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1 Introduction

The numerical treatment of many-body problems in solid state physics belongs
to the realm of computer physics. Computer physics has evolved from ’number
crunching’ and ’dump data plotting’ into a competitive field on a par with exper-
imental an theoretical physics strongly entwined with both. Real experiments
can be replaced by computer experiments as it is common practice in industry
for monetary reasons. On the premises that an appropriate is simulated, the
numerical experiment is often much faster, less expensive and in some cases
even the only feasible alternative. With little extra effort, system parameters
can be modified and novel material synthesized and the respective properties
investigated.

As far as the links to theoretical physics are concerned the situation is simi-
lar. Computer physics has been disdained for many years by the ’pure theorists’
claiming numerical results provide numbers and no insights. The situation has
drastically changed over the last decade as testify by the significant and still in-
creasing fraction of publications based essentially on computational techniques.
Computer simulations from the theoretical viewpoint allow to scrutinies different
models to figure out which fits the data best. Parameters can be modified with
ease investigating wide parameter regimes with one and the same method. Oth-
erwise different approaches have to be tailored for different parameter regimes,
like weak coupling strong-coupling etc.

A widely used approach is the density functional theory in various guises.
The most famous approximation is the Local density approximation with vari-
ous approximations to the unknown exchange-correlation potential. By defini-
tion, these one-particle approaches describe weekly correlated systems. Strongly
correlated many-body systems are defined as those in which the simultaneous
presence of all particles is essential for the respective phenomena.

2 Many Body Hamiltonians

The genuine ab-initio Hamiltonian describing condensed matter is the ab-initio
Hamilton operator containing in the Oppenheimer-approximation. It forms the
starting point for bandstructure calculations in the local-density-approximation
(LDA), in which electronic correlations are treated on a mean-field level. The
realm of LDA calculations are weakly correlated systems, as opposed to strongly
correlated electronic systems in which the detailed electron-electron-interaction
is responsible for correlation effects such as antiferromagnetism, Kondo-effect,
fractional quantum-hall effect, Mott-transition and many more.

An exact treatment of ab-initio many-body problems is illusory. There are
two options, either we stick to the ab-initio many-body Hamiltonian and are
satisfied with uncontrolled approximations or we resort to model Hamiltonians
which hopefully still contain the crucial essentials of the sought-for physical
effect.

Model systems have the advantage that they can either be solved exactly by
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analytical means or they can be approached by numerical techniques. Numerical
techniques are often the only feasible and reliable method for studying the really
tough and long-standing problems of such systems.

In this lecture, we will not go through the more complicated models, such as
the Hubbard or the Kondo model. For a detailed tratement, see [?]. Instead, we
will stick on the most simple model that describes a correlated system, namely,
the Heisenberg model.

2.1 Heisenberg model

The Hubbard type models describe itinerant electrons. If the charge degrees
of freedom are bound to the atomic positions only the spin degrees of freedom
remain active. They are described by the Heisenberg hamiltonian, the funda-
mental model in the theory of magnetism of local magnetic moments. It is
defined by

H =
∑

<i,j>

Jz
ijS

z
i S

z
j + J⊥

ij

(
Sx

i S
x
j + Sy

i S
y
j

)
+B

∑

i

Sz
i (1)

where Sα
i (α = x, y, z) is the α-th component of the spin-operator and J stands

for the exchange integrals. The last term describes the coupling to an external
magnetic field B in z-direction. This model is particularly geared for magnetic
insulators like the 3d-,4d-,4f-,5f-systems. There are several special cases of the
Heisenberg model

• Jz = J⊥ . . . isotropic Heisenberg model

• J⊥ = 0 . . . Ising model

• Jz = 0 . . . XY-model

The spin operators obey the well known commutator algebra

[Sα
i , S

β
j ] = i δi,j ǫαβγ S

γ
i .

For numerical purposes it is convenient to introduce ladder operators

S±
i = Sx

i ± i Sy
i .

Therefore, the operators Sx and Sy can be written as

Sx
i =

1

2
(S+

i + S−
i ) , Sy

i =
1

2i
(S+

i − S−
i ) .

Instead of Sx and Sy we use the operators S+ and S− to express the Hamilto-
nian

H =
∑′

<i,j>

{

Jij S
z
i S

z
j +

1

2
J⊥

ij (S+
i S

−
j + S−

i S
+
j )

︸ ︷︷ ︸

Fij

}

+B
∑

i

Sz
i

where the summation is restricted to i 6= j.
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2.1.1 Spin 1/2 Heisenberg Antiferromagnet

The isotropic (J = J⊥) spin-1/2 Heisenberg antiferromagnet (J > 0) attracts
particular interest as being the strong coupling limit of the Hubbard model at
half-filling (N↑ = N↓ = N/2) with J = 4t2/U [1]. Moreover, it is governed by
quantum effects more than any other spin system.

