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I. INTRODUCTION

Quantum spin chains are physically realized in quasi-
one-dimensional (1D) magnetic insulators. In such ma-
terials, the magnetic ions (for example, Cu++ and Co++

with effective spin s = 1
2 , Ni++ with s = 1, and Mn++

with s = 5
2 ) are arranged in coupled linear arrays which

are well separated and magnetically screened from each
other by large non-magnetic molecules. Over the years,
magneto-chemists have refined the art of designing and
growing crystals of quasi-1D magnetic materials to the
point where physical realizations of many a theorist’s pet
model can now be custom-made.

Most prominent among such systems are realizations
of the 1D spin-1/2 Heisenberg antiferromagnet,

HA = J
N

∑

n=1

Sn · Sn+1, (1)

the model system which inspired Bethe to formulate the
now celebrated method for calculating eigenvalues, eigen-
vectors, and a host of physical properties. Interest in
quasi-1D magnetic materials has stimulated theoretical
work on quantum spin chains from the early sixties un-
til the present. Some of the advances achieved via the
Bethe ansatz emerged in direct response to experimen-
tal data which had remained unexplained by standard
approximations used in many-body theory.

In Part I of this series1 we introduced the Bethe ansatz
in the spirit of Bethe’s original 1931 paper.2 The fo-
cus there was on the Hamiltonian HF = −HA, where
the negative sign makes the exchange coupling ferromag-
netic. The ferromagnetic ground state has all the spins
aligned and is (N +1)-fold degenerate. The reduced rota-
tional symmetry of every ground state vector relative to
that of the Hamiltonian reflects the presence of ferromag-
netic long-range order at zero temperature. One vector
of the ferromagnetic ground state, |F 〉 ≡ |↑ · · · ↑〉, in the
notation of Part I, serves as the reference state (vacuum)
of the Bethe ansatz. All other eigenstates are generated
from |F 〉 through multiple magnon excitations.

We also investigated some low-lying excitations which
involve only a small number of magnons. For example,
the Bethe ansatz enabled us to study the properties of a
branch of two-magnon bound-states and a continuum of
two-magnon scattering states, and gave us a perfect tool
for understanding the composite nature of these states in
relation to the elementary particles (magnons).

In this column we turn our attention to the Heisen-
berg antiferromagnet HA. All the eigenvectors remain
the same as in HF , but the energy eigenvalues have the
opposite sign. Therefore, the physical properties are very
different, and the state |F 〉 now has the highest energy.
Our immediate goals are to find the exact ground state
|A〉 of HA, to investigate how the state |A〉 gradually
transforms to the state |F 〉 in the presence of a magnetic
field of increasing strength, and to prepare the ground
work for a systematic study of the excitation spectrum
relative to the state |A〉.

As in Part I we will emphasize computational aspects
of the Bethe ansatz. The numerical study of finite sys-
tems via the Bethe ansatz is akin to a simulation in many
respects, and yields important insights into the underly-
ing physics.

II. GROUND STATE

What is the nature of the ground state state |A〉? How
do we find it? Is its structure as simple as that of |F 〉?
An obvious candidate for |A〉 is the Néel state. The two
vectors

|N1〉 ≡ |↑↓↑ · · · ↓〉, |N2〉 ≡ |↓↑↓ · · · ↑〉 (2)

reflect antiferromagnetic long-range order in its purest
form just as the vector |F 〉 does for ferromagnetic long-
range order. Henceforth we assume that the number of
spins N in (1) is even and that periodic boundary condi-
tions are imposed.

Inspection shows that neither |N1〉, |N2〉, nor the trans-
lationally invariant linear combinations, |N±〉 = (|N1〉 ±
|N2〉)/

√
2, are eigenvectors of HA. In the energy expec-

tation value 〈HA〉, the Néel state minimizes 〈Sz
nSz

n+1〉
but not 〈Sx

nSx
n+1〉 and 〈Sy

nSy
n+1〉 (Problem 1). A state

with the full rotational symmetry of HA can have a
lower energy. Like |N±〉, the ground state |A〉 will be
found in the subspace with Sz

T ≡ ∑

n Sz
n = 0. Because

of their simplicity, the Néel states are convenient start-
ing vectors for the computation of the finite-N ground
state energy and wave function via standard itera-
tive procedures (steepest-descent and conjugate-gradient
methods).3 However, here we take a different route.

