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RELIABILITY OF OLD AND NEW VENTRICULAR
FIBRILLATION DETECTION ALGORITHMS FOR AUTOMATED

EXTERNAL DEFIBRILLATORS

ANTON AMANN1, ROBERT TRATNIG2, KARL UNTERKOFLER2

Abstract. A pivotal component in automated external defibrillators (AEDs)

is the detection of ventricular fibrillation by means of appropriate detection
algorithms. In scientific literature there exists a wide variety of methods and

ideas for handling this task. These algorithms should have a high detection
quality, be easily implementable, and work in real time in an AED. Testing of

these algorithms should be done by using a large amount of annotated data

under equal conditions.
For our investigation we simulated a continuous analysis by selecting the

data in steps of one second without any preselection. We used the complete

BIH-MIT arrhythmia database, the CU database, and the files 7001 - 8210 of
the AHA database. All algorithms were tested under equal conditions.

For 5 well-known standard and 5 new ventricular fibrillation detection al-

gorithms we calculated the sensitivity, specificity, and the area under their
receiver operating characteristic. In addition, two QRS detection algorithms

were included. These results are based on approximately 330 000 decisions

(per algorithm).
Our values for sensitivity and specificity differ from earlier investigations

since we used no preselection. The best algorithm is a new one, presented here
for the first time.

1. Introduction

Sudden cardiac arrest is a major public health problem and one of the leading
causes of mortality in the western world. In most cases, the mechanism of onset
is a ventricular tachycardia that rapidly progresses to ventricular fibrillation [21].
Approximately one third of these patients could survive with the timely employment
of a defibrillator.

Besides manual defibrillation by an emergency paramedic, bystander defibril-
lation with (semi-)automatic external defibrillators (AEDs) has also been recom-
mended for resuscitation. These devices analyze the electrocardiogram (ECG) of
the patient and recognize whether a shock should be delivered or not, as, e.g., in
case of ventricular fibrillation (VF). It is of vital importance that the ECG analysis
system used by AEDs differentiates well between VF and a stable but fast sinus
rhythm (SR). An AED should not deliver a shock to a collapsed patient not in
cardiac arrest. On the other hand, a successfully defibrillated patient should not
be defibrillated again.

1BioMedical Engineering OnLine 2005, 4:60, http://www.biomedical-engineering-online.com/

content/4/1/60
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The basis of such ECG analysis systems of AEDs is one or several mathematical
ECG analysis algorithms. The main purpose of this paper is to compare various
old and new algorithms in a standardized way.

To gain insight into the quality of an algorithm for ECG analysis, it is essential
to test the algorithms under equal conditions with a large amount of data, which
has already been commented on by qualified cardiologists.

Commonly used annotated databases are Boston’s Beth Israel Hospital and
MIT arrhythmia database (BIH-MIT), the Creighton University ventricular tach-
yarrhythmia database (CU), and the American Heart Association database (AHA).

We used the complete CU and BIH-MIT arrhythmia database, and the files
7001 - 8210 of the AHA database, [1], [14], [13]. For each algorithm approximately
330 000 decisions had been calculated. No preselection of certain ECG episodes was
made, which mimics the situation of a bystander more accurately.

In this investigation we analyzed 5 well-known standard and 5 new ventricu-
lar fibrillation detection algorithms. In addition, two QRS detection algorithms
were included. The results are expressed in the quality parameters Sensitivity and
Specificity. In addition to these two parameters, we calculated the Positive Pre-
dictivity and Accuracy of the investigated algorithms. Furthermore, the calculation
time in comparison to the duration of the real data was calculated for the different
algorithms. The calculation times were obtained by analyzing data from the CU
database only.

The quality parameters were obtained by comparing the VF/no VF decisions
suggested by the algorithm with the annotated decisions suggested by cardiolo-
gists. The cardiologists’ decisions are considered to be correct. We distinguished
only between ventricular fibrillation and no ventricular fibrillation, since the anno-
tations do not include a differentiation between ventricular fibrillation and ventric-
ular tachycardia. The closer the quality parameters are to 100%, the better the
algorithm works. Since an AED has to differentiate between VF and no VF, the
sensitivity and specificity are the appropriate parameters.

