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Abstract

A central component in automated external defibrillators (AEDs) is the detec-
tion of ventricular fibrillation (VF) in the electrocardiogram (ECG) by means of
appropriate detection algorithms. In the scientific literature there exists a wide
variety of methods and ideas for handling this task. This methods should have
a high detection quality and also be able to work properly in the presence of
different disturbances, like electric noise, artifacts of motion, cardiopulmonary
reanimation (CPR) artifacts, interspersion of electrical fields. Furthermore, the
algorithm should be easily implementable in any kind of computer language,
and should work in real time in an AED.
To test the quality of an algorithm for ECG analysis, it is essential to do this
with a large amount of annotated data under equal conditions. For our in-
vestigation we used the complete BIH-MIT and CU data banks, and the files
7001 - 8210 of the AHA data bank ([16], [17], [2]). No preselection of certain
ECG episodes was made since this equals the situation of a bystander more
accurately.
In this work different fibrillation detection algorithms are evaluated. Some are
taken from the scientific literature, some are new. They are based on different
mathematical methods: Fourier transform, autocorrelation, wavelet transform,
Hilbert transform, etc. We calculate the sensitivity and specificity and com-
pare the different algorithms by their IROC value. Furthermore, we investigate
the positive predictivity and accuracy. Surprisingly, very simple algorithms
show very good results compared to quite involved techniques. The best three
algorithms are new.

Key words: fibrillation detection, automated external defibrillator (AED),

ventricular fibrillation (VT), cardiopulmonary reanimation (CPR),

sinus rhythm (SR), ECG analysis.



Verlässlichkeit von Flimmererkennungsalgorithmen

für automatisierte externe Defibrillatoren(AEDs)

Zusammenfassung

Eine wesentliche Aufgabe von automatisierten externen Defibrillatoren (AEDs)
ist die Erkennung von ventrikulärem Flimmern (VF) aus dem Elektrokardio-
gramm (EKG) des Patienten mittels geeigneter Erkennungsalgorithmen. In
der Fachliteratur existiert ein breites Spektrum von Methoden und Ideen, um
diese Aufgabe durchführen zu können. Diese Methoden sollen eine hohe Erken-
nungsqualität aufweisen und selbst dann richtig arbeiten, wenn dem Signal, das
durch die elektrische Aktivität des Herzens entsteht, unterschiedliche Störungen
überlagert sind, wie z.B. elektrisches Rauschen, Bewegungsartefakte, Artefakte
durch kardiopulmonare Reanimation (CPR, mechanische Wiederbelebung), Ein-
streuung elektrischer Felder. Weiters sollen die Algorithmen gut implementier-
bar sein und in AEDs in Echtzeit arbeiten.
Um die Qualität eines Algorithmus für die EKG-Analyse zu untersuchen, ist
es wesentlich, dies mit einer grossen annotierten Datenmenge unter gleichen
Bedingungen zu tun. In dieser Arbeit wurden die gesamte BIH-MIT und CU
Datenbank, sowie die Dateien 7001 - 8210 der AHA Datenbank ([16], [17], [2])
verwendet. Um die Situation eines Laien möglichst realitätsnah zu simulieren,
wurde keine Vorselektion der EKG - Episoden vorgenommen.
Einige der untersuchten Flimmererkennungsalgorithmen stammen aus der Fach-
literatur, andere sind neu. Sie basieren auf verschiedensten mathematischen
Methoden: Fourieranalyse, Autokorrelation, Wavelettransformation, Hilbert-
transformation, etc. Es werden für alle Algorithmen die Sensitivität und die
Spezifität berechnet und die IROC Werte (integrated receiver operator charac-
teristic) verglichen. Auch die positive Vorhersagbarkeit sowie die Genauigkeit
werden berechnet. Überraschenderweise liefern gerade sehr einfach zu program-
mierende Algorithmen die besten Ergebnisse. Die drei mit Abstand besten
Algorithmen wurden von uns neu entwickelt.

Schlüsselwörter: Flimmererkennung, automatisierter externer Defibrillator(AED),

ventrikuläres Flimmern (VF), kardiopulmonare Reanimation (CPR),

Sinusrhythmus (SR), EKG-Analyse.
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Introduction

In Austria every year approximately 15 000 people die from sudden cardiac
arrest. Of this number 40% to 50% exhibit ventricular fibrillation, and approx-
imately one third could survive with a timely employment of a defibrillator.
Beside the manual defibrillation by an emergency physician in recent years, by-
stander defibrillation with semi-automated external defibrillators (AEDs) has
been recommended for resuscitation. These devices analyze the electrocardio-
gram (ECG) of the patient and recognize whether a shock should be delivered
or not, like in the case of ventricular fibrillation (VF). The survival rate with
sudden cardiac arrest in Austria is at present below 10%. In Las Vegas, in the
context of a study, the survival rate has increased with AEDs by 57%. The
bystander defibrillation is already firmly established in the first aid training in
the USA. It is of vital importance that the ECG analysis algorithms used by
AEDs possibly differentiate well between VF and a stable but fast sinus rhythm.
For example, an AED should not deliver a shock, if the patient has collapsed
not due to cardiac arrest, on the other hand a successfully defibrillated patient
should not due to an analysis error be defibrillated again, which would possibly
bring him back into cardiac arrest. Commercial AEDs use different, partly pub-
lished, partly company-owned analysis algorithms. Despite or because of these
different analysis algorithms, ECG classification errors are frequently reported
in use.

In this thesis, 10 different algorithms well known from the literature as well
as 5 new algorithms for the recognition of VF were implemented in MATLAB
under a user-friendly interface. These were evaluated on the basis of annotated
ECG databases, whereby our algorithms produced the best three results. As a
single quality parameter we used the integrated receiver operator characteristic
(IROC).

In Chapter 1 some general problems in the task of arrhythmia detection are
described, that occur in practice. International recommendations for AEDs
are presented. Rhythms to be defibrillated versus such which should not are
discussed. The problem of external influences on ECG analysis is mentioned
and the important quality parameters for a quantification of fibrillation detec-
tion algorithms are introduced. Furthermore, the process taking place in all
investigated algorithms, is shown. Also different types of ECGs and methods
to analyze them are described.

Chapter 2 describes some already well known algorithms from the scientific



literature. The used techniques are shortly described for each investigated al-
gorithm. Some of the techniques are illustrated more detailed in Chapter 3.
Chapter 4 deals with existing QRS detectors, which are originally destined to
search for and find QRS complexes rather than VF. We use them as VF detec-
tors. Chapter 5 deals with some new approaches and describes the ideas and
justifications. Chapter 6 shows the results of our evaluations in tables. The
quality of the algorithms used both as VF detectors and QRS detectors are
presented. Chapter 7 represents the results in plots and Chapter 8 discusses
the results and further ideas for future work. The Appendix A presents some
MATLAB code for our filter preprocessing.

5



Chapter 1

General Problems of
Arrhythmia Detection

Electrocardiograms (ECGs) provide a record of the heart’s electrical activity.
This simple test records any abnormal findings in the heart’s electrical impulses.
Electrodes are placed on the arms and chest to monitor electrical activity, which
is recorded on graph paper or displayed on a screen. Information can be ob-
tained during rest or exercise.

An AED should be able to detect life-threatening ECG rhythms like ventricular
fibrillation and deliver user instructions to carry out a defibrillation in an easy
to understand way. In an ideal case it should also perform a fibrillation scoring.
This means an evaluation of the probability of the success for a defibrillation,
and an evaluation of the CPR with a feedback to the emergency physician.
Furthermore, the ideal time of a defibrillation should be determined.

The defibrillation should be optimal in a way that it is specific to the patient,
should have the proper energy and give an exponential biphasic defibrillation
pulse [22].

Many of the mentioned wishes are not fulfilled in common defibrillators.

1.1 Medical facts

An AED should be able to detect life-threatening ECG rhythms and deliver user
instructions. In 1999, the American Heart association [2] published a number
of recommendations for AEDs as Public Access Devices (PAD)[11].

(1) Rhythms to be defibrillated: rough ventricular fibrillation ( > 0.2mV),
fast ventricular tachycardia (no specification of threshold frequency)

(2) Intermediate rhythms: fine ventricular fibrillation (small amplitude and
low frequency), other ventricular tachycardia

(3) Rhythms not to be defibrillated: normal sinus rhythm, supraventricu-
lar tachycardia, sinus bradycardia, premature ventricular contractions, atrial
fibrillation/flutter, AV block (II, III degree), asystoles,...
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The most important rhythm to be detected is ventricular fibrillation.

Ventricular fibrillation (VF) is a very fast, chaotic electrical heart activity in
the lower chambers of the heart, resulting from multiple areas of the ventricles
attempting to control the heart’s rhythm. Ventricular fibrillation can occur
spontaneously (generally caused by heart disease) or when ventricular tachy-
cardia has persisted too long. When the ventricles fibrillate, they do not con-
tract normally, so they cannot pump blood effectively. The instant VF begins,
effective blood pumping stops. VF quickly becomes more erratic, resulting in
sudden cardiac arrest. This arrhythmia must be corrected immediately via a
shock from an external defibrillator or an implantable cardioverter defibrillator
(ICD). The defibrillator stops the chaotic electrical activity and restores normal
heart rhythm.

1.2 External influences on AEDs

An AED has to make its decision on the basis of an ECG, obtained by only 2
electrodes with variable positioning and quality of the electrode contacts. The
electrode contacts are positioned at the chest of the patient. There is only the
ECG as a basis of the decision, no information about pulse or respiration is fed
into the device. Therefore, the majority of influences and disturbances on an
AED and its algorithm is of electrical nature.

(1) Artifacts: CPR, transport, respiration, motion of AED user, etc.

(2) Electric disturbances: Electrical fields (interspersion of mains frequency,
electric fields from railway power systems), radio communication, noise, im-
planted pace makers, etc.

A possible result of external influences can be a false ECG interpretation.
Therefore, the algorithm should be able to filter artifacts. If the ECG data
have been changed by artifacts, e.g., various strong electrical noises or artifacts
caused by cardiopulmonary reanimation (CPR), it is interesting to find out
how well the algorithms still work. In real applications of defibrillators these
kinds of artifacts occur frequently, but they should not affect the results of the
analysis. The aim of good fibrillation detection algorithms is the possibility
of performing an analysis during CPR with suppression of artifacts of motion.
By the use of such algorithms the reanimation could be applied up to a few
seconds in advance of the defibrillation. Moreover, the analysis of the ECG to
test for the necessity of defibrillation could be carried out without interrupting
the manual reanimation.

1.3 Quality parameters

In this test we analyzed 15 different fibrillation detection algorithms. The
results are expressed in the quality parameters Sensitivity, Specificity, Posi-
tive Predictivity, Accuracy and the Integrated Receiver Operator Characteristic.
Furthermore, we investigated the calculation time of the different algorithms.
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Sensitivity is the ability (probability) to detect ventricular fibrillation. It is
given by the quotient

detected cases of VF
all cases of VF

=
TP

TP + FN
, (1.1)

with TP being the number of true positive decisions, and FN is the number of
false negative decisions.

Specificity is the probability to identify “no VF” correctly.

It is given by the quotient

detected cases of “no VF”
all cases of “no VF”

=
TN

TN + FP
, (1.2)

where TN is the number of true negative decisions, and FP is the number of
false positive decisions.

This means that if a defibrillator has a sensitivity of 90 % and a specificity of
99 %, it is able 90 % of the time to detect a rhythm that should be defibrillated,
and 99 % of the time to recommend not shocking when defibrillation is not
indicated.

Furthermore, we calculated the Positive Predictivity and the Accuracy of the
investigated algorithms.

Positive predictivity is defined by

detected cases of “VF”
all cases classified by the algorithm as “VF”

=
TP

TP + FP
. (1.3)

Positive predictivity is the probability, that classified VF is really VF:

Accuracy is defined by

all true decisions of “VF” and “no VF”
all decisions

=
TP + TN

TP + FP + TN + FN
. (1.4)

Accuracy is the probability to obtain a correct decision.

Also the calculation time, compared to the time of the real data, was calculated
for the different algorithms. The values in per cent of the real data time can be
seen in the tables. They were obtained by analyzing the CU data bank only.

The quality parameters are obtained by comparing the decisions suggested by
the algorithm with the annotated decisions suggested by cardiologists. The
cardiologists’ decisions are considered as true. We distinguish only between
ventricular fibrillation and no ventricular fibrillation, since the annotations in
the used data banks do not include a differentiation between ventricular fibril-
lation and ventricular tachycardia. The closer the quality parameters are to 1,
the better the algorithm works.

To represent the quality of an algorithm by its sensitivity and specificity bears
some problems. A special algorithm can have a high sensitivity, but a not so
high specificity, whereas another algorithm can have a high specificity, but a

8
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Figure 1.1: ROC curve for the algorithm CPLX described in Section 2.5, for
a window length of 8 s. The parameter, which is varied to obtain the curve, is
C. The calculated value for the area under the curve, IROC, is 0.867.

not so high sensitivity. Which one is better? To come to a common and single
quality parameter, the receiver operator characteristic (ROC) can be investi-
gated. The sensitivity is plotted in dependence of (1-specificity), where different
points in the plot are obtained by varying the critical threshold parameter in
the decision stage of the algorithm. By calculating the area under the ROC
curve (we call the obtained value “integrated receiver operator characteristic”,
and denote it by IROC), it is possible to compare different algorithms by one
single quality value. Figure 1.1 shows an example for a ROC curve.

To gain insight into the quality of algorithms for ECG analysis, it is essential to
test the algorithms under equal conditions with a large amount of data, which
are already commented by qualified cardiologists. We used the complete BIH-
MIT and CU data banks, and the files 7001 - 8210 of the AHA data bank ([16],
[17], [2]). No preselection of certain ECG episodes was made since this equals
the situation of a bystander more accurately.

The parameters generally used to describe the reliability of fibrillation detection
algorithms are their sensitivity and specificity. These values should be 1 in
the ideal case and should not differ much in an AED application. Since the
annotation of ECG data may not always be completely correct, experienced
cardiologists should inspect the discrepancies between the results of the analysis
and the annotations of the data in order to ascertain whether the results of the
algorithm are perhaps also justified.
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1.4 Process used in all implemented algorithms

In this thesis, we use the same procedure when testing different algorithms.
This is important to make the different methods comparable.

(1) The process in the algorithm reads the data according to the specified
window length and signal time. In an AED application, the window length has
to be specified as well.

(2) A signal modification is carried out to simulate real applications. This
includes an optional adding of artificial CPR, noise and external mains electric-
ity fields.

(3) A preprocessing is carried out. This includes a filtering process de-
scribed in Appendix A and a CPR filter, that can optionally be applied to the
detection process.

(4) The analysis is performed. This is the main part of each algorithm and
characterizes its behavior. Each algorithm uses another method.

(5) A storage or output of the results, i.e., the results are saved into a file
and/or displayed on the screen.

This process is displayed in the following block diagram:

#
"

 
!

DATA ACQUISITION
(from file)

'
&

$
%

SIGNAL MODIFICATION
(addition of noise, CPR,...)

'
&

$
%

PARAMETERS FOR
PREPROCESSING

(CPR filter on/off, band pass filter,...)

#
"

 
!

PREPROCESSING
(filtering modified ECG signal)

#
"

 
!

ANALYSIS
(according to chosen method, e.g., SPEC, STE,...)

#
"

 
!

OUTPUT / STORAGE
(of results)

?

?

?

r

All algorithms are implemented in MATLAB.
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1.5 Characteristic types of ECGs

Principally, an AED has to make a decision whether an ECG episode is shock-
able or not. According to Section 1.1, certain ECG episodes should be consid-
ered as not shockable. A healthy heart shows a typical ECG form, called sinus
rhythm. It basically consists of P-, Q-, R-, S-, and T- waves ([7], page 18). A
small bunch of heart cells called the sinoatrial node controls the rhythm. The
typical average fundamental frequency of a healthy heart lies in the region of
60 - 80 beats per minute. The signal is called sinus rhythm (SR). It shows
regularly occurring spikes called QRS-complexes.

Below, Figure 1.2 shows a healthy heart with sinus rhythm. The ECG episode
from t = 148 s until t = 156 s in the file cu01 from the CU database [17] contains
parts with sinus rhythm:

148 150 152 154 156
−0.5

0

0.5

1

1.5

2

2.5
ECG signal cu01

time / s

vo
lta

ge
 / 

a.
u.

Figure 1.2: Sinus rhythm in file cu01 from the CU database [17].

A completely irregular electric activity of the heart is called ventricular fibrilla-
tion (VF). The heart is not able to pump blood through the arteries any more,
the body (particularly the brain) cannot be supplied with oxygen. This is a
life-threatening situation and has to be treated immediately. A heart suffering
ventricular fibrillation shows an irregular cosine like structure. The fundamen-
tal frequency is much higher than in the case of sinus rhythm. In the case of
ventricular fibrillation it has values higher than 200 beats per minute.

VF is often immediately observed whenever a person collapses suddenly. Usu-
ally, there is no pulse or heartbeat detected on initial examination.
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A heart suffering ventricular fibrillation shows a typical ECG form like in Fig-
ure 1.3. The ECG episode is taken from the CU data bank (cu21, from t = 0 s
until t = 8 s)
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Figure 1.3: Ventricular fibrillation in file cu21 from the CU database [17].

1.6 Techniques for the analysis

The fibrillation detection algorithms should recognize certain features of a sig-
nal. To this aim, the signal can be changed by any kind of transformation
into another signal, which allows to find the searched features more easily. The
transformation can use different methods known from signal processing and ap-
plied mathematics. We can divide the possible methods for fibrillation detection
analysis into two principally different kinds:

Time domain analysis: The signal is treated with the help of suitably set
thresholds [21], by means of autocorrelation functions [4], by a complexity mea-
sure [23], or by signal comparison. No transformation of the signal into the
frequency domain has to be carried out. This can save computational time.

Frequency domain analysis: The signal is transformed into the frequency
domain by means of Fourier transform. Spectral filters and thresholds are
applied to the signal, e.g., in [3], [12]. The advantage is, that in the frequency
domain high frequency noise can be removed easily from well known ECG
frequencies. Also, frequency dependent features of SR or VF can be treated
easily. The continuous Fourier transform is carried out as follows:

12



(1) periodic signals, time period T:

f̂k =
1
T

T∫
0

f(x) exp(−2πikx
T

)dx, k ∈ Z, (1.5)

f(x) =
∞∑

k=−∞
f̂k exp(+

2πikx
T

), (1.6)

T =
1
ν
, (1.7)

ν being the fundamental frequency of the period T . Here, the Fourier transform
yields a discrete spectrum.

(2) non-periodic signals:

f̂(k) =
1√
2π

∞∫
−∞

f(x) exp(−ikx)dx, (1.8)

f(x) =
1√
2π

∞∫
−∞

f̂(k) exp(+ikx)dk. (1.9)

In this case the Fourier transform yields a continuous spectrum. In signal
processing applications, like ECG analysis, the discrete Fourier transform of a
signal x of length N is carried out:

f̂k =
1
N

N∑
j=1

xj exp(−2πi(j − 1)(k − 1)
N

), 1 ≤ k ≤ N, (1.10)

xj =
N∑
k=1

f̂k exp(+
2πi(j − 1)(k − 1)

N
), (1.11)

where f̂1 gives the mean value of the signal x and corresponds to the frequency 0.

Combined methods: An example for a combined method are wavelet based
algorithms, since they can be considered as to work both in the time and fre-
quency domain. Combinations of more methods are possible. The computation
effort is usually higher than in the techniques mentioned above.
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Chapter 2

Existing Methods for VF
Detection

The fibrillation detection algorithms considered here are partly taken from the
scientific literature, some of them are not published so far. The algorithms are
fed with the ECG signal and deliver a decision, whether the rhythm should be
defibrillated or not.

2.1 TCI algorithm

The threshold crossing intervals algorithm (TCI) [21] operates in the time
domain. Decisions are based on the number and position of signal crossings
through a certain threshold.

A binary signal is generated from the preprocessed ECG data according to the
position of the signal above or below a given threshold. The threshold value
is set to 20% of the maximum value within each one second segment S and
recalculated every second. Subsequent data analysis takes place over successive
one second stages. The ECG signal may cross the detection threshold one or
more times, and the number of pulses is counted. For each stage, the threshold
crossing interval TCI, this is the average interval between threshold crossings,
is calculated as follows

TCI =
1000

(N − 1) + t2
t1+t2

+ t3
t3+t4

[ms]. (2.1)

Figure 2.1 illustrates the situation.

Here, N is the number of pulses in S. t1 is the time interval from the beginning
of S back to the falling edge of the preceding pulse. t2 is the time interval from
the beginning of S to the start of the next pulse. t3 is the interval between the
end of the last pulse and the end of S and t4 is the time from the end of S to
the start of the next pulse.
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2.1 TCI algorithm

The threshold crossing intervals algorithm (TCI) [17] operates in the time domain. Decisions
are based on the number and position of signal crossings through a certain threshold.

First, the digitized ECG signal is filtered by the procedure mentioned above. Then a binary
signal is generated from the preprocessed ECG data according to the position of the signal
above or below a given threshold. The threshold value is set to 20% of the maximum value
within each one second segment S and recalculated every second. Subsequent data analysis
takes place over successive one second stages. The ECG signal may cross the detection
threshold one or more times, and the number of pulses is counted. For each stage, the
threshold crossing interval TCI, this is the average interval between threshold crossings, is
calculated as follows

TCI =
1000

(N − 1) + t2
t1+t2

+ t3
t3+t4

[ms]. (1)

The following picture illustrates the situation

! "

! " ! ""! "!

#
#

##$

%
%

%%&

N=2

t1 t2 t3 t4

S (1 second interval)

Here, N is the number of pulses in S. t1 is the time interval from the beginning of S back to
the falling edge of the preceding pulse. t2 is the time interval from the beginning of S to the
start of the next pulse. t3 is the interval between the end of the last pulse and the end of S
and t4 is the time from the end of S to the start of the next pulse.

If TCI ≥ 400ms, sinus rhythm (SR) is diagnozed. Otherwise sequential hypothesis testing
[17] is used to separate ventricular tachycardia (VT) from ventricular fibrillation (VF).

As stated above, the original algorithm works with single one second time segments, (see [17],
page 841). In addition, in this study we also select 6 consecutive one second episodes. In this
case final SR or VF decision is taken if diagnozed in four or more segments.

The varying parameter to obtain the IROC is TCI.

3

Figure 2.1: Signal analysis in TCI algorithm.

If TCI ≥ TCI0 = 400ms, sinus rhythm (SR) is diagnosed. Otherwise sequential
hypothesis testing [21] is used to separate ventricular tachycardia (VT) from
ventricular fibrillation (VF).

As stated above, the original algorithm works with single one second time seg-
ments, (see [21], page 841). In this study additionally 2 to 8 consecutive one
second episodes were selected. The final SR or VF decision is taken if diagnosed
in more than half of the segments.

The critical threshold parameter to obtain the ROC is TCI0.

2.2 ACF algorithm

The autocorrelation algorithms (ACF95
1 and ACF99

2) [4] analyze the period-
icities within the ECG. Autocorrelation is a signal processing technique which
can be used to distinguish between periodic and non-periodic signals. Given a
discrete signal x(m) the short-term ACF of x(m) with a rectangular window is
calculated by

R(k) =
N−1−k∑
m=0

x(m)x(m+ k), k = 0, 1, 2, . . . , N − 1. (2.2)

Here, this technique is used to separate VT and SR from VF. It is assumed
that VF signals are more or less aperiodic and SR signals are approximately
periodic.

There exist an interesting context between the autocorrelation function and
the Fourier transform. The autocorrelation function C(t) of a function E(t) is
defined by

1Probability of 95% in the Fisher distribution → α = 0.05
in F(α, k1, k2) with k1 = 1, k2 = 5

2 Probability of 99% in the Fisher distribution → α = 0.01
in F (α, k1, k2) with k1 = 1, k2 = 5
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C(t) =

∞∫
−∞

Ē(τ)E(t+ τ)dτ, (2.3)

with Ē(t) being the complex conjugated of E(t). The Fourier transform of E(t)
is defined by

E(τ) =

∞∫
−∞

Eν exp(−2πiντ)dν. (2.4)

Then, the autocorrelation is simply given by the Fourier transform of the ab-
solute square of E(ν),

C(t) = Fν [|Eν |2](t). (2.5)

This theorem is called ”Wiener Khinchin Theorem”.

The detection algorithm performs a linear regression analysis of ACF peaks. An
order number i is given to each peak according to its amplitude. So, the highest
peak is called P0, etc., ranged by decreasing amplitudes. In a SR signal, which
is considered to be periodic or nearly periodic, a linear relationship should exist
between the peaks lag and their index number. No such relationship should
exist in VF signals. The linear regression equation of the peak order and its
corresponding lag of m peaks in the ACF is described as

yi = a+ bxi (2.6)

where xi is the peak number (from 0 to (m− 1)), and yi is the lag of Pi.

a = ȳ − bx̄, b =
m∑
i=1

(xi − x̄)yi

(
m∑
i=1

(xi − x̄)2
)−1

, (2.7)

x̄ =
1
m

m∑
i=1

xi, ȳ =
1
m

m∑
i=1

yi. (2.8)

In this study, m = 7. The variance ratio V R is defined by

V R =
b
m∑
i=1

(xi − x̄)yi

R/(m− 2)
, (2.9)

where

R =
m∑
i=1

(yi − ȳ − b(xi − x̄))2 . (2.10)

If V R ≥ V R0 is greater than the Fisher statistics for degrees of freedom k1 = 1
and k2 = m− 2 with 95%(99%) probability, the rhythm is classified to be SR;
otherwise it is VF. V R0 = 6.61(16.3) for 95%(99%) probability.