In the framework of the Bethe ansatz, all eigenstates of
HA with Sz

T = 0 can be obtained from the reference state
|F 〉 by exciting r ≡ N/2 magnons with momenta ki and
(negative) energies −J(1−coski). The exact prescription
was stated in Part I. Each eigenstate is specified by a
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different set of N/2 Bethe quantum numbers {λi}. The
momenta ki and the phase angles θij in the coefficients
(I28) of the Bethe wave function (I27) result from the
Bethe ansatz equations (I33) and (I35).4 A finite-N study
indicates that the ground state |A〉 has real momenta ki

and Bethe quantum numbers (Problem 2)

{λi}A = {1, 3, 5, . . . , N − 1}. (3)

In Part I we worked directly with ki and θij , which
represent physical properties of the elementary particles
(magnons) created from the vacuum |F 〉. At the opposite
end of the spectrum, the state |A〉, generated from |F 〉
via multiple magnon excitations, will be configured as a
new physical vacuum for HA. The entire spectrum of
HA can then be explored through multiple excitations of
a different kind of elementary particle called the spinon.

Computational convenience suggests that we replace
the two sets of variables {ki} and {θij} by a single set
of (generally complex) variables {zi}. If we relate every
magnon momentum ki to a new variable zi by

ki ≡ π − φ(zi), (4)

via the function φ(z) ≡ 2 arctan z, then the relation (I33)
between every phase angle θij for a magnon pair and the
difference zi − zj involves φ(z) again:

θij = π sgn[ℜ(zi − zj)] − φ
[

(zi − zj)/2
]

. (5)

Here ℜ(x) denotes the real part of x, and sgn(y) = ±1
denotes the sign of y. Relations (4) and (5) substituted
into (I35) yield the Bethe ansatz equations for the vari-
ables zi:

5

Nφ(zi) = 2πIi +
∑

j 6=i

φ
[

(zi − zj)/2
]

, i = 1, . . . , r. (6)

The new Bethe quantum numbers Ii assume integer val-
ues for odd r and half-integer values for even r. The
relation between the sets {λi} and {Ii} is subtle. It de-
pends, via sgn[ℜ(zi − zj)], on the configuration of the
solution {zi} in the complex plane. For the ground state
|A〉, we obtain (Problem 3a)

{Ii}A =

{

−N

4
+

1

2
, − N

4
+

3

2
, . . . ,

N

4
− 1

2

}

. (7)

Given the solution {z1, . . . , zr} of Eqs. (6) for a state
specified by {I1, . . . , Ir}, its energy and wave number are
(Problem 3b)

(E − EF )/J =

r
∑

i=1

ε(zi), (8a)

k =

r
∑

i=1

[

π − φ(zi)
]

= πr − 2π

N

r
∑

i=1

Ii, (8b)

with EF = JN/4. The quantity φ(zi) is called the
magnon bare momentum, and ε(zi) = dki/dzi = −2/(1+

z2
i ) is the magnon bare energy. The Bethe wave function

(I27) is obtained from the {zi} via (4) and (5).
The ground state |A〉 belongs to a class of eigenstates

which are characterized by real solutions {zi} of the
Bethe ansatz equations. To find them numerically we
convert Eqs. (6) into an iterative process:

z
(n+1)
i = tan

(

π

N
Ii +

1

2N

∑

j 6=i

φ
[

(z
(n)
i − z

(n)
j )/2

]

)

. (9)

Starting from z
(0)
i = 0, the first iteration yields z

(1)
i =

tan(πIi/N). Convergence toward the roots of (6) is fast.
High-precision solutions {zi} can be obtained on a per-
sonal computer within seconds for systems with up to
N = 256 sites and within minutes for much larger sys-
tems (Problem 4). The ground-state energy per site in-
ferred from (8a) is listed in Table I for several lattice
sizes.

TABLE I. Numerical results for the energy per site of the
ground state |A〉 relative to the energy EF /JN = 1

4
of the

state |F 〉 for various values of N obtained via nmax iterations
of (9). The CPU time quoted is for a Pentium 130 computer
running GNU C on Linux. The exact result for N → ∞ is
− ln 2.

N (EA − EF )/JN nmax CPU-time [sec]

16 -0.696393522538549 38 0.01
64 -0.693348459146139 83 0.08

256 -0.693159743366446 195 2.38
1024 -0.693147965376242 483 104
4096 -0.693147229600349 1256 4695

∞ -0.693147180559945 – –

In preparation of the analytical calculation which pro-
duces (EA − EF )/JN for N → ∞, we inspect the zi-
configuration for the finite-N ground state |A〉 obtained
numerically. All roots are real, and their values are sorted
in order of the associated Bethe quantum numbers Ii.
The 16 circles in Fig. 1(a) show zi plotted versus Ii/N
for N = 32. The solid line connects the corresponding
data for N = 2048. The line-up of the finite-N data
along a smooth monotonic curve suggests that the solu-
tions of (6) can be described by a continuous distribution
of roots for N → ∞.

