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Abstract:	

The	current	review	provides	an	assessment	of	the	exhalation	kinetics	of	volatile	organic	compounds	
(VOCs)	 that	have	been	 linked	with	cancer.	Towards	 this	end,	we	evaluate	various	physicochemical	
properties,	 such	 as	 ‘breath:air’	 and	 ‘blood:fat’	 partition	 coefficients,	 of	 112	 VOCs	 that	 have	 been	
suggested	over	the	past	decade	as	potential	markers	of	cancer.	With	these	data,	we	show	that	the	
cancer	 VOC	 concentrations	 in	 the	 blood	 and	 in	 the	 fat	 span	 over	 12	 and	 8	 orders	 of	magnitude,	
respectively,	 in	order	to	provide	a	specific	counterpart	concentration	 in	the	exhaled	breath	(e.g.,	1	
ppb).	 This	 finding	 suggests	 that	 these	 112	 different	 compounds	 have	 different	 storage	
compartments	in	the	body	and	that	their	exhalation	kinetics	depends	on	one	or	combination	of	the	
following	factors:	(i)	the	VOC	concentrations	in	different	parts	of	the	body;	(ii)	the	VOC	synthesis	and	
metabolism	 rates;	 (iii)	 the	partition	 coefficients	 between	different	 tissues	with	blood	 and	 air;	 and		
(iv)	 the	 VOCs'	 diffusion	 constants.	 Based	 on	 this	 analysis,	 we	 discuss	 how	 this	 knowledge	 allows	
modeling	and	simulation	of	the	behavior	of	a	specific	VOC	under	different	sampling	protocols	(with	
and	without	 exertion	 of	 effort).	We	 end	 this	 review	by	 a	 brief	 discussion	 on	 the	 potential	 role	 of	
these	scenarios	in	screening	and	therapeutic	monitoring	of	cancer.	

	

	

	

	 	



1.	Introduction	

1.1.	Background	

Volatile	 organic	 compounds	 (VOCs)	 of	 cancer	 have	been	 found	 in	 breath,	 blood	 [1],	 headspace	of	
cancer	 cells	 [2-10],	 and	 in	 headspace	 of	 resected	 cancer	 tissues	 [11].	 Exhaled	 breath,	 which	may	
change	 its	chemical	signature	depending	on	the	physiological	or	pathophysiological	state	of	cancer	
[12-24],	is	considered	as	one	of	the	most	fascinating	body	fluids/sources.	Sampling	of	breath	is	non-
invasive	and	can	be	used	for	screening,	at	an	intensive	care	unit	(ICU)	[25,	26],	during	surgery	[27-
29],	 or	monitoring	 pre	 and	 post-surgery	 [30].	 Volatile	 compounds	 that	 do	 not	 appear	 normally	 in	
exhaled	breath	can	be	used	for	detection	of	bacterial	or	 fungal	 infection	 in	 the	 lungs	 [31-35].	Also	
hydrogen	and	methane	 [36]	are	produced	by	bacteria	 in	 the	gut,	and	show	high	concentrations	 in	
persons	 with	 fructose	 or	 lactose	 malabsorption	 after	 ingestion	 of	 these	 carbohydrates	 [37,	 38].	
Other	 volatile	 compounds	 appear	 after	 ingestion	 of	 drugs,	 an	 example	 being	 3-heptanone	 during	
valproate	 therapy	 [39].	 13C-labeled	 compounds	 such	 as	 13C-uracil,	 13C-dextromethorphan	 or	 13C-
pantoprazol	 are	 specifically	 administered	 to	 measure	 enzyme	 activity	 through	 the	 respective	
potential	to	metabolize	these	precursors	with	production	of	13CO2	measured	in	exhaled	breath	[40-
45].	Volatile	compounds	do	not	only	appear	in	exhaled	breath,	but	also	in	skin	emanations	[46,	47],	
urine	[48],	blood	[1]	and	saliva	[49].	In	addition	to	volatile	organic	compounds,	also	small	inorganic	
molecules	like	hydrogen,	nitric	oxide	[50-61]	or	carbon	monoxide	[62]	are	most	interesting.	Another	
most	 interesting	application	of	volatiles	 is	 their	use	 in	 search	operations	 [63,	64].	The	potential	of	
volatiles	and	of	breath	analysis	for	clinical	diagnosis	and	therapeutic	monitoring	is	enormous,	even	
though	at	the	present	stage	there	are	only	very	few	breath	tests	which	have	got	approval	by	FDA	or	
by	 the	 European	Medicines	 Agency	 (EMA).	 In	 particular,	 no	 breath	 tests	 based	 on	 endogenously	
produced	volatile	biomarkers	for	cancer	are	FDA-	or	EMA-approved.	