The critical threshold parameter to obtain the ROC is V R0.
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2.3 VF filter algorithm

The VF filter algorithm (VF) [12] applies a narrow band elimination filter in
the region of the mean frequency of the considered ECG signal.

After preprocessing, a narrow band-stop filter is applied to the signal, with
central frequency being equivalent to the mean signal frequency fm, fm = 1/Tm.
Its calculated output is the VF filter leakage. The VF signal is considered to
be of quasi-sinusoidal waveform.

The number N of data points in an average half period Tm/2 is given by

N = bπ

(
m∑
i=1

|Vi|

)(
m∑
i=1

|Vi − Vi−1|

)−1

+
1
2
c, (2.11)

where Vi are the signal samples, m is the number of data points in one mean
period, and b. . .c denotes the floor function. The narrow band-stop filter is
simulated by combining the ECG data with a copy of the data shifted by a half
period. The VF-filter leakage is computed as

leakage =

(
m∑
i=1

|Vi + Vi−N |

)(
m∑
i=1

(|Vi|+ |Vi−N |)

)−1

. (2.12)

In the original paper [12] this algorithm is invoked only if no QRS complexes
or beats are detected. Since we employ no prior QRS detection, we use the
thresholds suggested by [6].

If the signal is higher than a third of the amplitude of the last detected QRS (in
a previous segment) and the leakage is smaller than l0 = 0.406, VF is identified.
Otherwise the leakage must be smaller than l0 = 0.625 in order to be classified
as VF.

The critical threshold parameter to obtain the ROC is the leakage l0.

2.4 Spectral algorithm

The spectral algorithm (SPEC) [3] works in the frequency domain and analyses
the energy content in different frequency bands by means of Fourier analysis.

The ECG of most normal heart rhythms is a broadband signal with major
harmonics up to about 25 Hz. During VF, the ECG becomes concentrated in
a narrow band of frequencies between 4 and 7 Hz ([5], [18]).

After preprocessing, each data segment is multiplied by a Hamming window
and then the ECG signal is transformed into the frequency domain by fast
Fourier transform (FFT). The amplitude is approximated in accordance with
[3] by the sum of the absolute value of the real and imaginary parts of the
complex coefficients. Let Ω be the frequency of the component with the largest
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amplitude (called the peak frequency) in the range 0.5−9 Hz. Then frequences
with amplitudes whose value is less than 5 % of the amplitude of Ω are set to
zero. Four spectrum parameters are calculated, the normalized first spectral
moment M

M =
1
Ω

jmax∑
j=1

ajωj

jmax∑
j=1

aj

, (2.13)

jmax being the index of the highest investigated frequency, and A1, A2, A3.
Here ωj denotes the j-th frequency in the FFT between 0 Hz and the minimum
of (20 Ω , 100 Hz) and aj is the corresponding amplitude. A1 is the sum of
amplitudes between 0.5 Hz and Ω/2, divided by the sum of amplitudes between
0.5 Hz and the minimum of (20 Ω , 100 Hz). A2 is the sum of amplitudes between
0.7 Ω and 1.4 Ω divided by the sum of amplitudes between 0.5 Hz and the
minimum of (20 Ω , 100 Hz). A3 is the sum of amplitudes in 0.6 Hz bands around
the second to eighth harmonics (2 Ω − 8 Ω), divided by the sum of amplitudes
in the range of 0.5 Hz to the minimum of (20 Ω , 100 Hz).

VF is detected if M ≤ M0 = 1.55, A1 < A1,0 = 0.19, A2 ≥ A2,0 = 0.45, and
A3 ≤ A3,0 = 0.09.

The critical threshold parameter to obtain the ROC is A2,0, where the other
threshold parameters (A1,0, A3,0, M0) being kept constant.

2.5 Complexity measure algorithm

The complexity measure algorithm (CPLX) [23] transforms the ECG signal into
a binary sequence and searches for repeating patterns.

Lempel and Ziv [13] have introduced a complexity measure c(n), which quan-
titatively characterizes the complexity of a dynamical system.

After preprocessing, a 0− 1 string is generated by comparing the ECG data xi
(i = 1...n, n being the number of data points) to a suitably selected threshold.
The mean value xm of the signal in the selected window is calculated. Then xm
is subtracted from each signal sample xi. The positive peak value Vp, and the
negative peak value Vn of the data are sought out.

By counting, the quantities Pc and Nc are obtained. Pc represents the number
of data xi with range 0 < xi < 0.1Vp and Nc the number of data xi with range
0.1Vn < xi < 0. If (Pc +Nc) < 0.4n, then the threshold is selected as Td = 0.
Else, if Pc < Nc, then Td = 0.2Vp, otherwise Td = 0.2Vn. Finally, xi is compared
with the threshold Td to turn the ECG data into a 0 − 1 string s1s2s3 . . . sn.
If xi < Td, then si = 0, otherwise si = 1. Now, from this string a complexity
measure c(n) is calculated by the following method, according to [13].

If S and Q represent two strings then SQ is their concatenation. SQπ is the
string SQ when the last element is deleted. Let v(SQπ) denote the vocabulary
of all different substrings of SQπ. At the beginning, c(n) = 1, S = s1, Q = s2,

18



and therefore SQπ = s1. For generalization, now suppose S = s1s2 . . . sr and
Q = sr+1. If Q ∈ v(SQπ), then sr+1 is a substring of s1s2 . . . sr, therefore
S does not change. Q has to be renewed to be sr+1sr+2. Then it has to
be judged if Q belongs to v(SQπ) or not. This procedure has to be carried
out until Q 6∈ v(SQπ), now Q = sr+1sr+2 . . . sr+i, which is not a substring of
s1s2 . . . srsr+1 . . . sr+i−1, thus c(n) is increased by one. Thereafter S is combined
with Q, and S is renewed to be S = s1s2 . . . srsr+1 . . . sr+i, and at the same time
Q has to be renewed to be Q = sr+i+1. The above procedures are repeated until
Q contains the last character. At this time the number of different substrings
of s1, s2, . . . , sn is c(n), i.e. the measure of complexity, which reflects the rate
of new pattern arising with the increase of the pattern length n.

The normalized C(n) is computed:

C(n) =
c(n)
b(n)

, (2.14)

where b(n) gives the asymptotic behavior of c(n) for a random string:

b(n) =
n

log2 n
. (2.15)

Evidently, 0 ≤ C(n) ≤ 1. In order to obtain results that are independent of n,
n must be larger than 1000.

Since n is given by window length WL times sampling rate SR, we choose
WL = 8s.

If C < C0 = 0.173, the ECG is classified as SR, if C > C1 = 0.426, the ECG is
classified as VF. Otherwise the ECG is classified as VT.

Since in our investigation VT is treated like VF, the critical threshold parameter
to obtain the ROC is C0.

2.6 Autoregressive modeling algorithm

The autoregressive modeling algorithm (AAR50, AAR100, AAR250) [8] uses
Burg’s algorithm of order 4 to compute AR coefficients in a generalized linear
model (GLM) based algorithm. The algorithm implemented here is a simplifi-
cation of [8].

Here, only a distinction of SR and VF is performed, whereas the original work
executes a separation into more different groups of arrhythmias. After prepro-
cessing, the ECG signal is sampled down to a frequency of 250Hz by linear
interpolation. AR coefficients are used to classify cardiac arrhythmias. A GLM
based classification model is used to distinguish VF from SR. A GLM is given
by

Ŷ = Aβ + ε, (2.16)
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where Ŷ = (y1, y2, ..., yN )T is an N -dimensional vector of observed responses,
β = (β0, β1, ..., βP )T is a P+1 dimensional vector of unknown parameters, A is a
N×(P+1) matrix of known predictors (AR coefficients) and ε = (ε1, ε2, ..., εN )T

is an N dimensional error vector. As mentioned above, P = 4 and the number
N of ECG segments in the training set is 120 (60 SR episodes and 60 VF
episodes). The least squares estimator is given by

β = (ATA)−1AT Ŷ (2.17)

A generalized linear model based classification is performed to differentiate be-
tween SR and VF. First, a training phase is performed, i.e., the estimator β
is computed based on known classes of ECG segments that form the training
set. Several episodes of SR and VF from the CU database were used as a
training set (cu01, cu06, cu12, cu21, cu23, cu29). Each observed segment i of
this training set was either SR or VF. If the segment was SR, Ŷi was set to 1,
otherwise Ŷi was set to -1. The autoregressive coefficients matrix or observa-
tion matrix A was calculated from the ECG episodes from the training set by
Burg’s algorithm. The observation matrix A = (I, A2, A3, A4, ..., AP+1) con-
sists of the AR coefficients of all training ECG segments, where I is an identity
vector and the column vectors A2, A3, A4, ..., AP+1 consist of AR coefficients
a(2), a(3), a(4), ..., a(P + 1), that are obtained from the ECG segments of the
training set. This calculation was carried out only once in order to obtain β.

In the analyzing process, the algorithm works as follows: The AR coefficients
of the ECG segment to be analyzed and the previously estimated β are used
to compute the correct response for the classification. The AR coefficients
C = (a(2), a(3), a(4), ..., a(P + 1)) of a particular ECG segment are mapped to
a response r by r = CβT . A threshold value of zero is used to classify the ECG
segment to be SR of VF. If r > r0 = 1, the ECG segment is classified as SR,
otherwise the analyzed ECG segment is classified as VF.

In [8], the sample frequency is 250Hz. Additionally, we use sample frequencies
of 50Hz and 100Hz (see AAR50, AAR100 and AAR250 in the tables in Chapter
6), since this approach improves the quality of the detection considerably.

The critical threshold parameter to obtain the ROC is r0.

2.7 Standard exponential algorithm

The standard exponential (STE) algorithm counts the number of crossing points
of the ECG signal with an exponential curve decreasing on both sides. The
decision for the defibrillation is made by counting the number of crossings.

The ECG signal is investigated in the time domain. First, the absolute maxi-
mum value of the investigated sequence of the signal is searched. An exponential
like function Es(t) is put through this point. This function is decreasing in both
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directions. Hence, it has the representation:

Es(t) = M exp
(
−|t− tm|

τ

)
. (2.18)

Here, M is the value of the signal maximum, tm is the corresponding time, τ
is a time constant. In our investigation, τ is set to 3 seconds. The number of
intersections n of this curve with the ECG signal is counted and a number N
is calculated by

N =
n

T
, (2.19)

where T is the time length of the investigated signal part. If N > N0 = 250
crossings per minute (cpm), VF is identified. If N < N1 = 180 cpm, SR is
identified.

Otherwise the signal is classified as VT. Figure 2.2 illustrates the situation.

Since in our investigation VT is treated like VF, the critical threshold parameter
to obtain the ROC is N1.
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Figure 2.2: ECG signal cu01 from the CU database considered with the standard
exponential algorithm.

2.8 Modified exponential algorithm

A modified version of STE, called MEA, lifts the decreasing exponential curve
at the crossing points onto the following relative maximum. This modification
gives rise to better detection results.
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This algorithm works in the time domain. First, the first relative maximum
value of the investigated sequence of the signal is searched and an exponential
like function En,1(t) is put through this point. Here, it has the representation:

En,j(t) =

{
Mj exp

(
− t−tm,j

τ

)
tm,j ≤ t ≤ tc,j

given ECG signal tc,j ≤ t ≤ tm,j+1

(2.20)

with Mj being the value of the j-th relative maximum of the signal, tm,j the
corresponding time and τ the time constant. Here, τ is set to 0.2 seconds. tc,j
is the time value, where the exponential function crosses the ECG signal.

As one can see, the exponent does not contain the absolute value of t− tm any
more, but rather its unchanged value. Therefore, this function is decreasing if
t > tm. Moreover, the difference to (STE) is, that here the function does not
have the above representation over the whole investigated signal part, but only
in the region from the first relative maximum to the first intersection with the
ECG signal. Then, the function En,j(t) coincides with the ECG signal until it
reaches a new relative maximum. In some way one can say that the function
MEA(t) is lifted here from a lower value to a peak. From that peak on it
has again the above representation with M being the value of the next relative
maximum. This is done until the curve reaches the end of the investigated ECG
sequence.

The number of the liftings n of this curve with the ECG signal is counted and
a number N is calculated by

N =
n

T
, (2.21)

where T is the time length of the investigated signal part. If N > N0 = 230
crossings per minute (cpm), VF is identified. If N < N1 = 180 cpm, SR is
identified. Otherwise the signal is classified as VT. Figure 2.3 illustrates the
situation.

Since in our investigation VT is treated like VF, the critical threshold parameter
to obtain the ROC is N1.
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Figure 2.3: ECG signal cu01 from the CU database considered with the modified
exponential algorithm.
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Chapter 3

Illustration of detection
techniques of some existing
algorithms

An example for the technique used in the SPEC algorithm is illustrated in the
following figure. Here, the ECG shows sinus rhythm.
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Figure 3.1: Sinus rhythm with according spectrum, parameters for the SPEC
algorithm. Typical band structure in the spectrum, i.e. many harmonics and a
low fundamental frequency. (red vertical line = fundamental frequency)
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The following figure again shows the technique of the SPEC algorithm. Here,
the ECG shows ventricular fibrillation.
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Figure 3.2: Ventricular fibrillation with according spectrum, SPEC algorithm.
No distinct band structure visible, few harmonics, a relatively high fundamental
frequency. (red line = fundamental frequency)

Description of Figure 3.1 and Figure 3.2:
top plot: ECG signal
bottom plot: continuous line: spectrum of ECG signal (dark blue)

after filtering, from 0 to 40 Hz.
vertical lines: characteristic points and limits in the

ECG spectrum, calculated with SPEC algorithm:
red line: frequency with maximum spectrum value between 0.5 Hz and 9 Hz,

i.e. peak frequency, fm.
magenta lines: limits for calculation of AA, 0.5 Hz - min(40, 20fm) Hz.
cyan lines: 0.6 Hz bands around multiples of fm ( = 2nd to 8th harmonics),

at most 7 bands.
green lines: limits for calculation of A1.
yellow lines: limits for calculation of A2.

AUS = area under spectrum
AA = AUS between magenta lines
A100 = AUS between 0 and 100 Hz
A1 = (AUS between green lines)/ AA
A2 = (AUS between yellow lines)/ AA
A3 = (AUS in bands limited by cyan lines)/ AA
FSMN=(1/fm) * (area under (spectrum * frequency))/A100

( = normalized first spectral moment).
Decision: VF is detected if FSMN < 1.55, A1 < 0.19, A2 > 0.45, A3 < 0.09.
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The next figure illustrates the method, that is used by the ACF algorithm.
Ventricular fibrillation is investigated, but not recognized.
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Figure 3.3: Ventricular fibrillation with parameters from the ACF algorithm.
Searches for similar signal episodes with autocorrelation. Assumes high correla-
tion in sinus rhythm due to regular signal. Problem: also ventricular fibrillation
can be regular → no good results.

Description of Figure 3.3:
top plot: ECG signal (here: VF)
middle plot: autocorrelation function with the seven highest peaks
bottom plot: x-axis: index number of peaks

(highest peak = 0, lowest peak = 6)
y-axis: time lag (= x distance from t = 0 in middle plot)

Decision: VF is detected if V R ≥ F , where F ≈ 10 . . . 100,
according to Fisher distribution.
VR = variance ratio (statistical measure,
obtained by linear regression).
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Here, the method used by the TCI algorithm is illustrated. Sinus rhythm is
investigated.
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Figure 3.4: Sinus rhythm with parameters analyzed with the TCI algorithm. A
threshold T is set to 20% of the maximum signal value within the investigated
episode.

Description of Figure 3.4:
top plot: black curve: ECG signal (here: SR)

red curve: calculated threshold T ,
T = 0.2·max(1 second ECG signal episode).
bottom plot: TCI, Threshold crossing interval.
Decision: VF is detected if TCI < 400ms.
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Chapter 4

Existing Methods for QRS
Detection

The algorithms described in this chapter had been developed for QRS detec-
tion and not for VF detection. Still we want to use them as VF detectors by
classifying a rhythm containing no QRS complexes as VF. The results show,
that this kinds of algorithms are not able to work as VF detectors.

4.1 Li algorithm

This algorithm (LI) is described in [14]. It works on the basis of a wavelet
transformation.

The wavelet transforms of the ECG signal are calculated using the following
equations:

S2jf(n) =
∑
k∈Z

hkS2j−1f(n− 2j−1k) (4.1)

W2jf(n) =
∑
k∈Z

gkS2j−1f(n− 2j−1k) (4.2)

Here, S2j is a smoothing operator and S20f(n) = dn, dn being the ECG signal.
hk and gk are coefficients of a lowpass filter H(ω) and a highpass filter G(ω).
Scales 21 to 24 are selected to carry out the search for QRS complexes. QRS
complexes are found by comparing energies from the ECG signal in the scale
23 with the energies in the scale 24. Redundant modulus maximum lines are
eliminated and the R peaks detected. Different methods from [9] are used to
improve the detection quality:

Method 1: Blanking, where events immediately following a QRS detection are
ignored for a period of 200ms.

Method 2: Searching back, where previously rejected events are reevaluated
when a significant time has passed without finding a QRS complex. If no QRS
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complex was detected within 150% of the latest average RR interval, then the
modulus maxima are detected again at scale 23 with a new threshold.

Here, two different approaches of this algorithm are analyzed: First, the algo-
rithm is implemented exactly like described in [14]. The corresponding results
in the tables of Chapter 6 are named “LI”. One must keep in mind that this
algorithm was originally written as a QRS detection algorithm and not as a
VF detection algorithm. Here, it is analyzed, how it works as a VF detection
algorithm, so the results are not expected to be very good.

Second, some parameters are changed, since they improve the results, when the
algorithm is used as a VF detection algorithm:

The pre factor for ε in the investigation of the maxima and minima of the dyadic
Wavelet transform is changed from 0.3 to 0.1 (See section “Detection methods”
in [14]).

The calculation of α1 and α2 (See section “Detection methods” in [14]) is
changed into the following assignment: if W3 > W4 and W3 > 1.2W5, Wi

being the values of the expected QRS complexes in the Wavelet transform,
then α1 and α2 are set from 0 to − 1. The corresponding results in the tables
of Chapter 6 are named “LIm”.

If the number of found QRS complexes is 0 or higher than 5 times the window
length in seconds, the ECG segment is classified as VF.

The critical threshold parameter to obtain the ROC is the number of found
QRS complexes .

4.2 Tompkins algorithm

This algorithm is based on a QRS complex search (TOMP) [20]. It uses slope,
amplitude and width information to carry out this task.

After preprocessing, the ECG signal is band filtered by a low pass filter and
a high pass filter to reduce interference and high frequency noise. Then, the
signal is differentiated to provide the QRS complex slope information. The
difference equation for the slope y(j) of the ECG data x(j) reads

y(nT ) =
1

8T

(
−x(nT −2T )−2x(nT −T )+2x(nT +T )+x(nT +2T )

)
, (4.3)

where T is the sampling period of the ECG signal. Afterwards the signal is
squared to make all data points positive. A moving window integration with a
window width of 150ms (e.g., 54 points at a sampling rate of 360Hz) is applied.
Thresholds are set up to detect QRS complexes.

This algorithm uses a dual threshold technique and a searchback for missed
beats. If the number of found QRS complexes is smaller than 0.25 times the
window length or higher than 4 times the window length, the ECG segment is
classified as VF.

The critical threshold parameter to obtain the ROC is the number of found
QRS complexes.
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Chapter 5

New Methods

Dealing with existing methods of VF detection, ideas for new approaches had
occurred. The following techniques explain this ideas.

5.1 Modified Spectral algorithm

The modified spectral algorithm (SPECm) works like SPEC [3] in the frequency
domain and analyses the energy content in different frequency bands by means
of Fourier analysis. It is a slight modification of SPEC.

As in SPEC, after preprocessing, each data segment is multiplied by a Hamming
window and then the ECG signal is transformed into the frequency domain by
fast Fourier transform (FFT). Here, the amplitude is not approximated by
the sum of the absolute value of the real and imaginary parts of the complex
coefficients (like in SPEC), but it is first calculated exactly, and then squared.
So ”amplitude” means here the sum of the squared imaginary part and the
squared real part of the FFT. Since the ECG signal is measured in Volts, it
means that the amplitude calculated in the above described way is the energy
density of the signal.

Here, Ω is the frequency of the component with the largest amplitude (called
the peak frequency) in the range 0.5−7 Hz. No frequency parts are set to zero.

The further procedure is equal to the technique in the SPEC algorithm. Four
spectrum parameters are calculated, the normalized first spectral moment M

M =
1
Ω

jmax∑
j=1

ajωj

jmax∑
j=1

aj

, (5.1)

jmax being the index of the highest investigated frequency, and A1, A2, A3.
Here ωj denotes the j-th frequency in the FFT between 0 Hz and the minimum
of (20 Ω , 100 Hz) and aj is the corresponding amplitude. A1 is the sum of
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amplitudes between 0.5 Hz and Ω/2, divided by the sum of amplitudes between
0.5 Hz and the minimum of (20 Ω , 100 Hz). A2 is the sum of amplitudes between
0.7 Ω and 1.4 Ω divided by the sum of amplitudes between 0.5 Hz and the
minimum of (20 Ω , 100 Hz). A3 is the sum of amplitudes in 0.6 Hz bands around
the second to eighth harmonics (2 Ω − 8 Ω), divided by the sum of amplitudes
in the range of 0.5 Hz to the minimum of (20 Ω , 100 Hz).

VF is detected if M ≤ M0 = 1.55, A1 < A1,0 = 0.19, A2 ≥ A2,0 = 0.45, and
A3 ≤ A3,0 = 0.09.

The critical threshold parameter to obtain the ROC is A2,0, where the other
threshold parameters (A1,0, A3,0, M0) being kept constant.

5.2 Signal comparison algorithm

This algorithm (SCA) compares the ECG with four predefined reference sig-
nals (three sinus rhythms and one ventricular fibrillation signal) and makes its
decision by calculation of the residuals in the L1 norm.

The algorithm works in the time domain. After preprocessing, all relative
maxima of a modified ECG signal are searched. The relative positions in time
tj and amplitude aj of these points are considered.

We call this set M0, with M0 = {(tj , aj)|aj is a local maximum}. With this
information a probability test for being the peak of a possible QRS complex is
executed. For a detailed description of this test see steps 1 and 2 below. In
a normal ECG, most of the relative maxima M0 of the ECG signal, which are
not the peaks of an QRS complex, are extinguished by this procedure. On the
other side, in an ECG signal with fibrillation only such peaks are preserved,
which are peaks of a fibrillation period.

In other words: Most of the relative maxima, which exist due to noise in the
ECG signal are deleted. Furthermore, nearly all relative maxima, which are
peaks of insignificant elevations (in this algorithm also P waves and T waves)
are deleted as well. This selection procedure is carried out by setting adaptive
thresholds. The value of the thresholds is calculated with the help of different
parameters, that were selected by experiments with ECG signals. The result is
a set of points X, which is a subset of M0. In fact, the temporal appearance
of the points in X is related to the frequency of the heart beat. The average
frequency found by this points is related to a certain probability factor. This
factor, together with other results, is finally used to make a decision whether
the signal is VF or not.

Now, the central idea of the algorithm is applied. The points in X are used
to generate four artificial signals. The first signal looks like a normal sinus
rhythm, that has its QRS peaks exactly at the points of X. The reference
signal is scaled linearly to fit the different maxima. It has all features that a
normal ECG signal should have (narrow QRS complex, P wave, T wave). The
second artificial signal is the average of about 700 normal sinus rhythm signals
found in 16 files of the MIT data bank and 16 files of the CU data bank. The
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third artificial signal has QRS complexes and an elevated T wave. The fourth
signal, which we use as a reference for a fibrillation signal, has the shape of
a cosine like function, which has its peaks at the points of X and therefore
simulates ventricular fibrillation.

The next step is the calculation of the residuals with respect to the reference
signals. We call the ECG signal E(t), the reference signals that simulate a
healthy heart Sj(t), j = 1, 2, 3, and the fibrillation signal F (t). The following
calculations are carried out:

RF =
∫
I
|E(t)− F (t)|dt , RSj =

∫
I
|E(t)− Sj(t)|dt , j = 1, 2, 3.

FF =
∫
I
|F (t)|dt , FE =

∫
I
|E(t)|dt , FSj =

∫
I
|Sj(t)|dt , (5.2)

where I = [t0, t1] with t0 = min {tj |tj ∈ X} and t1 = max {tj |tj ∈ X}. Thus, I
is the temporal interval from the smallest tj in X to the largest tj in X.