We give the inverse of the discrete function shown in
Fig. 1(a) the name ZN (zi) ≡ Ii/N and rewrite Eqs. (6)
in the form:

2πZN(zi) = φ(zi) −
1

N

∑

j 6=i

φ
[

(zi − zj)/2
]

. (10)

For N → ∞, ZN(zi) becomes a continuous function Z(z)
whose derivative, σ0(z) ≡ dZ/dz, represents the distri-
bution of roots. In Eq. (10) the sum (1/N)

∑

j . . . is

replaced by the integral
∫

dz′σ0(z
′) . . . Upon differenti-

ation the continuous version of (10) becomes the linear

2
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FIG. 1. Ground state |A〉. (a) Solutions of Eq. (6) and (b)
magnon momenta in Eq. (4) plotted versus the rescaled Bethe
quantum numbers (7) for N = 32 (circles) and N = 2048
(lines).

integral equation

2πσ0(z) = −ε(z)− (K ∗ σ0)(z) (11)

with the kernel K(z) = 4/(4 + z2); (K ∗ σ0)(z) is short-

hand for the convolution
∫ +∞

−∞
dz′K(z−z′)σ0(z

′). Fourier

transforming Eq. (11) yields an algebraic equation for
σ̃0(u) ≡

∫ ∞

−∞
dz eiuzσ0(z). Applying the inverse Fourier

transform to its solution yields the result

σ0(z) =
1

4
sech(πz/2). (12)

The (asymptotic) ground-state energy per site as inferred
from (8a),

EA − EF

JN
=

∫ +∞

−∞

dz ε(z)σ0(z) = − ln 2, (13)

is significantly lower than the energy expectation value
of the Néel states (Problem 1). The state |A〉 has to-
tal spin ST = 0 (singlet). Unlike |F 〉, it retains the full
rotational symmetry of (1) and does not exhibit mag-
netic long-range order.6 The wave number of |A〉, ob-
tained from (8b), is kA = 0 for even N/2 and kA = π
for odd N/2. The important result (13) was derived by
Hulthén7 in the early years of the Bethe ansatz.

In Fig. 1(b) we plot the magnon momenta ki of |A〉 as
inferred from (4) versus Ii/N for the same data as used
in Fig. 1(a). The smoothness of the curve reflects the
fact that the state |A〉 for N → ∞ can be described by a
continuous ki-distribution (Problem 5)

ρ0(k) =

[

8 sin2 k

2
cosh

(

π

2
cot

k

2

)]−1

. (14)

III. MAGNETIC FIELD

In the presence of a magnetic field h, the Hamiltonian
(1) must be supplemented by a Zeeman energy:

H = HA − hSz
T . (15)

The two parts of H are in competition. Spin alignment
in the positive z-direction is energetically favored by the
Zeeman term, but any aligned nearest-neighbor pair costs
exchange energy. Given that [HA, Sz

T ] = 0, the eigenvec-
tors are independent of h. The 2ST +1 components (with
|Sz

T | ≤ ST ) of any ST -multiplet fan out symmetrically
about the original level position and depend linearly on
h.

The largest downward energy shift in each multiplet is
experienced by the state with Sz

T = ST , and that shift
is proportional to ST . The state |A〉, which has ST = 0,
does not move at all, whereas the state |F 〉 with ST =
N/2 descends more rapidly than any other state. Even
though |F 〉 starts out at the top of the spectrum, it is
certain to become the ground state in a sufficiently strong
field. The saturation field hS marks the value of h where
|F 〉 overtakes its closest competitor in the race of levels
down the energy axis.

The pattern in which levels with increasing Sz
T become

the ground state of H as h increases depends on their
relative starting position along the energy axis. From
the zero-field energies of this set of states, we will now
determine the magnetization mz ≡ Sz

T /N of the ground
state as a function of h.8

The Bethe quantum numbers of the lowest state with
quantum number Sz

T = N/2 − r ≥ 0 are5

Ii =
1

2

(

Sz
T − 1 + 2i − N

2

)

, i = 1, . . . , r, (16)

as can be confirmed by finite-N studies of all states in the
invariant subspaces with r = 1, . . . , N/2. Using the iter-
ative process (9), we can determine the energies of these
states with high precision (Problem 6). The red circles
in Fig. 2(a) represent the quantity [E(Sz

T )−EF ]/JN for
N = 32. The solid line connects the corresponding re-
sults for N = 2048. For the finite-N analysis it is impor-
tant to note that both the level energies E(Sz

T ) and the
level spacings E(Sz

T )−E(Sz
T −1) increase monotonically

with Sz
T .

At h 6= 0, all of these levels experience a downward
shift of magnitude hSz

T . All spacings between adjacent
levels shrink by the same amount h. The first level
crossing occurs between the state |A〉 with Sz

T = 0 and
the state with Sz

T = 1, which thereby becomes the new
ground state. Next, this state is overtaken and replaced
as the ground state by the state with Sz

T = 2 and so forth.
The last of exactly N/2 replacements involves the state
with Sz

T = N/2 − 1 and the state |F 〉 with Sz
T = N/2.

Their energy difference in zero field is 2J independent
of N (see Part I). Consequently, the saturation field is
hS = 2J .

