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Abstract

Removing cardiopulmonary resuscitation (CPR) related
artefacts from human ventricular fibrillation (VF) ECG
signals would provide the possibility to continuously de-
tect rhythm changes and estimate the probability of defib-
rillation success. This would avoid ”hands-off” analysis
times which diminish the cardiac perfusion and thus dete-
riorate the chance for a successful defibrillation attempt.
Our approach consists in representing the CPR-corrupted
signal by a seasonal state-space model. This allows for a
stochastically changing shape of the periodic signal and
also copes with time-dependent periods. The residuals of
the Kalman estimation can be identified with the CPR-
filtered ECG signal. Preliminary results using only a small
pool of human VF and animal asystole CPR data show that
the seasonal model is not as effective as models using ref-
erence signals, but it might be useful in combination with
them.

1. Introduction

During CPR, chest compressions and ventilations cause
artefacts in the ECG. In order that the rhythm detection
algorithms of automated external defibrillators work prop-
erly, the international guidelines [1] prescribe a so-called
“hands-off interval” for the time of analysis. During this
period, CPR is stopped and the ECG signal is thus arte-
fact free. However, as a consequence of this, myocardial
blood flow drops and both the success of a subsequent de-
fibrillation attempt [2] and the probability of success [3, 4]
decrease. Thus, it would be desirable to remove CPR
artefacts from the ECG signal continuously during CPR.
Thereby, continuous rhythm detection would be possible
and would provide minimal “hands-off” delay before the
delivery of an electric countershock. Furthermore, in the
case of VF, CPR removal algorithms would allow for con-
tinuous monitoring of the myocardial metabolism of the
heart through parameters derived from the artefact cleaned

ECG signal [5]. CPR artefact removal is thus a crucial step
towards diagnostic based defibrillation and has the poten-
tial of dramatically improving the survival rate of cardiac
arrest patients.

The human heart fibrillates at frequencies that overlap
with the characteristic frequencies of CPR artefacts [6].
Furthermore, in real life situations, the rates and ampli-
tudes of chest compressions and ventilations, and there-
fore the shape of the CPR ECG artefacts can change in the
course of time. Thus, CPR artefact removal is a delicate
signal processing problem and needs sophisticated adap-
tive algorithms.

In contrast to the large amount of literature about algo-
rithms to detect and analyse VF signals [7, 5], there are
surprisingly only few and recent publications addressing
the problem of removing CPR artefacts: Ruiz et al. [8]
use Kalman filters assuming that the CPR artefact as well
as the VF signal can be modeled by sinusoidal functions
of known angular frequencies. Klotz et al. [9] propose a
methodology based on time-frequency methods and local
coherent line removal. The Norwegian research group of
Eftestol et al. [10, 11, 12] apply an adaptive filtering ap-
proach using reference signals (thoracic impedance, com-
pression depth, etc.), which correlate with the CPR artefact
signal.

2. Methods

2.1. Data and evaluation methods

Seven porcine asystole ECG signals containing CPR
artefacts (the noise), and seven human artefact free VF
ECG signals (the signal) are added pairwise with specific
signal-to-noise ratios (SNR). All of the resulting 49 signals
have 5 seconds duration. After separation of the mixture by
means of a removal algorithm the restored SNR [10, 8]

rSNR := 10 · log10

(
V ar(signal)

V ar(signal-estimation)

)



reflects the mean squared estimation error of the recon-
struction in comparison with the signal variance, c.f.
Fig. 1. For the purpose of CPR artefact removal by means
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Figure 1. Adding and separating a CPR artefact ECG sig-
nal (the noise) and an artefact free VF ECG signal (the
signal) by means of the seasonal model.

of our model, it suffices to work at a sampling frequency
of approx. 20-50 Hz, which usually covers the frequencies
contained in the CPR artefact signal. This is because our
model estimates the CPR artefact signal and handles the
VF part as residuals. Therefore, the following procedure
can be applied:
1. Down-sample the CPR and VF signals from their orig-
inal sampling frequencies to a sampling frequencyf ∈
[20, 50] Hz, which results in the two signals VFf and
CPRf .
2. Normalise VFf and CPRf , and scale CPRf such that a
desired SNR is accomplished.
3. Estimate the CPR part of the mixture by means of the
model and the chosen optimisation procedure resulting in
the signal CPRest

f

4. Assuming that all frequencies of the CPR artefact sig-

nal are contained in[0, f/2], the restored SNR can be com-
puted by calculating the difference between the scaled true
CPR signal CPRf and its estimate CPRest

f .
5. In order to get an estimate of the VF part (including as
much frequencies as possible), one up-samples CPRest

f to
the original VF sampling frequency (375 Hz for our data),
and subtracts it from the CPR+VF mixture at this sampling
frequency.