The	main	reasons	for	the	pre-maturity	of	cancer	breath	analysis	in	real	clinical	settings	is	related,	in	
general,	to	the	lack	of	standardization	and	to	the	poor	knowledge	of	the	biochemical	pathways	and	
exhalation	 kinetics	 of	 the	 cancer-related	 VOCs.	 The	 standardization	 aspects	 and	 the	 biochemical	
pathways	of	the	cancer-related	VOCs	were	presented	and	discussed	in	earlier	papers	[18,	65-67].		In	
the	present	review,	we	focus	on	the	discussion	of	the	exhalation	kinetics	of	the	cancer-related	VOCs.	
The	 exhalation	 kinetics	 can	 be	 determined	 by	 actual	 real-time	 measurements	 under	 different	
conditions	[68-76]	or	by	simulation	of	the	flow	of	some	compound	within	the	body	[70,	77-83].	With	
this	in	mind,	we	present	a	list	of	112	tentative	cancer-related	VOCs	published	in	the	literature	during	
the	 last	decade.	Then,	we	classify	the	112	cancer-related	VOCs	with	respect	to	their	“fat-to-blood”	
and	 “blood-to-air”	 partition	 coefficients	 and	 show	 how	 these	 partition	 coefficients	 provide	
estimation	on	the	relative	concentrations	in	alveolar	breath,	blood	and	the	fat	compartment	of	the	
human	body.	Based	on	 the	generated	ensemble	of	 the	physicochemical	data,	we	discuss	how	 the	
balance	between	all	of	these	factors	determines	the	exhalation	kinetics	of	cancer	VOCs.	

	

1.2.	Exhalation	kinetics	of	cancer	VOCs	

To	 illustrate	 the	 exhalation	 kinetics	 of	 cancer	 VOCs,	 we	 present	 isoprene	 as	 a	 representative	
example.	Isoprene	is	the	most	prominent	hydrocarbon	in	exhaled	breath,	appearing	at	∼100	ppb	in	
healthy	persons	who	do	not	exert	any	effort	[1,	84].	In	humans	it	is	believed	to	be	synthesized	in	the	



mevalonate	pathway	[85-87].	It	can	be	measured	in	real-time	during	an	experiment	performed	at	a	
stationary	bicycle	[69,	79,	82]	or	even	during	sleep	[68,	72].	

Recently,	 it	 was	 shown	 that	 isoprene	 appears	 at	 lower	 concentration	 in	 exhaled	 breath	 of	 lung	
cancer	 [88]	 and	 breast	 cancer	 patients	 [89],	 compared	 to	 healthy	 volunteers.	 So	 far,	 this	 result	 is	
corroborated	by	 the	observation	 that	 the	decrease	 in	concentration	of	 isoprene	 is	 correlated	with	
the	 immune	 activation	 as	 measured	 by	 the	 neopterin	 concentration	 in	 blood	 [90].	 While	 these	
findings	 offer	 isoprene	 as	 a	 potential	 cancer	 biomarker,	 it	 is	 important	 to	 know	 that	 the	
concentration	of	 isoprene	depends	very	much	on	the	specific	sampling	protocol	[69-72,	78,	81,	82,	
91].	 In	 either	 case,	 the	 clear	 isoprene’s	 in-situ	 signals	 achieved	 by	 on-line	 mass-spectrometry	
techniques	 make	 it	 an	 ideal	 candidate	 for	 the	 investigation	 of	 cancer-related	 VOC	 exhalation	
kinetics.	