3
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FIG. 2. (a) Energy of the lowest states with a given Sz
T at

h = 0. (b) Magnetization in the ground state of H .

The magnetization mz grows in N/2 steps of width
1/N between h = 0 and h = hS . In Fig. 2(b) we plot
mz versus h for two system sizes based on data obtained
numerically. The blue staircase represents the results for
N = 32. For N = 2048 the step size has shrunk to well
within the thickness of the smooth curve shown.

An important observation is that the midpoints of the
vertical and horizontal steps of the mz(h) staircase (red
dots) lie very close to the limiting curve. This behavior
made it possible to extract quite accurate magnetization
curves for various spin chain models from very limited
data.9

Different scenarios are conceivable. For example, if the
levels were arranged in the same sequence as in Fig. 2(a)
but with spacings increasing from top to bottom, then
the state with Sz

T = 0 would be replaced directly by the
state with Sz

T = N/2.
In the thermodynamic limit, the energy per site of the

lowest level with given Sz
T becomes the internal energy

density at zero temperature,

u(mz) = lim
N→∞

E(Sz
T ) − EF

JN
. (17)

From (17) we obtain, via the thermodynamic relations,

h =
du

dmz
, χzz =

dmz

dh
=

(

d2u

dm2
z

)−1

. (18)

The function mz(h) shown in Fig. 2(b) is the inverse of
the derivative of the function u(mz) plotted in Fig. 2(a).
The slope of mz(h) represents the longitudinal suscepti-
bility χzz. In a finite system, where mz = Sz

T /N varies
in steps of size 1/N , Eqs. (18) are replaced by

h(mz) = E(Sz
T ) − E(Sz

T − 1), (19a)

χzz(mz) =
1/N

E(Sz
T + 1) − 2E(Sz

T ) + E(Sz
T − 1)

. (19b)

The data in Fig. 2(b) indicate that χzz(h) has a
nonzero value at h = 0, grows monotonically with h,

and finally diverges at the saturation field h = hS . The
initial value,8,5

χzz(0) =
1

π2J
, (20)

turns out to be elusive to a straightforward slope analysis
because of a logarithmic singularity which produces an
infinite curvature in mz(h) at h = 0 (Problem 7). The
divergence of χzz(h) at hS is of the type (Problem 8)

χzz(h)
h→hS−→ 1

2π

1
√

J(hS − h)
. (21)

The characteristic upwardly bent magnetization curve
with infinite slope at the saturation field is a quantum
effect unreproducible by any simple and meaningful clas-
sical model system. The Hamiltonian (1), reinterpreted
as the energy function for coupled three-component vec-
tors, predicts a function mz(h) which increases linearly
from zero all the way to the saturation field.

IV. TWO−SPINON EXCITATIONS

Returning to zero magnetic field, let us explore the
spectrum of the low-lying excitations. From here on, the
ground state |A〉 (with Sz

T = ST = 0) replaces |F 〉 (with
Sz

T = ST = N/2) as the new reference state for all ex-
cited states. The Bethe quantum numbers (7), which
characterize |A〉, describe a perfectly regular array on the
I-axis as illustrated in the first row of Fig. 3. This array
will be interpreted as a physical vacuum. The spectrum
of HA can then be generated systematically in terms of
the fundamental excitations characterized by elementary
modifications of this vacuum array.

N/4-1/2

E 0
(0,0)

E q
(1,1)

E q
(1,0)

E q
(0,0)

-N/4+1/2 0

FIG. 3. Configurations of Bethe quantum numbers Ii for
the N = 32 ground state (top row) and for one representative

of three sets of two-spinon excitations with energy E
(ST ,Sz

T
)

q .
Each gap in the Ii-configurations of rows two and three (green
full circles) represents a spinon. Each gap in row four (green
open circles) represents half a spinon. The blue circle rep-
resents the Bethe quantum number associated with a pair
of complex conjugate solutions, whereas all black circles are
associated with real solutions.

In the subspace with Sz
T = 1, a two-parameter set

of states is obtained by removing one magnon from the
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state |A〉. In doing so we eliminate one of the N/2 Bethe
quantum numbers from the set in the first row of Fig. 3
and rearrange the remaining Ii in all configurations over
the expanded range − 1

4N ≤ Ii ≤ 1
4N . Changing Sz

T by
one means that the Ii switch from half-integers to inte-
gers or vice versa. The number of distinct configurations
with Ii+1 − Ii ≥ 1 is 1

8N(N +2). A generic configuration
consists of three clusters with two gaps between them as
shown in the second row of Fig. 3.

The two gaps in the otherwise uniform distribution
of Bethe quantum numbers can be interpreted as ele-
mentary particles (spinons) excited from the new phys-
ical vacuum. The position of the gaps between the Ii-
clusters determine the momenta k̄1, k̄2 of the two spinons,
which, in turn, add up to the wave number of the two-
spinon state relative to the wave number of the vacuum:
q ≡ k − kA = k̄1 + k̄2.

