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Algorithmic (Kolmogorov) Complexity

Mandelbrot set fractal
• Simply storing the 24-bit color of each pixel 
in this image would require 1.62 million bits.
• Computer program to generate the image, 
few lines of code requiring WAY fewer than 
1.62 million bits.

High-Tc Superconducting Cuprate
• Complex many-body system of electrons and nuclei.
• Physicists challenge: Find the simplest possible 
description that captures the essence of the observed 
phenomenon.
• Mathematical models: analytically solvable or through 
computer “simulation”.
• Find the best mathematical approximation to the 
physical world.
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Models and Simulations

??

Model
Simulation

by
Emulation
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Challenge:  Determine the phase diagram associated 
with a given many-body Hamiltonian.

State ρ =
e−βH

Z
⇒
β→∞

ψ ground ψ ground

H = −tc†iscjs +U ni↑ni↓
i
∑

i; j ,s
∑Hamiltonian

Order Parameter: O(λ) = Tr ρ(λ)Ô( )
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Complexity of a many-body quantum state

 H = h ⊗N ; dimH = dNHilbert Space description:

Example state: 4 spin-1/2 particles (16 dim space) 

ψ = a4 ↑↑↑↑ + a3b ↑↑↑↓ + ↑↑↓↑ + ↑↓↑↑ + ↓↑↑↑( )
+ a2b2 ↑↑↓↓ + ↑↓↑↓ + ↑↓↓↑ + ↓↑↓↑ + ↓↑↑↓ + ↓↓↑↑( )
+ ab3 ↓↓↓↑ + ↓↓↑↓ + ↓↑↓↓ + ↑↓↓↓( ) + b4 ↓↓↓↓

a = cos(θ / 2), b = sin(θ / 2) Complex?

ψ = ↑θ

⊗4

↑θ = a ↑ + b ↓ = cosθ
2
↑ + sinθ

2
↓

Algorithmically Simple!
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Computational Complexity

Quantum Information
Using quantum correlations 

to solve informationally 
complex problems
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Many-Body Physics and Information

Quantum Information
Using quantum correlations 

to solve informationally 
complex problems

Many-Body Physics
Strongly correlated many-

body systems 

Entanglement
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Entanglement

Bipartite Pure-State 
Entanglement

ΨAB ≠ φ A ⊗ χ B

ρA = TrB ΨAB ΨAB( ), ρB = TrA ΨAB ΨAB( )
Tr ρA

2( ) < 1, Tr ρB
2( ) < 1

Entanglement --> Maximal possible information 
about the whole (pure state) implies incomplete 
information about the parts (mixed state).
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Entanglement
Quantifying Entanglement: Entropy

ρA = TrB ΨAB ΨAB( ), ρB = TrA ΨAB ΨAB( )
E = S(ρA ) = S(ρB ) = − λµ logλµ

µ=1

NS

∑

ΨAB =
1
2

↑A↓B − ↓A↑B( )

ρA =
1
2
↑A ↑A +

1
2
↓A ↓A =

1
2

0

0 1
2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ρB =
1
2
↑B ↑B +

1
2
↓B ↓B =

1
2

0

0 1
2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

E = −
1
2
log 1

2
−
1
2
log 1

2
= log2 = 1 ebit

Singlet:
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Schmidt Decomposition

 

⇒ ΨAB = λµ
µ=1

Ns

∑ Uµi ei A
i=1

dA

∑⎛⎝⎜
⎞
⎠⎟

≡ uµ A

  
⊗ Vµ j f j B

j=1

dB

∑
⎛

⎝⎜
⎞

⎠⎟

≡ vµ B

  

ΨAB = cij ei A ⊗
j=1

dB

∑
i=1

dA

∑ f j B

General decomposition
into orthonormal basis

cij = Uiµ
T λµ δµν( )Vν j

µ ,ν=1

Ns

∑Singular value decomposition

ΨAB = λµ
µ=1

Ns

∑ uµ A
⊗ vµ B

Schmidt Decomposition

Schmidt 
basis

Schmidt 
number

Schmidt 
coefficients
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Schmidt Decomposition

