitation of a bound soliton—antisoliton pair
known as a breather state. We visualize the oscillating motion of the breather state, which could
provide the route to their experimental detection in e.g. cold atom experiments.

1. Introduction

Electron—electron (e—e) interactions have drastic effects on the physics of 1D electron conductors. The low
energy properties of interacting 1D systems are described by the Luttinger liquid (LL) model which gives a
qualitative picture of the static and dynamic properties [1-4]. The LL parameters K,,, K, v, and v, for a given
microscopic model are, however, not easy to obtain in general. Furthermore, simplifications like the linear Dirac
dispersion impede the application of LL theory away from the low energy regime”.

In the present paper we use density matrix renormalization group (DMRG) [7, 8] techniques to investigate
the combined effect of Rashba spin—orbit (SO) interaction [9] and Zeeman field on one-dim. Interacting
quantum wires in a microscopic model, at all energies. It is known that the combination of SO and Zeeman field
in a 1D quantum wire, with superconductivity induced by the proximity effect, supports Majorana zero modes
—elusive quasiparticles which are their own antiparticles—at the boundaries of the system [10, 11]. Due to their
non-Abelian exchange statistics Majorana zero modes are promising candidates for the implementation of
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There are some extensions trying to overcome this limitation [5, 6].
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topologically protected quantum information processing [12, 13]. Considerable experimental effort is currently
under way to investigate the physics of Majorana zero modes in 1D semiconductor nanowires with strong SO
and Zeeman fields [14-17].

In the non-interacting case, the SO interaction generates spin-split bands, with crossing points of two bands
of orthogonal spin atk = 0. A Zeeman field then lifts the degeneracy at the crossing points, leading to the
formation of a SO gap. Experiments in high-mobility GaAs/AlGaAs hole and InAs electron quantum wires have
observed this gap [18, 19]. Apart from topological quantum computation, these properties make such systems
also ideal candidates for spintronic devices [20] like spin filters [21, 22] or Cooper pair splitters [23].
Furthermore, the effects of strong correlations in SO chains can be investigated in artificially engineered cold
atoms chains [24, 25].

One of the goals of this work is to compare the properties of our microscopic model to those of the popular
LL models [26-37], specifically, the spiral LL and the helical LL. The spiral LL was first introduced by Braunecker
etal[38, 39] to describe a LL embedded in a lattice of nuclear spins. The hyperfine interactions between the
nuclear and electron spins trigger a strong feedback reaction that gives an effective helical magnetic field
spiraling along the wire which opens a partial gap like the SO gap. Later it was realized [40] that the same low
energy model applies to systems with SO interaction and Zeeman field if the momentum shift of the SO
interaction is commensurable with the Fermi momentum: kg = 2kso. Indeed, the Hamiltonians underlying
these two systems are linked by a simple gauge transformation [40]. The spectral properties of the spiral LL were
further investigated [41, 42] and it was shown that they can be approximated by a simpler helical LL for energies
much smaller than the gap. In this limit the system thus becomes effectively spinless, which is reflected by our
results. Furthermore, the transport properties of the spiral LL with and without attached leads have been studied
[43]. Experimental evidence for the spiral LL has been given in [44].

The paper is organized as follows. In section 2 we introduce the microscopic model and describe the method
used to determine the spectral functions. Results are discussed in section 3. In particular, we present a detailed
analysis of the phase diagram and show that the helical phase is stabilized by the interactions. We also show
results for the charge, spin and current structure factors as well as for the optical conductivity, which exhibits
peculiar breather modes. Based on our numerical study we compare the results to field-theoretical predictions
and discuss the applicability of the LL description. We conclude with a summary and an outlook in section 4.

2. Model and methods

2.1. Microscopic model

In this work we consider a one-dimensional quantum wire, with strong Rashba SO coupling in a magnetic field.
In addition, we are interested in the effects of strong electronic interactions, which we model using an
interaction of the extended-Hubbard type. The Hamiltonian for this system is then given by

. __
H = Z[‘z@ Grithe) = (u=10¢ Cf]’
]

J
Hy=> B c]-T o%c;,
j
Hine =Y (U Ajfj + U’ Ajfijg), 2.1)
j

Hyo = Z[f%(ic;aycjﬂ + h.c.)],

where ¢/ = (cf,, ¢f)) arespinors and 0” as well as o are the Pauli matrices acting in spinor space. Here, H,
corresponds to the kinetic and potential energy, Hso to the Rashba SO coupling, and H to the magnetic field.
H;p¢ contains local and nearest-neighbor interaction Uand U’, respectively, with the densities 71;, = c}a ¢jr and
fi; = fij; + 1. The Zeeman field Bis applied in z direction, and we choose the quantization axis of the SO
coupling in the y direction. In the present paper all parameters are constant throughout the wire, the inclusion of
disorder, to account for a more realistic model of a quantum wire [45, 46], will be part of future work.
Throughout the paper we will use t = 1 as the unit of energy. Our model can also be seen as a low energy
description of the conduction band in a semiconductor nanowire, discretized on a coarser lattice than the actual
atomic positions. Via rescaling the energies and discretization length scale, our results can be directly applied for
awide range of experimental parameters [47].

For the purpose of analyzing the spectral functions for the interacting model, it is illuminating to first discuss

the spectral properties of the non-interacting part Hy = H; + Hso + Hp[10, 11,48]. Figure 1 shows the
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Figure 1. (a) Dispersion ¢ (k) of the non-interacting Hamiltonian Hy with o« = 1, for B = 0.2 (solid line) and B = 0 (dashed line).
The arrows indicate the spin direction of the eigenvectors (shown only for B= 0.2), with positive (negative) ($” ) eigenstates displayed
inred (blue). The inset shows the dispersion in the gauge transformed basis (equation (2.3)). Figures (b) and (c) show the dispersions
of the corresponding low-energy LLs. The chemical potential is marked by the horizontal dashed lines.

dispersion of H, for two different cases. The dashed lines show the dispersion with non-zero SO coupling and no
Zeeman field (B = 0). Due to the SO coupling, the two Kramers degenerate bands of H, split up into two
branches, one for each eigenstate of §”. The branches are shifted to the left, respectively right, by a momentum

kso = arctan(%). (2.2)

Upon turning on the Zeeman field B, a gap opens at the crossing points of the two branchesatk = 0Oand k = ,
due to the now non-zero coupling between the two branches. The so-called SO gap atk = 01is of size 2B. The
ground state has either two Fermi points (2F phase) when the chemical potential is tuned to lie inside the SO gap,
or four Fermi points (4F phases) when the chemical potential lies below or above the SO gap (and below the
second gap at k = 7). In the so-called helical 2F phase opposite Fermi points have approximately orthogonal
spin directions. This is the regime we focus on in this paper. The approximately opposite spin direction at the
two Fermi points has some interesting physical implications for e.g. low energy electronic transport, where only
excitations close to the Fermi points are relevant. Due to the opposite electron velocities at opposite Fermi
points, the charge transport in this regime is highly spin dependent. A right-moving current can only carry
negative $” electrons, and vice versa for a left-moving current. Another implication is the appearance of a
topological, superconducting ground state if an s-wave pairing term CTT cj' + h.c.isadded to the Hamiltonian. In
this case, the system becomes a topological p-wave superconductor, since only electrons at +kp and —kg are
available for pairing. It has been shown that the quantum wire in this case hosts Majorana fermions at its edges
[10, 11,49]. To optimally access this phase, the Fermi energy has to be tuned to the center of the SO gap, which is
the case if the Fermi momentum kg = 2kso. Like for spinless fermions, the relation between the average number
of electrons per site 7 and the Fermi momentum is simply kg = n7 inside the SO gap. For o = 1(see

equation (2.2)), we get kso = /4 and hence the middle of the 2F phase is reached at quarter filling# = 0.5. One
goal of this work is to investigate the effects of electronic correlations on the stability of this 2F phase (see also
[48, 50-52] for related work).