To represent the quality of an algorithm by its sensitivity and specificity bears
some problems. A special algorithm can have a high sensitivity, but a low speci-
ficity, or conversely. Which one is better? To arrive at a common and single quality
parameter, we use the receiver operating characteristic (ROC). The sensitivity is
plotted in dependence of (1−specificity), where different points in the plot are
obtained by varying the critical threshold parameter in the decision stage of the
algorithm. By calculating the area under the ROC curve (we call this value “inte-
grated receiver operating characteristic”, and denote it by IROC), it is possible to
compare different algorithms by one single value. Figure 1 shows a typical example
of an ROC curve.

Section 2 provides the necessary background for the algorithms under investi-
gation. Section 3 describes the methods of evaluation and represents our results
in Table 1-3 and Figure 5 and 6. A discussion of the results follows in Section 4.
Appendix A recalls the basic definitions of the quality parameters Sensitivity, Speci-
ficity, Positive Predictivity, Accuracy, and ROC curve. In Appendix B we provide
more details on one of the new algorithms.
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Figure 1. Receiver operating characteristic for the algorithm
“complexity measure” described in the introduction, for a window
length of 8 s. The calculated value for the area under the curve,
IROC, is 0.87.
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2. Algorithms

The ventricular fibrillation detection algorithms considered here are partly taken
from the scientific literature, five of them are new. Some of them have been evalu-
ated in [5] and [7].

For all algorithms we used the same prefiltering process. First, a moving average
filter of order 5 is applied to the signal1. This filter removes high frequency noise
like interspersions and muscle noise. Then, a drift suppression is applied to the
resulting signal. This is done by a high pass filter with a cut off frequency of one
Hz. Finally, a low pass Butterworth filter with a limiting frequency of 30 Hz is
applied to the signal in order to suppress needless high-frequency information even
more. This filtering process is carried out in a MATLAB routine. It uses functions
from the “Signal Processing Toolbox”2. In order to obtain the ROC curve we have
to change a parameter which we call “critical threshold parameter” below.

TCI algorithm. The threshold crossing intervals algorithm (TCI) [18] operates
in the time domain. Decisions are based on the number and position of signal
crossings through a certain threshold.

1Fixing the order of 5 seems to bear a problem. Data with different frequencies (AHA, CU
. . . 250 Hz, BIH-MIT . . . 360 Hz) are filtered in a different way. But this is neglectable, when the
Butterworth filter is applied afterwards.

2We used MATLAB R13 – R14 and “Signal Processing Toolbox” version 6.1 – 6.3 on a
Power Mac G5, 2GHz.
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Figure 2. Binary signal with 2 pulses in threshold crossing in-
tervals algorithm.

2.1 TCI algorithm

The threshold crossing intervals algorithm (TCI) [17] operates in the time domain. Decisions
are based on the number and position of signal crossings through a certain threshold.

First, the digitized ECG signal is filtered by the procedure mentioned above. Then a binary
signal is generated from the preprocessed ECG data according to the position of the signal
above or below a given threshold. The threshold value is set to 20% of the maximum value
within each one second segment S and recalculated every second. Subsequent data analysis
takes place over successive one second stages. The ECG signal may cross the detection
threshold one or more times, and the number of pulses is counted. For each stage, the
threshold crossing interval TCI, this is the average interval between threshold crossings, is
calculated as follows

TCI =
1000

(N − 1) + t2
t1+t2

+ t3
t3+t4

[ms]. (1)

The following picture illustrates the situation
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Here, N is the number of pulses in S. t1 is the time interval from the beginning of S back to
the falling edge of the preceding pulse. t2 is the time interval from the beginning of S to the
start of the next pulse. t3 is the interval between the end of the last pulse and the end of S
and t4 is the time from the end of S to the start of the next pulse.