Figure	1	shows	the	output	of	isoprene	(in	nmol/L)	during	an	experiment	with	a	healthy	volunteer	on	
a	stationary	bicycle.	For	the	sake	of	comparison,	the	output	of	acetone	(in	arbitrary	units)	and	CO2	
(in	L/min)	are	presented	on	the	same	figure,	too.	The	specific	investigations	of	isoprene	and	acetone	
have	 the	 advantage	 that	 the	 respective	 concentrations	 in	 exhaled	 breath	 are	 high	 (∼100	 ppb	 and	
∼400	 ppb,	 respectively),	 which	 makes	 measurement	 and	 demarcation	 of	 exhaled	 vs.	 inhaled	
concentrations	 comparatively	 easy.	 The	protocol	 of	 this	 experiment	 changes	 between	 rest	 phases	
and	 75	 W	 workload	 pedaling	 phases.	 During	 the	 first	 pedaling	 phase,	 the	 output	 of	 isoprene	
increases	by	a	factor	of	∼10,	and	subsequently	decreases	exponentially	(still	during	pedaling	phase),	
with	 a	 further	 decrease	 back	 to	 the	 baseline	 concentration	 during	 the	 rest	 phase.	 When	 the	
volunteer	starts	to	pedal	again,	the	increase	in	isoprene	output	is	much	smaller	than	during	the	first	
pedaling	phase.	After	another	rest	phase,	resumption	of	the	pedaling	increases	the	isoprene	output,	
but	at	a	rather	low	level.	It	takes	approximately	2	hours	to	resynthesize	isoprene	in	the	body	and	to	
fill	up	the	isoprene	stores	in	such	a	way	that	the	huge	increase	in	isoprene	output	by	a	factor	of	∼10	
appears	 again.	 Putting	 these	 findings	 in	 a	 more	 specific	 perspective,	 it	 is	 likely	 that	 isoprene	 is	
produced	and	stored	in	the	periphery	of	the	human	body,	probably	in	the	muscles	[79,	91].	During	
exertion	 of	 an	 effort,	 the	 blood	 flow	 through	 the	 muscles	 increases	 and	 leads	 to	 transport	 of	
isoprene	 from	 the	 muscles	 to	 the	 lungs,	 where	 it	 is	 exhaled.	 The	 exponential	 decay	 of	 isoprene	
output	 (still	 during	pedaling	phase)	 is	 a	 consequence	of	 the	depletion	of	 isoprene	 in	 the	muscles.	
During	 the	 rest	phase,	 the	blood	 flow	 through	 the	muscles	goes	back	 to	baseline	and	so	does	 the	
isoprene	concentration.	It	 is	 important	to	note	in	this	context	that	the	increase	of	concentration	in	
breath	during	exertion	of	an	effort	indicates	that	the	specific	choice	of	the	breath	sampling	protocol	
(e.g.,	quietly	sitting,	standing,	after	a	period	of	rest,	etc.)	is	of	great	importance	for	both	healthy	and	
cancer	 states	 [92].	 In	particular,	different	 sampling	protocols	may	 result	 in	 very	different	 isoprene	
concentrations	 (up	 to	 a	 factor	 of	∼5).	We	 expect	 that	 a	 similar	 situation	 is	 true	 for	many	 volatile	
cancer	markers	[70].	

To	get	a	more	thorough	look	on	the	exhalation	kinetics	of	VOCs,	it	is	important	to	know	which	VOCs	
behave	according	to	the	Farhi	equation	[93]:	
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The	Farhi	equation	is	a	first	very	important	step	in	modeling	of	the	exhalation	kinetics	[69-72,	78,	80-
82,	91].	This	equation	 relates	 the	alveolar	concentration	 (Calveolar)	of	a	VOC	to	 the	concentration	 in	
mixed	venous	blood	( vC ).	As	seen	in	this	equation,	a	decrease	in	the	concentration	during	exertion	

of	an	effort	happens	because	the	alveolar	ventilation	( AV& )	usually	increases	more	strongly	than	the	

cardiac	output	 ( QV& ).	An	example	of	a	compound	 that	decreases	 in	concentration	during	effort	 (in	

line	with	Farhi’s	equation)	is	butane.[70]		