Interactions can be included in several different ways. In this work, we use time-dependent MPS techniques
to compute spectral functions, and compare our results to analytic approaches using bosonization techniques.
To obtain better comparability to the LL results, we choose a nearest neighbor interaction U’ = U /2 in our
numerical calculations (apart from appendix B). This choice minimizes two particle backscattering (scattering
from +kg to —kg), which is a major source of deviation from LL behavior in finite size systems. The two-particle
backscattering parameter for the extended Hubbard model is approximately given by g | =U + 2U’ cos(2kg)
[53], which vanishes for U’ = % for kg = /2. For most of the present work numerical results are obtained for
quarter filling, amounting to kg = 7/2 in the 2F phase.

In the 2F phase, the low energy physics of our model is captured well by LL theory. In this respect, there exist
two related approaches, the helical and the spiral LL [41]. The underlying free dispersions are shown in
figures 1(b) and (c). In the case of the helical LL, the similarity to the dispersion in figure 1(a) in the 2F phase is

3
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evident. Figures 1(b) and (c) have orthogonal spin directions at opposite Fermi points. The spiral LL figure 1 (c)
additionally includes gapped modes. The helical LL may be seen as alow energy model of the spiral LL as long as
the relevant excitation energies w are smaller than the gap 2B. The helical LL is very similar to the spinless
fermion LL and many properties like density—density correlations are indeed the same.

The relation between the helical and spiral LL approach can be clarified in our model by applying a gauge
transformation [40]

¢ — e—iffyksojcj (2.3)

to our model Hamiltonian equation (2.1). In the non-interacting case, this yields a modified dispersion relation,
as depicted in the inset of figure 1(a), from which the relation to the spiral LL becomes apparent. By applying this
transformation to equation (2.1), the SO interaction vanishes, Hso = 0, while H, and Hg in equation (2.1)
become

(c;ch + h.c) — (u — t)c]ch ,

~ V2 + a?
Ht = ZI: —
7 2
Hy = ZB [cos(2kso7) c;f o*cj — sin(2ksoj) c]~ o¥cjl. (2.4)
J
Note how the site independent magnetic field transforms into a helical field spiraling around the quantum wire,

hence the name spiral LL [38, 39, 41]. The kinetic energy gets rescaled with t — /t?> + 2. Since Hy,, is
unaffected by this transformation, our results are valid for both cases in the commensurate case kr = 2kso.

2.2. Spectral functions from real-time evolution

In this work we are analyzing the effect of e—e interactions on the spectral properties of a quantum wire, using
matrix product state (MPS) [54, 55] techniques. MPS are nowadays routinely used in calculations of spectral
functions in 1d quantum system. Recent advances include Chebyshev [56—61] and Lanczos [62, 63] expansion
techniques. Here, we obtain real-frequency Greens functions using real time evolution employing the time
dependent block decimation (TEBD) [64, 65] and subsequent Fourier transformation [66—69]. The object of
interest is the Greens function

[ee]

L. oo . 1. 4 . R N
Sigtk, w) = e f dt el”(@lg {A;(1), Bo(0)}10) — (014;(0)]0) (0]Bo (0) |O>), (2.5)
jmmoo VT
where Aj (t)and ]§j (t) are operators acting on site jat time t, {A, B} = AB 4 BA is the anticommutator and |0)
is the ground state. For our case of spinors, with A]- = ¢jand By = ¢{, we obtain the spectral function S, (k, w).
The computation proceeds as follows: first, we compute the ground state |0) using DMRG. S, (k, w) is then
computed from Fourier transformation of the time dependent functions

Gin,jor (W) = (0lc] (£)¢jor (0)]0) = e'Fof (0fc] e~ Hec;pr]0) (2.6)

which are calculated by evolving | (1)) = e~#¢;,/|0) forward in time, and calculating the overlap with (0]c; .
The phase factor e+ can be removed by shifting the ground state energy E, of |0) to 0 prior to the evolution.

A common feature shared by all MPS methods for calculating spectral functions is the finite w-resolution. In
our case it is due to the fact that only short to moderately long time scales can be reached with MPS time
evolution. This is due to rapid entanglement growth following (local) quenches of the system. The w-resolution
can be substantially improved by using extrapolation techniques for the time series. In this paper we use the so-
called linear prediction technique to achieve this [66-68], see also appendix A. For our study we use system sizes
of upto L = 256 sites, and matrix dimension up to m = 600 and m = 1200 for DMRG and during time
evolution, respectively, which was large enough to ensure that our results did not depend on the bond dimension
m any more. In our code we make use of total charge conservation (note that total $*is not conserved during the
time evolution). For the time evolution, we use a second order Suzuki—Trotter splitting scheme, with a time step
0f0.05 (0.01 for breather calculations, see below). The dominant error is due to the truncation of the MPS
matrices during time evolution. A possible measure of this error is the cumulative truncated weight [66]

t L
ot () = szj (7)), 2.7)

T7=0j=1

where the sums run over lattice sites j and time slices 7. Note that the growth of entanglement, and hence ¢, (¢)
depend on the particular kind of quench that is applied to the system. For example, for single-particle spectral
functions entanglement growth is stronger than for the charge and spin structure factors or the current-current
correlation function. Furthermore, for strong interactions the entanglement growth during the time evolution is
more pronounced than for weak interactions, while ground states for stronger interactions typically require
smaller bond dimensions.
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Figure 2. (a) Spectral function S (k, w) forn = 0.5, & = 1,B=0.1 and several values of U (with U’ = U /2, system size L = 128
and N = nL fermions). The dotted red line is the Fermi energy, determined from the ground state energiesas Er = (E(L, N + 1) —
E(L, N — 1)) /2.(b) SO gap parameter B" as obtained from the gap of size 2B* in the spectral functions (shown until the MI phase
setsinat U = 4). Results for U’ = 0 are reported in appendix B.

An advantage of our method is the direct accessibility of real frequency spectra without the need of an
analytic continuation like in QMC based approaches [70]. It is also considerably more efficient than previous
approaches like dynamical DMRG [71] or the correction vector method [72]. In our approach, spectra at all
momenta can be calculated from a single time evolution.