However, the perfectly ordered Neel-state |↑↓↑↓〉 is not the ground state of
the system.

The Hamiltonian has the special form

H =
∑

〈ij〉

{

JSz
i S

z
j +

J⊥

2
Fij

}

. (2)

We have used the common sign convention for the exchange-integral. In the
antiferromagnic case J is negative. The spin-spin interaction is restricted to
nearest-neighbor sites, indicated by 〈ij〉. The so-called flip operator Fij has a
simple meaning for spin-1/2 particles. It swaps the spin-values of the neighbor-
ing sites i and j, if the spins have opposite sign. Otherwise, the application of
Fij yields the null vector.

F̂i,j | . . . , σi, . . . , σj , . . .〉 =

{

| . . . ,−σi, . . . ,−σj, . . .〉 if σi = −σj ,

0 otherwise.
. (3)

2.1.2 Matrix formulation and exact solution for two spins

The Hilbert space of the many body system is given by the tensor product of
the Hilbert space of each single site.

To make an example, for a spin 1
2 , the Hilbert space for a single spin is

spanned by the basis elements

{

|σ〉, σ = ±
1

2

}

=

{∣
∣
∣
∣
+

1

2

〉

,

∣
∣
∣
∣
−

1

2

〉}

.

For N spins (on N sites) the Hilbert space is spanned by the basis

{

|σ1, · · · , σN 〉, σ1 = ±
1

2
, · · ·σN = ±

1

2

}

.

For N = 2, we have four elements, which we denote as

|1〉 ≡

∣
∣
∣
∣
−

1

2
,−

1

2

〉

, |2〉 ≡

∣
∣
∣
∣

1

2
,−

1

2

〉

, |3〉 ≡

∣
∣
∣
∣
−

1

2
,
1

2

〉

, |4〉 ≡

∣
∣
∣
∣

1

2
,
1

2

〉

The matrix elements 〈x|H |x′〉 can be easily computed with the help of (2),
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leading to the matrix representation of the Hamiltonian

H =












J
4 0 0 0

0 −J
4

J⊥

2 0

0 J⊥

2 −J
4 0

0 0 0 J
4












(4)

This matrix can be easily diagonalized. Two eigenvalues can be identified at
once as being J

4 . The other two can be obtained by a simple diagonalisation of

the 2 × 2 matrix in the center, and are given by −J
4 ± J⊥

2 .
The fact that the Hilbert space splits up into three sectors, which are not

admixed by the Hamiltonian is no accident. The three sectors correspond to
states with fixed value Sz of the z-component of the total spin, which is equal
to ±1 and to 0, respectively. This symmetry of the Hamiltonian (together with,
possibly, further ones) should be exploited in numerical treatments as well.

Upon increasing the number N of sites (spins) the problem becomes much
more complex, and at some point it cannot be treated analytically any more.
The dimension of the Hilbert space (and thus the size of the matrix) becomes
2N . Therefore one has to diagonalize a 2N × 2N matrix. Already for N not too
large, memory requirements become prohibitive. For N = 16 one needs ≈ 10
Gygabytes of memory.

It is characteristic of a many-body problem that its complexity increases
exponentially, this is the reason why it is a difficult task.

Notice that even exploiting the conservation of Sz, and writing a matrix
restricted to the states with a fixed SZ = 0 (say), the dimension of the Hilbert
space would be

N !

(N/2)! (N/2)!
→ 2N

which is again exponentially large.
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3 Numeric representation

There are four prerequisites a basis set should fulfill:

• It must be rapidly generated

• matrix elements are easy to compute

• modest need of memory

• fast access of states.

We will discuss the best basis sets and their numerical representation for spin
systems.

3.1 Spin-1/2 systems

Instead of the two spin values σ = ± 1
2 we use the integers ni = σi+1

2 ∈ {0, 1}.
One is prompted to identify the sequence of ni values as bit-pattern of the
integer I =

∑N
l=1 nl 2

l−1. For instance the basis state |ψ〉 =
∣
∣− 1

2 ,+
1
2 ,−

1
2 ,+

1
2

〉

is represented by n = {0101}, which again is mapped onto the integer 5. This
representation has two advantages, it keep the memory requirements as small
as possible and it speeds up certain numerical operations.