An	important	physicochemical	constant	in	the	Farhi	equation	is	the	‘blood:air’	partition	coefficient	(

b:aλ ).	 For	 isoprene,	 this	 partition	 coefficient	 is	 approximately	 0.95	 (mol/L)/(mol/L)	 [94,	 95].	 This	

means	 that	 the	 concentration	 of	 isoprene	 in	 blood	 is	 ∼95%	 of	 the	 concentration	 in	 alveolar	 air.	
Incidentally,	the	‘blood:air’	partition	coefficient	can	be	quite	different	from	the	‘water:air’	partition	
coefficient	 ( w:aλ )	at	37	°C.	 In	case	of	 isoprene,	 the	 w:aλ is	approximately	0.28.	The	 reason	 for	 this	

difference	is	that	blood	contains	lipids,	which	take	up	a	larger	amount	of	isoprene	than	water.	

Another	 important	 physicochemical	 constant	 is	 the	 ‘fat:blood’	 partition	 coefficient	 ( f:bλ ).	 For	

isoprene,	 this	 λf:b	 is	 approximately	 82.0	 (mol/L)/(mol/L)	 [96].	 This	 means	 that	 the	 equilibrium	
concentration	 of	 isoprene	 in	 fat	 is	 about	 82	 times	 the	 concentration	 of	 isoprene	 in	 blood.	 For	 an	
isoprene	 concentration	 of	 150	 ppb	 (∼5.8×10-9	 mol/L)	 in	 alveolar	 air,	 the	 estimated	 equilibrium	
concentration	in	blood	is	∼5.5×10-9	mol/L	(=0.95*5.8×10-9	mol/L)	and	the	estimated	concentration	in	
fat	is	4.5×10-7	mol/L	(=82*5.5×10-9	mol/L).	

For	 a	 70	 kg	person	of	 1.80	m	height,	 the	 volume	of	blood	 is	∼6	 L	 and	 the	amount	of	 fat	 tissue	 is	
estimated	to	be	12.78	L	[97].	In	6	L	of	blood	and	12.78	L	of	fat,	we	estimate	the	amount	of	isoprene	
to	be	∼3.3×10-8	mol	 (=	6×5.5×10-9	mol)	and	∼5.8×10-6	mol	 (=12.78×4.5×10-7	L),	respectively.	Hence	
the	amount	of	isoprene	in	fat	is	estimated	to	be	∼175	times	the	amount	in	blood.	With	this	in	mind,	
it	 is	 reasonable	 to	 claim	 that	 the	 exhalation	 kinetics	 of	 cancer-related	 VOCs	 depends	 on	 the	
concentration	 of	 the	 respective	 VOC	 in	 different	 compartments	 of	 the	 body,	 on	 the	 partition	
coefficients	 between	 the	 different	 compartments	 (e.g.,	λb:a	 and	 on	 the	 fat:air	 partition	 coefficient	
λf:a),	and	on	the	diffusion	kinetics	between	different	compartments.	In	the	following	section,	we	will	
present	ways	to	obtain	each	of	these	parameters	and	discuss	the	inter-relationship	between	these	
parameters	as	well	as	with	the	exhaled	VOC-related	cancer.	

	

2.	Estimating	the	λb:a	and	λ f:b	

For	 the	 majority	 of	 VOCs	 of	 interest,	 the	 λb:a	 and	 λf:b	 have	 not	 been	 measured.	 Nevertheless,	 a	
number	of	papers	present	relevant	data	on	λb:a,	λf:a	and	λf:b	of	VOCs	[94,	95,	98-106].	In	addition,	the	
λb:a	of	many	hydrocarbons	can	be	estimated	based	on	the	respective	λb:a	of	similar	(but	not	identical)	
alkanes	and	isoalkanes	which	have	been	investigated	in	Ref.	[95].	Finally,	one	may	estimate	λb:a	using	
the	formula	given		by	Poulin	&	Krishnan	[107]	

