Normalized A-matrices MPS

scientific mode. matrix product states. for a sum of single particle states on a chain, I want to write normalized A-matrices. how can this be done directly

Denkvorgang abgeschlossen

Denkvorgang abgeschlossen

Denkvorgang abgeschlossen

Nachgedacht für 5m 23s

Assume an open chain with a local "vacuum/occupied" basis $\{|0\rangle, |1\rangle\}$ and a **one-particle** state

$$|\psi
angle = \sum_{j=1}^N c_j \, |0\cdots 1_j \cdots 0
angle, \qquad \sum_{j=1}^N |c_j|^2 = 1.$$

Then there is an **exact bond-dimension** $D \leq 2$ MPS whose site tensors are **left-normalized** in the standard sense

$$\sum_{\sigma\in\{0,1\}}(A_\sigma^{[j]})^\dagger A_\sigma^{[j]}=I,$$

for all sites except (typically) the last one in a left-canonical gauge. homepages.phy... +1

Direct closed-form left-canonical A-matrices

Define cumulative weights

$$q_j := \sum_{k=1}^j |c_k|^2, \quad q_0 := 0.$$

(If some initial $q_j=0$ because $c_1=\cdots=c_j=0$, then keep bond dimension 1 up to the first nonzero coefficient; the formulas below apply once $q_j>0$.)

Use open-boundary dimensions $D_1=1$, $D_j=2$ for $2\leq j\leq N$, $D_{N+1}=1$. Then set:

• Site j=1 (row vectors 1×2 ; requires $q_1>0$):

$$A_0^{[1]} = egin{bmatrix} 1 & 0 \end{bmatrix}, \qquad A_1^{[1]} = egin{bmatrix} 0 & rac{c_1}{q_1} \end{bmatrix}.$$

• Sites $2 \leq j \leq N-1$ (matrices 2×2 ; requires $q_j > 0$):

$$A_0^{[j]}=egin{bmatrix}1&0\0&\overline{q_{j-1}}\q_j\end{bmatrix},\qquad A_1^{[j]}=egin{bmatrix}0&\overline{q_j}\0&0\end{bmatrix}.$$

• Site j=N (column vectors 2×1):

$$A_0^{[N]} = \left[egin{array}{c} 0 \ q_{N-1} \end{array}
ight], \qquad A_1^{[N]} = \left[egin{array}{c} c_N \ 0 \end{array}
ight].$$

What this guarantees (exactly)

- 1. **Correct amplitudes:** Contracting $A_{\sigma_1}^{[1]} \cdots A_{\sigma_N}^{[N]}$ produces coefficient c_j iff the string $\sigma_1 \cdots \sigma_N$ has a single "1" at site j; otherwise it gives 0. (This follows from the triangular "one-excitation" structure of the $A_1^{[j]}$ blocks and the final vectors.)
- 2. **Left-normalization:** For every j < N,

$$(A_0^{[j]})^{\dagger}A_0^{[j]} + (A_1^{[j]})^{\dagger}A_1^{[j]} = I_2,$$

i.e. the tensors are left-normalized in the standard canonical-form condition. homepages.phy... +1

(The last site is where the overall norm "lands" in a purely left-canonical gauge; this is the usual situation discussed in canonical-form constructions. homepages.phy...)

3. State is normalized provided $\sum_i |c_i|^2 = 1$ (equivalently $q_N = 1$).

If you want the **right-canonical** analogue (or a mixed-canonical Γ - Λ form with explicit Schmidt values on each bond), it can be written just as directly using tail sums $\sum_{k=j}^{N}|c_k|^2$, but the above is the minimal "direct normalized A-matrices" construction for the one-particle sector.

give me the gamma-lambda form

Denkvorgang abgeschlossen

Nachgedacht für 7m 0s

Take a chain with local basis $\{|0\rangle, |1\rangle\}$ and the normalized one-particle state

$$|\psi
angle = \sum_{j=1}^N c_j \, |0\cdots 1_j \cdots 0
angle, \qquad \sum_{j=1}^N |c_j|^2 = 1.$$

In Vidal's Γ - Λ form (open boundaries),

$$|\psi
angle = \sum_{\{\sigma\}} \Gamma^{[1]\sigma_1} \Lambda^{[1]} \Gamma^{[2]\sigma_2} \Lambda^{[2]} \cdots \Lambda^{[N-1]} \Gamma^{[N]\sigma_N} \; |\sigma_1 \cdots \sigma_N
angle,$$

where each $\Lambda^{[j]}$ is diagonal and contains the Schmidt coefficients across bond j|j+1. www2.physik.uni... ± 2

Schmidt values $\Lambda^{[j]}$ (bond dimension $D \leq 2$)

Define cumulative weights

$$p_j := \sum_{k=1}^j |c_k|^2, \qquad r_j := \sum_{k=j+1}^N |c_k|^2 = 1 - p_j.$$

Then the Schmidt rank across any cut is at most 2, with Schmidt coefficients r_j and p_j . Set

$$\Lambda^{[j]} = \mathrm{diag}ig(\quad r_j, \quad p_j ig), \qquad j = 1, \ldots, N-1.$$

(If $r_j=0$ or $p_j=0$ for some bond, the Schmidt rank drops to 1 there; equivalently, you delete the corresponding row/column rather than divide by zero.) www2.physik.uni... +1

Explicit Γ tensors (one consistent gauge)

Use the bond-index ordering $\alpha=0$ ("particle to the right of the cut") and $\alpha=1$ ("particle to the left of the cut"). Then:

• Site 1 (1×2 row vectors)

$$\Gamma_0^{[1]} = egin{bmatrix} 1 & 0 \end{bmatrix}, \qquad \Gamma_1^{[1]} = egin{bmatrix} 0 & c_1 \end{bmatrix}.$$

• Sites $2 \leq j \leq N-1$ (2 imes 2 matrices)

$$\Gamma_0^{[j]} = egin{bmatrix} rac{1}{r_{j-1}} & 0 \ 0 & rac{1}{p_{j-1}} \end{bmatrix}, \qquad \Gamma_1^{[j]} = egin{bmatrix} 0 & rac{c_j}{r_{j-1}} \ 0 & 0 \end{bmatrix}.$$

• **Site** N (2 \times 1 column vectors)

$$\Gamma_0^{[N]} = egin{bmatrix} 0 \ 1 \ \hline p_{N-1} \end{bmatrix}, \qquad \Gamma_1^{[N]} = egin{bmatrix} c_N \ \hline r_{N-1} \ 0 \end{bmatrix}.$$

With these Γ 's and the $\Lambda^{[j]}$ above, the contraction $\Gamma^{[1]}\Lambda^{[1]}\Gamma^{[2]}\cdots\Lambda^{[N-1]}\Gamma^{[N]}$ reproduces exactly the amplitudes c_j on the one-particle basis states and zero elsewhere; normalization is inherited from $\sum_j |c_j|^2 = 1$. www2.physik.uni... ± 1