3. Results and discussion

3.1. Spectral functions

We now move on to analyze the effect of e—e interaction on spectral functions of the quantum wire. Results are
shown in figure 2. The data was obtained from evolving equation (2.6) up to tm,y = 25 onasystem with L = 128
sites. Using linear prediction, the time series was extrapolated to f;p = 275. We note that at larger interaction
strengths the truncation error e, () grows more rapidly with t”. We have checked all our results for
convergence in m. The spectrum in figure 2(a) at U = 0.5 exemplifies the spectral resolution of our approach.
Figure 2(a) shows the evolution of the spectral function with the Coulomb interaction U, for « = 1,B=0.1,and
at U’ = U /2 for which the two-particle backscattering is suppressed at quarter filling. For comparison spectral
function for U’ = 0 are shown in appendix B. With increasing interaction, the two noninteracting branches get
significantly broadened, but remain visible up to large values of U = 6. Close to the Fermi energy, the spectral
functions remain sharp, as predicted by the LL theory. The bandwidth increases with the interaction, and so does
the SO gap. This is shown in figure 2(b). Within the spiral LL approximation, the correlation-induced
enhancement of the gap in the is found to be [38, 39, 73, 74]

2B* = 2BE - #/2, (3.1)

o Form = 1200 states the total cumulative truncated weight €,y < 0.1for U < 4 (with U’ = U/2), while €,y = 0.25for U = 6
(and U’ = 3).
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Figure 3. (a) Spectral function in the gauge-transformed basis, at n = 0.5, « = 1, B=0.1, L = 128 and different values of U. (b)
Spectral functions for individual spin components, parallel or antiparallel to the SO interactions, for the same couplings as in (a). The
spectra in (a) were obtained from the sum of the spectral functions of (b) shifted by £kso.

where k = K, + K ' is determined from charge and spin LL parameters K, and K,, and a correlation length &.
For the noninteracting system, K, = K, = 1and B* = B. Repulsive interactions, for which K, < 1and

K, > 1,leadto k < 2.Asa consequence, the SO gap is enhanced by the interactions, which is confirmed by
figure 2(b).

For U = 6, the opening of a gap at +ky indicates the emergence of a Mott insulating (MI) phase at quarter
filling [1, 75-77], as described in section 3.2. We note that the MI phase is absent for U’ = 0, see appendix B.

If the momentum shift of the SO interaction is removed by the gauge transformation equation (2.3)', the
similarity to the dispersion of the Hubbard model facilitates the interpretation of the other features of the
spectral functions. Figure 3(a) shows that below the Fermi level several dispersing branches appear, originating
from the spin-charge separation. The distinctive main branch and the two weaker ones below can be attributed
to the collective spinon and holon excitations [78, 79], respectively. The spectral weight of both increases with
increasing interaction.

In figure 3(b) we show the spin-resolved components of the spectral functions for the parallel and
antiparallel direction with respect to the SO interaction (see arrows in figure 1), as determined by equation (2.5)
forc', = (c{f + icjf y/2and ¢ = (CTT — icf) /~/2 . These directions are of particular interest, since they
determine the spin-dependent transport properties. Each spin direction contains only a single Fermi point with
non-negligible spectral weight. Thus we find that the helical spin order is robust with respect to electronic
correlations and that spin transport is still polarized. Since n = 0.5, the SO gap opens at kg like for the spiral LL
dispersion displayed in figure 1(c).

Summarizing, the correlation effects observed for the microscopic model are in agreement with the LL
predictions of an enhanced SO gap in the spectral functions and of the preservation of the helical spin order with
spin-dependent transport within the metallic 2F phase [38, 39, 42, 48].

3.2.Phase diagrams

3.2.1. Spiral and helical phases

In many applications—like Majorana wires, spin filters and Cooper pair splitters—it is crucial that the system is
in the helical 2F phase [10, 11, 20, 21, 23]. Therefore, and in order to guide experimental realizations, we
investigate the phase boundaries between the ordinary 4F phases and the helical 2F phase. In principle, the
number of Fermi points can be obtained by simply counting them in the spectrum. However, the calculation of
spectral densities at many sets of parameters is computationally rather expensive as compared to e.g. ground
state calculations. Therefore, a reliable method to find the number of Fermi points based only on ground state
properties is favorable. To this end, we use a method based on the calculation of the static density—density
correlation function Cz; (r) = (07, 7ig|0). Within the 2F phase, our system is described by a spinless fermion LL,

19 This can be achieved byshifting S, .+ and S, s in momentum by —kso, respectively +kso, and summing them up.
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Figure 4. (a) Phase diagram (o, U), forn = 0.5, B=0.1 and L = 128. The phase boundaries between the 2F and 4F phases are
obtained from the discontinuity in K, (equation (3.3)). The phase boundary of the MI was obtained from the closing of the two
particle charge gap in DMRG. The red and green lines are polynomial fits (using second order for the lower red line and first order for
the upper red and green lines). (b) Spectra in the 4F and 2F phases at U = 2 for different SO interactions a.

6 n =0.31
4F

0.3bs . . . . . . . .
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 1 -0.5 0.5 1 05 0 05

0
U k/m k/m

Figure 5. (a) Phase diagram (n, U), for & = 1,B=0.1and L = 128. The phase boundaries between the 2F and 4F phases are obtained
from the discontinuity in K, (see equation (3.3)). The inset shows the behavior of K, for different values of U = 0, 0.5, 1, 2, 3 from top
to bottom. The red lines are polynomial fits of second order. (b) Spectra in the 4F and 2F phases at U = 2, for different fillings n.

and the asymptotic behavior (I <« r < L) of the density—density correlations is given by [80]

K .
NGl ) B PR (3.2)

Cﬁﬁ(r) ~ T 2(7”.)2 1,1+K/;

with amodel-dependent constant A. The second expression contributes only logarithmically and is neglected.
After a Fourier transformation, K, can be obtained from the derivative at k = 0 in the thermodynamic limit, or
from a finite size extrapolation of L — o0:

K, = lim L Can (k = 2%) (3.3)
In the 4F phase on the other hand, the low energy physics is no longer described by the simple LL for spinless
fermions. Nevertheless, the leading large-distance behavior of the density—density correlations is still quadratic,
namely K, / (7r)?. Thus the change in the prefactor of 1,/r2, by a factor of 2, can be used to distinguish the 2F and
4F phases.
The phase diagrams obtained in this way are shown in figures 4(a) and 5(a). For the phase boundaries
between 2F and 4F phases (red lines in figures 4(a) and 5(a)) we used a system size of L = 128 (the results for
L = 256 are indistinguishable from L = 128). In figure 4(a), the phase boundary to the MI (green line) was

7
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(b)

Figure 6. (a) The boundary to the MI as a function of Uwas determined from the charge gap (upper left panel) AZ_ __ as well as from
the critical value of K = 0.25 (lower left panel). The finite-size extrapolations are shown for a = 1 in the right panel (using system
sizes L = {16, 32, 64, 128}). (b) Local density of states at the chain boundary for U = 2 (in the LL phase) and U = 6 (in the MI
phase), both at @ = 1. The dotted red line is the Fermi energy. For all panels the other parametersaren = 0.5,B = 0.1 and L = 128.

obtained from the closing of the two particle charge gap (see below). The inset in figure 5(a) shows the behavior
of the LL parameter K, as determined by equation (3.3), with the jump at the phase boundaries between the 2F
and 4F phases. Except for U = 0, the actual jump of K, between the two phases is in general smaller than a factor
of 2.