       λb:a = λo:w· λw:a· (a+0.3b) + λw:a· (c+0.7b)   (2) 



Here,	a≈0.0033	is	the	fraction	of	neutral	lipids	in	the	blood,	b≈0.0024	is	the	fraction	of	phospholipids	
in	 the	 blood,	 and	 c≈0.82	 is	 the	 fraction	 of	 water	 in	 the	 blood.	 The	 octanol:water	 partition	
coefficients	 (λo:w)	 can	be	 compiled	 from	Scifinder	 (https://scifinder.cas.org),	whereas	 the	water:air	
partition	coefficients	(λw:a;	Henry’s	constants)	at	25°C	can	be	taken	from	the	compilation	of	Sander	
[108]	or	estimated	by	the	EPI	SuiteTM	software	developed	at	the	US	environmental	protection	agency	
(EPA,	 http://www.epa.gov/opptintr/exposure/pubs/episuitedl.htm).	 Otherwise,	 λw:a	 can	 be	
estimated	by	use	of	surrogate	compounds,	for	which	λw:a	is	known,	with	correction	by	the	quotient	
of	 the	 respective	 vapor	 pressures	 (of	 the	 compound	 in	 question	 and	 its	 surrogate	 compound).	
Furthermore,	 in	 order	 to	 estimate	 the	 Henry	 constants	 at	 37°C,	 the	 derivative	 dln(λw:a)/d(1/T)	 as	
given	in	the	compilation	by	Sander	[108]	can	be	used,	or	the	corresponding	enthalpy	of	vaporization	
(ΔHvap)	divided	by	the	gas	constant,	R.	

Similar	to	the	λb:a,	one	may	estimate	λf:a	using	the	method	of	Poulin	&	Krishnan,[107]	given	by	the	
equation:	

     λf:a = λo:w· λw:a·(A+0.3B) + λw:a· (C+0.7B)   (3) 

Here,	A≈0.798	 is	 the	fraction	of	neutral	 lipids	 in	the	adipose	tissue	(fat),	B≈0.002	 is	 the	fraction	of	
phospholipids	in	the	adipose	tissue,	and	C≈0.15	is	the	fraction	of	water	in	the	adipose	tissue.	

	

3.	Partitions	coefficients	of	cancer-related	VOCs		

During	the	past	decade,	some	112	tentative	cancer	VOCs	in	exhaled	breath	have	been	reported	[7,	
30,	 67,	 109-121].	 There	 were	 36	 hydrocarbons,	 7	 alcohols,	 8	 aldehydes,	 2	 acids,	 12	 ketones,	 12	
aromatic	 compounds,	 2	 heterocycles,	 2	 nitriles,	 5	 terpenes,	 7	 esters,	 2	 ethers,	 1	 sulfide,	 2	
halogenated	 compounds,	 and	 15	 compounds	 from	 other	 chemical	 classes.	 Examples	 of	
hydrocarbons	among	this	list	of	112	VOCs	are	2-methyl-propane	(CAS	75-28-5)	or	5-methyl-tridecane	
(CAS	25117-31-1).	Example	of	an	alcohol	is	1-octen-3-ol	(CAS	3391-86-4).	Examples	of	aldehydes	are	
pentanal,	hexanal,	octanal	and	nonanal.	An	example	for	a	ketone	 is	6-methyl-5-hepten-2-one	(CAS	
110-93-0).	An	example	of	an	aromatic	compound	is	benzophenone	(CAS	119-61-9).	An	example	of	a	
terpene	 is	 "trans-caryophyllene"	 (CAS	 87-44-5).	 In	 addition,	 also	 biomarkers	 in	 exhaled	 breath	
condensate	have	been	published	[122].	

