Quantum Dynamics: Full diagonalization

Numerical or algebraic solution of the Heisenberg model on a small system

Solve the Heisenberg model on a ring of N sites (i.e. with periodic boundary conditions)

$$
\hat{H}=J \sum_{i} \overrightarrow{\hat{S}}_{i} \cdot \overrightarrow{\hat{S}}_{i+1}-\ldots . .10 \ldots \sum_{i} \hat{S}_{i}^{z}
$$

using a computer. First calculate the complete Hamilton matrix in Fock space, then diagonalize it (see hints below).

Thermodynamics

Calculate the total energy at $N=8, \quad \beta J=2, \quad h=J / 2$, (result: $E=-2.867 \ldots$) as well as the following quantities (plots !):
a) the magnetization per site, $\left\langle\frac{M}{N}\right\rangle$ where $M=\sum_{i} \hat{S}_{i}^{z}$, as a function of magnetic field h at $\beta J=40, N=8$. Also vary βJ and N (e.g., use also $N=7$). Try to explain your results qualitatively.
b) the susceptibility per site $\chi / N=\frac{\beta}{N}\left(\left\langle\hat{M}^{2}\right\rangle-\langle\hat{M}\rangle^{2}\right)$ at $N=8, h=0$ as a function of β (it should have a maximum at $\beta J=O(1))$; also vary the value of N,
c) and calculate the (approximate) ground state energy per site as a function of system size at $h=0$ and $\beta J=30 \approx \infty$.

$$
\langle\mathrm{O}\rangle=(\operatorname{tr} \mathrm{O} \exp (- \text { beta } \mathrm{H})) / \mathrm{Z}, \mathrm{Z}=\operatorname{tr} \exp (- \text { beta } \mathrm{H})
$$

Nonequilibrium Dynamics

Calculate the time evolution for a situation similar to the MPS case. Since the lattice size will be very small, you should choose open boundary conditions and start a single particle close to one edge of the system. Is a linear propagation visible?

Hints:

With N sites, Fock space has size 2^{N} and the Hamilton matrix is of size $2^{N} \times 2^{N}$. For simplicity, you should calculate the whole matrix (!). Thus, you do not need to make use of the symmetries of \hat{H}, nor any conservation laws, nor the fact that the matrix is sparsely populated. Then you should be able to run calculations easily up to about $N=8$. You can solve the problem numerically (Matlab) or algebraically (Mathematica, Maple). Once you have established the Hamilton matrix, you can then, in these programs, immediately calculate quantities like $\exp (-\beta H)$ (in matlab with the command expm - if the matrix is not too terribly large. Leave out factors \hbar and let " $J=1$ ".
(continued on next page)

Strategy for calculating the matrix: You can code the states of Fock space efficiently as whole numbers $I=0, \ldots, 2^{N}-1$, by interpreting the bit-representation of this number as a spin configuration. Then $I+1$ can be used as the index of the matrix. Do not calculate each matrix element separately. Instead, first initialize the matrix to zero, then loop over state vectors I and calculate the contributions of each lattice edge $(j, j+1)$ and each lattice site j. It is helpful to encode the lattice structure (which sites are neighbours of each other) separately first.