The phase boundaries in («, U) (figure 4) were obtained at quarter fillingn =0.5,andin (n, U)at o = 1
(figure 5). In the noninteracting case, the boundaries of the 2F phase in (o, U = 0) (atn=0.5) are at

Vt? — 2Bt < a < t? 4+ 2Bt, (3.4)
andin (n, U = 0) for fixed v at
t? — a? + 2Bt

3.5
2+ a? 3.5)

arccos (

) (tz —a? - 2Bt)
< mn < arccos| ———————————|.

2 + a?
The phase boundaries at U = 0 obtained from equations (3.4) and (3.5) lie within the error bars of the
numerically obtained ones in figures 4 and 5.

Remarkably, we find that with interactions the parameter range of the 2F phase gets greatly enhanced [48],
which is in accordance with the interaction-enhanced gap we already found for the spectral functions in
figure 2(a). Examples for spectral functions in the different phases are given in figures 4(b) and 5(b). We show the
spectral functions in the proximity of the phase boundaries. Note how the SO gap gets enhanced as soon as the
Fermi energy slips inside the 2F phase. Therefore, we predict repulsive e—e interactions to be beneficial to
applications depending on the 2F phase, like Majorana zero modes [48, 58, 81, 82] or spin-filters.

For both phase diagrams (figures 4 and 5), the jump in K, (only shown in figure 5) is no longer visible in the
strong coupling regime, indicating that the LL picture breaks down there.

3.2.2. Mott phase

At quarter filling, the strong coupling phase is a Mott Insulator [1, 75]. To detect the MI phase transition in our
model, we use two different approaches, to be detailed in the following. The first one is via the calculation of the
two-particle (charge) excitation gap above the ground state,

M:%WQN+D+HLN787H@NR (3.6)

with Nbeing the absolute filling N = nL. In the absence of pairing effects, the two particle and the single particle
excitation gap will scale to the same value in the thermodynamic limit, but the two particle excitation gap is
robust to even/odd effects. A? is calculated from ground state energy of three different DMRG runs, one for
each total filling N + 2, N and N — 2. Complementary to this, we use the evolution of K, with increasing Uto
detect the MI phase transition. For quarter filling, there is a critical value K ;‘ = 0.25 below which the system is in
aMI state [1]. Note that the value of K, from equation (3.3) in the 4F phase, equation (3.3), differs by a factor of

11 .. . . . .
This is also true after a finite size extrapolation, as it was performed e.g. in figure 6(a).
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k/m

Figure 7. [llustration of breather bound states on the gapped modes, consisting of a particle excitation (soliton) on the upper branch
and a hole excitation (antisoliton) on the lower branch. The spectral function shown here was obtained forn =0.5, « = 1, U = 1,
B=0.3andL = 128.

two as compared to the 2F case, see the discussion in section 3.2.1. For both approaches, the values in the
thermodynamic limit L — oo were obtained by a polynomial fitin 1 /L, as shown in the right column of
figure 6(a). The left column in figure 6(a) shows the results in the thermodynamic limit L = co. The phase
boundaries obtained from the two approaches agree within the error bars and are shown as the green line in
figure 4(a). Note how the phase boundary to the MI moves to larger values of U with increasing SO interaction.
This can be understood from the contribution of the SO interaction to the kinetic energy of the system, which
lowers the effective interaction at fixed U and drives the system away from the ML

The charge gap in the Ml is also clearly visible in the local density of states (LDOS) ;_;(w) at the left chain
boundary, as shown in figure 6(b). In the LL phase we find a pronounced interaction-induced suppression of the
local spectral weight [83, 84], while in the Mott phase a gap opens around the Fermi energy. The high-energy
peak in the LDOS corresponds to the upper Hubbard band, see also figure 2.

Away from quarter filling, a strong coupling region emerges at strong interactions which is further examined
in appendix C.

3.3. Breathers, structure factors and optical conductivity

3.3.1. Breather bound states

In the mathematical formulation of the spiral LL, the gapped modes are described by a sine-Gordon model
(SGM). The elementary excitations in the SGM are solitons and antisolitons with the mass B* of half the SO gap.
In the attractive regime of the SGM (which amounts to repulsive interactions in the spiral LL), additional
soliton—antisoliton bound states appear, which are so-called breather states [85, 86]. In the spiral LL theory their
masses are given by [42]

A = 2B*sin(l”—“), (3.7)
8 — 2k

with! = 1,...,lne and [, = int(4/k — 1) different breathers (for k < 2, with k = K, + 1/K,).

In our lattice model the breathers correspond to bound states of a particle excitation (soliton) and a hole
excitation (antisoliton) on the gapped modes (see figure 7 for an illustration). They are charge neutral but carry a
positive $° magnetization. The electron and the hole are bound together by the interaction, with an energy
smaller than the SO gap 2B*. In the real-time evolution, breathers oscillate back and forth around their ‘center of
mass’, which motivates their naming. The breather contributions to one-particle Green functions, like the
spectral function or the LDOS, are found to be negligible [42]. However, the breathers strongly couple to the
current density J, hence the optical conductivity

Im(Sj;(k = 0, w > 0))
Lw

ocw>0)= (3.8
is an excellent choice for observing breather bound states.

In the following, we will compare the optical conductivity o (w) of our microscopic model to the optical
conductivity g (w) of the spiral LL, which has been calculated in [42]. We will determine the necessary
parameters B", K, K, and the charge and spin velocities v, and v, for the calculation of og; ;. (w) from our
microscopic model. This comparison will serve as an important test for the consistency and validity of the spiral
LL approach and our numerical calculations.
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-1

Figure 8. Local density of states in the middle ofa L = 128 site chain for n=0.5, « = 1, B=0.3 and different values of U. The dashed
red line is the Fermi energy, whereas the dotted—dashed green lines mark the boundaries of the SO gap.

Table 1. Parameters K, K,,, v, v and B" as used for the field-theoretical
calculations, and the mass of the first breather 4. K, was extracted
from the energy of the first breather peak A using equation (3.7),
where A; was obtained from the position of the peak in figure 10. The
value in parentheses is obtained from the oscillation frequency in

figure 11. The estimated uncertainties in these values are about 5%
(10% for the velocities).

U K, K, v Vo B A

0 1.00 1.00 1.0 1.0 0.30 —

0.5 0.87 1.20 1.0 1.0 0.41 0.75(0.75)
0.76 1.28 1.0 1.1 0.50 0.83(0.83)

2 0.59 1.29 1.2 1.3 0.62 0.89(0.90)

Since we are now focusing on the physical behavior taking place at energies smaller than the SO gap, itis
advantageous to use a stronger Zeeman field of B = 0.3 for a wider gap. The other parameters are as before,
a = land n=0.5, different interactions U, and U’ = U /2. The higher magnetic field B= 0.3 causes the MI
phase to setin earlier (from U > 2 on there are hints of a quarter filled MI order). We extracted the values of the
spiral LL parameters from several different observables.