What remains to be done for the finite-N analysis is
straightforward. We solve the Bethe ansatz equations
via (9) for all the Ii-configurations just specified. A plot
of the two-spinon energies E − EA versus wave number
k− kA for N = 16 as inferred from the solutions {zi} via
(8a) and (8b) is shown in Fig. 4 (red circles). Also shown
are the Bethe quantum numbers for each excitation. The
pattern is readily recognized and extended (via reflection
Ii ↔ −Ii) to the other half of the Brillouin zone. We have
drawn (in blue) the corresponding two-spinon excitations
for N = 256. The 1

4N(1
4N + 1) = 4160 dots in the range

0 < q ≤ π produce a density plot for the two-spinon
continuum which emerges in the limit N → ∞.

0

1

2

3

0 0.5 1

q/π

(E
 -

 E
  
)/

J
 A

FIG. 4. Two-spinon (triplet) excitations with Sz
T = ST = 1

for N = 16 (red circles) and N = 256 (blue dots).
The configurations of (integer) Bethe quantum numbers
(−4 ≤ I1 < . . . < I7 ≤ 4) for N = 16 are symbolized by
the black circles.

Compare this set of two-spinon scattering states with
the set of two-magnon states plotted in Fig. 2 of Part I.
There we found that pairs of magnons form a continuum
of two-magnon scattering states and a branch of two-
magnon bound states. Two-spinon bound states exist as
well and will be discussed in a later column.

A derivation of the exact lower and upper boundaries

of the two-spinon continuum,10

ǫL(q) =
π

2
J | sin q|, ǫU (q) = πJ | sin q

2
|, (22)

starts from the Bethe ansatz equations (10). We set
r = N/2 − 1 and use the Bethe quantum numbers from
the second row of Fig. 3. When we replace the sum by
an integral, we must account for the gaps between the
Ii-clusters by two 1/N -corrections. The result (after dif-
ferentiation) is an integral equation which differs from
(11) by two extra terms related to the Ii-gaps:

2πσ(z) = −ε(z)− (K ∗ σ)(z) +
1

N

∑

l=1,2

K(z − z̄l). (23)

If we write σ(z) = σ0(z) + σ1(z) + σ2(z), where σ0(z) is
the solution (12) of Eq. (11), the two-spinon corrections
are solutions of

2πσl(z) =
1

N
K(z − z̄l) − (K ∗ σl)(z), l = 1, 2. (24)

Because Eqs. (24) have the same integral kernel K as
Eq. (11), the solutions of all three equations can be ex-
pressed by the same resolvent R,

2πσl(z) = gl(z) − (R ∗ gl)(z), l = 0, 1, 2 (25)

where g0(z) and g1(z), g2(z) are the inhomogeneities of
Eqs. (11) and (24), respectively. The resolvent, which
does not depend on the inhomogeneity, satisfies

2πR(z) = K(z)− (K ∗ R)(z). (26)

Because gl(z) = (1/N)K(z − z̄l) for l = 1, 2 makes (24)
equivalent to (26), we can write σl(z) = (1/N)R(z − z̄l).
This is all we need to know about the solutions.

Using Eq. (8a) for the two-spinon energies, we must
again correct for the two Ii-gaps when we convert the
sum into an integral:

E − EF = NJ

∫ +∞

−∞

dz ε(z)σ(z) − J
∑

l=1,2

ε(z̄l). (27)

Subtracting EA − EF yields

E − EA = −J
∑

l=1,2

[ε(z̄l) − N(σl ∗ ε)(0)]

= J
∑

l=1,2

[g0(z̄l) − (R ∗ g0)(z̄l)]

= J
∑

l=1,2

σ0(z̄l) =
πJ

2

∑

l=1,2

sech
(πz̄l

2

)

. (28)

Now we must relate the Ii-gaps, that is, the values z̄1, z̄2

to the spinon momenta k̄1, k̄2. Starting from the config-
uration in the first row of Fig. 3, we remove one Bethe
quantum number at or near the center. The accompa-
nying integer ↔ half-integer switch of the remaining Ii

5
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opens a double gap at or near the center. Shifting sev-
eral Ii from the left and right toward the center then
produces the generic three clusters. This change in con-
figuration applied to (8b) yields the following two-spinon
wave number relative to the vacuum:

q = k − kA = k̄1 + k̄2 = π − 2π

N

N/2−1
∑

i=1

∆Ii

=
∑

l=1,2

[

π

2
− 2π

∫ z̄l

0

dz σ0(z)

]

=
∑

l

[π

2
− arctan

(

sinh
(πz̄l

2

))]

, (29)

or sin k̄l = sech(πz̄l/2), l = 1, 2. These relations substi-
tuted into Eq. (28) produce the two-spinon spectrum

E − EA =
π

2
J [| sin k̄1| + | sin k̄2|]

= πJ | sin(q/2) cos(p/2)| (30)

for 0 ≤ p ≤ q and 0 ≤ q ≤ 2π − p. The spectrum is a
two-parameter continuum with boundaries (22).

