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We consider the nonequilibrium evolution in the spin-1=2XXZHeisenberg chain for fixedmagnetization

after a local quantum quench. This model is equivalent to interacting spinless fermions. Initially an infinite

magnetic field is applied to n consecutive sites and the ground state is calculated. At time t ¼ 0 the field is

switched off and the time evolution of observables such as the z component of spin is computed using the

time evolving block decimation algorithm.We find that the observables exhibit strong signatures of linearly

propagating spinon and bound state excitations. These persist even when integrability-breaking perturba-

tions are included. Since bound states (‘‘strings’’) are notoriously difficult to observe using conventional

probes such as inelastic neutron scattering, we conclude that local quantum quenches are an ideal setting for

studying their properties. We comment on implications of our results for cold atom experiments.
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Cold atomic gases provide an ideal testing ground for
nonequilibrium many-body quantum physics because the
dynamics remain coherent for long times by virtue of the
weak coupling to the environment. Recent experiments [1,2]
have opened up the study of an entirely new regime in many
particle quantum physics. The ‘‘quantum Newton’s cradle’’
experiments of Kinoshita et al. drew attention to the impor-
tance of dimensionality and conservation laws and prompted
a huge number of theoretical analyses on the role played by
quantum integrability [3,4]. A standard protocol for driving
a quantum system out of equilibrium is by means of a
quantum quench (QQ): a system is prepared in the ground
state of a given Hamiltonian H0. At time t ¼ 0 an experi-
mentally tunable parameter that characterizes the
Hamiltonian (e.g., a magnetic field) is changed suddenly
and one then considers the unitary time evolution of the
system by means of the new Hamiltonian H. QQs can be
either global or local and we focus on the latter case in the
following. A particular case of a local QQ is given by the
x-ray edge singularity, which is a central paradigm of many-
body physics. The types of problems we consider below can
be viewed as generalizations of x-ray edge problems, the
most crucial difference arising from the initial state and the
kind of observable that we consider, which can be measured,
e.g., in realizations based on cold atomic gases.

We consider the anisotropic spin-1=2 Heisenberg chain
on a lattice with N sites with fixed numbers N";# of up and

down spins and open boundary conditions [5])

Hð�; B0Þ ¼ J
XN�1

i¼1

Sxi S
x
iþ1 þ Syi S

y
iþ1

þ �SziS
z
iþ1 � B0ðtÞ

Xi0þm0�1

i¼i0

Szi ; (1)

where J > 0 and B0 is a local magnetic field acting on m0

consecutive sites starting at position i0. It is well known
that (1) can be mapped to a model of spinless fermions with
nearest-neighbor density-density interaction by means of a
Jordan-Wigner transformation, and all of our results are
straightforwardly translated into that setting. The study of
local QQs in models of the kind (1) was initiated in 1970
[6], where the noninteracting case � ¼ 0, m0 ¼ 1 was
shown to lead to a nonthermal stationary state. With the
advent of efficient numerical approaches [7,8], local
quenches in the interacting XXZ chain [9,10] and corre-
sponding conformal field theories [11] have been studied
intensely. In this Letter we show that longer quenches
m0 > 1 lead to prominent linearly propagating bound
states, which in standard condensed matter scenarios
have been difficult to discern [10,12].
We consider the following quench protocol: we prepare

the system in the ground state j0i of the Hamiltonian
Hð�; B0 ¼ �1Þ. At time t ¼ 0 we suddenly switch off
the magnetic field B0 and then consider the time evolution,
governed by the Hamiltonian Hð�; B0 ¼ 0Þ, of the follow-
ing observables

hSziðj; tÞ � h0jSzjðtÞj0i;
P""ðj; tÞ � h0jPjðtÞPjþ1ðtÞj0i;
P"""ðj; tÞ � h0jPj�1ðtÞPjðtÞPjþ1ðtÞj0i;

(2)

where Pj ¼ Szj þ 1=2 is the up-spin projection operator on

site j. In the thermodynamic limit there are different
regimes: when the magnetization per site m is equal to
�1=2 the ground state of Hð�; B0 ¼ 0Þ is given by the
saturated ferromagnetic state with all spins down, and a
local quench of the type described above then reduces to a
quantum mechanical few-body problem. On the other
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hand, for magnetizations �1=2<m< 0 the model
Hð�; B0 ¼ 0Þ describes a quantum critical (Luttinger liq-
uid) phase and our local quantum quench involves complex
many-body effects and can be thought of as a general-
ization of the x-ray edge problem. In the following we first
consider the simpler, spin-polarized case as this allows us
to establish the role played by bound states.