3.3.2. Local density of states

The renormalized size 2B* of the SO gap was extracted from the LDOS in figure 8. Due to the local nature of the
LDOS we were able to use longer time evolutions than for the momentum-resolved spectra in the same systems,
reaching from t,,,, = 30 up to t;x = 90 depending on the interaction. The small scale oscillations visible in
figure 8 at lower values of the interaction are consistent with the energy spacing for an L = 128 site system.
Results for B* are shown in table 1.

3.3.3. Structure factors

We obtain the velocities v, and v, from the corresponding structure factors S (k, w)and Sgrg» (k, w). The
structure factors are shown in figure 9. Since the spectra are symmetric, values for k < 0 are not shown. Near

k = w = 0, the dispersions are approximately linear (at least for the considered U < 2) and the velocities were
obtained from fits to their slopes. Table 1 shows that for the interactions considered, v, ~ 1.

The structure factors themselves contain very interesting physics. In the weak coupling regime, the nearly
linear dispersions startingat k = w = 0 visiblein S;; (k, w), S¢¢» (k, w) and Sjj (k, w) result from the
ungapped modes of the Hamiltonian. The approximately quadratic dispersionat w = Aj;andk = Oin
S (k, w), S¢rgr (k, w) and Sjj (k, w) corresponds to the breather modes. Note that their dispersion starts atan
energy A, which is smaller than the SO 2B* gap obtained from the single-particle spectra. The breather
dispersion gains more spectral weight with increasing interaction but smears out in the MI phase from U > 2
on. Unlike spin charge separation, which also gives rise to two low energy modes [87], the modes here are not
separated because of interactions but due to the interplay of Zeeman field and SO interaction (each modeisa
combination of spin and charge degrees of freedom).

10
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Figure 9. Charge, spin and current structure factors S;; (k, w), Sgxs~ (k, w), Sgr¢» (k, w), Sgz57 (k, w) and Sjj (k, w),forn=0.5,a = 1,
B=0.3,L = 128 and different values of U. S;; (k = 7, w = 0) and Sgz37 (k = 7, w = 0) diverge in the MI phase (U > 2)and exceed the
color range, with maximal values in our analysis of 1.0, 20.4, 42.4 for S;; (k, w) and 0f0.5,4.8,7.9 for Sgz57 (k, w) at U = 2,4, 6 respectively.

In contrast to an ordinary MI, at quarter filling there is no antiferromagnetic order at k = 7 /2 in the spin
structure factors. Instead, the Zeeman field induces a finite magnetization. Therefore, Sg:57 (k, w) and Sz; (k, w)
show the same diverging behavior at k = 7 and w = 0 for strong interactions. Deep in the MI phase,

Ss7¢*(k, w)and Sgrgr (k, w) consist almost solely of a constant energy level at w = 2B, indicating thatall
movement of the spins freezes except for a simple precession around the Zeeman field. Sz, (k, w) and Sg=g= (k, w)
are dominated by the Mott instability for strong interactions. As soon as the interactions are turned on, spectral
weightat w = 0 and k = 2kg = 7 accumulates, indicating the charge order of the quarter filled MI. In the MI
phase, S;; (k, w) and also Sg#¢: (k, w) diverge at this point.

The LL parameter K, at B = 0.3 was obtained from the static density—density correlations, as described in
section 3.2. We used system sizes from L = 16 up to L = 256 and extrapolated to L = oo by a fourth order
polynomial fitin 1 /L. The spin parameter, K, is known to be very susceptible to finite size corrections [88].
When we applied the same method to K,,, we found the extrapolation to the thermodynamic limit to be
unreliable, since it turned out to be nonmonotonic in 1/L. Since all other parameters for the field theory are
already fixed, we choose to obtain K,, with equation (3.7) from the energy of the breather peak in the optical
conductivity o (w), which we discuss now.

3.3.4. Optical conductivity

According to equation (3.8) the optical conductivity can be obtained from Sj;. For our model, the usual
Hubbard current operator has to be adapted in order to include the SO interaction. It then reads as follows for
the current between the sites jand j + 1

N . t - Q
Jj = 1[5 D (el ciiie = €y1p6i) + E(Cﬁc;‘m — 6L~ G+ C,Tmcjr)]- (3.9)
g

The further calculation of o (w) is analogous to the spectral densities and structure factors. We calculated the
time evolutions ona L = 200 site system until ¢,,,, = 42.5. A matrix dimension of m = 1200 was used. We
observed that the entanglement grows slower with a J excitation than a single particle excitation. Therefore,
longer simulation times were feasible at a comparable €. Linear prediction was used up to time 140.5. The time

11
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Figure 10. Optical conductivity o forn = 0.5, « = 1,B=0.3, L = 200, and different values of U. The numerical result (solid blue
line) is compared to the field-theoretical result (dashed red line) [42]. The dotted—dashed green line marks the SO gap 2B* as obtained
from figure 8. The dotted black line shows the extracted breather energy. The insets zoom into the soliton—antisoliton continuum for
better visibility.

series was then multiplied with a window function of Dolph—Chebyshev type. The optical conductivity o (w) of
our microscopic model is presented in figure 10",

We are now ready to compare o (w) to the field theoretical result gy | in a spiral LL [42]. The parameters for
the field theoretical calculations are shown in table 1. Apart from K,,, which was extracted from the energy of the
breather peak depicted by the dotted black lines in figure 10, all other parameters were obtained from
calculations independent of the optical conductivity.

The field theoretical result, o511 (w), was convoluted with a Dolph—Chebyshev window, the same way as the
numerical data, and scaled such that the breather peak heights coincide, see figure 10. Its shape agrees very well with
the numerical result both in the interacting and in the noninteracting case. In the latter there is no breather satisfying
equation (3.7), instead the peak is given by the onset of the soliton—antisoliton continuum at w = 2B. This onset is
moved to w = 2B* in the interacting case. The insets show the soliton—antisoliton continuum in detail. We believe
that the small-scale oscillations are artifacts originating from the window function. At nonzero interactions, the
breather contribution at energies w = 4A; < 2B* emerges, which in the field theory takes the form ~§ (w — A)).
We note that we are always in the parameter range 4/3 < k < 2, where only a single breather exists. Generally, we
observe that the intensity of the field theoretical result drops more slowly at high energies than in our numerical
calculations, which may originate from the existence of a finite band width in our lattice model. To sum up, we
conclude that our simulations for the optical conductivity are in good agreement with the field theoretical results.

3.3.5. Time evolution of breather bound states

Itis interesting, and potentially relevant for experiments, to visualize the breather oscillations directly, by
examining the time evolution of the system after alocal excitation from the ground state. A gaussian density
excitation, centered around k = 0, is suitable for this task:

[ (= 0)= g,j'zogk:0|0>, where

G—Ji

2
g = Z:e’#el(f‘fo)k(c}T + ¢ (3.10)
J

We take & = 4, which corresponds to a width of 0.25 in k-space. By employing an excitation in the eigenstate
direction (c]-TT + c]Tl) with positive S”-eigenvalue, we ensure that the excitation can act on both branches of the

dispersion simultaneously. The breather state itself has a positive magnetization $°, which we use as the
observable in figure 11. The zigzag oscillations of the breather state are clearly visible in the time evolution, with
the frequency of the oscillation corresponding to its energy. The oscillations at U = 0 reflect the onset of the
soliton—antisoliton continuum at w = 2B. The breather energies in the optical conductivity and for the direct
excitation are in good agreement, see table 1. We observe thatat U= 0.5 and U = 1 the oscillations are longer
lived than at U = 2, which is a sign of the onset of the Mott instability in the latter case.