Besides evaluating a CPR removal algorithm with the re-
stored SNR, one can compare the values of a typical ECG
parameter, such as the mean frequency [5], for the artefact
free VF signal and its estimate.

2.2. The seasonal state-space model

We propose Kalman state-space methods [13, 14, 15] for
CPR artefact removal, because:
• The Kalman recursions provide a numerically fast and
adaptive way to compute estimates of the CPR part of the
CPR corrupted signal.
• The underlying state space models include all classical
time series models, can be combined in a straightforward
way, and allow for integration of reference signals (tho-
racic impedance, compression depth, etc.).
• There exist established optimisation techniques for the
estimation of model parameters.
Our approach consists in representing the CPR-corrupted
signal by a seasonal state-space model [15, p.266f]. This
model is motivated by the idea that CPR artefacts form a
roughly periodical signal, whereas the VF ECG signal is
not periodical, or at least at a much higher rate. The resid-
uals of the Kalman-estimation can be identified with the
CPR-filtered ECG signal.

A classical seasonal time series{Yt} with constant pe-
riod d and period mean zero fulfils

Yt+d = Yt, and
d∑

t=1

Yt = 0.

Combining these equations, we see that such a time series
is governed by the recursions

Yt+1 = −Yt − . . . − Yt−d+2. (1)

In order to allow for random variations from strict period-
icity, one introduces a white noise term{St} with mean
zero in equation (1):

Yt+1 = −Yt − . . . − Yt−d+2 + St.

This allows for a stochastically changing shape of the pe-
riodic signal.

The states{Xt} of the correspondingd−1 dimensional
state-space model including observation noise are formed
by the vectors

Xt = (Yt, Yt−1, . . . , Yt−d+2)T .



The observations{Yt} are recovered from the states by the
observation equation

Yt = GtXt + Wt,

whereWt is the observation noise andGt = (1, 0, . . . , 0).
Finally, the state equation is given by

Xt+1 = FtXt + Vt,

with Vt = (St, 0, . . . , 0)T and

Ft =


−1 −1 . . . −1 −1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
...

0 0 . . . 1 0

 .

2.3. Time-dependent period

To cope with time-dependent periodsd(t), a state-space
with dimensionmax{d(t)} is used, and in the first row of
the transition matrixFt the firstd(t) − 1 entries are set to
−1, and the rest are set to zero. We estimate the (time-
dependent) periodd(t) by means of the (windowed) sam-
ple autocorrelation function of the CPR corrupted signal
{Yt}.

2.4. Optimisation

The seasonal model presented above is a structural state-
space model [14], where the transition and observation ma-
trices are known. Thus, it is determined by giving
• the variance of the state noiseSt,
• the variance of the observation noise,
• the initial state predictor, and
• the initial error covariance matrix.
We determine the optimal values of these parameters for
given observations by reduced maximum likelihood esti-
mation (RMLE) [15, p.278ff], which basically amounts
to applying the Kalman predictor recursions repeatedly.
However, after the RMLE any of the three types of Kalman
recursions (prediction, filtering, and fixed-point smooth-
ing) can be applied to the optimal model during evaluation.

3. Results

For each of the 49 mixed signals (sampling frequency
f = 40 Hz) and each SNR= -10, -5, 0, 5, 10 dB an optimal
seasonal model was determined via RMLE, where a con-
stant period was estimated. Every optimal model was then
evaluated using the Kalman predictor recursions. Fig. 1
shows the original and estimated CPR and VF parts for
an example signal with SNR= 0 dB. For each of the 49
mixed signals the restored SNR at the original sampling

frequency and the difference between the true and the esti-
mated VF mean frequency were computed. The results are
depicted in Fig. 2 and 3.
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Figure 2. Boxplots of the restored SNR.
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Figure 3. Boxplots of the differences between the true and
the estimated VF mean frequency.