As already mentioned, since Sz =
∑N

i=1 Sz
i commutes with the Hamiltonian,

the Hamilton matrix is block-diagonal in the sectors with fixed Sz values, i.e.
fixed numbers Nσ of σ-spins. For a given Sz-sector the number of ones in the
bit-pattern is fixed, which reduces the number of basis states to

L =

(
N

N↑

)

, (5)

where N is the number of lattices sites and

Sz =
1

2
2N↑ −N .

For instance, if the number of sites is N = 16 there are 216 = 65536 possible

basis states in total, whereas there are merely

(
16
8

)

= 12870 for Sz = 0,

i.e. N↑ = N↓ = 8, which is much less. Translation and Spin Rotation (when
applicable) could also be exploited which would reduce the number of basis state
even further.

3.1.1 Generation of basis states

For fixed N↑ not all integer values represent a permissible configuration, since
the number of ones and zeros in the bit-pattern are fixed. We generate the basis
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states in such a way that the corresponding integer values are in increasing
order. The basis states and their integer representations are therefore

|ϕ1〉 = {

N−N↑

︷ ︸︸ ︷

0, 0, . . . , 0, 0,

N↑

︷ ︸︸ ︷

1, 1, 1, . . . , 1}; I1 = 2N↑

− 1

|ϕ2〉 = {0, 0, . . . , 0, 1, 0, 1, 1, . . . , 1}; I2 = 2N↑+1 − 1 − 2N↑−1

|ϕ3〉 = {0, 0, . . . , 0, 1, 1, 0, 1, . . . , 1}; I3 = 2N↑+1 − 1 − 2N↑−2

...
...

|ϕL〉 = {1, 1, 1, . . . , 1
︸ ︷︷ ︸

N↑

, 0, 0, . . . , 0, 0
︸ ︷︷ ︸

N−N↑

}; IL = 2N − 2N−N↑

.

In practice, thus, one stores a length-L array b(1 : L) of integers, where
b(ν) = Iν The element ν of the array contains the decimal representation of
the bit sequence describing the basis state |ϕν〉. As an example we consider a
four-site cluster with Sz = 0, i.e. two up and two down spins.

ν 1 2 3 4 5 6
bit 0011 0101 0110 1001 1010 1100
Iν 3 5 6 9 10 12

storage b(1)=3 b(2)=5 b(3)=6 b(4)=9 b(5)=10 b(6)=12

Table 1: Example for the representation of spin pattern as integers.

When evaluating matrix elements, it is necessary, for a given bit sequence
b0, to find the corresponding ν, such that b(ν) = b0. The advantage of ordered
basis states (b(ν) is an increasing function of ν), is that ν can be efficiently
searched by bisection. can be efficiently searched by bisection.

3.2 Computation of the Hamilton matrix

Here we want to compute the matrix elements

hν′ν = 〈Φν′ |H |Φν〉 (6)

of the Hamiltonian in suitable basis states |Φν〉. To this end we split the
Hamiltonian into individual contributions H(l)

H =

Nl∑

l=1

H(l) (7)

such that the application of one such term H(l) to a basis state |Φν〉 yields again
a basis state or the null vector, i.e.

H(l) |Φν〉 = h
(l)
ν′ν |Φν′〉 . (8)
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The full matrix element 〈Φν′ |H |Φν〉 is obtained by summing up all contributions

h
(l)
ν′ν . Clearly, if there is only one term H(l) in Hamiltonian that mediates

between the two basis states |Φν〉 and |Φν′〉, then hν′ν = h
(l)
ν′ν . As an example

we consider the antiferromagnetic Heisenberg model (2) in the real-space basis

(??), characterized by the set of “occupation numbers” |Φν〉 =
∣
∣{n

(ν)
i }

〉
for all

lattice sites i with n
(ν)
i ∈ {0, 1}.

The SzSz part proportional to J (2) is diagonal in this basis, so we have

hνν = J
∑

<ij>

(n
(ν)
i −

1

2
)(n

(ν)
j −

1

2
) (9)

There are no other contributions to the diagonal elements.
For the off-diagonal terms, an individual contribution is given for an Fij for

a given pair of nearest-neighbor terms.

H(l) =
J⊥

2
Fi0j0 (10)

Application of one of these terms, H(l) say, to a basis state |Φν〉 =
∣
∣{n

(ν)
i }

〉

results either in the null vector, if n
(ν)
i0

= n
(ν)
j0

, Otherwise, the spin-flip process

is possible and results in another basis state |Φν′〉 =
∣
∣{n

(ν′)
i }

〉
which differs from

|Φν〉 only in the exchange of the “occupation numbers” n
(ν)
i0

and n
(ν)
j0

, i.e.

n
(ν′)
i = n

(ν)
i ∀i 6= i0, j0

n
(ν′)
i0

= n
(ν)
j0

n
(ν′)
j0

= n
(ν)
i0

.