Now, four further values are calculated:

V RF = c1
RF

min(FF, FE)
, V RSj = c2

RSj
min(FSj , FE)

, j = 1, 2, 3.(5.3)

c1 and c2 are two constants that were chosen by experiments with the data.
Finally, V RF and V RS are compared. If V RF is smaller than V RSj for all
j = 1, 2, 3, the signal is classified as VF, otherwise it is considered as SR.

Now we describe the search for relative maxima, mentioned above, in more
detail.

An offset is added to the ECG signal to make its mean value to zero. We
construct a set Z containing the values aj and temporal positions tj of this
new signal, i.e., Z = {(tj , aj)|aj is the value of the ECG signal at time tj}. All
further steps are executed both with the set Z and the set − Z, where −
Z = {(tj , bj)|bj = −aj is the value of the negative ECG signal at time tj} with
the help of the reference signals rECG`, ` being V F , SR1, SR2 or SR3, or,
equivalently, ` = 0, 1, 2, 3. Note, that the maxima of Z correspond to the
minima of −Z. So we get 2 ∗ 4 = 8 tests to find out whether a signal is VF or
SR. If any of the 8 tests yields SR, the signal is considered to be SR.

Step 1: All relative maxima aj of Z and their corresponding times tj are
searched. The resulting set is calledM0, i.e. M0 = {(tj , aj)|aj is a local maximum},
so M0 ⊂ Z. All aj in M0, that are smaller than A, A = ∆ ·max(aj), where ∆
is a threshold, are deleted. The threshold ∆ is set to 0.1 for the VF reference
signal and to 0.2 for the SR reference signals. We call the reduced set M1. An
example plot is shown in Figure 5.1.
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In the following Figure 5.1 we see an ECG episode from the CU data bank
(cu21, from t = 148 s until t = 156 s) together with its selected relative maxima
according to the status after processing step 1.
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Figure 5.1: ECG signal cu21 from the CU database with relative maxima after
step 1 of SCA algorithm:

Now, we introduce an index l and set it to l = 1.

Step 2: Ml is reduced further: The maximum aj in Ml is searched. Here, we
call it amax. amax has a corresponding temporal position tmax. Then, the largest
possible temporal interval Il in Z around tmax is searched, so that all values
aj in this interval are equal or smaller than amax and larger than 0.2 amax. All
pairs (aj , tj) except (amax, tmax) in Ml, that are referred to the found interval
Il, are deleted. We get a set that we call Ml+1. This procedure is repeated with
all undealt aj in Ml, until every aj has been considered and afterwards either
been deleted or kept. After each step, l is increased by 1. This means, first we
consider M1, then M2 = M1\I1, then M3 = M1\{I1 ∪ I2} and so on, until we
reach a highest l, called lmax. In the end, we get a set that we call M , with
M = M1\{∪lmax−1

j=1 Ij}.
In the end, the aj in M are the relative maxima in Z, that are higher than A
and are the only ones in certain subintervals of Z. Two different aj in M can
only be neighbors in Z, if they are separated by a valley that is deeper than
20 % of the higher peak of the two. An example plot is shown in Figure 5.2.
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In Figure 5.2 we again see the ECG episode as in Figure 5.1 together with its
newly selected relative maxima according to the status after processing step 2.
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Figure 5.2: ECG signal cu21 from the CU database with relative maxima after
step 2 of SCA algorithm:

Step 3: Now, a value Ω is calculated from M

Ω =
60NM

tmax − tmin
, (5.4)

where NM is the number of points in M and tmax − tmin is the maximum
temporal range of the elements in M .

Step 4: If two different elements (ai, ti) and (aj , tj) of M are separated by
a temporal distance |ti − tj | smaller than 24

Ω , the element with the smaller a
is deleted from M . This final set is called X. An example plot is shown in
Figure 5.3.

Step 5: Ω is recalculated by Equation (5.4) with the help of the recalculated
set X. If Ω > 280, r is set to 2, if Ω < 180, r is set to 0.9, else r is set to 1.

Step 6: The decision is calculated by Equation (5.3). V RF is calculated for
the ventricular fibrillation reference signal, V RS for the sinus rhythm reference
signal. Example plots are shown in Figures 5.4 and 5.5. c1 is set to 2/r, c2 is
set to 1.
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In Figure 5.3 we again see the ECG episode as in Figures 5.1 and 5.2 and
together with its newly selected relative maxima according to the status after
processing step 4.

0 2 4 6 8
−2

−1

0

1

2

3

4
ECG signal cu21

time / s

vo
lta

ge
 / 

a.
u.

Figure 5.3: ECG signal cu21 from the CU database with relative maxima after
step 4 of SCA algorithm:

Remark: L2 Signal comparison algorithm An algorithm similar to SCA
that uses the L2 norm instead of the L1 norm (SC2), is implemented. The
idea is that this norm which describes the situation in terms of signal energies
rather than in terms of signal voltages is more appropriate. It is supposed that
energies of ECG signals have a higher significance in the cardiac processes.

The first part of the algorithm is identical to SCA. The only difference is the
calculation of RF , RSj , FF , FE and FSj . Those values are calculated as
follows:

RF =
∫
I
|E(t)− F (t)|2dt , RSj =

∫
I
|E(t)− Sj(t)|2dt , j = 1, 2, 3,

FF =
∫
I
|F (t)|2dt , FE =

∫
I
|E(t)|2dt , FSj =

∫
I
|Sj(t)|2dt , (5.5)

where I = [t0, t1] with t0 = min {tj |tj ∈ X} and t1 = max {tj |tj ∈ X}. Thus, I
is the temporal interval from the smallest tj in X to the largest tj in X. And
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In Figure 5.4 we see the ECG episode together with the corresponding VF
reference signal.

0 2 4 6 8
−4

−3

−2

−1

0

1

2

3

4
fibrillation reference signal + ECG signal cu21

time / s

vo
lta

ge
 / 

a.
u.

Figure 5.4: ECG signal cu21 from the CU database with relative maxima and
VF reference signal after step 6 of SCA algorithm:

In Figure 5.5 we see the ECG episode together with the first corresponding SR
reference signal.
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Figure 5.5: ECG signal cu21 from the CU database with relative maxima and
SR reference signal after step 6 of SCA algorithm:
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again, VRF and VRS are calculated:

V RF = c1
RF

min(FF, FE)
V RSj = c2

RSj
min(FSj , FE)

, j = 1, 2, 3.(5.6)

c1 and c2 are the same constants as used in SCA. The decision is done like in
SCA. If VRF is smaller than V RSj for all j = 1, 2, 3, the signal is classified as
VF, otherwise it is considered as not to be VR, i.e if V RF/V RSj < tj = trs = 1
for all j = 1, 2, 3, the signal is classified as VF, otherwise it is considered as
not to be VR. Since the integrals contain differences of function values in a
quadratic dependence, here the calculation is called L2 norm.

The results show that the quality is not improved by using the L2 norm. The
reason could be, that the voltages in the heart have triggering functions rather
then an energy transport function, and therefore their electrical energy could
possibly be of only little importance.

The critical threshold parameter to obtain the ROC is trs.
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5.3 Phase space reconstruction algorithm

This algorithm (PSR) uses a tool which is used in analyzing signals in order to
identify chaotic behavior. The signal x(t) is plotted in a diagram in the following
way: On the x-axis we plot x(t), on the y-axis x(t+ ∆), ∆ being a proper time
constant. Such a plot is called a two dimensional phase space reconstruction
(PSR) diagram. A chaotic signal produces a curve in the diagram, that fills
the area in an irregular way. The curve is uniformly distributed over the entire
diagram. However, if the signal is non-chaotic, the curve in the PSR diagram
shows a regular form, only little parts of the area are filled, and the curve is
concentrated to a restricted region of the plot. In the special case of a periodic
signal, where ∆ = k×period, k being an integer, all points lie on a line of 45
degrees.

With this information we try to differentiate SR from VF. We assume VF
signals to be chaotic, whereas SR signals to be more regular. We plot the PSR
diagram and investigate, how much of the area in the PSR plot is filled by the
curve. To achieve this, we produce a 40× 40 grid and count the visited boxes.
From the result we calculate the box dimension d:

d =
visited boxes

number of all boxes
(5.7)

If d is higher than a certain threshold d0, we classify the corresponding ECG
episode as VF. In a number of experiments we found that good values are
∆ = 0.5 s, d0 = 0.15, and the number of boxes = 1600.

In our algorithm, we first downsample the ECG data to a fictive frequency of
50 Hz, since we do not expect much information in the frequency region above
this value. Also, a reduced data set speeds up the calculation. Furthermore, in
the PSR plot, we only consider the positions of the discrete ECG data points
to calculate the box dimension and do not connect the data points in any kind
(straight lines or other curves). The reason is, that connected data in the PSR
plot (as shown in Figures 5.12 and 5.13) do not improve the quality of the
algorithm, but rather decrease it.

In our first study we did not introduce a fictive sample frequency but let the orig-
inal sample frequency unchanged, and we used a threshold of 0.32. The values
achieved with this parameters are named “PSRold” in the tables of Chapter 6.

We tried to improve the quality of the PSR algorithm by investigating three
further approaches:

First, the algorithm works as described above. Then, the first 500ms of the sig-
nal are considered again. The corresponding boxes in the PSR plot and their
first neighbors are deleted from the “visiting list”. Now the dimension is cal-
culated. So, the calculated dimension is reduced compared to the dimension in
the original algorithm version. The idea for carrying out this step is the follow-
ing: Periodic signals draw special closed loops in the PSR plot. Sinus rhythm
is expected to be periodic and does not cover much of the plot area. So its
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dimension is rather low. In eliminating boxes that had been visited in the first
0.5s, which can be seen as a good part of a SR period, the dimension is reduced
a lot. However, in VF signals the reduction of the PSR plot concerning to the
first 0.5s does not have a great effect, although, of course, it is also reduced by
a certain amount. All in all we wanted to see whether this approach improves
the quality of the algorithm. The optimal value of 0.5s for the reconsidered
signal part and the optimal value of 1 for the considered neighborhood were
found by experiments. So, this algorithm carries out a zero/one weighting of
selected adaptive parts in the PSR plot. In this version, the thresholdr d0 is set
to 0.1. The results in the tables are called “PSR2”.

A further modification of “PSR2” is investigated: Additionally to the described
adaptive (depending on the first 500ms of the ECG signal) zero/one weighting
an additional weighting is carried out. We have chosen a function, that does
not change areas in the upper right corner of the PSR plot. This corner fills
the area of the PSR plot, that lies right of 0.4l and higher than 0.4h, l and h
being the length and the height of the PSR plot, respectively. Areas outside
this corner are deleted. The idea is, that SR signals generally visit areas outside
the upper right corner more often than VF signals. Here, the threshold d0 is
set to 0.03. By this approach improved results should be achieved. Still, in our
experiments the results were not improved, as seen in the tables in the lines
called “PSR2,2”.

The third approach to improve the quality is the following: Not only the visited
boxes are counted, but also the number, how often the boxes were visited, is
considered. Each box gets a number, which is the inverse of the number of
the corresponding “visits”, except if the number of visits is zero. In the latter
case the box gets the number zero. The dimension is calculated by summing
up all numbers stored in the boxes. Here, the idea of the construction was
the following: In SR, the signal is expected to be periodic and so in the PSR
plot there exists a trend that only a small number of boxes are visited, but
this boxes are visited more often. Since a low box dimension is classified as
SR, a high number of visits per box should result in an only low increase of
the box dimension. Therefore, the number of visits in each box was inverted to
calculate the box dimension. In SR signals, the average number of visits per box
is higher than in VF signals, so this approach should improve the algorithm.
The threshold d0 is set to 0.1. The results in the tables are called “PSR3”.

As one can see in the results, the approaches from “PSR2”, “PSR2,2” and
“PSR3” did not improve the quality of the “PSR” algorithm significantly.

The critical threshold parameter to obtain the ROC in all variations of the PSR
algorithm is d0.
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Figure 5.6 shows a SR signal from the CU database.
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Figure 5.6: SR episode in the ECG signal cu01 from the CU database.

Figure 5.7 shows a phase space reconstruction plot corresponding to the SR
signal from the previous figure. In order to illustrate the plot better, the dots
are connected with red lines.
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Figure 5.7: SR episode in the ECG signal cu01 from the CU database, plotted
in a phase space reconstruction diagram with a 40 × 40 grid. The data points
are connected with red lines.
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Figure 5.8 shows the visited boxes in the phase space reconstruction plot cor-
responding to the SR signal from Figure 5.6. The individual dots are not
connected.
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Figure 5.8: Data points of a SR episode in the ECG signal cu01 from the
CU database, visited boxes visualized in a phase space reconstruction diagram,
d = 74/1600 = 0.05.

Figure 5.9 shows a VF signal from the CU database.
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Figure 5.9: VF episode in the ECG signal cu01 from the CU database.
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Figure 5.10 shows a phase space reconstruction plot corresponding to the VF
signal from the previous figure. Again, the discrete data points are connected
with red lines.
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Figure 5.10: VF episode in the ECG signal cu01 from the CU database, plotted
in a phase space reconstruction diagram with a 40 × 40 grid. The data points
are connected with red lines.

Figure 5.11 shows the visited boxes in the phase space reconstruction plot cor-
responding to the VF signal from Figure 5.9. The individual dots are not
connected.
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Figure 5.11: Data points of a VF episode in the ECG signal cu01 from the CU
database, visited boxes visualized in a phase space reconstruction diagram,
d = 295/1600 = 0.18.
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Figure 5.12 shows the connected visited boxes in the phase space reconstruction
plot corresponding to the SR signal from Figure 5.6.
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Figure 5.12: Connected data points of a SR episode in the ECG signal cu01
from the CU database, visited boxes visualized in a phase space reconstruction
diagram, d = 156/1600 = 0.1.

Figure 5.13 shows the connected visited boxes in the phase space reconstruction
plot corresponding to the VF signal from Figure 5.9.
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Figure 5.13: Connected data points of a VF episode in the ECG signal cu01
from the CU database, visited boxes visualized in a phase space reconstruction
diagram, d = 812/1600 = 0.51.
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5.4 Hilbert Transform algorithm

This algorithm (HILB) again uses a tool which is used in analyzing signals in
order to identify chaotic behavior. The signal x(t) is plotted in a diagram in
the following way: On the x-axis we plot x(t), on the y-axis we plot the Hilbert
transform of the signal x(t).

From [19], chapter 11, we see that the Hilbert transform xH(t) of a signal x(t)
is defined by:

xH(t) =
1
π

P.V.
∫ ∞

−∞

x(τ)
t− τ

dτ, (5.8)

where P.V. means that the integral is taken in the sense of the Cauchy principal
value. As one can see from Equation (5.8), the Hilbert transform can be con-
sidered as the convolution of the functions x(t) and 1

πt . Due to the properties of
convolution, the Fourier transform X̂H(ω) of xH(t) is the product of the Fourier
transforms of x(t) and 1

πt . For physically relevant Fourier frequencies ω > 0,
X̂H(ω) = −iX̂(ω). This means that the Hilbert transform can be realized by an
ideal filter whose amplitude response is unity and phase response is a constant
π
2 lag at all Fourier frequencies.

This approach is very similar to the phase space reconstruction. Phase space
reconstruction plots of irregular signals are chaotic and fill the phase space in
a more or less uniform way. The same is true for the illustration of the Hilbert
transform algorithm. Regular plots like ECG signals are regular in both the
phase space reconstruction plot and the Hilbert transform plot. The difference
is, that the phase space reconstruction algorithm uses a further parameter (∆),
that influences the plot and therefore the result of the analysis. ECG signals in
PSR plots can result in circle like curves, but also in curves with a lot of straight
lines with sharp edges (see plots in Section 5.3), depending on the choice of ∆.
On the other side, plots of ECG signals calculated by the Hilbert Transform
algorithm always show circle like curves, see Figures 5.14 and 5.16.

Again, we try to differentiate SR from VF. We assume VF signals to be chaotic,
whereas SR signals to be regular. We plot the results of the Hilbert transform
algorithm in a diagram and investigate, how much of the area in the plot is filled
by the curve. To achieve this, we produce a 40× 40 grid and count the visited
boxes. From the result we again calculate the box dimension d. To calculate
the box dimension we use the same strategy as in the PSR algorithm. We use
the same thresholds d0 and also sample down the signal in the same way.

The crtitical threshold parameter to obtain the ROC is d0.
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Figure 5.14 shows a Hilbert transform plot corresponding to the SR signal from
Figure 5.6. In order to illustrate the plot better, the dots are connected with
red lines.
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Figure 5.14: SR episode in the ECG signal cu01 from the CU database,
plotted in a Hilbert transform diagram with a 40× 40 grid. The data points are
connected with red lines.

Figure 5.15 shows the visited boxes in the Hilbert transform plot corresponding
to the SR signal from Figure 5.6. The individual dots are not connected.
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Figure 5.15: Data points of a SR episode in the ECG signal cu01 from the CU
database, visited boxes visualized in a Hilbert transform diagram, d = 88/1600 =
0.06.
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Figure 5.16 shows a Hilbert transform plot corresponding to the VF signal from
Figure 5.9. Again, the discrete data points are connected with red lines.
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Figure 5.16: VF episode in the ECG signal cu01 from the CU database,
plotted in a Hilbert transform diagram with a 40× 40 grid. The data points are
connected with red lines.

Figure 5.17 shows the visited boxes in the Hilbert transform plot corresponding
to the VF signal from Figure 5.9. The individual dots are not connected.
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Figure 5.17: Data points of a VF episode in the ECG signal cu01 from the CU
database, visited boxes visualized in a Hilbert transform diagram,
d = 333/1600 = 0.21.

Similarly to the modifications in the PSR algorithm, we tried to improve also
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the quality of the HILB algorithm by introducing three further approaches:

First, the algorithm works as described above. Then, as in “PSR2”, the first
500ms of the signal are considered again. The corresponding boxes in the
Hilbert transform plot and their first neighbors are deleted from the “visiting
list”. Now the dimension is calculated. So, the calculated dimension is reduced
compared to the dimension in the original algorithm version. The idea for
carrying out this step is again the following: Periodic signals draw closed loops
in the Hilbert transform plot. Sinus rhythm is expected to be periodic and does
not cover much of the plot area. So its dimension is rather low. In eliminating
boxes that had been visited in the first 0.5s, which can be seen as a good part
of a SR period, the dimension is reduced a lot. However, in VF signals the
reduction of the Hilbert transform plot concerning to the first 0.5s does not
have a great effect, although, of course, it is also reduced by a certain amount.
Again, we wanted to see whether this approach improves the quality of the
algorithm. Also this algorithm carries out a zero/one weighting of selected
adaptive parts in the Hilbert transform plot. In this version, the threshold d0

is set to 0.1. The results in the tables are called “HILB2”.

A further modification of “HILB2” is investigated, which differs slightly from
the “PSR2,2” approach in the weighting function. Additionally to the described
adaptive (depending on the first 500ms of the ECG signal) zero/one weighting
an additional weighting is carried out. We have chosen a function, that multi-
plies areas near the center of the Hilbert transform plot with a high value as
well as areas very far away from this center. Areas in a certain distance from
the center are multiplied with a low value. So the weighting function decreases
the values of the Hilbert transform plot, that lie on a ring around the center.
The idea is, that SR signals generally visit this ring more often than VF sig-
nals. Here, the threshold d0 is set to 0.017. By this approach, improved results
should be achieved. Still, in our experiments the results were not improved, as
seen in the tables in the lines called “HILB2,2”.

The third approach to improve the quality works exactly like the “PSR3” algo-
rithm: Not only the visited boxes are counted, but also the number, how often
the boxes were visited, is considered. Each box gets a number, which is the
inverse of the number of the corresponding “visits”, except if the number of
visits is zero. In the latter case the box gets the number zero. The dimension
is calculated by summing up all numbers stored in the boxes. The idea of the
construction was the same as in “PSR3”: In SR, the signal is expected to be
periodic and so in the Hilbert transform plot there exists a trend that only a
small number of boxes are visited, but this boxes are visited more often. Since
a low box dimension is classified as SR, a high number of visits per box should
result in an only low increase of the box dimension. Therefore, the number of
visits in each box was inverted to calculate the box dimension. In SR signals,
the average number of visits per box is higher than in VF signals, so this ap-
proach should improve the algorithm. The threshold d0 is set to 0.12. The
results in the tables are called “HILB3”.

As one can see in the results, the approaches from “HILB2”, “HILB2,2” and
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“HILB3” did not improve the quality of the “HILB” algorithm significantly.

5.5 Wavelet based algorithms

In [15], (definition 1.1.1), one can see that a function ψ ∈ L2(R), for that holds

0 < cψ := 2π
∫
R

|ψ̂(ω)|2

|ω|
dω < ∞, (5.9)

is called wavelet. Here, ψ̂ denotes the Fourier transform of ψ. The continuous
wavelet transform Lψf(a, b) of a function f ∈ L2(R) is defined by

Lψf(a, b) =
1√
cψ |a|

∫
R

f(t) ψ
(
t− b

a

)
dt, (5.10)

with a ∈ R \ {0}, b ∈ R.

The wavelet transform Lψf contains information about the frequency distribu-
tion as well as information on the time distribution of a signal.

Moreover, from 1.1.9 in [15] it can be seen that the inversion of the continuous
wavelet transform can be carried out in the following way:

f(t) =
1

√
cψ

∫
R

∫
R

1√
|a|

ψ

(
t− b

a

)
(Lψf(a, b))

da db

a2
. (5.11)

According to lemma 1.1.7 from [15], the Fourier transform of Lψf is given by

(L̂ψf)(a, ω) =

√
2π |a|
cψ

ψ̂(−aω) f̂(ω) =

√
2π |a|)
cψ

ψ̂(aω) f̂(ω) (5.12)
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5.5.1 WVL1, WVL2 and WVL3

Three simple wavelet based algorithms (WVL1, WVL2 and WVL3) operate like
SPEC in the frequency domain.

The idea of this first two algorithms is the following: First, a continuous wavelet
transform (WT) of the ECG signal is carried out using a Mexican hat wavelet
as mother wavelet ψm,

ψm(t) = (1− t2) exp(−t2/2). (5.13)

Then a Fourier transform is performed. Now, the maximum absolute values
with respect to a are investigated in order to make the decisions for the defib-
rillation process.

However, one can show that this maximum values are located on a hyperbola
in the (a, ω) plane of the Fourier transform of the WT of the ECG signal, i.e.
on a curve that has the representation aω = C, C being a constant. The values
on this curve in the (a, ω) plane are the FT of the ECG signal multiplied by
a weight function y(ω). Therefore, if one searches for the maximum values of
L̂ψf in the (a, ω) plane of the WT, it is sufficient to search for the maxima in
the weighted FT of the ECG signal f̂(ω).

Proof: First we introduce some symbols:

f . . . observed function,
ψ . . .wavelet,
WT . . . continuous wavelet transform,
FT . . .Fourier transform,
L = WT (f) . . .wavelet transform of f,
a . . .wavelet dilatation parameter,
ω . . . angular frequency,
c, ci, . . . constants, i ∈ N,
p, pi . . .parameters of the wavelets,
g(p1, p2), h(p1, p2), k(p), l(p) . . . functions of parameters pi.

From [15], lemma 1.1.7, we can see

FT (L) = c1
√
|a| FT (ψ) FT (f). (5.14)

Since we know that the signal f is band limited in the frequency domain, FT (L)
has a maximum value for every a.

FT (ψ) is a function of aω and a parameter p, with p not depending on a or ω

FT (ψ) = g(aω, p). (5.15)
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Now, we substitute aω by z and obtain g(aω, p) = g(z, p). For the derivative
of g(aω, p) with respect to a we obtain

d

da
(f(aω, p)) =

d

d(aω)
(f(aω, p)) · d(aω)

da

= ω
d

dz
(f(z, p)) = ω h(z, p) = ω h(aω, p). (5.16)

We want to find the maxima in FT (L). If we first search for the maxima in
FT (L) with respect to the a-axis, we have to find the derivative of Equation
(5.14) with respect to a and have to set it to zero. From now on we consider a
to be positive.

FT (f) c1
d

da

(√
a g(aω, p)

) .= 0

→
(

1
2
√
a
g(aω, p) +

√
aω h(aω, p)

)
.= 0

→ (g(aω, p) + 2aω h(aω, p)) .= 0. (5.17)

We see that this is a function of aω = z and p. We know, that the spectrum
of the function f is bandlimited. Therefore, Equation (5.14) has a maximum
value. Hence, we can find a value for z, that solves Equation (5.17). Since
Equation (5.17) is a function of z and p, z is a function of the parameter p. For
a constant p, z is a constant, that only depends on p

z = l(p) = cp. (5.18)

l(p) is not always solvable analytically, but there always exists a solution, that
can be found numerically. With z = aω we get

a =
cp
ω
, (5.19)

and furthermore the maxima of FT (L) referred to a

FT (L)maxima referred to a =
√
a c1 FT (ψ) FT (f)

= c1

√
cp√
ω
FT (f) g(aω, p)

= c1
√
cp

1√
ω
FT (f) g(cp, p)

= c2
1√
ω
FT (f) g(cp, p)

= c2
1√
ω
FT (f) c3

= c4
1√
ω
FT (f).
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So, the maxima of FT (L) lie on a curve with aω = cp. The values of FT (L)
on this curve can be calculated by a weighting of FT (f)

FT (L)maxima referred to a = c4
1√
ω
FT (f). (5.20)

So, the weight function y is

weight = y ∼ 1√
ω
. (5.21)

We are not interested in the exact values of the maxima of FT (L), because
in the ventricular fibrillation detection we work with arbitrary units of the
amplitude and rescale the ECG signals many times. Therefore, we do not need
to calculate the value of c4 and set it to 1.