Spin-polarized case.—In this case the ground state of
Hð�; 0Þ is the ferromagnetic state with all spins down j #i.
Excitations withN" spin flips (particles) can be constructed
by the Bethe ansatz and are parametrized byN" momenta kj

jN";ki ¼
X

x1<���<xN"

�ðfkjgjfxlgÞ
YN"

n¼1

Sþxn j #i: (3)

Here the wave function � has the characteristic Bethe
ansatz form and the momenta fkjg are subject to quantiza-

tion conditions, which for a ring geometry read

eiNkj ¼YN"

l¼1
l�j

�2�eikj � 1� eikjþikl

2�eikl � 1� eikjþikl
; j¼ 1; . . . ;N": (4)

Energy and momentum are E ¼ PN"
j¼1 �ðkjÞ and P ¼

PN"
j¼1 kj, respectively, where �ðkÞ ¼ Jðcosk� �Þ. The so-

lutions kj of (4) can be either real or complex [13]. The

former describe scattering states of ‘‘magnons,’’ while the
latter correspond to bound states. Bound states involving ‘
particles are known as ‘‘‘-strings’’ and havewave functions
that exhibit exponential decay (which can be slow) with
respect to the distances between particles. Their dispersion

relations in the thermodynamic limit are [13,14] �‘ðkÞ ¼
�J sinð�Þ

sinð‘�Þ ½cosð‘�Þ � ð�1Þ‘ cosðkÞ�, where � ¼ cosð�Þ.
Here the total momentum k of ‘-strings is constrained,
e.g., for j�j< 1 and ‘ ¼ 2 we have jkj> 2�. For a given
value of � there generally exists a hierarchy of allowed
strings, which was first identified in a seminal work by
Takahashi and Suzuki [13]. We note that the energy differ-
ence between bound states and scattering continua can
generally be very small. Using the exact eigenstates of
Hð�; 0Þ we can derive a Lehmann representation for the
observables (2) after our quench

hOiðj; tÞ ¼ X

fklg;fprg
h0jm0;kihm0;kjO1jm0;pihm0;pj0i

� e�i
Pm0

n¼1
t½�ðpnÞ��ðknÞ��ðj�1Þ½pn�kn�; (5)

where the sums are over all Bethe ansatz states with m0

momenta. In the case m0 ¼ 1 an elementary calculation
gives hSziðj; tÞ ¼ � 1

2 þ J2j�1ðJtÞ, where Jn is a Bessel func-
tion. For large, fixed j this increases exponentially for
Jt & j, shows a maximum for Jt � j, and exhibits an
oscillatory power-law decay for Jt * j. A stationary phase
approximation shows that the dominant contribution in the
Lehmann representation (5) for Jt � j arises from states

with k � �
2 ;

3�
2 , which propagate with the highest possible

velocity vmax ¼ maxkj �ðkÞdk j ¼ J. The fact that hSziðj; tÞ
has a maximum at Jt � j can be understood qualitatively
by noting that the density of states �1ðvÞ ¼

R
�ðv�

d�=dkÞdk ¼ N
2�

1ffiffiffiffiffiffiffiffiffiffi
J2�v2

p has singularities at the maximum

speed v ¼ �J. The exponential suppression of hSziðj; tÞ
for t & ðj=vmaxÞ gives rise to a horizon effect and is de-
scribed by the Lieb-Robinson bound [15].
In all other cases m0 > 1, string states ‘ � 2 will con-

tribute to the time evolution of observables, and in order to
study their influence we have carried out numerical com-
putations using the time evolving block decimation
(TEBD) algorithm [7]. Results form0 ¼ 3 (three neighbor-
ing sites with spin-up in the initial state) are shown in
Fig. 1. As a function of the anisotropy � we observe three
distinct regimes, which are fully consistent with expecta-
tions from the Bethe ansatz. (i) For small values of � we
observe a single wave front in hSziðx; tÞ, propagating with
the maximal magnon velocity v ¼ J (the m0 ¼ 1 case
discussed above looks quite similar). (ii) At � ¼ 0:8, a
second, slower branch of propagating wave packets
emerges both in hSziðx; tÞ and in P""ðx; tÞ [16]. Its propaga-
tion velocity is equal to the maximal 2-string velocity. We
have verified by direct evaluation of (5) that the second
front is associated with 2-strings. Interestingly there is a

threshold in � for observing this phenomenon (�c �
�0 ¼ 1=

ffiffiffi
2

p
), while 2-strings exist at any � � 0.

The reason is that the maximal 2-string velocity is

FIG. 1 (color online). Time evolution in the spin-polarized
case after preparing the system in an initial state with three
spin flips in the center of a 101 site chain for different values of
�. Top row: Spacetime plot of hSziðx; tÞ; middle row: hP ""iðx; tÞ,
which projects a bond onto j ""ih"" j; bottom row: hP """iðx; tÞ,
which projects three adjacent sites onto j """ih""" j.
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vmax;2 ¼ J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
for 0<�< �0 and vmax;2 ¼ J

2� for

�0 < �< 1. On the other hand, the density of states for

2-strings is �2ðvÞ ¼ 2�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 � ð2�vÞ2p

, which acquires a

singularity only if �> 1=
ffiffiffi
2

p
. It is this singularity which

induces a clear signature of propagating 2-strings in both
hSziðx; tÞ and P""ðx; tÞ. (iii) For interaction strengths above

�c2 � 0:9 we observe an additional branch in hSziðx; tÞ,
P""ðx; tÞ, and in P"""ðx; tÞ. This feature clearly arises from

propagating 3-strings and can be understood in complete
analogy with the 2-string case discussed above.