(11)

There is only one spin-flip process H(l) mediating between the two basis states
under consideration. The respective matrix element is therefore

hν′ν =

{
J⊥

2 if (11) is fulfilled,

0 otherwise.
(12)

3.3 Sparse matrices

In the above-mentioned representation the many-body Hamilton-matrices Hνν′

are sparse. We have seen that only a small fraction of all matrix elements is not
zero. It is sensible to store only the nonzero matrix elements not only to save
memory but also to speed up operations of the form Hx which form the heart
of the exact diagonalization schemes that will be discussed in the next chapter.

In our case, as discussed in 3.2, we split, the Hamiltonian in pieces H(l), such

that, for a given ν there is at most one ν′ such that H
(l)
νν′ 6= 0. Accordingly, it

9



is convenient to split the Hamiltonian matrix into terms connecting two indices
only:

H(ν, ν′) =

Nnz∑

nz=1

Hc(nz) δν,ν(nz) δν′,ν′(nz)

In this way, we only need to store one real and two integer arrays of length
Nnz, namely Hc(1 : Nnz), ν(1 : Nnz), ν

′(1 : Nnz). The advantage is that Nnz is
typically of order L instead of L2. Therefore, we can write the algorithmus
to store sparse matrices as

Algorithm 3.1: Compact Storage(H,Hc, ind,Nnz)

initialize:

L = size(H)
Nnz = 0

do ν = 1, L
do l = 1, Nl

if H(l) |Φν〉 6= 0 (see (8)) then

determine the corresponding (unique) ν′ and h
(l)
ν,ν′

Nnz = Nnz + 1

Hc(Nnz) = h
(l)
ν,ν′

ind(Nnz, 1) = ν
ind(Nnz, 2) = ν′

endif

end do

end do

The only operation the matrix will be used for is action on a vector. The
compact storage can directly be used to perform only the nonzero multiplications
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as depicted in the following algorithm

Algorithm 3.2: Multiply H x(Hc, ind,Nnz,x,y)

initialize:

y = 0

do i = 1, Nnz

i1 = ind(i, 1)
i2 = ind(i, 2)
y(i1) = y(i1) +Hc(i) ∗ x(i2)

end do
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4 Exact diagonalization

In this chapter we describe methods for the exact evaluation of eigenvalues
and eigenvectors of many-body Hamiltonians. There are very powerful exact
diagonalization algorithms in the textbooks about numerical mathematics. A
severe drawback of these schemes is there limitation to matrix sizes of the order
N = O(103). Strongly correlated many-body problems, however, start with
N = O(108) and go way beyond. It is obvious that conventional schemes are
powerless in these cases. On the other hand, for the full diagonalisation of
generic hermitian matrices, standard methods are more appropriate.

The point is that, since the interesting quantum features of strongly corre-
lated many-body systems show up at very low temperatures, merely the ground-
state and a few low-lying eigenvalues and the corresponding eigenvectors are
required. In addition, for most systems an appropriate basis can be found, in
which the Hamilton-matrices are sparse. The number of nonzero matrix ele-
ments is typically O(N) rather than O(N2).

A standard scheme from numerical mathematics, which allows to take ad-
vantage of the sparseness of a matrix and which allows to concentrate on the
groundstate only, is the so-called power method or rather the vector-iteration
due to von Mises.

4.1 The Power Method

The Power method is a simple and yet powerful technique to determine
the eigenvector corresponding to the “dominant” eigenvalue. The eigenvalue
problem for the Hamilton operator H under consideration reads

Ĥ |ϕl〉 = ǫl |ϕl〉 with 〈ϕl |ϕl′ 〉 = δl,l′ (13)

with real eigenvalue εl and mutually orthogonal and normalized eigenvectors
|ϕl〉. The eigenvalues may be degenerate. The idea, as the name says, is to
apply high “powers” of the Hamiltonian to a starting states, such that the
components of the initial states with largest energies (in absolute values) increase
with respect to the other ones. One can “target” different states by introducing
a spectral shift

Ĥ → Ĥ ′ = Ĥ − EsÎ and ǫl → ǫ′l = ǫl − Es ,

which does not affect the eigenvectors |ϕl〉. Therefore, we can adapt Es in
such a way that the ground state yields the dominant eigenvalue, i.e.

|ǫ′0| ≥ |ǫ′l| ∀ l .
To ensure that the groundstate energy ǫ′0 has the greatest modulus of all

eigenvalues the condition
ǫ′0 < −W

2 ≡ − ǫN−ǫ0
2

has to be fulfilled, which yields the condition
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ε1

εN

ε0

W

∆

Figure 1: Schematic representation of the eigenvalues of the Hamiltonian. The
gap between the lowest two eigenvalues is denoted by ∆

Es >
ǫ0+ǫN

2 .