In detail, the algorithms work in the following way:

In WVL1 this function is handled similar to the spectrum in the algorithm
SPEC. First, each data segment is multiplied by a Hamming window and trans-
formed into the frequency domain by fast Fourier transform (FFT). The result
is multiplied by 1√

ω
for reasons described above. But only two parameters are

calculated and thresholds for the decision are set. First, a threshold of 15% of
the maximum value of the FFT signal is chosen. All signal parts below this
threshold are set to zero. Afterwards A1 and A2 are calculated. A1 is the max-
imum amplitude of the FFT between 0.5 Hz and 3.5 Hz. A2 is the maximum
amplitude of the FFT between 3.5 Hz and 20 Hz. If the ratio A1/A3 is smaller
than 1.5, VF is detected.

WVL2 is a slight modification of WVL1. Each data segment is multiplied by a
Hamming window and transformed into the frequency domain by fast Fourier
transform (FFT). The result is squared (so the energy distribution is observed).
Also here, the result is multiplied by 1√

ω
. Three parameters A1, A2 and A3 are

calculated. A1 is the energy content of the ECG signal between 0.5 Hz and 3.5
Hz, A2 is the energy content of the ECG signal between 3.5 Hz and 9 Hz, and
A3 is the energy content of the ECG signal between 9 Hz and 50 Hz.

If (A1 +A3)/A2 is smaller than 0.5, VF is detected.

In WVL3 the function 1√
ω
f̂(ω) is handled exactly like the spectrum in the

algorithm SPEC. The same spectrum parameters are calculated and also the
thresholds for the decision, A1,0, A2,0, A3,0,M0, have the same values like the
algorithm in SPEC.

In WVL1, the critical threshold parameter to obtain the IROC is A1,0/A3,0, in
WVL2 it is (A1,0 +A3,0)/A2,0, and in WVL3 it is M0.

5.5.2 WVL4

This method of detecting ventricular fibrillation uses a discrete wavelet trans-
form.
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The continuous wavelet transform is performed by Equation (5.10). The inverse
continuous wavelet transform is carried out by Equation (5.11). For certain
criteria it can be shown that it is not necessary to know Lψf(a, b) for every
a and b to perform a perfect reconstruction. It can be shown that the inverse
wavelet transform, Equation (5.11), can be reduced to a double summation
over certain discrete values of a and b to get the original signal without loss of
information.

In [1], section 3.2.2 it is shown that the discrete wavelet transform with dyadic
grid the wavelet ψm,n(t) can be written as

ψm,n(t) =
1√
2m

ψ(
t− n2m

2m
), (5.22)

with n,m ∈ Z and ψ( t−ba ) being the continuous wavelet. So, the wavelet is
brought from the continuous form into a discrete form. Using the dyadic grid
wavelet, the discrete wavelet transform (DWT) can be written as:

Tm,n =

∞∫
−∞

f(t) ψm,n(t) dt. (5.23)

Dyadic grid wavelets are called orthonormal, if

∞∫
−∞

ψm,n(t) ψm′,n′(t) dt =
{

1 if m = m′ and n = n′

0 otherwise

By choosing an orthonormal wavelet basis, ψm,n(t), it is possible to reconstruct
the original signal in terms of the wavelet coefficients,

f(t) =
∞∑

m=−∞

∞∑
n=−∞

Tm,n ψm,n(t). (5.24)

Now, we can summarize different terms together. We define the continuous
approximation of the signal at scale m0

fm0(t) :=
∞∑

m=m0+1

∞∑
n=−∞

Tm,nψm,n(t), (5.25)

and the signal detail at scale m

dm(t) :=
∞∑

n=−∞
Tm,nψm,n(t). (5.26)

Hence, we can write Equation (5.24) as
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f(t) = fm0(t) +
m0∑

m=−∞
dm(t). (5.27)

It is easy to show that

fm−1(t) = fm(t) + dm(t), (5.28)

which tells us that if we add the signal detail at an arbitrary scale (index m) to
the approximation at that scale we get the signal approximation at an increased
resolution (i.e. at a smaller scale, indexm−1). This is called a multiresolution
representation.

Now we want to consider the technique used in the fibrillation detection algo-
rithm WVL4. It is split into two parts:

(i) Finding VF:

The first part uses the algorithm SPEC (Section 2.4) to search the for typical VF
properties in the ECG. If the algorithm decides that the ECG part contains VF,
then the result is accepted as true and no further investigation is carried out.
This procedure can be justified by the high specificity of the SPEC algorithm.
If the algorithm yields that the ECG part is “no VF”, a further investigation
is carried out to confirm this result or to disprove it:

(ii) Discrete Wavelet Transform (DWT):

This part is only carried out, if the first part of the algorithm considers the ECG
episode yields “no VF”. In this case a discrete wavelet transform is applied, that
searches for QRS complexes. If more than two but less than 40 QRS complexes
are found within an 8 second episode, “no VF” is diagnosed. Otherwise the two
spectral parameters FSMN and A2 from the first part are investigated again.
If FSMN < 2.5 and A2 > 0.2, the considered ECG part is diagnosed as VF.
Figures 5.18 and 5.19 show two ECG parts that are treated with this algorithm.

The mentioned range for the number of found QRS complexes has a reason:
Sometimes, especially in ECGs with a high amount of noise, the DWT part
makes wrong interpretations and “finds” QRS complexes also in QRS free
episodes. Therefore, a minimal number of three QRS complexes is demanded
to confirm the existence of QRS complexes. On the other side, if the DWT
part “finds” more than 40 QRS complexes (equal to a pulse of 300 beats per
minute), the signal is likely to be VF, since such high sinus rhythms do not
appear. The limits of the range were chosen from experiments with data.

The DWT algorithm works in the following way:

The third scale of a discrete wavelet transform with 12 scales and a Daubechies8
wavelet family is used. Experiments have shown that this scale makes it easiest
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to distinguish VF from “no VF”. If the signal in the third scale has a value higher
than a certain threshold, the according ECG part is considered as a QRS com-
plex. The threshold used in this investigation is set to 0.14 max(ECG signal).
Multiple peaks belonging to the same QRS complex are removed.

In WVL4, no IROC is calculated due to the special structure of the algorithm.
Since it exists of two parts and the second part is not executed always, we do
not have a parameter that includes the calculations of both algorithm parts in
every ECG segment. Since we cannot calculate an IROC. It would be possible
to use the parameters of the SPEC algorithm as an IROC parameter, but this
would not cover the whole complexity of the WVL4 algorithm.
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Figure 5.18: DWT: no QRS-complexes (blue line is zero) detected in an 8s VF
episode (red) of cu01 from [17]
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Figure 5.19: DWT: 8 QRS-complexes (blue line has spikes) detected in an 8s
SR episode (red) of cu01 from [17]
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Chapter 6

Evaluation and Results,
Numerical Values

All algorithms are implemented in MATLAB using a graphical user interface.
For the analysis, we selected the data in steps of one second and investigated
intervals from 3 to 10 seconds window length. These sequences were tested with
all algorithms. Finally we recorded the results together with the annotation in
an output file.

The perfect algorithm would have values for the sensitivity, specificity, positive
predictivity, accuracy, and IROC of 1. In this investigation the analyzed signals
were not changed by, for example, adding noise or CPR artifacts.

The algorithms under investigation are expected to be used in AEDs. Hence,
no preselection of ECG signals was carried out since this equals the situation
of a bystander more appropriately.

The data sets were taken from the BIH-MIT data bank (48 files, 2 channels
per file, each channel 1805 seconds long), the CU data bank (35 files, 1 channel
per file, each channel 508 seconds long), and the AHA data bank (files 7001
- 8210, 40 files, 2 channels per file, each channel 1800 seconds long). From
the BIH-MIT and AHA data bank we used both channels. Thus, the total
number of tests per algorithm and window length is 2 · 48 · (1805−window
length + 1) + 35 · (508−window length + 1) + 2 · 40 · (1800−window length + 1).
Hence, for a window length of 8s the number of decisions is 333 583.

6.1 Numerical results

The quality parameters found in the experiments using window lengths of 3
to 10 seconds are presented in the following tables. The sensitivity (Sns.) and
specificity (Spc.) were calculated by Equations (1.1) and (1.2). These equations
are the appropriate ones to quantify the quality of VF detection algorithms.
Furthermore, the accuracy (Ac.) and the positive predictivity (PP.), the inte-
grated receiver operator characteristic (IROC) and the calculation time (ct.)
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were determined. In order to describe the QRS detection algorithms as well,
the quality parameters for this kind of algorithms were calculated by slightly
altered equations:

Sensitivity is then the probability to detect QRS complexes. It is given by the
quotient

detected cases of SR
all cases of SR

=
TP

TP + FN
, (6.1)

with TP being the number of true positive decisions, FN the number of false
negative decisions.

Specificity is the probability to identify “no SR” correctly.

It is given by the quotient

detected cases of “no SR”
all cases of “no SR”

=
TN

TN + FP
, (6.2)

where TN is the number of true negative decisions, and FP is the number of
false positive decisions.

The positive predictivity reads as

detected cases of “SR”
all cases classified by the algorithm as “SR”

=
TP

TP + FP
. (6.3)

Finally, the accuracy is given by

all true decisions of “SR” and “no SR”
all decisions

=
TP + TN

TP + FP + TN + FN
. (6.4)

The calculation time was computed only for the algorithms working as VF
detectors, since it is the same in the QRS detection mode. The reason is
that the time consuming operations are the calculation of parameters, and this
operations are identical in both (VF and QRS) cases. The calculation time
was quantified by investigating the CU data base on a PowerMac G5 computer
with a Dual 2 GHz processor and 1.5 GB DDR SDRAM running parallel two
processes of MATLAB. In the following tables, the results of the QRS detection
analysis are indexed with “QRS”. Beside the two algorithms LI and TOMP all
other algorithms were tested for their qualification as QRS detectors too. Where
no value could be calculated (either due to division by zero or other reasons),
a bar ( - ) was put into the table.

The results of the Tables 6.1 to 6.32 are plotted in Section 7.2. The first 16
tables show the quality parameters sensitivity, specificity and integrated receiver
operator characteristic.
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The first table shows the results for a window length of 8 seconds. This window
length can easily be used in AEDs and also gives good results. The algorithms
are usually adjusted for this window length, hence this table is the most im-
portant one.

Data Source MIT DB CU DB AHA DB overall results
Parameter Sns. Spc. Sns. Spc. Sns. Spc. Sns. Spc. IROC
AAR50 80.4 89.1 72.2 73.7 84.6 63.6 82.9 78.4 86.9
AAR100 100 2.7 69.7 64.3 83.0 72.5 81.4 32.7 44.6
AAR250 100 2.7 60.2 60.1 84.6 61.1 81.5 28.0 53.5
ACF95 33.2 45.9 38.1 58.9 51.5 52.2 49.6 49.0 49.6
ACF99 59.4 30.1 54.7 49.3 71.5 40.3 69.2 35.0 49.6
CPLX 6.3 92.4 56.4 86.6 60.2 91.9 59.2 92.0 86.7
HILB 86.0 97.9 74.7 85.4 84.4 95.1 83.1 96.2 94.5
HILB2 92.3 96.4 77.2 81.9 84.3 91.7 83.4 93.9 93.3
HILB2,2 82.2 92.6 66.8 82.9 78.4 90.8 76.9 91.5 89.3
HILB3 87.4 97.8 75.2 84.9 84.1 95.2 82.9 96.2 94.2
LI 3.1 95.1 7.5 94.8 9.3 92.0 9.0 93.9 58.1
LIm 100 64.7 91.6 25.7 92.7 46.7 92.6 55.9 74.1
MEA 62.9 80.8 60.1 87.5 49.8 88.6 51.2 84.1 80.2
PSRold 79.7 97.6 65.9 87.9 67.6 97.5 67.5 97.1 87.8
PSR 74.8 99.2 70.2 89.3 80.4 96.8 79.0 97.8 94.1
PSR2 83.9 98.9 71.1 87.4 79.7 94.2 78.6 96.5 93.3
PSR2,2 88.5 72.4 85.3 55.0 83.9 64.8 84.1 68.7 85.2
PSR3 89.9 96.2 79.9 76.0 86.7 88.7 85.8 92.4 94.2
SC2 63.6 98.2 60.4 96.2 62.7 99.8 62.4 98.7 89.4
SCA 72.4 98.0 67.7 94.9 71.7 99.7 71.2 98.5 91.5
SPEC 23.1 100 29.0 99.3 29.2 99.8 29.1 99.9 88.0
SPECm 55.6 97.6 55.0 93.3 52.3 94.4 52.7 96.2 88.8
STE 54.5 83.4 52.9 66.6 49.6 81.0 50.1 81.7 67.0
TCI 74.5 83.9 71.0 70.5 75.7 86.9 75.1 84.4 80.9
TOMP 68.5 40.6 71.3 48.4 95.9 39.7 92.5 40.6 67.2
VF 29.4 100 30.8 99.5 16.9 100 18.8 100 86.5
WVL1 37.1 82.0 48.8 83.9 32.4 79.0 34.5 80.9 50.9
WVL2 11.2 99.5 35.4 98.1 14.6 99.5 17.2 99.4 46.2
WVL3 28.7 99.9 26.2 99.4 26.8 99.5 26.7 99.7 79.5
WVL4 81.1 89.0 61.0 72.1 73.5 89.6 72.0 88.4 -

Table 6.1: Quality of fibrillation detection algorithms used as VF detectors
(sensitivity, specificity, receiver operator characteristic) for a window length of
8 seconds in per cent, rounded on 3 digits.
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Data Source MIT DB CU DB AHA DB overall results
Parameter Sns. Spc. Sns. Spc. Sns. Spc. Sns. Spc. IROC
AAR50,QRS 88.9 10.6 73.3 69.6 63.4 87.7 78.1 76.3 82.3
AAR100,QRS 2.8 100 65.2 71.8 72.7 88.4 33.4 87.5 52.5
AAR250,QRS 2.8 100 61.0 62.8 61.0 87.7 28.5 85.9 60.5
ACF95,QRS 45.5 31.6 59.3 39.9 52.7 54.4 49.0 49.9 51.0
ACF99,QRS 29.8 52.4 49.7 56.1 40.9 75.3 35.1 70.2 51.0
CPLXQRS 92.3 0.6 86.3 53.7 91.3 61.2 91.6 53.1 79.5
HILBQRS 97.9 9.4 85.1 71.8 95.1 90.6 96.2 78.7 91.7
HILB2,QRS 96.5 13.7 81.7 74.5 91.6 90.2 93.9 79.2 91.5
HILB2,2,QRS 92.6 13.6 83.1 65.6 90.7 83.2 91.4 72.8 85.8
HILB3,QRS 97.8 9.6 84.6 72.3 95.1 90.3 96.2 78.5 91.3
LIQRS 95.3 15.0 95.1 8.5 92.0 9.5 94.0 10.0 60.6
LIm,QRS 65.7 87.4 25.8 91.1 47.1 97.9 56.5 95.8 77.1
MEAQRS 80.9 25.2 87.3 57.8 88.4 51.8 84.1 49.4 77.7
PSRold,QRS 97.6 10.3 87.7 63.3 97.4 72.7 97.1 64.2 86.2
PSRQRS 99.2 7.4 89.1 67.8 96.7 86.4 97.8 74.8 91.5
PSR2,QRS 98.9 10.3 87.4 69.2 94.2 85.5 96.5 74.6 91.8
PSR2,2,QRS 73.2 70.8 54.8 83.5 65.0 88.6 69.1 85.8 85.3
PSR3,QRS 96.2 12.8 75.8 77.6 88.7 92.7 92.3 81.4 91.5
SC2QRS 98.2 5.5 96.0 58.0 99.6 66.9 98.7 58.6 86.4
SCAQRS 97.9 6.4 94.8 65.2 99.5 76.6 98.4 66.9 88.4
SPECQRS 100 2.1 99.2 27.6 99.8 31.6 99.9 27.6 85.7
SPECm,QRS 97.6 6.6 93.2 52.7 94.5 56.4 96.2 50.1 88.4
STEQRS 83.2 9.5 66.2 50.7 80.1 47.4 81.2 43.4 63.1
TCIQRS 77.3 14.3 61.1 76.9 76.8 87.4 76.4 77.5 76.7
TOMPQRS 40.6 61.4 48.0 69.1 39.1 95.6 40.3 88.3 65.4
VFQRS 100 2.6 99.4 29.3 100 18.2 100 17.8 84.4
WVL1,QRS 81.6 3.2 83.6 46.6 79.3 34.8 80.8 32.6 47.5
WVL2,QRS 99.5 0.9 98.0 34.0 99.5 15.7 99.4 16.3 45.9
WVL3,QRS 99.9 2.8 99.2 24.6 99.5 28.9 99.7 25.3 79.7
WVL4,QRS 88.9 14.2 71.8 58.9 89.7 79.4 88.4 69.2 -

Table 6.2: Quality of fibrillation detection algorithms used as QRS detectors
(sensitivity, specificity, receiver operator characteristic) for a window length of
8 seconds in per cent, rounded on 3 digits.
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Data Source MIT DB CU DB AHA DB overall results
Parameter Sns. Spc. Sns. Spc. Sns. Spc. Sns. Spc. IROC
AAR50 84.3 87.9 77.1 72.4 75.5 86.7 75.8 86.7 84.7
AAR100 97.6 38.0 71.0 65.4 82.7 72.6 81.3 52.7 73.2
AAR250 100 7.5 64.0 61.6 85.7 60.0 82.9 30.4 58.7
ACF95 33.2 36.0 44.6 47.7 56.4 35.7 54.6 36.4 41.4
ACF99 51.4 31.1 58.0 42.8 70.1 29.5 68.4 31.0 41.4
CPLX 21.0 80.7 72.9 66.7 78.6 72.9 77.3 77.0 83.7
HILB 0.0 100 0.0 100 0.0 100 0.0 100 94.0
HILB2 96.5 13.7 81.7 74.5 91.6 90.2 93.9 79.2 93.7
HILB2,2 0.3 99.7 1.8 99.6 1.6 99.4 1.6 99.6 83.4
HILB3 0.0 100 0.0 100 0.0 100 0.0 100 93.9
LI 10.8 91.6 13.9 89.3 16.1 88.2 15.8 90.2 53.6
LIm 100 60.0 96.4 22.3 93.9 40.7 94.2 50.8 72.1
MEA 53.1 77.8 57.7 86.3 45.0 87.6 46.7 82.0 71.9
PSRold 19.9 100 0.0 100 0.0 100 0.2 100 88.2
PSR 0.0 100 0.0 100 0.0 100 0.0 100 90.1
PSR2 0.0 100 0.0 100 0.0 100 0.0 100 93.2
PSR2,2 6.6 98.7 8.7 96.9 8.2 97.2 8.3 98.0 79.5
PSR3 0.0 100 0.0 100 0.0 100 0.0 100 94.7
SC2 74.5 96.8 69.3 92.8 64.0 99.1 64.8 97.5 89.5
SCA 81.8 96.3 75.3 90.6 72.8 98.7 73.2 97.0 91.6
SPEC 13.3 100 19.6 99.4 16.6 99.8 16.9 99.9 89.4
SPECm 55.6 97.7 52.9 93.4 45.3 93.7 46.3 95.9 90.4
STE 14.7 93.7 20.9 80.0 13.2 96.2 14.2 94.1 43.7
TCI 82.5 78.1 73.5 62.6 75.2 78.3 75.0 77.5 80.9
TOMP 68.5 40.0 74.4 47.1 96.7 38.5 93.6 39.7 67.0
VF 38.1 100 32.6 99.5 17.4 99.9 19.6 99.9 84.9
WVL1 10.5 80.1 45.6 85.3 27.6 77.9 29.7 79.5 45.7
WVL2 0.3 99.5 33.5 99.5 11.5 99.5 14.2 99.5 44.7
WVL3 24.1 100 21.2 99.6 17.0 99.7 17.6 99.9 81.9
WVL4 81.1 80.7 66.4 65.5 71.8 78.6 71.2 79.2 -

Table 6.3: Quality of fibrillation detection algorithms used as VF detectors
(sensitivity, specificity, receiver operator characteristic) for a window length of
3 seconds in per cent, rounded on 3 digits.

59



Data Source MIT DB CU DB AHA DB overall results
Parameter Sns. Spc. Sns. Spc. Sns. Spc. Sns. Spc. IROC
AAR50,QRS 87.8 11.4 72.1 74.6 86.8 81.5 86.7 72.5 83.6
AAR100,QRS 38.0 66.1 66.2 72.7 72.8 88.1 53.1 83.5 75.6
AAR250,QRS 7.7 100 62.5 66.3 60.0 89.2 31.0 87.4 65.4
ACF95,QRS 35.8 50.2 48.3 47.0 36.4 59.3 36.6 56.7 45.0
ACF99,QRS 30.9 57.2 43.3 60.0 30.2 73.8 31.2 70.1 45.0
CPLXQRS 80.3 2.2 66.1 69.5 72.1 78.6 76.4 68.5 76.4
HILBQRS 100 0.0 100 0.0 100 0.0 100 0.0 91.5
HILB2,QRS 100 0.0 100 0.0 100 0.0 100 0.0 92.5
HILB2,2,QRS 99.7 0.1 99.6 1.6 99.4 1.6 99.6 1.5 80.4
HILB3,QRS 100 0.0 100 0.0 100 0.0 100 0.0 91.4
LIQRS 91.8 17.2 89.8 15.4 88.2 16.2 90.3 16.2 55.5
LIm,QRS 60.9 87.6 22.3 96.0 41.1 99.0 51.3 97.3 74.7
MEAQRS 77.8 24.2 86.1 55.5 87.4 46.4 82.0 45.0 69.5
PSRold,QRS 100 1.6 100 0.0 100 0.0 100 0.2 86.4
PSRQRS 100 0.0 100 0.0 100 0.0 100 0.0 87.7
PSR2,QRS 100 0.0 100 0.0 100 0.0 100 0.0 92.1
PSR2,2,QRS 98.7 2.7 96.9 8.5 97.3 8.8 98.0 8.1 80.6
PSR3,QRS 100 0.0 100 0.0 100 0.0 100 0.0 91.6
SC2QRS 96.8 6.5 92.8 66.9 98.8 67.8 97.4 60.5 85.9
SCAQRS 96.3 7.4 90.6 72.8 98.4 77.0 96.9 68.3 87.9
SPECQRS 100 1.2 99.3 18.7 99.8 17.9 99.9 16.0 87.0
SPECm,QRS 97.7 5.6 93.2 50.7 93.8 48.7 95.9 43.9 89.5
STEQRS 93.7 3.2 79.7 20.0 95.2 8.8 93.6 9.6 41.9
TCIQRS 77.7 16.3 62.2 72.2 77.9 77.8 77.1 69.9 76.7
TOMPQRS 40.1 63.4 46.8 72.7 37.9 96.4 39.5 89.6 65.1
VFQRS 100 3.2 99.4 31.1 99.9 18.8 99.9 18.6 82.8
WVL1,QRS 79.8 0.9 85.1 43.9 78.2 29.6 79.4 28.0 42.9
WVL2,QRS 99.5 0.0 99.5 32.3 99.5 12.4 99.5 13.4 44.9
WVL3,QRS 100 2.0 99.4 20.1 99.7 18.4 99.9 16.7 82.5
WVL4,QRS 80.5 14.3 65.1 63.9 78.8 77.3 79.2 68.2 -