12 Apart from the imaginary part of Sjj, as in equation (3.8), one can also use the real part according to the Kramers—Kronig relations [89] in
order to calculate o (w). This was employed as a test; for w > 0 the two versions of o (w) are identical.
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Figure 11. Time evolution of (§Z> after an excitation (3.10) forn=10.5, & = 1, B = 0.3, L = 128, and different values of U.

4. Conclusions and outlook

We have presented a detailed analysis of the static and dynamic properties of strongly correlated quantum wires with
Rashba SO interaction and Zeeman field. We investigated a microscopic model, with SO interaction, Zeeman field
and tunable interactions of extended Hubbard type, and calculated the static and dynamic properties by DMRG and
TEBD. We assessed the validity of the field-theoretical description by comparing the results for the microscopic
model to the predictions for the corresponding low energy models, the helical and spiral LL. In particular, we
confirmed the enhancement of the SO gap with increasing Coulomb interaction. Furthermore, from the LL
parameters we determined the phase diagram of the system. We found that the parameter range (in filling,
respectively SO interaction) of the metallic 2F phase increases in the presence of interactions, and that helical spin
order and spin-dependent transport are preserved. This means that interactions are a way to increase the SO gap
without disturbing the helical spin order (which a larger magnetic field would do). The interesting 2F phase thus
becomes more accessible in presence of interactions, which is very welcome in view of future applications exploiting
the helical spin order like spin-filters, Cooper-pair splitters and Majorana wires [10, 11, 20, 21, 23]. The main
prediction of our work with respect to Majorana experiments is the interaction enhancement of the SO gap. In
principle, this could be detected by measuring the Landé g-factor in the nanowires. To make a direct comparison,
more information on the interaction strength in semiconductor nanowires would be required, though. For very
strong interaction strengths, however, the 2F phase is suppressed in favor of a MI phase in the commensurate case,
characterized by the opening of a charge gap.

Furthermore, we analyzed characteristic breather bound states in the optical conductivity o (w) as predicted
for the spiral LL. Using the extracted LL parameters, the optical conductivity was found to be in good agreement
with the field-theoretical results. Finally, we showed the presence of strong oscillatory behavior in the time
evolution of the bound states after an excitation, which can provide a route for their experimental detection i.e.
in cold atom systems.

While the present work focuses on the 2F phase, the LL theory predicts interesting phases hosting fractional
excitations if the chemical potential is tuned below the SO gap [43, 90-93]. Using our methods, a systematic
study of these fractional phases in a microscopic model could be addressed.
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Appendix A. Linear prediction

The linear-prediction technique approximates future values of an equally spaced time series {y,} as alinear
combination of past values [66, 68, 94]

N
X~ fl = —Zajxl,j. (A.l)
j=1

The coefficients a; are determined by minimizing a least squares error. Linear prediction efficiently extrapolates
future data points as a sum of damped exponentials, respectively Lorentzians after the Fourier transformation,
which is justified in many cases. Due to the large number of coefficients a;, other functions can be represented
with sufficient accuracy as well. We use Ny, /2 coefficients, with Ny, being the number of steps in our time
evolution. The numerical effort of the prediction is negligible compared to the time evolution itself.

Appendix B. Spectra for Hubbard-type interactions

In this appendix, we provide the spectral functions without nearest-neighbor interaction U’, see figure B1,
whereas in the rest of the paper we have always taken U’ = U /2 in order to minimize backscattering. Similar
spectra, albeit for B = 0, have been obtained by QMC in [95]. The interaction effects in figure B1 are less
pronounced than in the previous results, due to the overall reduction of the interaction. In particular, the
enhancement of the SO gap is reduced. The two main branches of the spectral function preserve their general
shape and energy range for all values of the interaction. As expected [1] no Mott phase develops until U = 6. We
note that there is now a disjunct upper Hubbard band.

-1 -0.5 0 0.5 -1 -0.5 0 0.5

k/m k/m

FigureB1. S : (k, w) forn=0.5, a = 1,B=0.1,L = 128 and several values of U (U’ = 0). The dotted red line indicates the Fermi
energy.
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Figure C1. (a) Spectral functions and (b) charge and spin structure factors S;; (k, w) and Sgr¢» (k, w) for n=0.41 and n =0.61, with
a=1,B=01,U=6,U"=U/2andL = 128.

Appendix C. Strong coupling region at incommensurate filling

In figure C1 we provide the spectral functions and structure factors for two different filling factors at a large value
of U = 6in the strong coupling region. For both # =0.41 and n = 0.61, the charge gap determined by

equation (3.6) vanishes, although the spectral functions shown in figure C1(a) exhibit a reduced spectral density
around the Fermi level. The charge structure factor S;;; (k, w) displayed in figure C1(b) presents its largest
contribution at k = 2kg and w = 0, indicating a tendency towards a charge density wave phase, while the spin
structure factor shows a qualitatively similar behavior as for commensurate filling at smaller interactions.

References

[1] GiamarchiT 2004 Quantum Physics in One Dimension (Oxford: Clarendon)
[2] Voit] 1995 Rep. Prog. Phys. 58 977
[3] Meden V and Schénhammer K 1992 Phys. Rev. B46 15753
[4] Schénhammer K 2002 J. Phys.: Condens. Matter 1412783
[5] Imambekov A and Glazman L12009 Science 323 228
[6] Imambekov A, Schmidt T L and Glazman L12012 Rev. Mod. Phys. 84 1253-306
[7] White SR 1992 Phys. Rev. Lett. 69 2863
[8] White SR 1993 Phys. Rev. B 48 10345
[9] Manchon A, Koo H C, Nitta J, FrolovS M and Duine R A 2015 Nat Mater 14 871-82
[10] OregY, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
[11] LutchynRM, SauJ D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
[12] Kitaev A 2003 Ann. Phys., NY303 2-30
[13] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083—159
[14] Das A, RonenY, MostY, Oreg Y, Heiblum M and Shtrikman H 2012 Nat. Phys. 8 887-95
[15] DengM T, Yu CL, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 12 6414-9
[16] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 10037
[17] AlbrechtSM, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygard J, Krogstrup P and Marcus C M 2016 Nature 531
2069
[18] Quay CHL, Hughes T L, Sulpizio ] A, Pfeiffer LN, Baldwin K W, West K W, Goldhaber-Gordon D and de Picciotto R 2010 Nat. Phys.
6336
[19] HeedtS, Traverso Ziani N, Crepin F, Prost W, Trellenkamp S, Schubert J, Grutzmacher D, Trauzettel B and Schapers T 2017 Nat. Phys.
advance online publication (https://doi.org/10.1038 /nphys4070)
[20] Birkholz] 2008 Spin—orbit interaction in quantum dots and quantum wires of correlated electrons—a way to spintronics? PhD Thesis
Universitdt Gottingen
[21] Stfeda Pand Seba P 2003 Phys. Rev. Lett. 90 256601
[22] MazzaF, Braunecker B, Recher P and Levy Yeyati A 2013 Phys. Rev. B 88 195403
[23] SatoK, Loss D and Tserkovnyak Y 2010 Phys. Rev. Lett. 105 226401
[24] Cheuk LW, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S and Zwierlein M'W 2012 Phys. Rev. Lett. 109 095302
[25] WangP, YuZQ, FuZ, MiaoJ, Huang L, Chai S, Zhai H and Zhang] 2012 Phys. Rev. Lett. 109 095301
[26] Schulz A, De Martino A, Ingenhoven P and Egger R 2009 Phys. Rev. B 79 205432
[27] Japaridze G1, Johannesson H and Ferraz A 2009 Phys. Rev. B 80 041308
[28] Schulz A, De Martino A and Egger R 2010 Phys. Rev. B 82 033407