Next we want to apply the Power method to Ĥ ′ starting with an initial
vector

|x0〉 =

N∑

l=0

|ϕl〉 〈ϕl |x0 〉
︸ ︷︷ ︸

cl

.

chosen at random, possibly subject to suitable symmetry constraints. After n
repeated applications of Ĥ ′ we obtain

|x̃n〉
def

= Ĥ ′
n
|x0〉 =

N∑

l=0

|ϕl〉 cl ǫ
′
l
n
, (14)

This illustrates what anticipated above. The normalization yields

|xn〉
def

=
|x̃n〉

||x̃n||
=

∑

l clǫ
′
l
n
|ϕl〉

(
∑

l |cl|
2ǫ′l

2n
)1/2

=

∑

l
cl

c0

(
ǫ′l
ǫ′0

)n

|ϕl〉
(

∑

l

(
cl

c0

)2 (
ǫ′

l

ǫ′0

)2n
)1/2

.

Since
(

ǫ′l
ǫ′0

)

< 1, it is clear that for large n,
(

ǫ′l
ǫ′0

)n

becomes arbitrarily small.

Assuming that the groundstate energy is not degenerate and the initial vector
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ε1

εN

ε0

W

∆

Figure 2: Schematic representation of the eigenvalues of the Hamiltonian. The
gap between the lowest two eigenvalues is denoted by ∆

has a non-vanishing overlap with the sought-for groundstate, the Power method
converges to the true groundstate

|xn〉 = |ϕ0〉 +O (qn) −→
n→∞

|ϕ0〉 .

where we have introduced

q
def

= max
i

∣
∣
∣
∣

ε′i
ε′0

∣
∣
∣
∣
.

If the initial vector is orthogonal to the groundstate, the iteration converges
to the lowest eigenstate which has a non-vanishing contribution in |x0〉. This can
be used directly to determine states with given symmetry, e.g. the dispersion
relation of the lowest excitations.

The ratio q is either
∣
∣
∣
ε′
1

ε′
0

∣
∣
∣ or

∣
∣
∣
ε′

N

ε′
0

∣
∣
∣. The best convergence is achieved if

∣
∣
∣
∣

ε′1
ε′0

∣
∣
∣
∣
=

∣
∣
∣
∣

ε′N
ε′0

∣
∣
∣
∣

⇒ q =

∣
∣
∣
∣

1 − ∆/W

1 + ∆/W

∣
∣
∣
∣
.

Obviously, the convergence is governed by the ratio ∆/W . The closer the excited
states is to the groundstate, the longer it takes to get rid of its contribution in
|xn〉.

If the lowest eigenvalue is degenerate

ε′0 = ε′1 = . . . = ε′L < εL+1

then then the Power iterate |xn〉 converge towards the projection of the initial
vector |x0〉 onto the eigenspace of the first eigenvalue:

|xn〉
−→
n→∞

P |x0〉

〈x0|P |x0〉

where P is the projector onto the eigenspace of the ground state

P =
L∑

l=0

|ϕl〉〈ϕl| .
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Using the expansion (14) for the energy-expectation value

〈xn|Ĥ |xn〉 = ǫ0 +O
(

|ǫ1/ǫ0|
2n

)

shows that the energy converges faster than the vector |xn〉.
On passing we note that the power-method allows also to determine excited

states. Once the ground state is approximately determined a new sequence
of iterations is started with an initial vector orthogonal to the approximate
groundstate. Since the groundstate is approximate and due to the presence of
numerical noise, the vectors xn loose the orthogonality to the ground with in-
creasing number of iterations and it is expedient to re-orthogonalize the vectors
once in a while.

4.2 The Lanczos Method

The Power method uses only a small part of the information actually pro-
vided by the power method. One can do much better with only a little more
computational effort. This goal is achieved by the Lanczos method.

4.2.1 The poor man’s Lanczos scheme

To begin with, we analyze the information content of the first Power method
iteration. After one step we have two normalized vectors |x0〉 and |x1〉, which
are in general not orthogonal, and the corresponding energy-expectation values
are

EP
0 = 〈x0|Ĥ |x0〉

EP
1 = 〈x1|Ĥ |x1〉 .

The basic idea of the Lanczos method is to diagonalize the Hamiltonian
in the subspace spanned by {|x0〉, |x1〉}, i.e. to minimize the energy of the
variational Ansatz

∣
∣xL

1

〉
= α |x0〉 + β |x1〉

EL
1 = min

α,β

〈
xL

1

∣
∣H

∣
∣xL

1

〉

〈
xL

1

∣
∣xL

1 〉
≤ 〈x1|H |x1〉 .