Table 6.4: Quality of fibrillation detection algorithms used as QRS detectors
(sensitivity, specificity, receiver operator characteristic) for a window length of
3 seconds in per cent, rounded on 3 digits.
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Data Source MIT DB CU DB AHA DB overall results
Parameter Sns. Spc. Sns. Spc. Sns. Spc. Sns. Spc. IROC
AAR50 82.2 88.3 75.8 74.8 74.9 88.7 75.1 87.8 85.2
AAR100 99.3 36.4 69.4 64.9 82.5 74.4 80.9 52.5 72.5
AAR250 100 4.7 62.4 61.4 85.2 60.6 82.3 29.0 56.1
ACF95 42.3 46.2 45.2 54.1 57.9 48.4 56.1 47.4 50.7
ACF99 55.9 38.7 56.0 48.3 72.4 42.7 70.2 40.7 50.7
CPLX 15.0 84.7 72.6 69.7 80.0 75.6 78.4 80.5 84.4
HILB 0.0 100 0.0 100 0.0 100 0.0 100 94.1
HILB2 0.0 100 0.0 100 0.0 100 0.0 100 93.6
HILB2,2 10.8 98.9 10.7 97.6 13.9 97.7 13.4 98.4 85.4
HILB3 0.0 100 0.0 100 0.0 100 0.0 100 94.5
LI 7.0 92.9 11.3 91.4 13.2 89.6 12.9 91.5 54.8
LIm 100 61.5 95.4 23.4 93.6 42.7 93.9 52.5 72.8
MEA 58.0 79.1 59.0 86.9 46.3 88.3 48.1 83.1 75.6
PSRold 59.4 99.9 24.0 99.7 15.4 100 16.9 99.9 88.5
PSR 0.0 100 0.0 100 0.0 100 0.0 100 93.7
PSR2 0.0 100 0.0 100 0.0 100 0.0 100 93.4
PSR2,2 36.4 92.7 47.0 85.5 44.5 89.1 44.8 91.0 81.7
PSR3 4.5 100 1.4 100 2.3 100 2.2 100 95.1
SC2 73.4 97.5 67.0 94.4 63.3 99.5 63.9 98.1 89.5
SCA 82.2 97.1 72.7 92.2 72.4 99.2 72.5 97.7 91.6
SPEC 18.9 100 25.3 99.3 23.5 99.8 23.7 99.9 88.3
SPECm 54.9 97.2 54.6 92.6 48.6 93.7 49.5 95.6 89.4
STE 19.6 96.3 25.3 81.7 15.5 97.2 16.8 96.0 49.2
TCI 71.3 86.5 65.6 74.3 63.3 89.5 63.7 87.1 80.9
TOMP 68.5 40.5 71.5 49.1 96.3 39.4 92.8 40.5 67.1
VF 36.7 100 32.2 99.5 17.6 99.9 19.6 99.9 85.4
WVL1 34.3 79.8 48.7 81.9 30.9 76.9 33.2 78.7 48.4
WVL2 5.9 99.5 35.8 98.3 13.9 99.4 16.6 99.4 46.5
WVL3 26.2 100 21.7 99.5 20.7 99.7 20.9 99.8 79.4
WVL4 80.1 83.5 65.0 68.7 73.2 82.6 72.2 82.5 -

Table 6.5: Quality of fibrillation detection algorithms used as VF detectors
(sensitivity, specificity, receiver operator characteristic) for a window length of
4 seconds in per cent, rounded on 3 digits.
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Data Source MIT DB CU DB AHA DB overall results
Parameter Sns. Spc. Sns. Spc. Sns. Spc. Sns. Spc. IROC
AAR50,QRS 88.2 10.9 74.5 73.2 88.8 80.9 87.8 71.7 84.2
AAR100,QRS 36.4 69.0 65.8 71.3 74.6 88.0 52.9 83.6 75.2
AAR250,QRS 4.7 100 62.3 64.8 60.5 88.4 29.5 86.6 62.9
ACF95,QRS 45.7 30.7 54.7 47.5 48.8 60.9 47.4 55.7 52.0
ACF99,QRS 38.3 38.2 49.0 58.1 43.2 76.3 40.7 69.5 52.0
CPLXQRS 84.4 1.5 69.2 69.1 74.8 80.3 79.9 69.7 77.2
HILBQRS 100 0.0 100 0.0 100 0.0 100 0.0 91.6
HILB2,QRS 100 0.0 100 0.0 100 0.0 100 0.0 92.3
HILB2,2,QRS 98.9 2.2 97.5 10.3 97.7 14.8 98.4 12.7 82.0
HILB3,QRS 100 0.0 100 0.0 100 0.0 100 0.0 91.8
LIQRS 93.1 17.2 91.8 12.7 89.6 13.3 91.6 13.7 56.7
LIm,QRS 62.4 87.2 23.5 95.0 43.2 98.8 53.0 96.9 75.5
MEAQRS 79.1 24.5 86.7 56.7 88.1 48.0 83.0 46.3 73.1
PSRold,QRS 99.9 4.9 99.6 22.9 100 16.6 99.9 16.0 86.9
PSRQRS 100 0.0 100 0.0 100 0.0 100 0.0 90.9
PSR2,QRS 100 0.0 100 0.0 100 0.0 100 0.0 92.0
PSR2,2,QRS 92.9 17.3 85.3 45.3 89.2 47.5 91.1 43.7 82.5
PSR3,QRS 100 0.4 100 1.3 100 2.4 100 2.1 91.9
SC2QRS 97.4 6.2 94.3 64.6 99.3 67.3 98.0 59.8 86.3
SCAQRS 97.0 7.1 92.1 70.2 99.0 77.0 97.6 67.9 88.2
SPECQRS 100 1.6 99.2 24.0 99.8 25.4 99.9 22.5 85.9
SPECm,QRS 97.2 5.7 92.4 52.2 93.8 52.4 95.6 46.9 88.7
STEQRS 96.3 3.4 81.5 24.3 96.3 11.4 95.6 12.1 46.8
TCIQRS 69.2 24.3 50.4 81.0 66.6 89.8 67.3 81.0 76.7
TOMPQRS 40.5 62.4 48.7 69.5 38.8 96.0 40.2 88.7 65.2
VFQRS 100 3.1 99.3 30.6 99.9 19.0 99.9 18.6 83.4
WVL1,QRS 79.4 2.8 81.7 46.7 77.2 33.3 78.6 31.4 45.3
WVL2,QRS 99.5 0.5 98.3 34.4 99.4 15.0 99.4 15.7 46.3
WVL3,QRS 100 2.2 99.3 20.4 99.7 22.4 99.8 19.8 79.7
WVL4,QRS 83.3 13.9 68.4 63.0 82.8 78.9 82.5 69.3 -

Table 6.6: Quality of fibrillation detection algorithms used as QRS detectors
(sensitivity, specificity, receiver operator characteristic) for a window length of
4 seconds in per cent, rounded on 3 digits.
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Data Source MIT DB CU DB AHA DB overall results
Parameter Sns. Spc. Sns. Spc. Sns. Spc. Sns. Spc. IROC
AAR50 81.5 90.9 73.6 74.8 71.2 88.7 71.7 89.3 84.3
AAR100 99.0 28.5 69.8 63.6 83.3 70.7 81.7 46.5 70.1
AAR250 100 2.3 61.2 59.5 85.2 59.1 82.2 27.0 52.4
ACF95 27.6 34.7 38.3 44.0 49.5 34.8 47.8 35.2 38.7
ACF99 44.8 22.1 55.1 34.8 68.0 25.0 66.1 23.8 38.7
CPLX 21.0 83.8 71.4 72.1 79.9 78.3 78.2 81.1 85.2
HILB 0.0 100 0.0 100 0.0 100 0.0 100 94.6
HILB2 37.1 99.9 23.5 98.8 25.3 99.8 25.2 99.8 93.6
HILB2,2 29.0 97.7 27.8 94.2 36.0 95.8 34.8 96.8 87.1
HILB3 58.0 99.9 45.2 98.5 50.7 99.8 50.0 99.8 94.5
LI 5.2 93.8 10.1 92.6 11.8 90.4 11.5 92.4 55.3
LIm 100 62.6 94.6 24.1 93.3 44.2 93.6 53.7 73.3
MEA 59.4 79.8 59.0 87.3 47.6 88.6 49.2 83.6 77.4
PSRold 72.4 99.6 48.8 97.4 42.1 99.7 43.3 99.5 88.5
PSR 0.0 100 0.0 100 0.0 100 0.0 100 94.2
PSR2 1.7 100 0.9 99.9 1.3 100 1.2 100 93.4
PSR2,2 66.8 85.9 69.2 75.3 65.8 81.3 66.3 83.7 83.1
PSR3 73.8 99.7 65.8 93.3 72.6 98.8 71.7 99.0 94.8
SC2 71.7 97.8 64.8 95.2 63.5 99.6 63.8 98.4 89.6
SCA 79.0 97.5 71.3 93.2 72.6 99.4 72.5 98.0 91.7
SPEC 15.0 100 20.3 99.5 18.2 99.9 18.4 99.9 88.9
SPECm 52.8 97.8 52.4 94.3 46.2 94.9 47.0 96.5 90.0
STE 30.8 91.7 36.6 74.5 25.7 93.4 27.1 91.6 54.9
TCI 83.2 80.0 74.8 65.0 78.8 81.1 78.3 79.7 80.9
TOMP 68.5 39.6 76.7 44.6 97.0 38.1 94.1 39.3 67.2
VF 37.1 100 31.8 99.5 17.3 99.9 19.4 99.9 85.9
WVL1 25.2 81.4 47.7 83.4 29.6 78.5 31.9 80.4 48.4
WVL2 2.4 99.5 35.3 98.5 13.2 99.5 15.9 99.4 45.1
WVL3 26.6 100 21.6 99.6 19.7 99.8 20.0 99.9 81.1
WVL4 81.8 85.5 64.7 70.0 73.5 85.3 72.5 84.7 -

Table 6.7: Quality of fibrillation detection algorithms used as VF detectors
(sensitivity, specificity, receiver operator characteristic) for a window length of
5 seconds in per cent, rounded on 3 digits.
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Data Source MIT DB CU DB AHA DB overall results
Parameter Sns. Spc. Sns. Spc. Sns. Spc. Sns. Spc. IROC
AAR50,QRS 90.8 10.7 74.5 71.0 88.9 76.9 89.3 68.5 82.6
AAR100,QRS 28.5 72.3 64.5 71.8 70.8 88.3 46.9 84.2 72.8
AAR250,QRS 2.3 100 60.4 63.6 59.0 88.3 27.5 86.4 59.4
ACF95,QRS 34.4 47.6 44.3 40.0 35.5 52.0 35.3 50.0 41.1
ACF99,QRS 21.8 59.8 35.1 56.5 25.8 71.6 24.0 68.3 41.1
CPLXQRS 83.5 2.2 71.6 67.8 77.5 80.4 80.6 69.6 78.0
HILBQRS 100 0.0 100 0.0 100 0.0 100 0.0 91.9
HILB2,QRS 99.9 3.1 98.8 22.6 99.8 27.3 99.8 23.9 92.1
HILB2,2,QRS 97.7 4.9 94.1 26.8 95.8 38.3 96.8 32.9 83.3
HILB3,QRS 99.9 4.8 98.3 43.4 99.8 54.8 99.8 47.5 91.8
LIQRS 94.0 16.6 93.0 11.5 90.4 11.9 92.5 12.4 57.8
LIm,QRS 63.5 87.9 24.2 94.2 44.7 98.6 54.2 96.8 76.1
MEAQRS 79.8 24.8 87.1 56.6 88.4 49.3 83.5 47.4 74.7
PSRold,QRS 99.6 6.1 97.2 46.7 99.7 45.5 99.5 41.1 86.8
PSRQRS 100 0.0 100 0.0 100 0.0 100 0.0 91.5
PSR2,QRS 100 0.1 99.9 0.9 100 1.4 100 1.2 92.2
PSR2,2,QRS 86.3 35.2 75.1 67.2 81.4 70.1 83.8 65.6 83.6
PSR3,QRS 99.7 6.2 93.1 63.3 98.7 78.3 99.0 67.9 91.8
SC2QRS 97.7 6.1 95.0 62.3 99.4 67.5 98.3 59.6 86.4
SCAQRS 97.4 6.8 93.1 68.7 99.2 77.2 97.9 67.9 88.4
SPECQRS 100 1.3 99.5 19.4 99.9 19.7 99.9 17.5 86.4
SPECm,QRS 97.8 5.4 94.1 50.0 95.0 49.7 96.5 44.6 89.4
STEQRS 91.6 4.9 74.2 35.2 92.4 21.9 91.1 21.6 51.6
TCIQRS 79.7 13.0 64.8 73.0 80.7 81.7 79.4 72.6 76.7
TOMPQRS 39.7 63.5 44.3 74.7 37.5 96.8 39.0 90.1 65.2
VFQRS 100 3.2 99.4 30.2 99.9 18.7 99.9 18.3 83.8
WVL1,QRS 81.0 2.2 83.1 45.8 78.8 31.9 80.2 30.1 45.4
WVL2,QRS 99.5 0.2 98.5 33.9 99.5 14.2 99.4 15.1 45.1
WVL3,QRS 100 2.2 99.5 20.4 99.8 21.2 99.9 18.9 81.6
WVL4,QRS 85.4 14.2 69.8 62.5 85.5 79.3 84.7 69.6 -

Table 6.8: Quality of fibrillation detection algorithms used as QRS detectors
(sensitivity, specificity, receiver operator characteristic) for a window length of
5 seconds in per cent, rounded on 3 digits.
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Data Source MIT DB CU DB AHA DB overall results
Parameter Sns. Spc. Sns. Spc. Sns. Spc. Sns. Spc. IROC
AAR50 80.8 90.8 72.5 75.7 71.5 89.1 71.7 89.4 84.6
AAR100 99.7 32.1 70.1 63.6 83.1 73.1 81.5 49.5 71.6
AAR250 100 2.5 61.4 59.0 85.4 59.9 82.3 27.4 52.9
ACF95 29.4 42.9 37.7 53.1 49.7 43.9 47.9 43.8 45.6
ACF99 50.7 29.0 55.0 43.7 68.8 33.6 66.8 31.5 45.6
CPLX 16.1 86.4 71.0 74.2 79.7 80.2 77.9 83.4 86.3
HILB 60.1 99.9 46.7 98.4 53.9 99.9 53.0 99.8 94.6
HILB2 78.3 99.4 61.1 94.2 67.5 98.2 66.7 98.7 93.5
HILB2,2 55.9 96.1 44.2 90.2 56.5 94.0 54.8 95.0 87.9
HILB3 79.4 99.4 68.7 93.7 77.2 98.6 76.0 98.9 94.6
LI 5.2 94.4 9.0 93.2 10.8 91.1 10.5 93.0 56.1
LIm 100 63.4 93.4 24.7 93.2 45.2 93.3 54.5 73.6
MEA 62.6 80.2 59.8 87.2 48.9 88.5 50.5 83.8 78.6
PSRold 76.2 99.1 57.9 94.5 56.4 99.2 56.8 98.9 88.3
PSR 12.9 100 5.9 99.9 7.3 100 7.2 100 94.2
PSR2 55.6 99.9 35.8 97.7 41.5 99.5 40.9 99.7 93.4
PSR2,2 79.4 80.4 78.1 66.8 76.1 74.6 76.4 77.6 84.1
PSR3 82.2 98.7 76.4 85.6 83.1 95.9 82.2 97.0 94.6
SC2 69.2 98.0 63.3 95.5 63.0 99.7 63.1 98.5 89.5
SCA 77.6 97.7 69.9 94.0 72.3 99.5 72.1 98.2 91.7
SPEC 18.5 100 22.8 99.5 22.3 99.9 22.3 99.9 88.2
SPECm 52.8 97.7 52.9 93.5 48.3 94.5 48.9 96.3 89.0
STE 35.7 92.5 41.4 73.8 32.0 92.2 33.2 91.5 59.8
TCI 75.9 84.6 70.0 71.6 72.2 87.9 72.0 85.3 80.9
TOMP 68.5 40.0 74.7 46.0 96.6 38.8 93.5 39.8 67.2
VF 36.0 100 31.2 99.5 17.1 99.9 19.1 100 86.1
WVL1 36.0 80.7 49.2 83.6 32.0 78.5 34.2 80.0 50.4
WVL2 10.8 99.5 35.6 98.2 14.4 99.4 17.1 99.4 46.1
WVL3 26.9 100 22.6 99.6 21.7 99.8 21.8 99.9 79.5
WVL4 80.4 87.0 61.6 71.4 73.2 86.9 71.8 86.2 -

Table 6.9: Quality of fibrillation detection algorithms used as VF detectors
(sensitivity, specificity, receiver operator characteristic) for a window length of
6 seconds in per cent, rounded on 3 digits.
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Data Source MIT DB CU DB AHA DB overall results
Parameter Sns. Spc. Sns. Spc. Sns. Spc. Sns. Spc. IROC
AAR50,QRS 90.7 10.5 75.3 69.8 89.2 77.2 89.4 68.5 82.9
AAR100,QRS 32.2 72.0 64.5 72.1 73.3 88.5 50.0 84.4 74.5
AAR250,QRS 2.6 100 60.0 63.8 59.8 88.5 27.9 86.6 59.9
ACF95,QRS 42.6 36.5 53.4 39.0 44.5 52.3 43.8 48.8 46.9
ACF99,QRS 28.7 52.2 44.1 56.4 34.3 72.4 31.6 68.0 46.9
CPLXQRS 86.1 1.6 73.6 67.4 79.4 80.3 82.9 69.5 78.9
HILBQRS 99.9 4.9 98.3 44.9 99.8 58.2 99.8 50.2 91.9
HILB2,QRS 99.4 7.3 94.1 58.8 98.2 72.8 98.7 63.3 92.0
HILB2,2,QRS 96.1 9.0 90.2 43.0 93.9 60.1 95.0 51.9 84.4
HILB3,QRS 99.4 6.8 93.5 66.0 98.6 83.2 98.8 72.1 91.7
LIQRS 94.6 15.9 93.6 10.2 91.1 11.0 93.2 11.5 58.9
LIm,QRS 64.4 87.4 24.8 93.0 45.6 98.4 55.1 96.4 76.5
MEAQRS 80.3 25.0 87.0 57.5 88.3 50.8 83.8 48.6 76.1
PSRold,QRS 99.1 6.8 94.3 55.4 99.2 60.9 98.9 53.9 86.6
PSRQRS 100 1.1 99.9 5.7 100 7.9 100 6.8 91.5
PSR2,QRS 99.9 4.8 97.7 34.6 99.5 44.8 99.7 38.8 92.1
PSR2,2,QRS 81.0 50.4 66.6 76.0 74.8 80.8 77.9 76.7 84.4
PSR3,QRS 98.7 8.3 85.4 73.8 95.9 89.2 97.0 77.8 91.8
SC2QRS 97.9 5.9 95.4 60.8 99.5 67.0 98.4 59.1 86.4
SCAQRS 97.6 6.8 93.9 67.4 99.3 77.1 98.2 67.6 88.4
SPECQRS 100 1.6 99.4 21.7 99.9 24.1 99.9 21.1 85.7
SPECm,QRS 97.7 5.8 93.3 50.6 94.6 52.0 96.3 46.4 88.5
STEQRS 92.4 5.3 73.5 39.8 91.2 28.7 91.1 27.4 56.1
TCIQRS 75.1 16.9 58.0 78.1 73.9 88.2 73.9 78.6 76.7
TOMPQRS 40.1 62.7 45.6 72.7 38.2 96.4 39.6 89.4 65.2
VFQRS 100 3.1 99.4 29.7 99.9 18.5 99.9 18.1 84.1
WVL1,QRS 80.4 3.1 83.3 47.0 78.8 34.4 79.9 32.3 46.8
WVL2,QRS 99.5 0.9 98.1 34.2 99.4 15.6 99.4 16.2 45.9
WVL3,QRS 100 2.4 99.4 21.3 99.8 23.4 99.9 20.7 79.6
WVL4,QRS 86.9 14.0 71.1 59.5 87.1 79.0 86.3 69.0 -

Table 6.10: Quality of fibrillation detection algorithms used as QRS detectors
(sensitivity, specificity, receiver operator characteristic) for a window length of
6 seconds in per cent, rounded on 3 digits.
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Data Source MIT DB CU DB AHA DB overall results
Parameter Sns. Spc. Sns. Spc. Sns. Spc. Sns. Spc. IROC
AAR50 83.9 91.4 74.1 72.6 85.2 60.8 83.7 78.6 87.1
AAR100 100 3.0 70.2 61.1 84.4 71.4 82.6 32.3 45.0
AAR250 100 3.0 61.3 59.8 85.2 60.8 82.2 28.1 54.0
ACF95 33.6 45.5 36.2 57.1 50.7 50.0 48.7 47.8 48.5
ACF99 54.9 30.6 54.1 47.6 70.7 38.6 68.4 34.5 48.5
CPLX 12.2 88.2 66.7 78.7 74.8 85.1 73.2 86.5 86.3
HILB 78.7 99.3 69.5 92.4 80.3 97.8 78.8 98.4 94.5
HILB2 88.8 98.1 72.9 88.0 80.2 95.2 79.3 96.5 93.5
HILB2,2 68.5 94.4 57.7 86.4 70.4 92.4 68.6 93.3 88.8
HILB3 83.9 98.6 73.2 89.1 82.3 96.8 81.1 97.5 94.5
LI 3.8 94.8 8.2 94.1 10.0 91.6 9.7 93.5 57.2
LIm 100 64.1 92.6 25.3 93.0 46.0 93.0 55.3 73.9
MEA 62.2 80.5 59.9 87.4 49.5 88.6 50.9 84.0 79.7
PSRold 77.6 98.4 62.8 91.4 63.5 98.5 63.6 98.1 88.0
PSR 69.2 99.8 57.6 95.6 67.5 99.1 66.2 99.4 94.2
PSR2 79.4 99.6 62.7 92.8 70.7 97.3 69.7 98.4 93.4
PSR2,2 86.0 76.0 82.5 60.3 81.0 69.2 81.3 72.7 84.7
PSR3 87.1 97.4 78.8 80.3 85.4 92.4 84.5 94.7 94.4
SC2 66.1 98.1 61.6 95.9 62.9 99.7 62.7 98.6 89.4
SCA 74.1 97.8 68.7 94.4 72.0 99.6 71.6 98.4 91.5
SPEC 21.7 100 26.7 99.3 27.3 99.8 27.2 99.9 88.9
SPECm 57.3 97.6 54.7 93.4 51.2 94.3 51.7 96.1 89.9
STE 47.9 85.4 48.9 68.2 43.3 84.5 44.1 84.3 63.8
TCI 80.4 80.8 74.8 65.9 79.9 82.1 79.3 80.6 80.9
TOMP 68.5 40.3 73.0 47.3 96.2 39.3 93.0 40.2 67.2
VF 32.2 100 31.0 99.5 17.1 100 19.0 100 86.3
WVL1 34.3 82.3 48.0 83.2 30.5 79.4 32.8 81.2 50.1
WVL2 5.2 99.5 35.4 98.4 13.7 99.5 16.4 99.4 45.3
WVL3 29.7 99.9 26.0 99.3 26.0 99.6 26.0 99.8 80.2
WVL4 79.0 88.3 60.7 72.0 73.6 88.5 72.0 87.6 -

Table 6.11: Quality of fibrillation detection algorithms used as VF detectors
(sensitivity, specificity, receiver operator characteristic) for a window length of
7 seconds in per cent, rounded on 3 digits.