The	112	cancer	VOCs	in	exhaled	breath	could	be	considered	as	being	on	an	equal	footing	in	exhaled	
breath.	 Nevertheless,	 the	 very	 different	 blood:air	 partition	 coefficients	 (λb:a)	 imply	 that	 the	
respective	concentrations	in	blood	are	rather	different,	even	if	the	concentration	in	breath	would	be	
the	 same.	 Each	 of	 the	 mentioned	 112	 compounds	 can	 be	 looked	 upon	 from	 many	 different	
viewpoints.	Here	are	a	few	examples:	

• 2-Methyl-propane	(CAS	75-28-5)	commonly	appears	in	human	breath,	 in	smokers	and	non-
smokers	[123].	It	is	also	released	by	Streptococcus	pneumonia	[31].	It	has	been	suggested	as	
volatile	biomarker	for	breast	cancer	in	exhaled	breath	[111].	

• 5-Methyl-tridecane	 (CAS	 25117-31-1)	 has	 been	 suggested	 to	 be	 a	 volatile	 biomarker	 of	
breast	cancer	[111]	and	belongs	to	the	class	of	monomethylated	hydrocarbons,	which	were	



proposed	 to	 be	 used	 in	 the	 "breath	methylated	 alkane	 contour"	 (BMAC)	 for	 detection	 of	
cancer	and	other	diseases	[124-130].	

• Benzophenone	 (CAS	 119-61-9)	 was	 observed	 in	 the	 context	 of	 feces,[131]	 axillary	 sweat	
[132]	and	saliva	[133]	and	was	suggested	as	a	volatile	biomarker	for	lung	cancer	[134].	

• Trans-Caryophyllene	 (CAS	 87-44-5)	 has	 been	 observed	 on	 the	 surface	 of	 juicy	 grapefruits	
[135],	in	feces	[131],	skin	emanations	[133],	human	breast	milk	and	saliva	[133,	136].	

• 6-Methyl-5-hepten-2-one	 (CAS	 110-93-0),	 is	 produced	 on	 skin	 by	 degradation	 of	 squalene	
(and,	 in	 particular	 so	 during	 the	 influence	 of	 ozone).	 This	 compound	 is,	 for	 example,	
observed	when	healthy	volunteers	sit	in	a	chamber	so	that	the	skin	emanations	are	collected	
and	 observed	 in	 the	 chamber	 indoor	 air.	 There	 are	 three	 volatiles,	 acetone,	 6-methyl-5-
hepten-2-one,	and	acetaldehyde,	which	exhibit	especially	high	emission	 rates	 through	skin	
exceeding	 100	 fmol×cm-2×min-1	 without	 ozone	 influence	 [137].	 Interestingly,	 6-methyl-5-
hepten-2-one	has	recently	be	observed	in	exhaled	breath	of	gastric	cancer	patients.[121]	

Figure	 2	 presents	 the	 estimated	 values	 for	 the	 negative	 logarithm	 of	 the	 blood:air	 partition	
coefficients,	 viz.	 –log(λb:a).	 These	 λb:a	 are	 distributed	 over	 12	 orders	 of	 magnitude.	 Hence,	 if	 the	
concentrations	 of	 the	 cancer	 VOCs	 would	 be	 equal	 in	 exhaled	 breath	 −	 e.g.,	 at	 1	 ppb	 −	 their	
concentrations	 in	 blood	 would	 be	 very	 different	 and	 also	 be	 distributed	 over	 12	 orders	 of	
magnitude.	 An	 analogous	 situation	 holds	 for	 the	 λf:b	 (see	 Figure	 3).	 Similarly	 as	 above,	 if	 the	
concentrations	 of	 the	 cancer	 VOCs	 would	 be	 equal	 in	 exhaled	 breath	 −	 e.g.,	 at	 1	 ppb	 −	 their	
concentrations	in	fat	would	be	very	different	and	be	distributed	over	8	orders	of	magnitude.	For	this	
reason	 when	 studying	 VOCs’	 concentrations	 in	 cancer	 and	 relating	 them	 to	 potential	 metabolic	
pathways	one	should	estimate	 the	blood/tissue	concentration	and	by	 these	validate	 the	underline	
metabolic	assumption.	That	is,	elevated	concentrations	in	the	breath	of	a	certain	molecule	will	not	
necessary	reflect	the	same	magnitude	of	elevation	in	the	tissue.	