The last inequality follows since 〈x1|H |x1〉 corresponds to the special case
α = 0, β = 1. It can easily be shown that the energy of the Lanczos method is
actually lower than that of the Power method provided 〈x1|Ĥ |x0〉 6= 0. This
procedure can be repeated by choosing the Lanczos vector

∣
∣xL

1

〉
as initial vector

of the subsequent iteration. The results of the Power method are
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Figure 3: Comparison of the speed of convergence to the exact ground-state
energy of the Power method and the Lanczos method. Lanzcos 2 stands for the
introductory example of only two vectors

compared with those of the simple Lanzcos scheme for a 10 × 10 tight binding
matrix.

H =










−1 1 0 . .
1 −1 1 0 .
. 1 −1 1 0
. . 1 −1 1

. . . 1
. . .










where an appropriate spectral shift has been introduced. The energies are de-
picted in Fig. 3. Obviously, the ’poor man’s lanczos’ scheme (Lanczos 2)
is superior, but not overwhelmingly so. Particularly disturbing is the observa-
tion, that it takes more than 10 iterations, which is the dimension of the matrix,
to achieve convergence. It is, however, straight forward, to generalized
and improve the above ideas. Instead of taking only two vectors into account,
we keep all vectors |xn〉, generated during the iterations of the Power method.
The set of vectors |xn〉 spans the n-dimensional so-called Krylov space. The
minimization of the variational energy leads to the generalized eigenvalue prob-
lem depending on the matrix elements of the Hamiltonian and on the overlap
matrix of the vectors |xn〉. Linear dependencies of these basis states can lead
to severe numerical problems. It is therefore better to transform the basis set
{|xn〉} into an orthonormal set of vectors that still spans the Krylov space.

4.2.2 Lanczos Method for Hermitean Matrices

The Lanczos procedure starts with an appropriate normalized initial vector |x0〉,
chosen along the lines outlined before. The corresponding energy-expectation
value is

ε0 = 〈x0|Ĥ |x0〉 .
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Next we apply the Hamiltonian to |x0〉 in order to determine the next basis
vector

|x̃1〉 = Ĥ |x0〉 − ε0 |x0〉 .

Since the vectors have been orthogonalized à la Gram-Schmidt

〈x0 |x̃1 〉 = 0

and the vector is normalized

|x1〉 =
|x̃1〉

||x̃1||

The next basis vector is generated using the prescription (again Gram-Schmidt)

|x̃2〉 = H |x1〉 − ε1 |x1〉 − k1|x0〉

We choose the coefficients ε1 and k1 such that |x̃2〉 is orthogonal to the previous
basis vectors {|x0〉, |x1〉}:

〈x1 |x̃2 〉 = 〈x1|Ĥ |x1〉 − ε1 − k1 〈x1 |x0 〉
︸ ︷︷ ︸

=0

= 0

〈x0 |x̃2 〉 = 〈x0|Ĥ |x1〉 − ε1 〈x0 |x1 〉
︸ ︷︷ ︸

=0

−k1 = 0

Hence, ε1 is again the expectation value,

ε1 = 〈x1|Ĥ |x1〉 and k1 = 〈x0|Ĥ |x1〉 .

By construction, the quantity k1 is real, since

k∗1 = 〈x1|Ĥ |x0〉 = 〈x1 |x̃1 〉 + ε0 〈x1 |x0 〉
︸ ︷︷ ︸

=0

= ||x̃1|| ∈ R .

We add the normalized vector |x̃2〉 to the set of orthonormal basis states
{|x0〉, |x1〉, |x2〉}.

The procedure continues in the same way: assuming that we have already
generated a set of n+1 mutually orthonormal vectors {|x0〉, |x1〉, . . . |xn〉}. The
next vector |xn+1〉 is determined as follows

|x̃n+1〉 = Ĥ |xn〉 − εn |xn〉 − kn |xn−1〉

εn = 〈xn|Ĥ |xn〉

kn = 〈xn−1|Ĥ |xn〉 = ||x̃n||

|xn+1〉 =
|x̃n+1〉

||x̃n+1||
.
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One can see that |xn+1〉 is orthogonal to all previous vectors .