Results for finite magnetizations.—Here the bulk of our
system is in a strongly correlated quantum critical
Luttinger liquid phase and our quench protocol described
above is closely related to the x-ray edge singularity prob-
lem in a correlated host [17]. However, the observables
relevant to our case are different and cannot be described
using methods of boundary conformal field theory [18]. We
computed the quenched ground state using the density
matrix renormalization group algorithm [19] and the time
evolution using the TEBD with matrix dimensions up to
1200. In Fig. 2 we present results for � ¼ 1:2 and three
different magnetizations per site m ¼ ðN" � N#Þ=2N ¼
�0:44;�0:26;�0:14, corresponding to N" ¼ 6; 24; 36 on

a N ¼ 100 site chain. We note that this corresponds to the
Luttinger liquid phase of the Heisenberg model even
though �> 1. In all cases we observe two propagating
wave fronts (in each direction) in hSziðx; tÞ. The results for
P""ðx; tÞ show that the slower front is associated with ex-

citations that favor neighboring spin flips. In order to
interpret these results we follow our analysis of the spin-
polarized case. It is known from the Bethe ansatz solution
that the elementary excitations of the Heisenberg chain at
finite magnetization are gapless ‘‘spinons’’ as well as
gapped bound states associated with string solutions of
the Bethe ansatz equations (4). It is then tempting to
associate the faster or slower wave fronts with spinon
and 2-string excitations, respectively, because, just like in
the spin-polarized case, the latter induce an enhancement
in the density of neighboring spin flips as a result of their
bound nature. In order to substantiate this expectation we
have evaluated the maximal velocities of both spinon and
string excitations as functions of the magnetization per site.
In Fig. 3 we present a comparison of these velocities with
the ones extracted from the TEBD results in Fig. 2. We see
that the results are in excellent agreement.

For magnetizations closer to zero the 2-string branch
gets more and more washed out, because the momentum
range of 2-string excitations diminishes and eventually
vanishes as the magnetization approaches zero [13]. In
order to determine whether longer strings also lead to
easily recognizable features in observables after a local
quench, we have analyzed the case m0 ¼ 3 for � ¼ 1:2
and magnetization per sitem ¼ �0:2525. Some results for
hSziðx; tÞ are shown in Fig. 4. We can now identify three
branches. The propagation velocities extracted from the

TEBD data are v1 � 1:26� 0:02, v2 � 0:702� 0:025,
and v3 � 0:370� 0:02, respectively. These values
agree with the maximal velocities of spinons, 2-strings,
and 3-strings calculated from the Bethe ansatz, which are
vmax � 1:263, vmax;2 � 0:705, and vmax;3 � 0:375.

FIG. 2 (color online). 2-string propagation at finite magneti-
zation per site m at � ¼ 1:2, corresponding to the Luttinger
liquid phase of the model. From top to bottom, m ¼ �0:44,
m ¼ �0:26, and m ¼ �0:14. The initial state at t ¼ 0 is the
ground state of (1) with an infinite magnetic field term at two
sites in the center of the chain (chain length N ¼ 100). At t ¼ 0,
the field is switched off and the state is evolved. The striped
patterns visible in all plots are Friedel oscillations due to open
boundary conditions.

FIG. 3 (color online). Propagation velocity of single-spinon
and 2-string branch as a function of total magnetization per
site m of the system at � ¼ 1:2. Green and red curves show
single-spinon and 2-string velocities as calculated from the
Bethe ansatz. Green circles and blue squares are numerically
derived values from real time simulations. Error bars are smaller
than symbols.
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Integrability-breaking perturbations.—In general, string
states are not protected kinematically from decaying into
scattering states of spinons. Their stability is then a con-
sequence of integrability of the Heisenberg chain, and an
important question is whether signatures of bound states
survive when integrability-breaking perturbations are
taken into account. In order to address this issue we have
considered two types of perturbation: (i) a next-nearest-
neighbor interaction and (ii) a spatially varying magnetic
field term �

P
N
j¼1ðj� N

2Þ2Szj, which would model an opti-

cal trap in certain realizations of (1) based on cold fermi-
onic atoms. In both cases we observe signatures of bound
states, indicating that they survive in the form of reso-
nances. We show results for case (i) in Fig. 5.

Conclusions.—We have studied local quantum quenches
in the antiferromagnetic spin-1=2 Heisenberg XXZ chain.
We observed that above certain thresholds in the interac-
tion strength � local observables exhibit prominent signa-
tures associated with linearly propagating gapped bound
states. Given the difficulty in observing these bound states
in scattering experiments on quantum magnets [10,12], we
propose that nonequilibrium setups of the kind considered
here are an ideal setting for observing them and probing
their properties. Heisenberg spin chains can, e.g., be real-
ized experimentally in crystals and systems of cold atoms
in optical lattices with time and space resolved dynamics
[20,21]. Recent work has focused on ac driven optical

lattices [22] and two-component Bose mixtures [23]. The
kind of local perturbation characterizing our initial state
could be induced by a focused laser beam.
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