That	 volatile	 cancer	 biomarkers	 vary	 in	 concentration	 over	 many	 orders	 of	 magnitude	 is	 most	
surprising,	and	should	change	the	way	we	look	at	these	compounds.	Typically,	a	high	λf:b	(as,	e.g.,	for	
3-methyl-hexane)	 will	 lead	 to	 high	 concentration	 of	 the	 respective	 volatile	 compound	 in	 lipid	
membranes	(e.g.,	in	endothelial	cells	demarcating	the	blood	vessels).	High	concentrations	within	the	
lipid	 membranes	 may	 change	 their	 permeability	 properties.	 It	 can	 be	 expected,	 that	 lipophilic	
volatiles	bear	considerable	influence	on	pathophysiology	of	disease.	

The	fact	that	these	cancer-related	VOCs	have	very	different	physicochemical	properties	is	expected	
to	 be	 an	 advantage.	 The	 different	 λb:a	 and	 λf:b	 imply	 that	 the	 concentrations	 in	 different	
compartments	(blood,	fat,	muscle,	etc.)	are	very	different.	As	a	consequence,	the	exhalation	kinetics	
can	 be	 expected	 to	 be	 different.	 The	 release	 of	 these	 compounds	 from	 their	 “main	 storage”	
compartment	 depends	 on	 the	 blood	 flow	 through	 this	 compartment	 during	 sampling.	 Different	
sampling	protocols	 (with	or	without	exertion	of	 an	effort,	 or	during	 increased	blood	 flow	 through	
intestinal	 part	 of	 the	 body	 due	 to	 digestion	 processes	 after	 a	 meal,	 etc.)	 lead	 to	 different	
concentrations	of	volatiles.	Measurements	with	different	 sampling	protocols	 could	be	done	 for	an	
arbitrary	VOC	and,	in	particular,	for	the	112	cancer-related	VOCs	mentioned	above.	In	this	context,	
lung	and	upper	airways	 cancer	 cells	hold	a	distinguished	 status	as	due	 to	 their	 anatomic	 location,	



which	 allows	 them	 to	 release	 cancer-related	 VOCs	 directly	 into	 the	 exhaled	 air.	 Thus,	 the	 breath	
levels	 of	 these	 species	 can	 be	 enriched	 as	 compared	 to	 the	 levels	 expected	 from	 their	 blood	
concentrations.	Consequently,	the	breath	and	blood	concentrations	of	these	volatile	cancer	markers	
cannot	easily	be	related	using	e.g.	the	Farhi	equation.	Nevertheless,	from	the	breath	analysis	point	
of	view	the	location	of	these	cancers	is	beneficial	as	their	VOCs’	fingerprints	can	be	directly	detected.	

Detailed	investigations	and	even	real-time	analysis	should	be	possible	for	many	of	these	112	cancer	
VOCs	in	the	foreseeable	future.	While	all	of	these	112	compounds	are	the	result	of	empirical	studies,	
additional	important	aspects	that	would	be	needed	to	be	addressed	concern	the	connection	of	such	
compounds	 to	 real	 logical	 metabolic	 processes	 related	 to	 the	 disease.	 By	 doing	 so,	 one	 could	
biologically	 relate	 the	 concentrations	 emitted	 in	 breath,	 to	 concentrations	 in	 the	 different	 body	
compartments,	 and	 thus	 suggest	 indication	 for	 the	 disease	 development	 status.	 From	 a	
technological	 point	 of	 view	 it	 would	 be	 wanted	 to	 specify	 certain	 threshold	 concentrations	 of	
volatiles	 in	 breath	 to	 guide	 changes	 in	 the	 clinical	 treatment.	 This	 would	 result	 in	 a	 therapeutic	
monitoring	guided	by	the	exhaled	concentrations	of	volatiles.	By	adapting	the	analytical	and	nano-
technology	in	this	direction	one	can	achieve	an	on-line	response	by	physicians.		