〈xn |x̃n+1 〉 = 〈xn|Ĥ|xn〉
︸ ︷︷ ︸

εn

−εn 〈xn |xn 〉
︸ ︷︷ ︸

=1

−kn 〈xn |xn−1 〉
︸ ︷︷ ︸

=0

= 0

〈xn−1 |x̃n+1 〉 = 〈xn−1|Ĥ|xn〉
︸ ︷︷ ︸

kn

−εn 〈xn−1 |xn 〉
︸ ︷︷ ︸

=0

−kn 〈xn−1 |xn−1 〉
︸ ︷︷ ︸

=1

= 0

For i = 1, . . . , n− 2 we have

〈xi |x̃n+1 〉 = 〈xi|Ĥ|xn〉 − εn 〈xi |xn 〉
︸ ︷︷ ︸

=0

−kn 〈xi |xn−1 〉
︸ ︷︷ ︸

=0

= 〈xi|Ĥ |xn〉 .

The hermiticity of Ĥ yields

〈xi|Ĥ|xn〉 =
(

〈xn|Ĥ |xi〉
)∗

=
(

〈xn|(|x̃i+1〉 + εi |xi〉 + ki |xi−1〉)
)∗

=
(

〈xn |x̃i+1 〉
︸ ︷︷ ︸

=0

+εi 〈xn |xi 〉
︸ ︷︷ ︸

=0

+ki 〈xn |xi−1 〉
︸ ︷︷ ︸

=0

)∗

= 0 ,

which shows that the constructed set of n + 1 vectors is indeed orthogonal.
Moreover, it shows that the Hamilton matrix is tridiagonal in the Lanczos

basis:

Ht
ij =









ε0 k1 0 . .
k1 ε1 k2 0 .
0 k2 ε2 k3 0
. 0 k3 ε3 k4

. . 0 k4 ε4









. (15)

After L iterations the remaining task is the solution of the eigenvalue problem
of the (L + 1) × (L+ 1) tridiagonal matrix Ht

Htcν = Eν cν .

The best approximation to the eigenvectors of the original Hamiltonian ex-
panded in the the subspace Hk spanned by the Lanczos vectors {|x0〉, . . . , |xL〉}
are therefore given by

|ψν〉 =

L∑

i=0

cνi |xi〉 ,
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where the cνi are the components of the eigenvectors of the tridiagonal matrix
Ht, i. e. the expansion coefficients in the Lanczos basis.
We summarize the Lanczos algorithm

Algorithm 4.1: Lanczos Algorithm(.)

assign: nmax, Ndiag, L, δ

initialize:

|x̃0〉 : appropriate initial vector
|x−1〉 = 0
n = 0
converged = false

while not converged

kn =
√

〈x̃n|x̃n〉
if kn < δ then converged = true

|xn〉 = |x̃n〉/kn

εn = 〈xn|Ĥ |xn〉
if MOD(n,Ndiag) = 0 then

Ht = TridiagonalMatrix({ε0, . . . εn}; {k1 . . . kn})
Solve eigenvalue-problem(Ht;Eν , cν)
if E1 . . . EL are converged then converged = true

endif

|x̃n+1〉 = Ĥ |xn〉 − εn |xn〉 − kn |xn−1〉
n = n+ 1
if n ≥ nmax then converged = true

end while

In Fig. 3 the general performance of the Lanczos method is compared with
that of the Power method and that of the simple Lanczos scheme. We observe a
much faster convergence of the results of the Lanczos method and, as expected,
exact convergence is achieved after 10 steps.

Remark: it is easy to verify that a spectral shift, as in the Power method
(See Sec. 4.1), has no effect on the selection of the Lanczos vectors |xn〉. The
spectral shift is canceled away by the Gram-Schmidt orthogonalisation. There-
fore, quite generally, the lanczos method converges well towards extremal eigen-
vectors, i. e. the largest and the smallest ones.
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4.3 Dynamical Correlations

Dynamical correlations describe how a crystal reacts to weak external per-
turbations denoted by E(t). Linear response theory expresses the reaction as

R(t) =

∫ t

−∞

χ(t, t′)E(t′) dt′ (16)

where χ is actually a function of the time-differences

χ(t, t′) = χ(t− t′) .

The response (16) has the form of a convolution, and Fourier transformation
yields a simple product

R(ω) = χ(ω)E(ω) . (17)

The dynamical correlation function χ(ω), or rather susceptibility, for zero tem-
perature can be computed by the Lanczos procedure with little extra effort.