ΨAB = λµ
µ=1

Ns

∑ uµ A
⊗ vµ B

Schmidt Decomposition

ρA = λµ uµ uµ
µ=1

Ns

∑ ρB = λµ vµ vµ
µ=1

Ns

∑Marginal density
operators

E = S(ρA ) = S(ρA ) = − λµ logλµ
µ=1

Ns

∑Entanglement

The Schmidt decomposition quantifies the 
“complexity” of the state
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Many-body Complexity and Entanglement

“Clearly, if a quantum device is to offer an exponential 
speedup with respect to classical computations, then it 
must involve dynamics that cannot be efficiently 
simulated classically.”
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Many-body Complexity and Entanglement

 
Ψ = ci1i2i n

i1i 2i n
∑ i1 ⊗ i2 ⊗⊗ inN, d-level systems

 d
N − parameters: ci1i2i N

Ψ = λµ
[A,B]

µ=1

NAB

∑ Φµ
[A] ⊗ Φµ

[B]
Schmidt decomposition
for arbitrary biparite 

division A+B

E = log(NAB
max ), O n2E( ) parameters needed to specficy Ψ  

 ci1i2in = Tr(A
(i1 )[1]A(i2 )[2] A(in )[n])

Matrix for the ik  component of k th  subsystem: A(ik )
µν [k] =Uµν

(ik )[k] λν
[k ,n− k ]

Information content 

E ≤O(logn) ⇒Efficient representation
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Entanglement and Local Systems 
Spin chain (Ising-like model)

• Local interactions --> Finite correlations away from 
critical point (point of second order phase transition)

ξcorr

A C B

OAOB − OA OB ≈ exp −
lAB
ξcorr

⎛
⎝⎜

⎞
⎠⎟
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Entanglement and Local Systems 

• Local interactions --> Short-range correlations away 
from critical point (second order phase transition).
• Short-range correlations --> Limited entanglement --> 
Simple representation with limited information.
• Critical point --> Diverging correlation length

ξcorr ~ λ − λcrit
−ν

• Critical point --> Larger entanglement --> Complex 
representation --> difficult to simulate.
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Matrix Product States

ξcorr

ρAB = TrC ΨABC ΨABC( ) ≈ ρA ⊗ ρB

A C B
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Matrix Product States

ξcorr

ρAB = TrC ΨABC ΨABC( ) ≈ ρA ⊗ ρB

ACL CR B

ΨACL
⊗ ΨACR

≈ IA ⊗UC ⊗ IB ΨACB

C

Matrix-Product State!

ΨACB ≈ Aµν
i ψ µ A

⊗
µ ,ν ,i
∑ φi C ⊗ χν B
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Ψ = Tr A(i1 )[1]A(i2 )[2] A(in )[n]( )

i1i 2i n
∑ i1 ⊗ i2 ⊗⊗ in

• Variational wave function at the heart of Density-Matrix 
Renormalization Group (DMRG).
• For 1D gapped (noncritical) systems, form a faithful 
representation with small dimensional matrices (limited 
entanglement).
• Generalization to 2D -- Projected Entangled Pairs (PEPS)
•  Fermions in 2D? Unsolved whether there exists efficient 
representation.

Matrix Product State:
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Area Laws

• For gapped quantum spin systems, the 
entanglement scales as the size of boundary.
• Critical systems:  1D S~cLog(L)
•  Higher dimensional critical systems? Fermions?

 S(ρA )  cL
D−1
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Models and Simulations
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Simulation
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Requirements on a Quantum Simulator

• Quantum Simulator: Physical system should be 
faithfully described by the desired model.
• Most challenging (not accessible by classical 
computation) for “complex quantum states”.
• Complex quantum states (large information 
content) have substantial entanglement.
• How robust is a quantum simulator, and how can 
we test its veracity?
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Quantum Simulation: Analog vs. Digital

Analog: Finding the solution through the laws of physics

• Differential equations of motion of masses on springs with dashpots etc. 
equivalent to electrical voltages in circuits with resistors, capacitors etc.