Like magnons, spinons carry a spin in addition to
energy and momentum.11 Unlike magnons, which are
spin-1 particles (see Part I), spinons are spin- 1

2 parti-
cles. In a chain with even N , where all eigenstates have
integer-valued Sz

T , spinons occur only in pairs. The spins
sl = ± 1

2 , l = 1, 2 of the two spinons in a two-spinon eigen-
state of HA can be combined in four different ways to
form a triplet state (ST = 1, Sz

T = 0,±1) or a singlet
state (ST = Sz

T = 0). They are described by distinct
configurations of Bethe quantum numbers.

We have already analyzed the spectrum of the two-
spinon triplet states with s1 = s2 = + 1

2 (ST = 1, Sz
T =

+1), as specified by Ii-configurations of the kind shown
in the second row of Fig. 3. The two-spinon states with
s1 = s2 = −1 (ST = 1, Sz

T = −1) are obtained from
these states by a simple spin-flip transformation. They
have exactly the same energy-momentum relations.

The remaining two sets of two-spinon states have s1 =
−s2, that is, Sz

T = 0. One of these sets contains triplets
(ST = 1) and the other singlets (ST = 0). The former
is obtained if we shift all Bethe quantum numbers in the
second row one position to the right (Ii → Ii + 1

2 , i =
1, . . . , r− 1) as shown in the third row and add one non-
movable Bethe quantum number Ir = 1

4N + 1
2 to the

set (Problem 9). The number of distinct configurations
is then the same as in row two and the corresponding
states have the same wave number and energy. Symmetry
requires that all three components (Sz

T = 0,±1) of the
triplet states are degenerate.

Whereas all two-spinon triplets are described by real
solutions {zi}, the two-spinon singlet states (Sz

T = ST =
0) are characterized by one pair of complex conjugate so-
lutions z1 ≡ u+ iv, z2 ≡ u− iv in addition to the real so-
lutions z3, . . . , zN/2.

12 Finding the Ii-configurations for a
particular set of eigenstates with complex solutions (such

as indicated in row four of Fig. 3) and then solving the as-
sociated Bethe ansatz equations turns out to be a much
more delicate task than was the identification and the
calculation of purely real solutions.

A straightforward adaptation of the iterative process
(9) to complex zi will, in general, not converge toward a
physically meaningful solution. Making the Bethe ansatz
equations amenable to root-finding algorithms which are
adequate for this task requires that we convert Eqs. (6)
into a set of equations with real solutions. For the two-
spinon singlets we arrive at the following set of N/2 equa-
tions for {u, v, z3, . . . , zN/2} (Problem 10):

Nφ(zi) = 2πI
(1)
i +

N/2
∑

j=3
j 6=i

φ

(

zi − zj

2

)

+φ

(

4(zi − u)

4 − (zi − u)2 − v2

)

, i = 3, . . . ,
N

2
, (31a)

Nφ

(

2u

1 − u2 − v2

)

= 2π
(

I(2) + N/2
)

+

N/2
∑

i=3

φ

(

4(u − zi)

4 − (u − zi)2 − v2

)

, (31b)

Nϕ

(

2v

1 + u2 + v2

)

= ϕ

(

2v

1 + v2

)

+

N/2
∑

i=3

ϕ

(

4v

4 + v2 + (u − zi)2

)

, (31c)

where ϕ(x) ≡ 2 atanh(x). Here we have replaced the
first two Bethe quantum numbers I1, I2 of Eq. (6) by a
single (integer) Bethe quantum number I(2) associated
with z1 = z∗2 . The Bethe quantum numbers associated

with real solutions, now renamed I
(1)
i , are constrained

to the range (− 1
4N − 1

2 ≤ I
(1)
i ≤ 1

4N + 1
2 ) as indicated

in the fourth row of Fig. 3. This notation is used in
preparation of a general classification of Bethe ansatz
solutions (string hypothesis) which is valid for N → ∞
and will be discussed in a later column.

The dependence of the wave number on the Bethe
quantum numbers for all states with one pair of complex
solutions is then

k = π(r − 1) − 2π

N
I(2) − 2π

N

r
∑

i=3

I
(1)
i , (32)

where r = N/2 for the two-spinon singlets considered
here.

Figure 5 depicts the energy (8a) versus the wave num-
ber (32) of the two-spinon singlets (red circles) for N =
16 and 0 < q ≤ π. We use the same representation as in
Fig. 4 and show the two-spinon triplets again for compar-
ison. The number of two-spinon singlets identified here is
smaller, namely 1

8N(N−2) over the entire Brillouin zone,

than the number 1
8N(N + 2) of two-spinon triplets iden-

tified previously. Although the Ii-configurations of the
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TABLE II. Two-spinon singlet solutions of Eqs. (31) for
N = 8 and 0 < q ≤ π.