4.3.1 Dynamic Green’s functions

To every dynamical correlation function corresponds a Green’s function. For an
operator Ô the retarded Green’s function is defined by

〈〈
Ô(t) ; Ô†

〉〉
def

= −iΘ(t)
〈

[Ô(t), Ô†]ε=±1

〉

(18)

= −iΘ(t)
(〈

Ô(t) Ô†
〉

− ε
〈

Ô† Ô(t)
〉)

,

where in the second line the symbol 〈 〉 denotes the thermodynamic average
Commutator (ε = +1) and anticommuator (ε = −1) Green’s functions de-

pend on the operator Ô. For a detailed introduction to the theory of Green’s
functions see e.g. [?]. At zero temperature, the average corresponds to the
expectation value of the operators in the ground state |ψ0〉 of the many-particle
system. In this we focus on T = 0. Finite temperatures will be discussed later
on. For simplicity we will just evaluate the first one of the two terms within
brackets in (18). The second one (the one which multiplies ε) can be obtained
in a similar way.

We proceed by inserting the Heisenberg time evolution of the operator Ô

Ô(t) = eiĤt Ô e−iĤt , Ô
def

= Ô(t = 0) (19)

into (18). Since |ψ0〉 is the exact ground-state with energy E0 we have

e−iĤt |ψ0〉 = e−iE0t |ψ0〉 and 〈ψ0| e
iĤt = 〈ψ0| e

iE0t , (20)

we obtain
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〈〈
Ô; Ô†

〉〉+

w

def

= −i

∫ ∞

−∞

θ(t) eiw+t
〈

Ô(t)Ô†
〉

dt (21)

= −i

∫ ∞

0

eiw+t
〈

eiĤtÔe−iĤtÔ†
〉

dt

= −i

∫ ∞

0

eiw+t
〈

Ôe−i(Ĥ−E0)tÔ†
〉

dt

= −i

〈

Ô

∞∫

0

eiw+te−i(Ĥ−E0)tdt Ô†

〉

,

where w+ = w + i0+, whith 0+ an infinitesimal positive quantity necessary
for the integral to converge. The integrals can be easily evaluated using

−i

∞∫

0

ei(w+−E)tdt =
1

w+ − E
.

Now, recalling that we perform the average in the ground state |ψ0〉, which was
obtained by a first Lanczos calculation, we obtain from (21)

〈〈

Ô, Ô†
〉〉+

w
= 〈ψ0|Ô

1

w+ − (Ĥ − E0)
Ô†|ψ0〉 (22)

4.3.2 Lehmann – Representation

We now insert a complete orthonormal set of eigenvectors of Ĥ given by

I =
∑

ν

|ψν〉〈ψν | .

Then (22) can be cast into the form

〈ψ0| Ô
1

ω+ − (Ĥ − E0)
Ô† |ψ0〉 =

∑

ν

〈ψ0| Ô |ψν〉 〈ψν | Ô
† |ψ0〉

ω+ − (Eν − E0)
.

It is convenient to take as a starting Lanczos vector for a new iteration the
(normalized) state obtained by applying the operator O† to the ground state:

|ϕ0〉 =
Ô†|ψ0〉

√

〈ψ0|ÔÔ†|ψ0〉
(23)

Next we expand the eigenvectors |ψν〉 in the Lanczos basis {|ϕi〉}

|ψν〉 =
∑

i

c
(ν)
i |ϕi〉 , with c

(ν)
i = 〈ϕi |ψν 〉
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to obtain

〈ψν | Ô
† |ψ0〉 =

∑

i

c
(ν)∗
i 〈ϕi| Ô

† |ψ0〉
︸ ︷︷ ︸

∼|ϕ0〉

=

√

〈ψ0|ÔÔ†|ψ0〉
∑

i

c
(ν)∗
i 〈ϕi |ϕ0 〉

︸ ︷︷ ︸

δi,0

=

√

〈ψ0|ÔÔ†|ψ0〉 c
(ν)∗
0 .

This means that except of the first terms all summands vanish. Thus (22) can
be approximated by

〈ψ0| Ô
1

ω+ − (Ĥ − E0)
Ô† |ψ0〉 = 〈ψ0|ÔÔ

†|ψ0〉

NL∑

ν=1

|c
(ν)
0 |2

ω+ − (Ẽν − Ẽ0)
, (24)

where only the first components c
(ν)
0 of the expansion of the eigenvector |ψν〉 in

the Lanczos basis are required. The second term in (18) is obtained in a similar
way by using an different Lanczos starting vector, namely the normalized Ô|ψ0〉.

• In general, the eigenstates |ψν〉 (ν = 1, . . . , NL), computed by the Lanc-
zos procedure, do not form a complete set of basis vectors, nor are the
respective energies Ẽν exact eigenvalues of Ĥ .

• However, with increasing number of iterations, the Lanczos procedure
converges towards the exact Green’s function and the convergency can be
monitored and stopped as soon as the desired accuracy is reached.

• The approximate Lehmann representation (24) is an explicit sum of simple
poles.
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