67



Data Source MIT DB CU DB AHA DB overall results
Parameter Sns. Spc. Sns. Spc. Sns. Spc. Sns. Spc. IROC
AAR50,QRS 91.4 12.8 72.2 71.3 60.7 88.4 78.3 77.3 82.8
AAR100,QRS 3.1 100 62.0 72.3 71.5 89.5 32.9 88.5 52.7
AAR250,QRS 3.1 100 60.7 63.8 60.7 88.4 28.6 86.5 60.9
ACF95,QRS 45.0 32.1 57.4 37.5 50.6 53.4 47.8 48.9 50.0
ACF99,QRS 30.2 50.4 48.0 55.4 39.1 74.4 34.6 69.2 50.0
CPLXQRS 88.0 1.3 78.2 63.4 84.3 75.7 86.1 65.4 79.1
HILBQRS 99.3 6.9 92.1 66.8 97.8 86.5 98.3 74.7 91.8
HILB2,QRS 98.2 10.3 87.8 70.3 95.2 86.1 96.5 75.2 91.8
HILB2,2,QRS 94.4 11.2 86.5 56.7 92.3 74.8 93.2 65.0 85.2
HILB3,QRS 98.6 8.1 88.8 70.3 96.8 88.6 97.5 76.8 91.4
LIQRS 95.0 16.2 94.4 9.3 91.6 10.2 93.6 10.8 59.6
LIm,QRS 65.1 87.2 25.3 92.2 46.4 98.2 55.8 96.1 76.8
MEAQRS 80.6 25.3 87.2 57.5 88.4 51.4 84.0 49.1 77.3
PSRold,QRS 98.4 8.4 91.2 60.2 98.5 68.4 98.1 60.3 86.4
PSRQRS 99.8 5.9 95.5 55.3 99.1 72.8 99.3 62.7 91.6
PSR2,QRS 99.6 7.9 92.8 60.8 97.3 75.9 98.4 66.0 92.0
PSR2,2,QRS 76.7 61.6 60.1 80.6 69.3 85.8 73.0 82.3 85.0
PSR3,QRS 97.5 10.5 80.2 76.3 92.3 91.4 94.6 80.0 91.7
SC2QRS 98.1 5.8 95.8 59.2 99.5 66.9 98.6 58.8 86.3
SCAQRS 97.8 6.6 94.4 66.3 99.4 76.9 98.3 67.3 88.4
SPECQRS 100 1.9 99.2 25.6 99.8 29.5 99.9 25.8 86.5
SPECm,QRS 97.6 6.3 93.2 52.4 94.3 55.2 96.1 49.1 89.4
STEQRS 85.2 8.0 67.8 46.9 83.6 40.6 83.8 37.6 59.9
TCIQRS 80.5 11.8 65.8 73.4 81.7 82.9 80.3 73.4 76.7
TOMPQRS 40.4 61.9 46.9 70.8 38.7 95.9 40.0 88.8 65.3
VFQRS 100 2.8 99.4 29.5 100 18.4 100 18.0 84.3
WVL1,QRS 82.0 2.9 82.9 46.0 79.7 32.8 81.1 31.0 46.8
WVL2,QRS 99.5 0.4 98.4 34.0 99.5 14.9 99.4 15.6 45.2
WVL3,QRS 99.9 2.9 99.2 24.6 99.6 28.1 99.8 24.7 80.6
WVL4,QRS 88.2 13.8 71.7 58.8 88.6 79.4 87.6 69.1 -

Table 6.12: Quality of fibrillation detection algorithms used as QRS detectors
(sensitivity, specificity, receiver operator characteristic) for a window length of
7 seconds in per cent, rounded on 3 digits.
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Data Source MIT DB CU DB AHA DB overall results
Parameter Sns. Spc. Sns. Spc. Sns. Spc. Sns. Spc. IROC
AAR50 82.2 88.6 73.3 71.7 75.6 84.4 75.3 86.2 84.5
AAR100 100 4.4 69.1 62.6 84.3 71.5 82.4 33.2 47.4
AAR250 100 4.4 59.3 61.2 75.6 84.4 73.6 38.1 39.9
ACF95 36.7 45.2 38.6 60.1 52.1 53.7 50.2 49.2 50.0
ACF99 61.2 28.6 55.3 50.2 71.1 41.3 69.0 34.5 50.0
CPLX 5.9 92.9 56.6 86.7 61.7 92.0 60.5 92.3 86.8
HILB 90.9 96.2 77.7 78.5 86.4 91.9 85.3 93.8 94.4
HILB2 94.8 94.1 79.4 75.8 86.2 87.9 85.3 90.8 93.1
HILB2,2 90.6 90.9 72.2 79.5 82.8 89.4 81.5 89.8 89.8
HILB3 91.6 97.0 76.2 81.2 84.8 93.5 83.7 94.9 94.1
LI 2.8 95.4 7.4 95.2 9.0 92.3 8.7 94.2 59.1
LIm 100 65.2 91.0 26.3 92.5 47.3 92.4 56.5 74.3
MEA 62.2 81.0 60.3 87.4 50.7 88.5 52.1 84.2 80.7
PSRold 80.1 96.4 68.0 85.2 69.8 95.9 69.7 95.7 87.6
PSR 84.3 98.1 74.7 83.2 83.4 93.6 82.3 95.6 94.0
PSR2 89.9 97.7 75.1 82.0 83.1 90.4 82.1 94.1 93.2
PSR2,2 90.2 69.5 86.5 50.8 85.8 61.3 86.0 65.5 85.5
PSR3 92.0 94.9 80.4 72.7 87.5 85.0 86.6 90.1 94.0
SC2 59.8 98.3 58.4 96.5 62.4 99.8 61.9 98.8 89.3
SCA 70.6 98.1 66.4 95.3 71.2 99.7 70.6 98.6 91.4
SPEC 18.5 100 26.0 99.4 26.6 99.8 26.4 99.9 88.4
SPECm 53.1 97.9 53.7 94.2 50.7 94.9 51.1 96.6 89.5
STE 65.0 73.4 58.6 60.9 60.1 72.7 59.9 72.6 68.8
TCI 76.9 81.1 74.6 66.3 80.6 82.7 79.8 81.0 80.9
TOMP 68.5 39.9 74.2 45.5 96.9 38.6 93.7 39.7 67.4
VF 28.0 100 30.2 99.6 17.0 100 18.8 100 86.6
WVL1 39.2 83.3 48.7 84.1 31.1 80.4 33.5 82.2 51.3
WVL2 7.0 99.5 34.9 98.2 14.1 99.5 16.7 99.4 45.6
WVL3 28.0 99.9 25.3 99.5 25.6 99.7 25.6 99.8 80.1
WVL4 78.0 89.5 59.9 73.1 73.2 90.1 71.5 88.9 -

Table 6.13: Quality of fibrillation detection algorithms used as VF detectors
(sensitivity, specificity, receiver operator characteristic) for a window length of
9 seconds in per cent, rounded on 3 digits.
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Data Source MIT DB CU DB AHA DB overall results
Parameter Sns. Spc. Sns. Spc. Sns. Spc. Sns. Spc. IROC
AAR50,QRS 88.5 11.2 71.3 70.7 84.6 81.6 86.2 72.0 82.9
AAR100,QRS 4.5 100 63.6 71.2 71.6 89.4 33.8 88.2 55.0
AAR250,QRS 4.5 100 62.2 61.9 84.6 81.6 38.9 81.1 48.5
ACF95,QRS 44.8 35.0 60.6 40.3 54.2 54.9 49.3 50.8 51.3
ACF99,QRS 28.3 56.0 50.6 56.7 41.8 74.9 34.7 70.3 51.3
CPLXQRS 92.8 0.5 86.3 53.8 91.4 62.8 91.9 54.3 79.7
HILBQRS 96.3 12.5 78.1 74.7 91.9 92.5 93.7 80.8 91.6
HILB2,QRS 94.2 18.0 75.6 76.9 87.8 92.0 90.8 81.4 91.3
HILB2,2,QRS 90.9 15.6 79.6 70.8 89.2 87.7 89.7 77.1 86.1
HILB3,QRS 97.0 11.5 80.9 73.3 93.4 90.9 94.9 79.4 91.1
LIQRS 95.6 14.2 95.5 8.4 92.3 9.2 94.3 9.7 61.2
LIm,QRS 66.2 86.8 26.3 90.6 47.6 97.8 57.0 95.6 77.3
MEAQRS 81.0 25.6 87.3 58.2 88.3 52.8 84.2 50.3 78.3
PSRold,QRS 96.4 12.1 85.0 65.4 95.9 74.9 95.7 66.4 85.8
PSRQRS 98.1 10.3 83.0 72.2 93.5 89.5 95.6 78.0 91.5
PSR2,QRS 97.7 13.1 82.0 73.2 90.3 89.0 94.1 78.1 91.6
PSR2,2,QRS 70.4 77.7 50.7 84.9 61.5 90.3 66.0 88.1 85.5
PSR3,QRS 95.0 14.5 72.5 78.1 85.0 93.3 90.0 82.2 91.4
SC2QRS 98.3 5.2 96.4 56.1 99.6 66.5 98.7 58.0 86.3
SCAQRS 98.0 6.2 95.2 64.0 99.6 76.1 98.5 66.4 88.3
SPECQRS 100 1.6 99.4 24.9 99.8 28.7 99.9 25.1 86.2
SPECm,QRS 97.9 5.9 94.1 51.6 94.9 54.6 96.5 48.5 89.1
STEQRS 73.0 12.3 60.4 56.1 71.9 58.3 72.0 52.6 64.5
TCIQRS 80.8 11.0 66.2 73.2 82.2 83.7 80.7 73.9 76.7
TOMPQRS 39.9 62.1 45.2 72.2 38.0 96.6 39.4 89.5 65.7
VFQRS 100 2.5 99.4 28.8 100 18.4 100 17.8 84.5
WVL1,QRS 83.0 3.2 83.8 46.6 80.7 33.5 82.1 31.6 47.9
WVL2,QRS 99.5 0.6 98.1 33.6 99.5 15.2 99.4 15.8 45.5
WVL3,QRS 99.9 2.8 99.3 23.8 99.7 27.6 99.8 24.3 80.4
WVL4,QRS 89.4 14.0 72.8 57.7 90.2 79.0 89.0 68.7 -

Table 6.14: Quality of fibrillation detection algorithms used as QRS detectors
(sensitivity, specificity, receiver operator characteristic) for a window length of
9 seconds in per cent, rounded on 3 digits.
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Data Source MIT DB CU DB AHA DB overall results
Parameter Sns. Spc. Sns. Spc. Sns. Spc. Sns. Spc. IROC
AAR50 76.6 90.7 69.9 76.0 68.4 88.7 68.7 89.2 82.3
AAR100 100 4.1 69.1 60.1 85.0 73.1 83.0 33.5 47.4
AAR250 100 4.1 57.6 61.3 68.4 88.7 67.3 39.6 38.8
ACF95 38.5 44.0 37.9 60.5 52.6 53.9 50.5 48.6 49.7
ACF99 62.9 27.3 56.1 50.6 71.8 40.9 69.7 33.7 49.7
CPLX 6.3 93.0 54.1 88.8 57.8 93.1 56.8 92.8 87.0
HILB 92.3 94.2 79.7 72.5 87.8 88.2 86.7 90.9 94.3
HILB2 95.8 91.1 80.6 70.1 87.6 83.4 86.7 87.2 92.9
HILB2,2 95.5 89.1 76.8 76.4 85.0 87.6 84.0 88.0 90.1
HILB3 92.0 96.0 76.5 77.6 85.4 91.7 84.3 93.5 93.9
LI 2.4 95.6 7.1 95.7 8.7 92.5 8.4 94.4 59.4
LIm 100 65.7 90.3 26.7 92.4 47.7 92.2 56.9 74.4
MEA 60.8 81.1 60.6 87.7 51.0 88.4 52.3 84.2 81.0
PSRold 80.8 95.0 69.5 83.6 71.0 94.0 70.9 94.1 87.4
PSR 87.8 96.6 76.8 78.4 85.6 89.1 84.5 92.9 94.0
PSR2 91.6 96.2 77.3 77.4 85.3 86.0 84.3 91.3 93.0
PSR2,2 93.4 66.9 87.4 46.9 87.5 58.5 87.6 62.7 85.7
PSR3 92.3 93.6 80.5 70.0 87.8 81.9 86.9 88.0 93.7
SC2 58.4 98.3 57.2 96.9 62.0 99.8 61.3 98.9 89.2
SCA 68.2 98.1 65.4 95.7 71.0 99.8 70.3 98.7 91.2
SPEC 20.3 100 27.4 99.4 28.4 99.8 28.2 99.9 87.9
SPECm 50.7 97.9 53.2 94.1 51.3 94.8 51.5 96.5 88.4
STE 68.2 68.3 62.1 58.8 65.9 68.5 65.5 68.0 69.8
TCI 72.4 83.6 71.6 69.7 77.2 86.5 76.4 84.1 80.9
TOMP 68.5 40.1 72.8 46.4 96.6 39.0 93.3 40.0 67.2
VF 27.3 100 29.8 99.6 17.1 100 18.8 100 86.7
WVL1 37.8 83.1 48.6 83.5 32.7 80.0 34.8 81.9 52.1
WVL2 10.8 99.5 35.0 98.1 14.6 99.5 17.2 99.4 46.1
WVL3 25.9 99.9 25.7 99.5 25.9 99.6 25.9 99.8 79.4
WVL4 78.3 90.2 59.0 73.6 73.1 90.6 71.3 89.6 -

Table 6.15: Quality of fibrillation detection algorithms used as VF detectors
(sensitivity, specificity, receiver operator characteristic) for a window length of
10 seconds in per cent, rounded on 3 digits.
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Data Source MIT DB CU DB AHA DB overall results
Parameter Sns. Spc. Sns. Spc. Sns. Spc. Sns. Spc. IROC
AAR50,QRS 90.6 10.7 75.7 67.2 88.8 73.7 89.2 65.5 80.1
AAR100,QRS 4.1 100 61.1 71.3 73.2 90.2 34.1 88.9 54.9
AAR250,QRS 4.1 100 62.3 60.2 88.8 73.7 40.4 74.9 47.4
ACF95,QRS 43.7 38.5 61.0 39.6 54.3 55.5 48.7 51.5 51.2
ACF99,QRS 27.1 61.5 51.0 57.3 41.4 75.5 33.9 71.6 51.2
CPLXQRS 92.8 0.5 88.4 51.5 92.5 58.9 92.5 51.1 79.9
HILBQRS 94.2 15.6 72.1 76.6 88.1 93.7 90.8 82.3 91.4
HILB2,QRS 91.2 21.5 69.9 78.3 83.4 93.2 87.2 82.9 91.2
HILB2,2,QRS 89.1 17.1 76.4 75.4 87.4 89.9 87.9 79.5 86.3
HILB3,QRS 96.1 13.1 77.3 73.8 91.7 91.4 93.5 80.0 90.9
LIQRS 95.8 13.4 96.0 8.0 92.6 8.9 94.5 9.3 61.7
LIm,QRS 66.7 86.8 26.8 89.8 48.1 97.6 57.5 95.4 77.5
MEAQRS 81.1 25.4 87.5 58.3 88.2 53.1 84.2 50.5 78.5
PSRold,QRS 95.1 13.4 83.3 66.7 94.0 76.2 94.1 67.6 85.6
PSRQRS 96.7 12.8 78.1 74.2 89.1 91.6 92.8 80.1 91.3
PSR2,QRS 96.3 15.8 77.4 75.6 86.0 91.1 91.3 80.3 91.5
PSR2,2,QRS 67.9 82.6 46.8 85.7 58.5 91.5 63.2 89.7 85.8
PSR3,QRS 93.6 16.2 69.8 78.3 82.0 93.6 87.9 82.6 91.1
SC2QRS 98.3 5.0 96.8 54.9 99.7 66.1 98.8 57.6 86.3
SCAQRS 98.1 5.9 95.6 63.1 99.6 75.9 98.6 66.1 88.2
SPECQRS 100 2.0 99.3 26.2 99.8 30.7 99.9 26.8 85.6
SPECm,QRS 97.9 6.3 94.0 51.2 94.9 55.3 96.5 49.1 88.2
STEQRS 67.8 12.6 58.2 59.5 67.7 64.5 67.4 57.8 65.0
TCIQRS 78.4 12.7 62.6 75.9 78.3 87.1 77.6 77.0 76.7
TOMPQRS 40.2 61.5 46.1 70.9 38.4 96.3 39.7 89.1 65.0
VFQRS 100 2.4 99.5 28.3 100 18.4 100 17.8 84.7
WVL1,QRS 82.8 3.1 83.2 46.4 80.3 35.2 81.8 32.9 48.4
WVL2,QRS 99.5 0.9 98.1 33.7 99.5 15.8 99.4 16.3 45.9
WVL3,QRS 100 2.7 99.3 24.1 99.6 28.0 99.8 24.6 79.7
WVL4,QRS 90.2 14.1 73.3 56.7 90.7 78.9 89.6 68.5 -

Table 6.16: Quality of fibrillation detection algorithms used as QRS detectors
(sensitivity, specificity, receiver operator characteristic) for a window length of
10 seconds in per cent, rounded on 3 digits.
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The next tables show the quality parameters positive predictivity, accuracy
and calculation time. Again, the results for a window length of 8 seconds are
displayed first.

Data Source MIT DB CU DB AHA DB overall results
Parameter PP. Ac. PP. Ac. PP. Ac. PP. Ac. ct.
AAR50 1.2 89.0 43.6 73.3 32.5 67.2 26.6 78.8 3.4
AAR100 0.2 2.9 35.5 65.5 38.5 74.3 10.2 36.9 3.8
AAR250 0.2 2.9 29.9 60.1 31.0 65.1 9.6 32.6 5.5
ACF95 0.1 45.9 19.7 54.5 18.2 52.1 8.3 49.0 3.6
ACF99 0.1 30.2 22.2 50.4 19.9 45.7 9.1 37.9 3.8
CPLX 0.1 92.3 52.7 80.3 60.7 86.5 40.8 89.2 2.4
HILB 6.3 97.8 59.1 83.0 78.3 93.3 67.6 95.1 1.9
HILB2 4.1 96.4 54.6 80.8 67.7 90.4 56.4 93.0 1.9
HILB2,2 1.8 92.6 52.5 79.4 63.9 88.7 46.0 90.2 1.9
HILB3 6.2 97.8 58.5 82.8 78.3 93.3 67.3 95.1 1.8
LI 0.1 94.9 27.5 76.5 19.4 77.8 12.1 86.6 14
LIm 0.5 64.8 24.6 39.5 26.5 54.6 16.4 59.0 14
MEA 0.5 80.8 56.0 81.8 47.5 81.9 23.2 81.3 2.6
PSRold 5.1 97.5 59.0 83.3 84.8 92.4 68.5 94.6 2.0
PSR 13.4 99.2 65.0 85.1 83.8 94.0 77.3 96.2 1.8
PSR2 11.0 98.8 61.4 83.8 74.0 91.7 68.2 95.0 1.8
PSR2,2 0.5 72.5 34.9 61.6 33.1 68.1 20.2 70.0 1.8
PSR3 3.8 96.2 48.5 76.8 61.3 88.4 51.5 91.8 1.8
SC2 5.6 98.2 80.7 88.7 98.3 93.4 82.2 95.6 5.7
SCA 5.6 97.9 77.8 89.2 98.0 94.9 81.6 96.2 5.8
SPEC 60.6 99.8 92.0 84.6 97.3 87.7 96.1 93.8 1.9
SPECm 3.8 97.6 68.6 85.3 65.9 87.2 56.3 92.5 1.9
STE 0.5 83.4 29.5 63.8 35.1 75.6 20.4 79.0 1.9
TCI 0.8 83.9 38.9 70.6 54.4 84.9 31.1 83.6 2.2
TOMP 0.2 40.6 26.7 53.2 24.8 49.4 12.7 45.0 0.82
VF 82.4 99.9 94.5 85.2 98.9 85.7 97.7 93.0 1.9
WVL1 0.3 81.9 44.5 76.6 24.2 71.0 14.5 76.9 1.9
WVL2 3.6 99.4 83.1 85.0 84.9 84.9 73.6 92.4 1.9
WVL3 38.9 99.8 92.1 84.1 91.8 87.0 90.5 93.5 1.9
WVL4 1.2 88.9 36.6 69.8 59.3 86.8 36.8 87.0 41

Table 6.17: Quality of fibrillation detection algorithms used as VF detectors
(positive predictivity, accuracy, calculation time) for a window length of 8 sec-
onds. Positive predictivity and accuracy in per cent, rounded on 3 digits; cal-
culation time in per cent of the real time of the data, rounded on 2 digits.
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Data Source MIT DB CU DB AHA DB overall res.
Parameter PP. Ac. PP. Ac. PP. Ac. PP. Ac.
AAR50,QRS 98.0 87.3 89.1 72.5 96.5 67.3 97.1 77.9
AAR100,QRS 100 4.8 88.7 66.7 97.1 75.2 96.4 38.3
AAR250,QRS 100 4.8 84.8 61.4 96.3 65.2 95.3 33.7
ACF95,QRS 97.0 45.2 78.1 55.1 86.0 52.9 90.8 49.1
ACF99,QRS 96.8 30.2 80.4 51.1 89.8 46.3 92.2 38.2
CPLXQRS 97.8 90.4 87.1 79.2 92.6 86.5 95.2 88.2
HILBQRS 98.1 96.1 91.1 82.0 98.2 94.4 97.8 94.6
HILB2,QRS 98.2 94.8 91.6 80.0 98.0 91.4 97.8 92.6
HILB2,2,QRS 98.1 91.0 89.1 79.1 96.6 89.5 97.1 89.7
HILB3,QRS 98.1 96.0 91.2 81.8 98.1 94.4 97.8 94.6
LIQRS 98.2 93.7 79.0 76.3 84.3 78.9 91.3 86.4
LIm,QRS 99.6 66.1 91.3 39.9 99.2 55.1 99.3 60.0
MEAQRS 98.1 79.7 88.2 81.0 90.7 82.6 94.4 81.0
PSRold,QRS 98.1 95.8 89.6 82.4 95.0 93.5 96.5 94.1
PSRQRS 98.1 97.3 90.4 84.3 97.4 95.1 97.5 95.7
PSR2,QRS 98.1 97.1 90.6 83.2 97.2 92.8 97.4 94.5
PSR2,2,QRS 99.2 73.2 91.8 61.4 96.8 68.7 98.0 70.6
PSR3,QRS 98.1 94.5 92.0 76.2 98.5 89.3 98.0 91.3
SC2QRS 98.0 96.3 89.2 87.8 94.1 94.4 96.0 95.0
SCAQRS 98.1 96.1 90.8 88.4 95.8 95.9 96.8 95.6
SPECQRS 98.0 98.0 83.2 83.7 88.6 89.0 93.3 93.4
SPECm,QRS 98.0 95.8 87.7 84.4 92.0 88.4 95.1 92.0
STEQRS 97.8 81.7 82.9 62.8 89.0 74.9 93.5 77.8
TCIQRS 97.7 76.0 90.5 64.5 97.0 78.5 97.2 76.5
TOMPQRS 98.1 41.0 84.9 52.5 97.9 48.1 97.2 44.7
VFQRS 98.0 98.0 83.6 84.2 86.6 87.0 92.5 92.5
WVL1,QRS 97.6 80.0 85.0 75.6 86.6 72.3 92.4 76.5
WVL2,QRS 98.0 97.5 84.3 84.2 86.2 86.2 92.3 91.9
WVL3,QRS 98.0 98.0 82.7 83.1 88.1 88.3 93.1 93.0
WVL4,QRS 98.0 87.4 86.4 69.0 95.8 88.1 96.7 86.7

Table 6.18: Quality of fibrillation detection algorithms used as QRS detectors
(positive predictivity, accuracy) for a window length of 8 seconds in per cent,
rounded on 3 digits.
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Data Source MIT DB CU DB AHA DB overall results
Parameter PP. Ac. PP. Ac. PP. Ac. PP. Ac. ct.
AAR50 1.1 87.9 43.9 73.4 53.9 84.7 34.9 85.8 2.8
AAR100 0.3 38.1 36.4 66.6 38.4 74.3 13.9 55.2 2.9
AAR250 0.2 7.7 31.8 62.1 30.7 64.4 10.1 34.9 3.3
ACF95 0.1 36.0 18.2 47.1 15.3 39.2 7.4 38.0 2.9
ACF99 0.1 31.1 21.0 46.0 17.0 36.4 8.5 34.2 3.0
CPLX 0.2 80.6 36.4 68.0 37.4 73.8 23.9 77.0 -
HILB - 99.8 - 78.1 - 82.9 - 91.4 1.3
HILB2 - 99.8 - 78.1 - 82.9 - 91.4 1.3
HILB2,2 0.2 99.6 55.7 78.2 34.8 82.7 26.4 91.2 1.3
HILB3 - 99.8 - 78.1 - 82.9 - 91.4 1.4
LI 0.2 91.5 25.4 73.7 22.1 75.9 13.1 83.8 4.7
LIm 0.4 60.1 24.5 37.6 24.6 49.8 15.1 54.5 4.6
MEA 0.4 77.8 52.3 80.4 42.8 80.3 19.5 79.0 1.4
PSRold 79.2 99.9 100 79.3 - 82.9 79.5 91.5 1.4
PSR - 99.8 - 78.1 - 82.9 - 91.4 1.3
PSR2 - 99.8 - 78.1 - 82.9 - 91.4 1.3
PSR2,2 0.8 98.5 44.1 77.6 38.0 82.0 28.2 90.3 1.3
PSR3 - 99.8 - 78.1 - 82.9 - 91.4 1.3
SC2 3.7 96.8 71.6 88.0 93.7 93.1 71.0 94.7 3.6
SCA 3.6 96.3 67.7 87.5 92.1 94.3 69.5 95.0 3.8
SPEC 36.9 99.8 88.8 82.8 95.3 85.6 93.1 92.8 1.4
SPECm 3.8 97.6 67.7 85.0 59.7 85.4 51.6 91.7 1.4
STE 0.4 93.6 21.4 67.7 41.6 82.0 18.3 87.2 1.3
TCI 0.6 78.1 33.9 64.8 41.7 77.8 23.7 77.2 1.5
TOMP 0.2 40.1 26.9 52.7 24.5 48.5 12.7 44.3 0.79
VF 94.0 99.9 94.3 85.6 97.9 85.8 97.0 93.1 1.4
WVL1 0.1 80.0 44.8 77.1 20.5 69.3 11.9 75.3 1.4
WVL2 0.1 99.4 95.0 85.8 83.4 84.5 73.6 92.2 1.4
WVL3 60.0 99.8 92.6 83.3 93.0 85.6 92.2 92.8 1.4
WVL4 0.7 80.7 33.5 65.7 40.9 77.4 24.2 78.5 40