	

4.	Conclusions	

The	 112	 volatile	 cancer	 biomarkers	 published	 during	 the	 last	 decade	 have	 very	 different	
physicochemical	properties.	Up	to	now,	no	advantage	has	been	drawn	from	this	fact.	In	this	review,	
we	showed	that	the	blood:breath	and	blood:fat	partition	coefficients	are	very	different	for	the	112	
cancer-related	 VOCs.	 Even	 if	 the	 concentration	 of	 these	 112	 compounds	 would	 be	 identical	 in	
exhaled	 breath	 (e.g.,	 1	 ppb),	 the	 respective	 concentrations	 in	 blood	 and	 in	 the	 fat	 compartment	
would	vary,	respectively,	over	12	and	8	orders	of	magnitude.	This	means	that	different	compounds	
may	 be	 stored	 (or	 exist	 in	 equilibrium)	 in	 different	 compartments	 of	 the	 body.	 To	 gain	 a	 more	
comprehensive	understanding	on	the	cancer-related	VOCs,	a	combined	information	on	appearance	
and	 concentration	 of	 these	 VOCs	 in	 breath	 and	 blood	 [1],	 or	 in	 breath	 and	 urine	 or	 saliva,	 is	
critical.[138].	 Further	 information	 can	 be	 achieved	 by	 investigating	 exhaled	 breath	 and	 resected	
tumor	tissue	from	the	same	patient	[11,	30].		For	a	simple	point	of	care	screening	tool,	knowing	the	
exhalation	 kinetics	 and	 optimization	 of	 the	 sampling	 procedure	 is	 important.	 For	 research	 and	
eventual	pharmaceutical	treatment	also	the	understanding	of	blood	and	tissue	concentration	would	
be	critical.	 	
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Figure	 1:	Output	 of	 isoprene	 (nmol/min),	 acetone	 (arbitrary	 units)	 and	 CO2	 (L/min)	 for	 a	 healthy	
volunteer	during	rest	phases	and	exertion	of	an	effort	of	75W	on	a	stationary	bicycle.	In	case	of	CO2,	
15	exhalations	per	minute	with	3	Liters	of	alveolar	air	with	4%	of	CO2	correspond	to	1.8	Liters/min	of	
CO2	(=	15*3*0.04	L/min).	 Isoprene	output	through	exhaled	breath	may	increase	up	to	a	factor	∼10	
during	exertion	of	an	effort,	whereas	the	concentration	in	breath	increases	up	to	a	factor	∼5.	In	this	
experiment,	two	steady-states	of	isoprene	exhalation	appear,	(A)	at	∼25	nmol/min	(corresponding	to	
production	of	isoprene	in	the	liver)	and	(B)	at	∼100	nmol/L	(corresponding	to	production	of	isoprene	
in	the	muscles).	In	a	person	with	high	cholesterol	blood	level,	the	production	of	isoprene	in	the	liver	
would	 be	 decreased	 under	 the	 influence	 of	 statins	 [139].	 Reproduced	 from	 Ref.	 [69],	 DOI	
10.1088/1752-7155/3/2/027006,	©	IOP	Publishing.	Reproduced	by	permission	of	IOP	Publishing.	All	
rights	reserved.	

	

	



	

Figure	2:	Partition	coefficient,	-log(λb:a),	for	112	volatile	cancer	biomarkers	published	during	the	last	
decade	[7,	30,	67,	109-121],	as	well	as	acetone	and	2-pentanone	for	comparison.	The	color	for	the	
different	 compound	 names	 is	 chosen	 according	 to	 the	 chemical	 class.	 Compounds	 with	 a	 higher	
log(λb:a)		will	tend	to	be	in	the	blood	and	vice	versa.		

	 	



	

Figure	3:	Partition	coefficient,	-log(λf:b),	for	112	volatile	cancer	biomarkers	published	during	the	last	
decade	[7,	30,	67,	109-121],	as	well	as	acetone	and	2-pentanone	for	comparison.	The	color	for	the	
different	 compound	 names	 is	 chosen	 according	 to	 the	 chemical	 class.	 Compounds	 with	 a	 higher	
log(λf:b)		will	tend	to	be	in	the	fat	and	vice	versa.		
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