I(2) = −1 q = π/2 (E − EA)/J = 2.0330594201

I
(1)
3 = 1

2
u = −0.7040828497 v = −1.0011163392

I
(1)
4 = 5

2
z3 = +0.2940252223 z4 = +1.1141404771

I(2) = 0 q = 3π/4 (E − EA)/J = 1.9439866277

I
(1)
3 = − 1

2
u = −0.4504249992 v = −1.0000577243

I
(1)
4 = 3

2
z3 = −0.2423723559 z4 = +1.1432223543

I(2) = 0 q = π (E − EA)/J = 0.9514652606

I
(1)
3 = − 1

2
u = 0 v = −1

I
(1)
4 = 1

2
z3 = −0.2849381356 z4 = +0.2849381356

I(2) = 0 q = π (E − EA)/J = 2.8902166871

I
(1)
3 = − 3

2
u = 0 v = −1

I
(1)
4 = 3

2
z3 = −1.1276505247 z4 = +1.1276505247

singlets are more complicated than those of the triplets,
the pattern is still recognizable to the extent that it may
serve as a useful guide for applications to other system
sizes. The reader will find it easy to identify in the tables
of Part I one state for N = 4 and three states for N = 6
which belong to this class of singlet excitations. In Table
II we present the two-spinon singlet data for N = 8.

0

1

2

3

0.5 1
q/π

0

(E
-E

  
)/

J
A

FIG. 5. Two-spinon (singlet) excitations with Sz
T = ST = 0

for N = 16 (red circles). The configurations of (half-integer)
Bethe quantum numbers (− 9

2
≤ I3 < . . . < I8 ≤ 9

2
) are sym-

bolized by the black circles and the Bethe quantum number
I(2) pertaining to the pair of complex solutions by black di-
amonds. The N = 16 triplets from Fig. 4 are shown as blue
crosses for comparison.

Note that the pattern of {I3, . . . , IN/2} is akin to the
pattern of {I1, . . . , IN/2} for the triplets of a shorter
chain. As N grows larger, the effect of the complex so-
lutions z1 = z∗2 on the energy (8a) relative to that of
the real solutions z3, . . . , zN/2 diminishes and disappears
in the limit N → ∞. The two-spinon singlets will then
form a continuum with the same boundaries (22).12 Yet
the effect of the complex solutions in the two-spinon sin-
glets will remain strong for quantities inferred from the
Bethe ansatz wave function (for example, selection rules

and transition rates).
How do we solve Eqs. (31)? At q = π the real roots

z3, . . . , zN/2 of the two-spinon singlets are symmetrically
distributed about z = 0. This observation paves the way
for finding the complex roots exactly. Equation (31c)
admits a solution in the limit |u| → 0+, |v| → 1+ along
a path with |u| ∝ (|v| − 1)1/N . This limit matches the
divergence on the left with that in the first term on the
right. The zi in the non-singular terms on the right have
no effect on this solution.

When we substitute the complex roots just found
into (31b), the left-hand-side becomes ±Nπ, while the
sum on the right disappears because of the symmetric
zi-configuration. Equation (31b) thus requires I(2) =
0 (mod 2π). Finally, Eqs. (31a) with u = 0, |v| = 1 can
be solved iteratively similar to (9), Rapidly converging
solutions z3, . . . , zN/2 are obtained for the configurations
I3, . . . , IN/2 indicated in Fig. 5.

Significant computational challenges arise in the deter-
mination of two-spinon singlet states at q 6= π, where the
real roots are no longer symmetrically distributed and the
complex roots have u > 0, v > 1. Now there is no way
around solving Eqs. (31) simultaneously. For this task
a good root-finding algorithm13 combined with carefully
chosen starting values will be needed.

The two-spinon triplets play an important role in the
zero-temperature spin dynamics of quasi-1D antiferro-
magnetic compounds. They are the elementary excita-
tions of (1) which can be directly probed via inelastic
neutron scattering. The two-spinon singlets, in contrast,
cannot be excited directly from |A〉 by neutrons because
of selection rules. The singlet excitations are important
nevertheless, but in a different context.

Several of the quasi-1D antiferromagnetic compounds
are susceptible to a spin-Peierls transition, which involves
a lattice distortion accompanied by an exchange dimer-
ization. The operator which probes the dimer fluctu-
ations in the ground state of (1) couples primarily to
the two-spinon singlets and not at all to the two-spinon
triplets. In a forthcoming column of this series, the focus
will be on transition rates between the ground state of
(1) in zero and nonzero magnetic field and several classes
of excited states that are important for one reason or
another.