15


https://doi.org/10.1088/0034-4885/58/9/002
https://doi.org/10.1103/PhysRevB.46.15753
https://doi.org/10.1088/0953-8984/14/48/317
https://doi.org/10.1126/science.1165403
https://doi.org/10.1103/RevModPhys.84.1253
https://doi.org/10.1103/RevModPhys.84.1253
https://doi.org/10.1103/RevModPhys.84.1253
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1038/nmat4360
https://doi.org/10.1038/nmat4360
https://doi.org/10.1038/nmat4360
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nphys1626
https://doi.org/10.1038/nphys4070
https://doi.org/10.1103/PhysRevLett.90.256601
https://doi.org/10.1103/PhysRevB.88.195403
https://doi.org/10.1103/PhysRevLett.105.226401
https://doi.org/10.1103/PhysRevLett.109.095302
https://doi.org/10.1103/PhysRevLett.109.095301
https://doi.org/10.1103/PhysRevB.79.205432
https://doi.org/10.1103/PhysRevB.80.041308
https://doi.org/10.1103/PhysRevB.82.033407

10P Publishing

NewJ. Phys. 19 (2017) 063009 G W Winkler et al

[29] Malard M, Grusha, Japaridze G I and Johannesson H 2011 Phys. Rev. B 84 075466

[30] Thakurathi M, Loss D and Klinovaja J 2016 Phys. Rev. B 95 155407

[31] Schmidt T L and Pedder CJ 2016 Phys. Rev. B94 125420

[32] Pedder CJ, MengT, Tiwari R P and Schmidt T L2016 Phys. Rev. B94 245414

[33] Governale M and Ziilicke U 2002 Phys. Rev. B66 073311

[34] GambettaF M, Ziani N T, Barbarino S, Cavaliere F and Sassetti M 2015 Phys. Rev. B91 235421

[35] Gangadharaiah S, SunJand Starykh O A 2008 Phys. Rev. B 78 054436

[36] Governale M and Ziilicke U 2004 Solid State Commun. 131 581-9

[37] GritsevV, Japaridze G, Pletyukhov M and Baeriswyl D 2005 Phys. Rev. Lett. 94 137207

[38] Braunecker B, Simon P and Loss D 2009 Phys. Rev. Lett. 102 116403

[39] Braunecker B, Simon P and Loss D 2009 Phys. Rev. B 80 165119

[40] Braunecker B, Japaridze G I, Klinovaja J and Loss D 2010 Phys. Rev. B82 045127

[41] Braunecker B, Bena C and Simon P 2012 Phys. Rev. B85 035136

[42] Schuricht D 2012 Phys. Rev. B85 121101(R)

[43] MengT, FritzL, Schuricht D and Loss D 2014 Phys. Rev. B89 045111

[44] Scheller CP, Liu T M, Barak G, Yacoby A, Pfeiffer LN, West K W and Zumbiihl D M 2014 Phys. Rev. Lett. 112 066801

[45] GlazovM M and Sherman E'Y 2011 Phys. Rev. Lett. 107 156602

[46] Bindel] R, Pezzotta M, Ulrich ], Liebmann M, Sherman E'Y and Morgenstern M 2016 Nat. Phys. 12 9205

[47] van Weperen I, Tarasinski B, Eeltink D, Pribiag V'S, Plissard S R, Bakkers E P A M, Kouwenhoven L P and Wimmer M 2015 Phys. Rev. B
91201413

[48] Stoudenmire E M, Alicea ], Starykh O A and Fisher M P 2011 Phys. Rev. B 84 014503

[49] KitaevAY 2001 Phys.—Usp. 44 131

[50] Calvanese Strinati M, Cornfeld E, Rossini D, Barbarino S, Dalmonte M, Fazio R, Sela E and Mazza L2016 arXiv:1612.06682

[51] Barbarino S, Taddia L, Rossini D, Mazza L and Fazio R 2016 New J. Phys. 18 035010

[52] Barbarino S, Taddia L, Rossini D, Mazza L and Fazio R 2015 Nat. Commun. 6 8134

[53] Andergassen S, Enss T, Meden V, Metzner W, Schollwéck U and Schénhammer K 2006 Phys. Rev. B73 045125

[54] Fannes M, Nachtergaele Band Werner R F 1992 Commun. Math. Phys. 144 443-90

[55] Schollwock U2011 Ann. Phys., NY 326 96

[56] Weifle A, Wellein G, Alvermann A and Fehske H 2006 Rev. Mod. Phys. 78 275-306

[57] Holzner A, Weichselbaum A, McCulloch I P, Schollwéck U and von Delft ] 2011 Phys. Rev. B83 195115

[58] Thomale R, Rachel S and Schmitteckert P 2013 Phys. Rev. B88 161103

[59] Braun A and Schmitteckert P 2014 Phys. Rev. B90 165112

[60] GanahlM, Thunstrom P, Verstraete F, Held K and Evertz H G 2014 Phys. Rev. B 90 045144

[61] WolfF A, Justiniano J A, McCulloch I P and Schollwéck U 2015 Phys. Rev. B91 115144

[62] Dargel P E, Wollert A, Honecker A, McCulloch IP, Schollwock U and Pruschke T 2012 Phys. Rev. B 85205119

[63] Nocera A and Alvarez G 2016 Phys. Rev. E94 053308

[64] Vidal G 2003 Phys. Rev. Lett. 91 147902

[65] Vidal G 2004 Phys. Rev. Lett. 93 040502

[66] White SR and Affleck 12008 Phys. Rev. B77 134437

[67] Barthel T, Schollwdck Uand White SR 2009 Phys. Rev. B79 245101

[68] GanahlM, Aichhorn M, Thunstrém P, Held K, Evertz H G and Verstraete F 2015 Phys. Rev. B92 155132

[69] SeabralL, Essler F HL, Pollmann F, Schneider I and Veness T 2014 Phys. Rev. B90 245127

[70] Assaad F and Evertz H 2008 World-line and Determinantal Quantum Monte Carlo Methods for Spins, Phonons and Electrons (Lecture
Notes in Physics vol 739) (Berlin: Springer)