Table 6.19: Quality of fibrillation detection algorithms used as VF detectors
(positive predictivity, accuracy, calculation time) for a window length of 3 sec-
onds. Positive predictivity and accuracy in per cent, rounded on 3 digits; cal-
culation time in per cent of the real time of the data, rounded on 2 digits.
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Data Source MIT DB CU DB AHA DB overall res.
Parameter PP. Ac. PP. Ac. PP. Ac. PP. Ac.
AAR50,QRS 97.9 86.2 90.7 72.7 96.2 86.0 96.9 85.4
AAR100,QRS 98.2 38.6 89.3 67.7 97.0 75.2 97.0 55.9
AAR250,QRS 100 9.5 86.4 63.3 96.7 64.6 96.1 36.1
ACF95,QRS 97.2 36.1 76.9 48.0 82.6 40.0 89.5 38.4
ACF99,QRS 97.2 31.4 79.9 46.9 86.0 37.1 91.4 34.7
CPLXQRS 97.5 78.7 88.8 66.8 94.7 73.1 96.1 75.7
HILBQRS 98.0 98.0 77.4 77.4 84.2 84.2 91.0 91.0
HILB2,QRS 98.0 98.0 77.4 77.4 84.2 84.2 91.0 91.0
HILB2,2,QRS 98.0 97.7 77.6 77.5 84.3 83.9 91.0 90.7
HILB3,QRS 98.0 98.0 77.4 77.4 84.2 84.2 91.0 91.0
LIQRS 98.2 90.3 79.5 73.8 84.8 76.8 91.6 83.6
LIm,QRS 99.6 61.4 95.4 38.1 99.5 50.3 99.5 55.4
MEAQRS 98.0 76.7 87.6 79.5 89.7 80.9 93.8 78.7
PSRold,QRS 98.0 98.0 78.6 78.6 84.2 84.2 91.0 91.0
PSRQRS 98.0 98.0 77.4 77.4 84.2 84.2 91.0 91.0
PSR2,QRS 98.0 98.0 77.4 77.4 84.2 84.2 91.0 91.0
PSR2,2,QRS 98.0 96.7 78.4 77.0 85.0 83.3 91.5 89.9
PSR3,QRS 98.0 98.0 77.4 77.4 84.2 84.2 91.0 91.0
SC2QRS 98.0 94.9 91.1 87.2 94.2 93.9 96.1 94.1
SCAQRS 98.0 94.5 92.4 86.8 95.8 95.0 96.9 94.3
SPECQRS 98.0 98.0 81.7 82.0 86.6 86.9 92.3 92.3
SPECm,QRS 98.0 95.8 87.4 84.1 90.7 86.6 94.5 91.2
STEQRS 97.9 91.8 78.5 66.9 84.7 81.5 91.3 86.1
TCIQRS 97.8 76.5 89.1 64.3 94.9 77.9 96.3 76.4
TOMPQRS 98.1 40.5 86.3 52.4 98.3 47.2 97.5 44.0
VFQRS 98.0 98.0 84.1 84.7 86.8 87.1 92.6 92.6
WVL1,QRS 97.5 78.2 84.7 76.3 85.5 70.5 91.8 74.8
WVL2,QRS 98.0 97.5 84.3 85.1 85.8 85.7 92.1 91.8
WVL3,QRS 98.0 98.0 82.0 82.4 86.7 86.9 92.4 92.4
WVL4,QRS 97.8 79.2 86.9 64.9 94.9 78.6 96.2 78.2

Table 6.20: Quality of fibrillation detection algorithms used as QRS detectors
(positive predictivity, accuracy) for a window length of 3 seconds in per cent,
rounded on 3 digits.
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Data Source MIT DB CU DB AHA DB overall results
Parameter PP. Ac. PP. Ac. PP. Ac. PP. Ac. ct.
AAR50 1.1 88.3 45.8 75.0 57.7 86.3 36.7 86.7 2.9
AAR100 0.3 36.5 35.7 65.9 40.0 75.8 13.8 54.9 3.0
AAR250 0.2 4.8 31.2 61.6 30.9 64.8 9.8 33.6 3.6
ACF95 0.1 46.2 20.5 52.2 18.8 50.0 9.1 48.1 3.0
ACF99 0.2 38.8 22.1 49.9 20.7 47.8 10.0 43.3 3.1
CPLX 0.2 84.6 38.6 70.3 40.4 76.4 27.3 80.3 1.6
HILB - 99.8 - 78.1 - 82.9 - 91.4 1.4
HILB2 - 99.8 0.0 78.1 - 82.9 0.0 91.4 1.4
HILB2,2 1.6 98.8 55.4 78.6 55.8 83.4 43.8 91.1 1.4
HILB3 - 99.8 100 78.1 - 82.9 100 91.4 1.4
LI 0.2 92.8 25.6 74.8 20.7 76.5 12.4 84.8 5.8
LIm 0.4 61.6 24.6 38.4 25.2 51.4 15.6 56.0 5.8
MEA 0.5 79.1 54.0 81.1 45.1 81.1 20.9 80.1 1.5
PSRold 40.0 99.8 95.0 84.0 98.5 85.5 93.1 92.8 1.4
PSR - 99.8 - 78.1 - 82.9 - 91.4 1.4
PSR2 - 99.8 - 78.1 - 82.9 - 91.4 1.4
PSR2,2 0.8 92.6 47.6 77.1 45.8 81.5 31.8 87.0 1.4
PSR3 100 99.8 93.0 78.4 99.6 83.3 99.0 91.6 1.4
SC2 4.6 97.4 75.8 88.7 96.1 93.3 75.9 95.2 3.8
SCA 4.5 97.1 70.9 88.1 94.9 94.6 74.6 95.5 3.9
SPEC 62.1 99.8 90.4 83.9 97.0 86.8 95.6 93.4 1.4
SPECm 3.2 97.1 66.1 84.8 61.4 86.0 51.4 91.7 1.4
STE 0.9 96.2 26.6 70.0 53.7 83.3 28.2 89.2 1.4
TCI 0.9 86.4 40.1 72.5 55.5 85.0 31.5 85.1 1.6
TOMP 0.2 40.5 26.9 53.7 24.7 49.1 12.7 44.9 0.80
VF 91.3 99.9 94.0 85.5 98.0 85.8 97.0 93.1 1.5
WVL1 0.3 79.7 41.4 75.0 21.6 69.0 12.7 74.8 1.4
WVL2 2.1 99.4 85.0 85.4 81.8 84.7 72.5 92.3 1.4
WVL3 46.9 99.8 91.9 83.4 93.9 86.2 92.4 93.1 1.4
WVL4 0.8 83.5 35.2 67.9 46.5 81.0 27.8 81.6 39

Table 6.21: Quality of fibrillation detection algorithms used as VF detectors
(positive predictivity, accuracy, calculation time) for a window length of 4 sec-
onds. Positive predictivity and accuracy in per cent, rounded on 3 digits; cal-
culation time in per cent of the real time of the data, rounded on 2 digits.
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Data Source MIT DB CU DB AHA DB overall res.
Parameter PP. Ac. PP. Ac. PP. Ac. PP. Ac.
AAR50,QRS 97.9 86.6 90.5 74.2 96.1 87.6 96.9 86.4
AAR100,QRS 98.3 37.1 88.7 67.0 97.1 76.7 97.0 55.7
AAR250,QRS 100 6.7 85.8 62.8 96.5 64.9 95.7 34.7
ACF95,QRS 96.9 45.4 79.2 53.1 86.9 50.7 91.5 48.1
ACF99,QRS 96.8 38.3 81.0 50.9 90.6 48.5 93.1 43.3
CPLXQRS 97.6 82.7 89.1 69.2 95.3 75.7 96.4 79.0
HILBQRS 98.0 98.0 77.4 77.4 84.2 84.2 90.9 90.9
HILB2,QRS 98.0 98.0 77.4 77.4 84.2 84.2 90.9 90.9
HILB2,2,QRS 98.0 96.9 78.8 77.8 85.9 84.6 91.9 90.6
HILB3,QRS 98.0 98.0 77.4 77.4 84.2 84.2 90.9 90.9
LIQRS 98.2 91.6 79.4 74.8 84.6 77.5 91.5 84.6
LIm,QRS 99.6 62.9 94.5 38.8 99.5 52.0 99.4 56.9
MEAQRS 98.1 78.0 88.0 80.2 90.0 81.8 94.0 79.7
PSRold,QRS 98.1 97.9 82.5 83.1 86.4 86.8 92.3 92.3
PSRQRS 98.0 98.0 77.4 77.4 84.2 84.2 90.9 90.9
PSR2,QRS 98.0 98.0 77.4 77.4 84.2 84.2 90.9 90.9
PSR2,2,QRS 98.2 91.3 84.2 76.3 90.0 82.6 94.2 86.8
PSR3,QRS 98.0 98.0 77.6 77.6 84.5 84.6 91.1 91.1
SC2QRS 98.0 95.6 90.7 87.9 94.2 94.2 96.1 94.6
SCAQRS 98.1 95.2 91.9 87.4 95.8 95.5 96.9 94.9
SPECQRS 98.0 98.0 82.7 83.0 87.7 88.1 92.9 92.9
SPECm,QRS 98.0 95.3 87.6 83.8 91.3 87.2 94.8 91.2
STEQRS 98.0 94.4 79.7 69.2 85.2 82.8 91.7 88.1
TCIQRS 97.8 68.3 90.6 57.0 97.2 70.2 97.3 68.5
TOMPQRS 98.1 41.0 85.4 53.2 98.1 47.9 97.3 44.6
VFQRS 98.0 98.0 83.9 84.6 86.8 87.1 92.5 92.6
WVL1,QRS 97.5 77.8 84.8 74.1 86.0 70.2 92.1 74.4
WVL2,QRS 98.0 97.5 84.5 84.5 86.1 86.0 92.3 91.9
WVL3,QRS 98.0 98.0 82.0 82.4 87.2 87.5 92.6 92.6
WVL4,QRS 97.9 81.9 87.1 67.3 95.4 82.2 96.4 81.3

Table 6.22: Quality of fibrillation detection algorithms used as QRS detectors
(positive predictivity, accuracy) for a window length of 4 seconds in per cent,
rounded on 3 digits.
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Data Source MIT DB CU DB AHA DB overall results
Parameter PP. Ac. PP. Ac. PP. Ac. PP. Ac. ct.
AAR50 1.5 90.9 45.0 74.5 56.6 85.7 38.7 87.8 3.0
AAR100 0.2 28.6 35.0 65.0 37.0 72.8 12.6 49.5 3.2
AAR250 0.2 2.5 29.8 59.9 30.1 63.5 9.6 31.7 3.8
ACF95 0.1 34.7 15.2 42.8 13.6 37.3 6.4 36.3 3.4
ACF99 0.1 22.2 18.2 39.0 15.8 32.4 7.5 27.5 3.4
CPLX 0.2 83.7 40.2 72.0 43.2 78.6 27.9 80.9 1.7
HILB - 99.8 - 78.1 - 82.9 - 91.4 1.4
HILB2 49.8 99.8 85.0 82.3 96.6 87.1 93.7 93.4 1.4
HILB2,2 2.0 97.6 57.4 79.6 63.9 85.6 50.5 91.5 1.4
HILB3 53.5 99.8 89.2 86.8 98.4 91.4 96.3 95.5 1.5
LI 0.1 93.7 26.3 75.4 20.3 77.0 12.4 85.5 7.7
LIm 0.4 62.6 24.7 38.8 25.7 52.7 15.9 57.1 7.5
MEA 0.5 79.8 54.9 81.4 46.3 81.6 21.8 80.6 1.6
PSRold 22.7 99.5 83.0 87.3 96.2 89.8 89.3 94.7 1.5
PSR - 99.8 - 78.1 - 82.9 - 91.4 1.4
PSR2 71.4 99.8 78.3 78.2 99.4 83.1 96.2 91.5 1.4
PSR2,2 0.8 85.9 44.0 73.9 42.1 78.7 27.6 82.2 1.4
PSR3 26.3 99.6 73.3 87.2 92.4 94.3 87.3 96.7 1.4
SC2 5.1 97.7 77.9 88.9 97.0 93.4 78.4 95.4 4.0
SCA 4.9 97.4 73.4 88.7 96.2 94.8 77.4 95.8 4.2
SPEC 65.2 99.8 92.2 83.1 96.2 85.9 95.3 93.0 1.5
SPECm 3.9 97.8 70.7 85.6 65.3 86.6 56.0 92.3 1.5
STE 0.6 91.6 27.4 66.6 44.6 81.8 23.1 86.1 1.5
TCI 0.7 80.0 35.9 67.0 46.3 80.7 26.5 79.6 1.7
TOMP 0.2 39.7 26.7 51.3 24.5 48.2 12.6 43.9 0.81
VF 88.3 99.9 94.3 85.4 98.2 85.8 97.2 93.1 1.5
WVL1 0.2 81.3 43.0 76.0 22.2 70.2 13.2 76.2 1.5
WVL2 0.8 99.4 86.3 85.4 83.5 84.7 72.9 92.3 1.5
WVL3 55.5 99.8 93.8 83.4 94.9 86.1 93.8 93.1 1.5
WVL4 0.9 85.5 36.2 68.9 50.9 83.3 30.7 83.7 39

Table 6.23: Quality of fibrillation detection algorithms used as VF detectors
(positive predictivity, accuracy, calculation time) for a window length of 5 sec-
onds. Positive predictivity and accuracy in per cent, rounded on 3 digits; cal-
culation time in per cent of the real time of the data, rounded on 2 digits.
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Data Source MIT DB CU DB AHA DB overall res.
Parameter PP. Ac. PP. Ac. PP. Ac. PP. Ac.
AAR50,QRS 98.0 89.2 89.8 73.7 95.3 87.0 96.6 87.4
AAR100,QRS 98.0 29.4 88.6 66.2 97.0 73.5 96.8 50.3
AAR250,QRS 100 4.3 85.0 61.1 96.4 63.6 95.3 32.8
ACF95,QRS 96.9 34.7 72.9 43.3 79.7 38.1 87.7 36.6
ACF99,QRS 96.3 22.6 74.7 39.7 82.8 33.0 88.4 28.0
CPLXQRS 97.6 81.8 89.0 70.7 95.5 77.9 96.4 79.6
HILBQRS 98.0 98.0 77.3 77.3 84.2 84.2 90.9 90.9
HILB2,QRS 98.0 98.0 81.3 81.5 87.9 88.3 92.9 93.0
HILB2,2,QRS 98.0 95.8 81.4 78.8 89.2 86.7 93.5 91.0
HILB3,QRS 98.1 98.0 85.6 85.9 92.1 92.7 95.0 95.1
LIQRS 98.2 92.4 79.3 75.4 84.5 78.0 91.4 85.3
LIm,QRS 99.6 64.0 93.8 39.3 99.4 53.2 99.4 58.1
MEAQRS 98.1 78.7 88.0 80.5 90.3 82.2 94.1 80.3
PSRold,QRS 98.1 97.7 86.9 86.4 90.7 91.1 94.5 94.3
PSRQRS 98.0 98.0 77.3 77.3 84.2 84.2 90.9 90.9
PSR2,QRS 98.0 98.0 77.5 77.5 84.3 84.4 91.0 91.0
PSR2,2,QRS 98.5 85.3 88.6 73.3 93.5 79.6 96.1 82.2
PSR3,QRS 98.1 97.8 89.6 86.3 96.0 95.5 96.9 96.2
SC2QRS 98.0 95.9 90.2 88.0 94.2 94.3 96.1 94.8
SCAQRS 98.1 95.6 91.6 87.9 95.8 95.7 96.9 95.2
SPECQRS 98.0 98.0 81.8 82.2 86.8 87.1 92.4 92.5
SPECm,QRS 98.0 95.9 87.3 84.6 90.9 87.8 94.6 91.8
STEQRS 97.9 89.8 80.7 65.8 86.3 81.2 92.2 84.9
TCIQRS 97.8 78.3 89.7 66.5 95.9 80.9 96.7 78.8
TOMPQRS 98.1 40.2 86.5 50.8 98.4 46.9 97.6 43.6
VFQRS 98.0 98.0 83.9 84.5 86.7 87.1 92.5 92.6
WVL1,QRS 97.6 79.4 84.8 75.1 86.0 71.4 92.1 75.7
WVL2,QRS 98.0 97.5 84.5 84.6 86.0 86.0 92.2 91.9
WVL3,QRS 98.0 98.0 82.0 82.5 87.1 87.3 92.6 92.6
WVL4,QRS 98.0 83.9 87.2 68.2 95.6 84.6 96.6 83.4

Table 6.24: Quality of fibrillation detection algorithms used as QRS detectors
(positive predictivity, accuracy) for a window length of 5 seconds in per cent,
rounded on 3 digits.
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Data Source MIT DB CU DB AHA DB overall results
Parameter PP. Ac. PP. Ac. PP. Ac. PP. Ac. ct.
AAR50 1.4 90.8 45.6 75.0 57.5 86.1 39.0 87.9 3.1
AAR100 0.2 32.3 35.1 65.0 39.0 74.9 13.2 52.3 3.4
AAR250 0.2 2.7 29.7 59.6 30.6 64.2 9.6 32.1 4.1
ACF95 0.1 42.9 17.5 49.9 15.5 44.9 7.4 44.1 3.4
ACF99 0.1 29.1 20.4 46.0 17.6 39.6 8.4 34.5 3.5
CPLX 0.2 86.3 42.0 73.5 45.4 80.1 30.5 82.9 1.9
HILB 57.0 99.9 89.1 87.0 98.7 92.0 96.7 95.8 1.5
HILB2 17.0 99.3 74.9 86.9 88.5 92.9 82.6 95.9 1.5
HILB2,2 2.3 96.0 55.9 80.1 66.0 87.6 50.8 91.5 1.5
HILB3 19.0 99.4 75.4 88.2 91.9 94.9 86.2 96.9 1.6
LI 0.2 94.2 25.8 75.7 20.1 77.3 12.4 86.0 8.9
LIm 0.5 63.5 24.6 39.0 26.0 53.4 16.1 57.9 8.7
MEA 0.5 80.2 55.2 81.5 46.9 81.8 22.5 80.9 1.8
PSRold 12.7 99.1 73.5 86.9 93.6 91.9 83.5 95.3 1.6
PSR 97.4 99.9 94.2 79.2 99.0 84.1 98.4 92.0 1.4
PSR2 52.0 99.8 81.6 84.1 94.6 89.6 91.9 94.6 1.4
PSR2,2 0.7 80.4 39.8 69.3 38.3 74.9 24.3 77.5 1.4
PSR3 9.2 98.6 59.9 83.6 80.8 93.7 72.1 95.7 1.4
SC2 5.3 97.9 78.9 88.8 97.6 93.4 79.9 95.5 4.5
SCA 5.3 97.6 75.4 89.0 97.1 94.9 79.3 96.0 4.7
SPEC 62.4 99.8 92.2 83.5 97.2 86.6 96.1 93.3 1.6
SPECm 3.7 97.7 68.3 85.1 64.4 86.6 55.1 92.2 1.5
STE 0.8 92.4 29.4 67.0 46.0 81.9 26.9 86.6 1.6
TCI 0.8 84.6 39.4 71.3 55.2 85.2 31.3 84.1 1.8
TOMP 0.2 40.1 26.7 52.0 24.6 48.7 12.7 44.4 0.82
VF 86.6 99.9 94.2 85.3 98.5 85.8 97.3 93.0 1.6
WVL1 0.3 80.6 44.1 76.4 23.5 70.5 13.8 76.1 1.6
WVL2 3.5 99.4 83.6 85.1 83.8 84.9 73.1 92.4 1.6
WVL3 52.4 99.8 93.3 83.5 94.8 86.4 93.6 93.2 1.6
WVL4 1.0 87.0 36.1 69.3 53.6 84.6 32.8 85.0 39

Table 6.25: Quality of fibrillation detection algorithms used as VF detectors
(positive predictivity, accuracy, calculation time) for a window length of 6 sec-
onds. Positive predictivity and accuracy in per cent, rounded on 3 digits; cal-
culation time in per cent of the real time of the data, rounded on 2 digits.
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Data Source MIT DB CU DB AHA DB overall res.
Parameter PP. Ac. PP. Ac. PP. Ac. PP. Ac.
AAR50,QRS 98.0 89.0 89.5 74.1 95.4 87.3 96.6 87.5
AAR100,QRS 98.2 33.0 88.7 66.2 97.1 75.7 97.0 53.1
AAR250,QRS 100 4.6 84.9 60.8 96.5 64.3 95.4 33.2
ACF95,QRS 97.0 42.4 76.1 50.3 83.2 45.7 89.6 44.3
ACF99,QRS 96.7 29.2 78.6 46.7 86.8 40.3 90.9 34.9
CPLXQRS 97.7 84.4 89.1 72.3 95.5 79.5 96.5 81.7
HILBQRS 98.1 98.0 85.9 86.2 92.7 93.2 95.3 95.3
HILB2,QRS 98.1 97.5 88.6 86.1 95.0 94.1 96.4 95.5
HILB2,2,QRS 98.1 94.3 84.4 79.5 92.6 88.5 95.2 91.0
HILB3,QRS 98.1 97.6 90.4 87.2 96.9 96.2 97.3 96.4
LIQRS 98.2 93.0 79.1 75.6 84.5 78.4 91.4 85.8
LIm,QRS 99.6 64.8 92.8 39.5 99.4 53.9 99.4 58.8
MEAQRS 98.1 79.2 88.2 80.6 90.5 82.4 94.3 80.6
PSRold,QRS 98.1 97.2 88.5 85.9 93.1 93.1 95.6 94.9
PSRQRS 98.0 98.0 78.3 78.5 85.2 85.4 91.5 91.5
PSR2,QRS 98.1 98.0 83.6 83.4 90.5 90.8 94.2 94.1
PSR2,2,QRS 98.7 80.3 90.4 68.8 95.4 75.7 97.1 77.7
PSR3,QRS 98.1 96.8 91.7 82.8 97.9 94.8 97.8 95.2
SC2QRS 98.0 96.0 89.9 88.0 94.1 94.3 96.1 94.9
SCAQRS 98.1 95.8 91.3 88.2 95.8 95.8 96.8 95.4
SPECQRS 98.0 98.0 82.2 82.7 87.5 87.9 92.8 92.8
SPECm,QRS 98.0 95.8 87.3 84.1 91.3 87.8 94.8 91.8
STEQRS 97.9 90.6 81.6 66.2 87.2 81.3 92.7 85.4
TCIQRS 97.8 73.9 90.6 62.3 97.1 76.2 97.2 74.3
TOMPQRS 98.1 40.5 85.9 51.5 98.2 47.4 97.4 44.1
VFQRS 98.0 98.0 83.7 84.4 86.7 87.0 92.5 92.6
WVL1,QRS 97.6 78.8 85.1 75.5 86.4 71.7 92.3 75.6
WVL2,QRS 98.0 97.5 84.4 84.3 86.2 86.1 92.3 91.9
WVL3,QRS 98.0 98.0 82.1 82.6 87.4 87.7 92.7 92.7
WVL4,QRS 98.0 85.4 86.5 68.6 95.7 85.8 96.6 84.7

Table 6.26: Quality of fibrillation detection algorithms used as QRS detectors
(positive predictivity, accuracy) for a window length of 6 seconds in per cent,
rounded on 3 digits.
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Data Source MIT DB CU DB AHA DB overall results
Parameter PP. Ac. PP. Ac. PP. Ac. PP. Ac. ct.
AAR50 1.6 91.4 43.2 72.9 31.1 65.0 27.0 79.1 3.1
AAR100 0.2 3.2 33.8 63.1 37.9 73.6 10.3 36.6 3.5
AAR250 0.2 3.2 30.1 60.1 31.1 65.0 9.7 32.8 4.2
ACF95 0.1 45.4 18.2 52.7 17.4 50.2 8.0 47.9 3.5
ACF99 0.1 30.7 21.4 49.0 19.2 44.1 8.9 37.4 3.5
CPLX 0.2 88.1 45.2 76.2 50.9 83.3 33.7 85.4 2.1
HILB 15.0 99.2 71.9 87.3 88.2 94.8 82.0 96.7 1.7
HILB2 7.3 98.1 63.1 84.7 77.6 92.6 68.4 95.1 1.7
HILB2,2 2.0 94.3 54.5 80.1 65.8 88.7 49.0 91.1 1.7
HILB3 9.3 98.6 65.3 85.6 84.1 94.3 75.2 96.1 1.6
LI 0.1 94.6 26.7 76.1 19.9 77.6 12.3 86.4 10
LIm 0.5 64.2 24.6 39.3 26.3 54.0 16.3 58.5 9.7
MEA 0.5 80.5 55.6 81.7 47.4 81.9 22.9 81.2 2.0
PSRold 7.6 98.4 65.9 85.5 89.8 92.5 76.2 95.2 1.6
PSR 41.4 99.8 78.7 87.2 93.8 93.7 90.6 96.5 1.5
PSR2 22.8 99.5 71.2 86.2 84.5 92.8 80.3 95.9 1.5
PSR2,2 0.6 76.1 37.0 65.2 35.2 71.2 21.9 73.4 1.5
PSR3 5.3 97.4 53.1 80.0 69.8 91.2 60.0 93.8 1.5
SC2 5.5 98.1 79.8 88.7 98.0 93.4 81.2 95.6 4.7
SCA 5.4 97.8 76.5 89.1 97.5 94.9 80.5 96.1 4.9
SPEC 63.9 99.9 90.7 84.1 97.2 87.4 95.9 93.7 1.6
SPECm 3.8 97.6 68.5 85.3 65.0 86.9 55.5 92.3 1.6
STE 0.5 85.4 28.9 64.2 36.6 77.4 20.8 80.8 1.6
TCI 0.7 80.8 36.7 67.8 48.1 81.8 27.7 80.5 1.9
TOMP 0.2 40.4 26.7 52.6 24.7 49.1 12.7 44.8 0.82
VF 83.6 99.9 94.6 85.2 98.7 85.7 97.5 93.0 1.6
WVL1 0.3 82.3 43.0 75.9 23.5 71.0 14.1 77.1 1.6
WVL2 1.7 99.4 85.4 85.3 84.3 84.8 73.5 92.3 1.6
WVL3 38.8 99.8 91.2 84.0 92.4 86.9 90.8 93.4 1.6
WVL4 1.1 88.2 36.4 69.6 56.9 85.9 35.2 86.3 40