V. SUGGESTED PROBLEMS FOR FURTHER

STUDY

1. Show that |N±〉 is not an eigenvector of HA. Cal-
culate 〈N±|Sα

nSα
n+1|N±〉, α = x, y, x, to obtain the

energy expectation value 〈N±|HA|N±〉 = −JN/4
for the Néel state. Compare this result with the
asymptotic ground state energy 〈A|HA|A〉 = (1

4 −
ln 2)JN inferred from (13).

2. Identify |A〉 for N = 4, 6 in Tables II and IV of
Part I. Show that the state for N = 8 with Bethe
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quantum numbers (3) and with real momenta
k1 = 1.522002, k2 = 2.634831, k3 = 3.64836, k4 =
4.761182 is a solution of (I33) and (I35). Then de-
termine its energy E − EF and wave number k.

3. (a) Use the derivation of (6) from (I33) and (I35)
to establish the relation between the λi and the
Ii. Given that all λi are integers, show that all
Ii are integers for odd r and half-integers for even
r. For the given (real) solution {z1 < · · · < zN/2}
determine the one-to-one correspondence between
the elements of (3) and (7). (b) Infer (8a) from
(I30) with J replaced by −J and (8b) from (I36).

4. Calculate the {zi} of the state |A〉 iteratively via (9)
from the {Ii} given in (7) for various N . Compare
the results for N = 8 to the {ki} given in Prob-
lem 2. Check the energies for larger systems against
the values listed in Table I. Extrapolate your finite-
N data for (EA −EF )/JN and compare your best
prediction and its uncertainty with the exact result
(13).

5. (a) Use (4) and (12) to calculate the distribution
of the magnon momenta in the ground state |A〉
via ρ0(k) =

∫ ∞

−∞
dz σ0(z)δ(k − π − φ(z)). (b) Ex-

press the energy per site of |A〉 as an integral of the
magnon energy, −J(1 − cos k), weighted by ρ0(k),
and evaluate it to confirm the result (13).

6. In Problem 5 we interpreted |A〉 as a composite of
N/2 magnons with momentum distribution (14).
Increasing mz from zero means reducing the num-
ber of magnons in the ground state to N(1

2 − mz).
From the solution {zi}, calculate the finite-N dis-
tribution ρN (ki) = [N(ki−ki+1)]

−1 of magnon mo-
menta for mz = 0, 0.125, 0.25, 0.375. Use data for
N = 32 and for a much larger system, for example,
N = 2048. Show that for h = 0, ρN (ki) converges
very rapidly toward (14). Show that increasing h
does not only deplete magnons, it also constricts
the range of the magnon momenta.

7. Generate data for E(Sz
T ) via (9). Calculate h(mz)

from (19a) and χzz(mz) from (19b). Then plot χzz

versus h for 0 < h < 0.25 in relation to the exact
value 1/(π2J) at h = 0. Show that the slope of
χzz(h) increases without bounds as h → 0. De-
termine the χzz at h = 0 via extrapolation of the
h 6= 0 data points, and compare your prediction
with the exact result (20).

8. The leading singularities in mz(h) and χzz(h) at
h = hS can be derived from the N -dependence
of the three highest energy levels in Fig. 2(a):
E(Sz

T )/J − N/4 = 0,−2,−4 cos2(π/2(N − 1)), for
Sz

T = N/2, N/2−1, N/2−2, respectively. To calcu-
late the third result, show first that z2 = −z1 holds.
Then derive the solution zi = ± tan(π/2(N − 1)).
Next use the relations hS = E(N/2)−E(N/2− 1),

h = E(N/2−1)−E(N/2−2), and mz = 1
2−1/N to

express mz as a function of hS − h. The derivative
of the result yields (21).

9. From Part I we know that the vector with Sz
T = 0

of a multiplet is related to the vector with Sz
T = 1

by an extra magnon with momentum kr = 0 and
an extra λr = 0, while the {k1, . . . , kr−1} and
{λ1, . . . , λr−1} remain the same. According to (4),
this result implies zr = ±∞. Use (6) to show that
if the {z1, . . . , zr−1} are to remain the same for the
two states, then the Ii-configuration must change
as indicated in rows two and three of Fig. 3.

10. Start from Eqs. (6) with z1 = z∗2 = u + iv and
real z3, . . . , zN/2. Use φ(x ± y) = arctan(2x/(1 −
x2 − y2)) + i atanh(2y/(1 + x2 + y2)) + 2lπ with
(undetermined) integer l, and employ the addition
theorem φ(z1) ± φ(z2) = φ ([z1 ± z2]/[1 ± z1z2]) in
sums and differences to separate real and imaginary
parts of the resulting complex Bethe ansatz equa-
tions. Take into account that I1 + I2 is always an
integer. Adding N/2 to I(2) in (31b), which is per-
mitted because of the undetermined 2lπ’s, makes
I(2) assume integer values near zero for the class of
states of interest here.
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