[71] Jeckelmann E 2002 Phys. Rev. B66 045114

[72] Kithner T D and White S R 1999 Phys. Rev. B 60 335

[73] Zamolodchikov A B 1995 Int. J. Mod. Phys. A10 1125

[74] Maier F, Meng T and Loss D 2014 Phys. Rev. B90 155437

[75] MilaFand Zotos X 1993 Europhys. Lett. 24133

[76] Essler FH L and Tsvelik A M 2002 Phys. Rev. B65 115117

[77] Essler FH L and Tsvelik A M 2003 Phys. Rev. Lett. 90 126401

[78] Benthien H, Gebhard F and Jeckelmann E 2004 Phys. Rev. Lett. 92 256401

[79] Schmidt T L, Imambekov A and Glazman L12010 Phys. Rev. Lett. 104 116403

[80] Ejima S, Gebhard F and Nishimoto S 2005 Europhys. Lett. 70 492

[81] SelaE, Altland A and Rosch A 2011 Phys. Rev. B84 085114

[82] Hassler F and Schuricht D 2012 New J. Phys. 14125018

[83] Schénhammer K, Meden V, Metzner W, Schollwéck U and Gunnarsson O 2000 Phys. Rev. B 61 4393

[84] Meden V, Metzner W, Schollwdck U, Schneider O, Stauber T and Schonhammer K 2000 Eur. Phys. J. B16 631-46

[85] Essler FH L and Konik R M 2005 From Fields to Strings: Circumnavigating Theoretical Physics (Singapore: World Scientific)

[86] Gogolin A, Nersesyan A and Tsvelik A 2004 Bosonization and Strongly Correlated Systems (Cambridge: Cambridge University Press)

[87] PereiraR G and Sela E 2010 Phys. Rev. B82 115324

[88] Ejima S and Fehske H 2010 J. Phys.: Conf. Ser. 200 012031

[89] Karrasch C, Kennes D M and Moore J E 2014 Phys. Rev. B90 155104

[90] OregY, Sela E and Stern A 2014 Phys. Rev. B 89 115402

[91] Cornfeld E, NederIand Sela E 2015 Phys. Rev. B91 115427

[92] Cornfeld Eand Sela E 2015 Phys. Rev. B92 115446

[93] Cavaliere F, Gambetta F M, Barbarino S and Sassetti M 2015 Phys. Rev. B92 235128

[94] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 2007 Numerical Recipes in C 3rd edn (Cambridge: Cambridge University
Press)

[95] GothFand Assaad F F 2014 Phys. Rev. B90 195103

16


https://doi.org/10.1103/PhysRevB.84.075466
https://doi.org/10.1103/PhysRevB.95.155407
https://doi.org/10.1103/PhysRevB.94.125420
https://doi.org/10.1103/PhysRevB.94.245414
https://doi.org/10.1103/PhysRevB.66.073311
https://doi.org/10.1103/PhysRevB.91.235421
https://doi.org/10.1103/PhysRevB.78.054436
https://doi.org/10.1016/j.ssc.2004.05.047
https://doi.org/10.1016/j.ssc.2004.05.047
https://doi.org/10.1016/j.ssc.2004.05.047
https://doi.org/10.1103/PhysRevLett.94.137207
https://doi.org/10.1103/PhysRevLett.102.116403
https://doi.org/10.1103/PhysRevB.80.165119
https://doi.org/10.1103/PhysRevB.82.045127
https://doi.org/10.1103/PhysRevB.85.035136
https://doi.org/10.1103/PhysRevB.85.121101
https://doi.org/10.1103/PhysRevB.89.045111
https://doi.org/10.1103/PhysRevLett.112.066801
https://doi.org/10.1103/PhysRevLett.107.156602
https://doi.org/10.1038/nphys3774
https://doi.org/10.1038/nphys3774
https://doi.org/10.1038/nphys3774
https://doi.org/10.1103/PhysRevB.91.201413
https://doi.org/10.1103/PhysRevB.84.014503
https://doi.org/10.1070/1063-7869/44/10S/S29
http://arxiv.org/abs/1612.06682
https://doi.org/10.1088/1367-2630/18/3/035010
https://doi.org/10.1038/ncomms9134
https://doi.org/10.1103/PhysRevB.73.045125
https://doi.org/10.1007/BF02099178
https://doi.org/10.1007/BF02099178
https://doi.org/10.1007/BF02099178
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/RevModPhys.78.275
https://doi.org/10.1103/RevModPhys.78.275
https://doi.org/10.1103/RevModPhys.78.275
https://doi.org/10.1103/PhysRevB.83.195115
https://doi.org/10.1103/PhysRevB.88.161103
https://doi.org/10.1103/PhysRevB.90.165112
https://doi.org/10.1103/PhysRevB.90.045144
https://doi.org/10.1103/PhysRevB.91.115144
https://doi.org/10.1103/PhysRevB.85.205119
https://doi.org/10.1103/PhysRevE.94.053308
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1103/PhysRevB.77.134437
https://doi.org/10.1103/PhysRevB.79.245101
https://doi.org/10.1103/PhysRevB.92.155132
https://doi.org/10.1103/PhysRevB.90.245127
https://doi.org/10.1103/PhysRevB.66.045114
https://doi.org/10.1103/PhysRevB.60.335
https://doi.org/10.1142/S0217751X9500053X
https://doi.org/10.1103/PhysRevB.90.155437
https://doi.org/10.1209/0295-5075/24/2/010
https://doi.org/10.1103/PhysRevB.65.115117
https://doi.org/10.1103/PhysRevLett.90.126401
https://doi.org/10.1103/PhysRevLett.92.256401
https://doi.org/10.1103/PhysRevLett.104.116403
https://doi.org/10.1209/epl/i2005-10020-8
https://doi.org/10.1103/PhysRevB.84.085114
https://doi.org/10.1088/1367-2630/14/12/125018
https://doi.org/10.1103/PhysRevB.61.4393
https://doi.org/10.1007/s100510070180
https://doi.org/10.1007/s100510070180
https://doi.org/10.1007/s100510070180
https://doi.org/10.1103/PhysRevB.82.115324
https://doi.org/10.1088/1742-6596/200/1/012031
https://doi.org/10.1103/PhysRevB.90.155104
https://doi.org/10.1103/PhysRevB.89.115402
https://doi.org/10.1103/PhysRevB.91.115427
https://doi.org/10.1103/PhysRevB.92.115446
https://doi.org/10.1103/PhysRevB.92.235128
https://doi.org/10.1103/PhysRevB.90.195103

	1. Introduction
	2. Model and methods
	2.1. Microscopic model
	2.2. Spectral functions from real-time evolution

	3. Results and discussion
	3.1. Spectral functions
	3.2. Phase diagrams
	3.2.1. Spiral and helical phases
	3.2.2. Mott phase

	3.3. Breathers, structure factors and optical conductivity
	3.3.1. Breather bound states
	3.3.2. Local density of states
	3.3.3. Structure factors
	3.3.4. Optical conductivity
	3.3.5. Time evolution of breather bound states


	4. Conclusions and outlook
	Acknowledgments
	Appendix A.
	Appendix B.
	Appendix C.
	References