• Computational complexity of analog computer difficult to assess.  As problem 
size grows the signal disappears into the noise.
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Models and Simulations

Model
Simulation

by
Emulation
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Quantum Information Processing:  Analog or Digital?

Sunday, March 20, 2011

The physical nature of information
Rolf Landauer'

IBM Tl. Watson Research Cents: EU. Box EH5’. Yorktown Heights. N1’ £0598. USA

Reeeived 9 May 1996
Communicated by ‘v’.tvt. agranovieh

3 Quantum parallelism A return to analog
ootnpulation

an analog eomputer ean do mueh more per step
than a digital eomputer But an analog eomputer, in
whteh a physteal variable sueh as a voltage ean tal-re on
any value wtthtn a pertrutted range, does not allow for
easv error eorreetion Therefore ll"I the analog eotu
puter errors. due to unintentional imperfections Ill the
maehtnery, build up tI|LIlCl(l}" and the pro-eedure ean go
through only a few sueeessive steps before the errors
aeeutnulate prohibitively A digital eotnputer by eon-
trast allows only a {J or I That permits us to restore

their intended values.tgn war

far away from that. In typical digital logie the signal
is restored toward the power supply voltage or ground
at every sueeessive stage. This is what pemtits us to
go through a tremendous number of sueeessive digi-
tal steps. and this has given the digital eornputer its
power. In quantum parallelism we do not just use ti’ and
I, but all their possible eoherent superpositions. This
eontinuum range, wltieh gives quantum parallelism its
power, also gives it the problems of analog eomputa-
tion, a point first eitplieitly stated by Peres [ ta] . If we
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Quantum Information: Analog vs. Digital?

Wave-Particle Duality

0 a

p0 = 0 !a 0

p1 = 1 !a 1

! = cx x
x=0

2n "1

#

Analog-Digital Duality
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• Digital nature of quantum information allows us to 
discretize the errors

Quantum Error Correction and Fault-Tolerance

• Can detect errors without detecting the “quantum 
path”.

• Process of error-correction is fault-tolerant when the 
errors are below  a given threshold. pSteane~10-5

Quantum error correcting code

Sunday, March 20, 2011
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The Common Lore of Quantum Simulation

Question:
Why does Shor’s factoring algorithm require quantum error 
correction, but a useful quantum simulation (i.e., one not 
efficiently simulatable on a classical computer) not?

Sunday, March 20, 2011
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• Typical quantum algorithm (e.g. Shor):  Measure Px in computational 
basis to due answer. Requires robustness of 2n probabilities.

Px = x ! 2

Robustness of information: What do we measure?

• Typical quantum simulation: Measure local correlation function to 
determine the order parameter, e.g., quantum magnetism:
 

C = ! z
i! z

j

neighbors
"

Question
When is C not efficiently calculable on a classical 
computer, and when it is not, how sensitive is it to 

errors in the quantum many-body state?
Sunday, March 20, 2011
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Is Nature Quantum Complex?

Question
Does nature make use of exponentialamounts of entanglement 
especially at finite temperature and with finite imperfection? 
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Fundamental Question
Under what condition is the quantum state of a many-
body system sufficiently robust that we can use it to 
perform a useful quantum simulation without digital 
encoding for error correction, and when it is that robust, 
could we have obtained that information otherwise in an 
efficient calculation on a classical computer?

Solution 1: An analog quantum simulator is not reliable 
and can only capture finite entanglement scales --> Need 
to encode digitally in order to correct errors.

Solution 2: An analog quantum simulator can solve 
classically intractable problems --> We should take 
advantage of this robustness is all possible ways for 
quantum computation.

Next Frontier in Complexity Theory!
Sunday, March 20, 2011
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