4. Discussion and conclusions

The restored SNR of the proposed CPR artefact removal
algorithm does not attain as good values as the algorithm
of Eftestol et al. [10, 11, 12], which uses reference sig-
nals correlating with the CPR artefacts. However, they
observed large and spiky ECG artefacts without a similar
shape in the reference channels, c.f. Fig. 1. These artefacts
could thus not be reconstructed by a regression on the ref-
erence channels.

Our approach does not have the additional information
of reference signals and estimates the CPR artefact part
from the corrupted signal only, thus is not that effective.
The seasonal model, however, can model periodic signals



of any shape (Fig. 1), and therefore might be useful to im-
prove the performance of a regression model on reference
signals. In case the regression model is formulated in state-
space terms, it can be easily combined with the seasonal
model.

References

[1] Anonymous. Guidelines 2000 for Cardiopulmonary Resus-
citation and Emergency Cardiovascular Care. The Amer-
ican Heart Association in collaboration with the Interna-
tional Liaison Committee on Resuscitation. Resuscitation
2000;46:1–447.

[2] Sato Y, Weil M, Sun S, Tang W, Xie J, Noc M, Bisera J.
Adverse effects of interrupting precordial compression dur-
ing cardiopulmonary resuscitation. Crit Care Med 1997;
25(5):733–6.

[3] Eftestol T, Wik L, Sunde K, Steen P. Effects of cardiopul-
monary resuscitation on predictors of ventricular fibrillation
defibrillation success during out-of-hospital cardiac arrest.
Circulation 2004;110(1):10–5.

[4] Eftestol T, Sunde K, Steen P. Effects of interrupting precor-
dial compressions on the calculated probability of defibril-
lation success during out-of-hospital cardiac arrest. Circu-
lation 2002;105(19):2270–3.

[5] Amann A, Rheinberger K, Achleitner U. Algorithms to an-
alyze ventricular fibrillation signals. Curr Opin Crit Care
2001;7(3):152–6.

[6] Strohmenger H, Lindner K, Brown C. Analysis of the ven-
tricular fibrillation ECG signal amplitude and frequency pa-
rameters as predictors of countershock success in humans.
Chest 1997;111(3):584–9.

[7] Amann A, Tratnig R, Unterkofler K. Reliability of old and
new ventricular fibrillation detection algorithms for auto-
mated external defibrillators (AEDs). Biomedical Engineer-
ing Online 2005;Accepted for publication.

[8] Ruiz J, Aramendi E, Ruiz de Gauna S, Lazkano A, Le-
turiendo L, Gutierrez J. Ventricular fibrillation detection in
ventricular fibrillation signals corrupted by cardiopulmoary
resuscitation artifacts. Computers in Cardiology 2004;221–
4.

[9] Klotz A, Amann A, Feichtinger H. Removal of CPR ar-
tifacts in ventricular fibrillation ECG by local coherent line
removal. EUSIPCO (12th European Signal Processing Con-
ference), 2004; .

[10] Langhelle A, Eftestol T, Myklebust H, Eriksen M, Holten B,
Steen P. Reducing CPR artefacts in ventricular fibrillation
in vitro. Resuscitation 2001;48(3):279–91.

[11] Husoy J, Eilevstjonn J, Eftestol T, Aase S, Myklebust H,
Steen P. Removal of cardiopulmonary resuscitation artifacts
from human ECG using an efficient matching pursuit-like
algorithm. IEEE Trans Biomed Eng 2002;49(11):1287–98.

[12] Eilevstjonn J, Eftestol T, Aase S, Myklebust H, Husoy J,
Steen P. Feasibility of shock advice analysis during CPR
through removal of CPR artefacts from the human ECG.
Resuscitation 2004;61(2):131–41.

[13] Anderson B, Moore J. Optimal filtering. Mineola, New
York: Dover Publications, Inc., 2005.

[14] Harvey AC. Forecasting, Structural Time Series Models
and the Kalman Filter. Cambridge University Press, 1989.

[15] Brockwell PJ, Davis RA. Introduction to time series and
forecasting. 2nd edition. Springer, 2002.

Address for correspondence:

Klaus Rheinberger
Research Center Process and Product Engineering,
Vorarlberg University of Applied Sciences,
Hochschulstr. 1, 6850 Dornbirn, Austria
email: klaus.rheinberger@fhv.at