Table 6.27: Quality of fibrillation detection algorithms used as VF detectors
(positive predictivity, accuracy, calculation time) for a window length of 7 sec-
onds. Positive predictivity and accuracy in per cent, rounded on 3 digits; cal-
culation time in per cent of the real time of the data, rounded on 2 digits.
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Data Source MIT DB CU DB AHA DB overall res.
Parameter PP. Ac. PP. Ac. PP. Ac. PP. Ac.
AAR50,QRS 98.1 89.8 89.5 72.0 96.5 65.1 97.2 78.2
AAR100,QRS 100 5.1 88.4 64.4 97.3 74.4 96.6 38.0
AAR250,QRS 100 5.1 85.1 61.4 96.5 65.1 95.5 33.8
ACF95,QRS 97.0 44.8 76.9 53.1 85.2 51.0 90.4 47.9
ACF99,QRS 96.7 30.7 79.6 49.6 89.0 44.7 91.9 37.7
CPLXQRS 97.7 86.2 88.6 75.0 94.8 83.0 96.2 84.2
HILBQRS 98.1 97.4 90.4 86.4 97.5 96.0 97.5 96.2
HILB2,QRS 98.1 96.4 91.0 83.9 97.3 93.7 97.5 94.6
HILB2,2,QRS 98.1 92.7 87.2 79.8 95.1 89.5 96.4 90.7
HILB3,QRS 98.1 96.8 91.0 84.6 97.8 95.5 97.7 95.6
LIQRS 98.2 93.4 79.1 76.0 84.4 78.7 91.4 86.2
LIm,QRS 99.6 65.5 92.2 39.8 99.3 54.6 99.3 59.5
MEAQRS 98.1 79.5 88.2 80.8 90.6 82.5 94.3 80.9
PSRold,QRS 98.1 96.6 89.3 84.5 94.3 93.7 96.2 94.7
PSRQRS 98.1 97.9 87.9 86.3 95.1 94.9 96.4 96.0
PSR2,QRS 98.1 97.7 88.9 85.5 95.5 93.9 96.7 95.4
PSR2,2,QRS 99.0 76.4 91.3 64.8 96.3 71.9 97.6 73.9
PSR3,QRS 98.1 95.7 92.0 79.3 98.3 92.2 97.9 93.3
SC2QRS 98.0 96.2 89.5 87.9 94.1 94.4 96.0 95.0
SCAQRS 98.1 95.9 91.0 88.3 95.8 95.9 96.8 95.5
SPECQRS 98.0 98.0 82.9 83.3 88.3 88.7 93.1 93.2
SPECm,QRS 98.0 95.7 87.7 84.4 91.8 88.1 95.0 91.9
STEQRS 97.8 83.7 82.3 63.3 88.2 76.8 93.1 79.6
TCIQRS 97.8 79.1 90.0 67.5 96.2 81.9 96.8 79.7
TOMPQRS 98.1 40.8 85.3 52.0 98.1 47.8 97.3 44.4
VFQRS 98.0 98.0 83.6 84.3 86.7 87.0 92.5 92.6
WVL1,QRS 97.6 80.4 84.8 74.9 86.3 72.3 92.2 76.6
WVL2,QRS 98.0 97.5 84.4 84.5 86.1 86.1 92.2 91.9
WVL3,QRS 98.0 98.0 82.7 83.1 88.0 88.2 93.0 93.0
WVL4,QRS 98.0 86.7 86.3 68.9 95.8 87.2 96.6 85.9

Table 6.28: Quality of fibrillation detection algorithms used as QRS detectors
(positive predictivity, accuracy) for a window length of 7 seconds in per cent,
rounded on 3 digits.
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Data Source MIT DB CU DB AHA DB overall results
Parameter PP. Ac. PP. Ac. PP. Ac. PP. Ac. ct.
AAR50 1.2 88.6 42.3 72.0 50.0 82.9 34.0 85.3 3.5
AAR100 0.2 4.5 34.4 64.1 38.0 73.7 10.4 37.4 3.9
AAR250 0.2 4.5 30.2 60.8 50.0 82.9 10.1 41.2 5.9
ACF95 0.1 45.2 20.4 55.6 18.9 53.5 8.5 49.3 4.1
ACF99 0.1 28.7 22.7 51.3 20.1 46.4 9.0 37.5 4.4
CPLX 0.1 92.8 52.9 80.4 61.4 86.8 42.3 89.6 -
HILB 3.9 96.2 50.6 78.3 69.0 91.0 56.4 93.0 1.9
HILB2 2.6 94.1 48.2 76.6 59.5 87.6 46.8 90.4 1.9
HILB2,2 1.6 90.9 50.0 77.9 61.8 88.3 43.0 89.1 1.9
HILB3 4.8 97.0 53.5 80.1 72.9 92.0 60.9 94.0 1.9
LI 0.1 95.2 28.9 76.8 19.5 78.0 12.3 86.8 17
LIm 0.5 65.3 24.6 39.8 26.7 55.0 16.6 59.5 17
MEA 0.5 80.9 55.9 81.7 47.8 82.0 23.6 81.5 4.4
PSRold 3.5 96.3 54.9 81.6 78.1 91.4 60.2 93.5 2.2
PSR 6.7 98.0 55.8 81.3 72.9 91.8 64.1 94.5 1.8
PSR2 6.0 97.7 54.2 80.5 64.1 89.1 56.9 93.1 1.8
PSR2,2 0.5 69.5 33.3 58.7 31.5 65.5 19.0 67.2 1.8
PSR3 2.9 94.9 45.5 74.4 54.8 85.4 45.1 89.8 1.8
SC2 5.5 98.2 81.5 88.5 98.5 93.4 82.8 95.6 6.0
SCA 5.7 98.0 78.8 89.2 98.2 94.8 82.4 96.2 6.5
SPEC 63.9 99.8 92.0 84.0 96.9 87.3 95.9 93.6 2.0
SPECm 4.0 97.8 71.2 85.8 67.3 87.3 58.1 92.7 2.0
STE 0.4 73.3 28.4 60.4 31.4 70.6 17.0 71.5 2.0
TCI 0.7 81.1 36.9 68.0 49.1 82.3 28.3 80.9 2.3
TOMP 0.2 40.0 26.5 51.5 24.6 48.6 12.7 44.3 0.82
VF 81.6 99.9 94.7 85.0 99.1 85.7 97.8 93.0 1.9
WVL1 0.4 83.2 44.7 76.7 24.8 72.0 15.0 78.1 2.0
WVL2 2.3 99.4 83.7 85.0 85.0 84.8 73.6 92.4 2.1
WVL3 42.1 99.8 92.8 84.0 93.9 86.9 92.5 93.4 2.0
WVL4 1.2 89.4 37.1 70.3 60.4 87.2 37.7 87.5 43

Table 6.29: Quality of fibrillation detection algorithms used as VF detectors
(positive predictivity, accuracy, calculation time) for a window length of 9 sec-
onds. Positive predictivity and accuracy in per cent, rounded on 3 digits; cal-
culation time in per cent of the real time of the data, rounded on 2 digits.
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Data Source MIT DB CU DB AHA DB overall res.
Parameter PP. Ac. PP. Ac. PP. Ac. PP. Ac.
AAR50,QRS 98.0 86.9 89.2 71.2 96.1 84.1 96.9 84.9
AAR100,QRS 100 6.4 88.2 65.3 97.3 74.4 96.6 38.8
AAR250,QRS 100 6.4 84.6 62.1 96.1 84.1 95.4 42.7
ACF95,QRS 97.1 44.6 78.6 56.2 86.4 54.3 91.0 49.4
ACF99,QRS 96.9 28.9 80.8 51.9 89.8 47.1 92.2 37.9
CPLXQRS 97.8 90.9 87.1 79.3 92.9 86.8 95.3 88.5
HILBQRS 98.1 94.6 91.3 77.3 98.5 92.0 98.0 92.6
HILB2,QRS 98.2 92.6 91.7 75.9 98.3 88.5 98.0 90.0
HILB2,2,QRS 98.1 89.4 90.2 77.6 97.5 89.0 97.5 88.6
HILB3,QRS 98.1 95.3 91.1 79.2 98.2 93.0 97.9 93.5
LIQRS 98.2 93.9 79.0 76.6 84.3 79.1 91.3 86.6
LIm,QRS 99.6 66.6 91.0 40.2 99.1 55.6 99.2 60.5
MEAQRS 98.1 79.9 88.3 81.0 90.8 82.7 94.5 81.1
PSRold,QRS 98.1 94.7 89.9 80.7 95.3 92.6 96.6 93.0
PSRQRS 98.1 96.3 91.0 80.5 97.9 92.9 97.8 94.0
PSR2,QRS 98.2 96.0 91.2 80.0 97.7 90.1 97.7 92.6
PSR2,2,QRS 99.3 70.5 91.9 58.5 97.1 66.1 98.2 68.0
PSR3,QRS 98.2 93.3 91.8 73.8 98.5 86.3 98.1 89.3
SC2QRS 98.0 96.4 88.8 87.7 94.0 94.4 96.0 95.1
SCAQRS 98.0 96.2 90.5 88.4 95.7 95.8 96.7 95.6
SPECQRS 98.0 98.0 82.7 83.2 88.1 88.5 93.1 93.1
SPECm,QRS 98.0 96.0 87.5 84.9 91.7 88.5 95.0 92.2
STEQRS 97.6 71.8 83.3 59.5 90.1 69.7 93.9 70.2
TCIQRS 97.8 79.4 89.9 67.7 96.4 82.5 96.9 80.1
TOMPQRS 98.1 40.4 85.5 51.0 98.3 47.3 97.4 43.9
VFQRS 98.0 98.0 83.5 84.1 86.6 87.0 92.5 92.5
WVL1,QRS 97.6 81.4 85.0 75.7 86.5 73.2 92.4 77.6
WVL2,QRS 98.0 97.5 84.2 84.2 86.1 86.1 92.3 91.9
WVL3,QRS 98.0 98.0 82.5 82.9 87.9 88.2 93.0 93.0
WVL4,QRS 98.0 87.9 86.1 69.5 95.8 88.4 96.6 87.1

Table 6.30: Quality of fibrillation detection algorithms used as QRS detectors
(positive predictivity, accuracy) for a window length of 9 seconds in per cent,
rounded on 3 digits.
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Data Source MIT DB CU DB AHA DB overall results
Parameter PP. Ac. PP. Ac. PP. Ac. PP. Ac. ct.
AAR50 1.3 90.7 45.3 74.7 55.6 85.2 37.6 87.5 3.7
AAR100 0.2 4.2 33.0 62.1 39.6 75.1 10.5 37.7 4.0
AAR250 0.2 4.2 29.7 60.5 55.6 85.2 9.5 42.0 6.1
ACF95 0.1 44.0 20.3 55.8 19.1 53.6 8.4 48.8 4.2
ACF99 0.1 27.4 23.2 51.8 20.1 46.2 9.0 36.7 4.4
CPLX 0.1 92.8 56.1 81.5 63.4 87.0 42.6 89.7 -
HILB 2.6 94.2 45.2 74.1 60.6 88.1 47.3 90.5 1.9
HILB2 1.8 91.1 43.3 72.4 52.2 84.1 38.9 87.1 1.9
HILB2,2 1.4 89.2 48.0 76.5 58.7 87.2 39.7 87.6 1.9
HILB3 3.7 96.0 49.2 77.3 68.2 90.6 55.2 92.7 2.0
LI 0.1 95.4 30.6 77.1 19.4 78.1 12.3 87.0 18
LIm 0.5 65.8 24.6 40.1 26.8 55.4 16.7 60.0 20
MEA 0.5 81.0 56.6 82.0 47.7 82.0 23.7 81.5 6.2
PSRold 2.6 95.0 52.9 80.6 71.1 90.1 53.0 92.1 2.2
PSR 4.1 96.6 50.2 78.0 62.1 88.5 52.8 92.2 1.9
PSR2 3.8 96.1 49.3 77.4 55.8 85.9 47.9 90.7 1.9
PSR2,2 0.5 67.0 31.9 55.9 30.4 63.5 18.2 64.9 1.9
PSR3 2.3 93.6 43.2 72.3 50.2 82.9 40.6 87.9 1.9
SC2 5.5 98.3 83.0 88.6 98.7 93.3 83.3 95.6 6.4
SCA 5.7 98.1 80.0 89.3 98.5 94.8 83.1 96.2 6.9
SPEC 61.1 99.8 91.8 84.3 97.0 87.6 95.9 93.7 2.0
SPECm 3.8 97.8 70.7 85.6 67.2 87.3 58.0 92.7 2.1
STE 0.4 68.3 28.5 59.5 30.3 68.1 16.1 67.7 2.1
TCI 0.7 83.6 38.5 70.1 54.2 84.9 31.0 83.4 2.4
TOMP 0.2 40.2 26.5 52.0 24.7 48.9 12.7 44.6 0.84
VF 78.8 99.9 94.9 84.9 99.3 85.7 98.0 93.0 2.0
WVL1 0.4 83.0 43.8 76.2 25.3 71.9 15.3 77.9 2.1
WVL2 3.4 99.3 83.1 84.9 85.4 84.9 73.8 92.4 2.1
WVL3 42.0 99.8 92.6 84.0 93.3 87.0 92.1 93.5 2.1
WVL4 1.3 90.2 37.2 70.5 61.7 87.6 39.2 88.1 44

Table 6.31: Quality of fibrillation detection algorithms used as VF detectors
(positive predictivity, accuracy, calculation time) for a window length of 10
seconds. Positive predictivity and accuracy in per cent, rounded on 3 digits;
calculation time in per cent of the real time of the data, rounded on 2 digits.
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Data Source MIT DB CU DB AHA DB overall res.
Parameter PP. Ac. PP. Ac. PP. Ac. PP. Ac.
AAR50,QRS 98.0 89.0 88.6 73.7 94.7 86.4 96.3 87.1
AAR100,QRS 100 6.1 87.8 63.4 97.5 75.9 96.8 39.1
AAR250,QRS 100 6.1 84.1 61.8 94.7 86.4 94.2 43.5
ACF95,QRS 97.2 43.6 78.5 56.3 86.6 54.5 91.0 48.9
ACF99,QRS 97.1 27.8 81.2 52.4 89.9 46.8 92.3 37.3
CPLXQRS 97.8 90.9 86.8 80.4 92.3 87.2 95.0 88.8
HILBQRS 98.2 92.6 91.2 73.1 98.7 89.0 98.1 90.0
HILB2,QRS 98.2 89.8 91.6 71.8 98.5 84.9 98.1 86.8
HILB2,2,QRS 98.1 87.7 91.3 76.2 97.9 87.8 97.7 87.1
HILB3,QRS 98.2 94.4 90.9 76.5 98.3 91.7 97.9 92.3
LIQRS 98.2 94.1 79.0 76.9 84.3 79.3 91.3 86.8
LIm,QRS 99.6 67.1 90.5 40.5 99.1 56.0 99.2 60.9
MEAQRS 98.1 80.0 88.3 81.2 90.9 82.6 94.5 81.2
PSRold,QRS 98.1 93.4 90.0 79.7 95.4 91.2 96.7 91.7
PSRQRS 98.2 94.9 91.1 77.3 98.2 89.5 97.9 91.7
PSR2,QRS 98.2 94.6 91.5 77.0 98.1 86.8 97.9 90.3
PSR2,2,QRS 99.5 68.2 91.7 55.7 97.3 63.8 98.4 65.6
PSR3,QRS 98.2 92.1 91.6 71.7 98.5 83.8 98.1 87.4
SC2QRS 98.0 96.4 88.5 87.7 94.0 94.3 95.9 95.1
SCAQRS 98.0 96.2 90.3 88.5 95.6 95.8 96.7 95.7
SPECQRS 98.0 98.0 82.9 83.4 88.4 88.8 93.2 93.3
SPECm,QRS 98.0 96.0 87.4 84.7 91.8 88.6 95.0 92.2
STEQRS 97.4 66.7 83.8 58.5 91.0 67.2 94.2 66.5
TCIQRS 97.7 77.0 90.4 65.5 97.0 79.7 97.1 77.6
TOMPQRS 98.0 40.6 85.1 51.5 98.2 47.6 97.3 44.2
VFQRS 98.0 98.0 83.3 84.0 86.6 87.0 92.5 92.5
WVL1,QRS 97.6 81.2 84.8 75.2 86.8 73.1 92.5 77.4
WVL2,QRS 98.0 97.5 84.2 84.1 86.2 86.2 92.3 91.9
WVL3,QRS 98.0 98.0 82.5 83.0 88.0 88.2 93.0 93.0
WVL4,QRS 98.1 88.6 85.9 69.7 95.8 88.9 96.6 87.7

Table 6.32: Quality of fibrillation detection algorithms used as QRS detectors
(positive predictivity, accuracy) for a window length of 10 seconds in per cent,
rounded on 3 digits.
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Chapter 7

Illustrations of Results

This chapter illustrates some results from the Tables 6.1 - 6.32. The dependence
of the “Integrated Receiver Operator Characteristic” and the Sensitivity and
Specificity on the window length are shown in plots.

7.1 Illustration of decision process

In order to illustrate the results of the analysis of a certain algorithm analyzing
a special ECG file, a MATLAB program was written. It shows the desired value,
the algorithms decision and some parameters in dependence on the signal time
in different colors.
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Figure 7.1: Results of SPEC analysis (file cu21) from [17]
middle: algorithm’s decision:

red: defibrillation recommended
green: defibrillation not recommended

bottom: annotation from file:
red: ventricular fibrillation
green: no ventricular fibrillation

calculated sensitivity: 0.488
calculated specificity: 0.995
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7.2 Quality dependence on window length

The experiments were carried out for different window lengths. The reason is
to find out, which window length yields the best quality. Here, the quality
parameters of some algorithms are shown in a receiver operator characteristic
plot. Good algorithms lie in the upper left corner.
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The following two figures show the integrated receiver operator characteristic
of the algorithms in dependence on the used window length. For clarity two
plots are used.
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Figure 7.3: Integrated Receiver Operator Characteristic of different algorithms:
IROC in dependence on window length.
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Figure 7.4: Integrated Receiver Operator Characteristic of different algorithms:
IROC in dependence on window length.
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The following figure shows the IROC curves for the algorithms with the best
quality results.
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Figure 7.5: Integrated Receiver Operator Characteristic of different algorithms
from Figure 7.3: IROC in dependence on window length. The IROC range is
reduced to values from 900 to 950.
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The following two figures show the sensitivity of the algorithms in dependence
on the used window length. For clarity two plots are used.
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Figure 7.6: Sensitivity of tested algorithms in dependence of the window length,
one second intervals.

From the Figures 7.6 and 7.7 it is easy to conclude that many algorithms yield
good results for a window length of 8 seconds.
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Figure 7.7: Sensitivity of tested algorithms in dependence of the window length,
one second intervals.
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The following two figures show the specificity of the algorithms in dependence
on the used window length. For clarity two plots are used.
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Figure 7.8: Specificity of tested algorithms in dependence of the window length,
one second intervals.

From the Figures 7.8 and 7.9 it is easy to conclude that many algorithms yield
good results for a window length of 8 seconds.
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Figure 7.9: Specificity of tested algorithms in dependence of the window length,
one second intervals.
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In the following two figures the range of the specificity is limited in order to
achieve a better resolution.
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Figure 7.10: Specificity of some tested algorithms in dependence of the window
length, one second intervals. The range of the specificity is reduced to values of
993 to 1000.
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Figure 7.11: Specificity of some tested algorithms in dependence of the window
length, one second intervals. The range of the specificity is reduced to values of
900 to 1000.
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Chapter 8

Discussion

In real applications of AEDs the specificity is more important than the sensi-
tivity, since no one should be defibrillated due to an analysis error. This would
bring him into cardiac arrest. Therefore, a low number of false positive deci-
sions should be tried to be achieved, even if this process makes the number of
false negative decisions higher.

From our results it can be seen that no algorithm achieves its proclaimed values
for the sensitivity or specificity. The main reason for this is the following:
Whereas all other researchers made a preselection of signals, in this study it
was tried to simulate the situation of a bystander, who is supposed to use an
AED, more accurately. Hence, no preselection of signals was carried out.

According to the IROC values, the best algorithms are HILB, PSR, and SCA,
which yield values of more than 90 per cent for the IROC value. This algorithms
are new. The algorithms SPEC and WVL3 are very good with respect to their
specificities. However, the sensitivities are poor. All other algorithms yield
mixed results in our simulations. We also conclude that algorithms developed
for QRS detection, like LI and TOMP, are not suitable for VF detection.

Outlook: Up to now, the results were only examined with undisturbed data
from the mentioned data banks. No noise or CPR were added. In the future, we
plan to use data changed by addition of artifacts like noise from various sources
or CPR. A CPR filter will be used to preprocess the data. Using a good CPR
filter should result in only little change in quality compared to undisturbed
data. The significant parameters that will be compared are again sensitivity,
specificity, and IROC. Also, we want to refine and modify the algorithms to im-
prove our results. A future aim is also the creation of a SIMULINK application
to offer a very concise utilization for the different functions. Furthermore the
automated detection of more subtle arrhythmias like ventricular tachycardia is
planned.
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Conclusion

In this thesis, sensitivity, specificity, accuracy, positive predictivity and the
integrated receiver operator characteristic of different fibrillation detection al-
gorithms are investigated. Some of the algorithms are taken from scientific
literature, some are new. Different approaches for analyzing the ECG signals
are used including tools like Fourier transformation, Hilbert transformation,
Wavelet transformation, as well as tools which do not use a common trans-
formation, like signal comparison, different threshold algorithms, complexity
measure or phase space reconstruction. As an important parameter for the im-
plementation in AEDs also the computational time of the algorithms is listed.
The quality parameters are calculated by investigating a huge amount of data,
namely the entire BIH-MIT and CU data banks, and the files 7001 - 8210 of the
AHA data bank ([16], [17], [2]). As an important varying parameter we use the
window length in steps of one second from 3 to 10 seconds. This equals a data
amount of more than 90 hours of commented ECG data for each algorithm at
each window length.

The evaluations demonstrate, that the algorithms yielding the best results are
new ones rather than published ones. Especially algorithms using tools from
chaos theory, like phase space reconstruction and Hilbert transformation show
promising results. We think this is due to the intrinsic character of the heart,
consisting of many coupled electrically active cells, that could be modeled by
coupled oscillators. Depending on different conditions, this may yield a syn-
chronized regular signal or a chaotic one. Thus this insight of the results of
this thesis can be fruitful for further considerations. An advantage is also the
relatively low computational effort of this methods.

Further research should be dedicated to the investigation of disturbed ECG
data, like electrical signal noise, or, more important, the influences of car-
diopulmonary reanimations. Nevertheless, a concise overview of many different
fibrillation detection algorithms can be a very useful part in the improvement
of automated external defibrillators for bystander defibrillation.
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Appendix A

Filtering

For all algorithms tested in this work we used the same prefiltering algorithm.
First, a moving averaging filter of order 5 is applied to the signal. This re-
moves high frequency noise like interspersions and muscle noise. Then, a drift
suppression is applied to the resulting signal. This is done by a high pass fil-
ter with a cut off frequency of one Hz. Finally, a low pass Butterworth filter
with a limiting frequency of 30 Hz is applied to the signal. In our work, the
filtering process is carried out in a MATLAB routine, called filtering.m. It uses
functions from the ”Signal Processing Toolbox”. The algorithm filtering.m is
displayed on the following page:
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Function for prefiltering in all algorithms function Y=filtering(X,sfreq,kind);

% moving averaging
b=[.2 .2 .2 .2 .2];
a=[1];
switch kind

case 0
X=X;

case 1
X=filter(b,a,X);

case 2
X=filtfilt(b,a,X);

end;
% drift suppression

T=1/sfreq; % sampling peroid [s]
Fc=1; % cut-off [Hz]
c1=1/[1+tan(Fc*pi*T)];
c2=[1-tan(Fc*pi*T)]/[1+tan(Fc*pi*T)];
b=[c1 -c1]; a=[1 -c2];
switch kind

case 0
X=X;

case 1
X=filter(b,a,X);

case 2
X=filtfilt(b,a,X);

end;
% Butterworth filtration
% mb order; 30 Hz lowpass;

fh=sfreq/2; % 1/2 sampling rate
mb=2; % order of filter
[b,a]= butter(mb,30/fh); % 30Hz - cut-off frequency
switch kind

case 0
X=X;

case 1
X=filter(b,a,X);

case 2
X=filtfilt(b,a,X);

end;
Y=X;
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