If TCI ≥ 400ms, sinus rhythm (SR) is diagnozed. Otherwise sequential hypothesis testing
[17] is used to separate ventricular tachycardia (VT) from ventricular fibrillation (VF).

As stated above, the original algorithm works with single one second time segments, (see [17],
page 841). In addition, in this study we also select 6 consecutive one second episodes. In this
case final SR or VF decision is taken if diagnozed in four or more segments.

The varying parameter to obtain the IROC is TCI.

3

First, the digitized ECG signal is filtered by the procedure mentioned above.
Then a binary signal is generated from the preprocessed ECG data according to the
position of the signal above or below a given threshold. The threshold value is set
to 20% of the maximum value within each one-second segment S and recalculated
every second. Subsequent data analysis takes place over successive one-second
stages. The ECG signal may cross the detection threshold one or more times, and
the number of pulses is counted. For each stage, the threshold crossing interval
TCI is the average interval between threshold crossings and is calculated as follows

(1) TCI =
1000

(N − 1) + t2
t1+t2

+ t3
t3+t4

[ms].

Figure 2 illustrates the situation. Here, N is the number of pulses in S. t1 is the
time interval from the beginning of S back to the falling edge of the preceding pulse.
t2 is the time interval from the beginning of S to the start of the next pulse. t3 is
the interval between the end of the last pulse and the end of S and t4 is the time
from the end of S to the start of the next pulse.

If TCI ≥ TCI0 = 400ms, SR is diagnosed. Otherwise sequential hypothesis
testing [18] is used to separate ventricular tachycardia (VT) from VF.

As stated above, the original algorithm works with single one-second time seg-
ments, (see [18], page 841). To achieve this the algorithm picks a 3-second episode.
The first second and the third second are used to determine t1 and t4. The 2nd
second yields the value for TCI. When picking an 8-second episode we can hence
evaluate 6 consecutive TCI values. Final SR decision is taken if diagnosed in four
or more segments otherwise the signal is classified as VF.

The critical threshold parameter to obtain the ROC is TCI0.

ACF algorithm. The autocorrelation algorithms (ACF95
3 and ACF99

4) [3] ana-
lyze the periodicities within the ECG. Given a discrete signal x(m), the short-term

3Probability of 95% in the Fisher distribution → α = 0.05

in F(α, k1, k2) with k1 = 1, k2 = 5
4 Probability of 99% in the Fisher distribution → α = 0.01

in F (α, k1, k2) with k1 = 1, k2 = 5
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autocorrelation function (ACF) of x(m) with a rectangular window is calculated
by

(2) R(k) =
N−1−k∑
m=0

x(m)x(m+ k), k = 0, 1, 2, . . . , N − 1.

Here, this technique is used to separate VT and SR from VF. It is assumed that
VF signals are more or less aperiodic and SR signals are approximately periodic.

This assumption is however questionable since VF signals may have a cosine like
shape. Compare this assumption with the assumption made by the algorithm in
the next subsection.

Note that the autocorrelation function of a function f is connected to the Power
Spectrum of |f̂ |2 by the “Wiener-Khinchin Theorem”.

The detection algorithm performs a linear regression analysis of ACF peaks. An
order number i is given to each peak according to its amplitude. So, the highest
peak is called P0, etc., ranged by decreasing amplitudes. In a SR signal, which
is considered to be periodic or nearly periodic, a linear relationship should exist
between the peaks lag and their index number i. No such relationship should exist in
VF signals. The linear regression equation of the peak order and its corresponding
lag of m peaks in the ACF is described as

(3) yi = a+ bxi

where xi is the peak number (from 0 to (m− 1)), and yi is the lag of Pi.

x̄ = 1
m

∑m
i=1 xi, ȳ = 1

m

∑m
i=1 yi,

b =
∑m
i=1(xi − x̄)yi

(∑m
i=1(xi − x̄)2

)−1
.

a = ȳ − bx̄,(4)

In this study, m = 7. The variance ratio V R is defined by

(5) V R =
b

m∑
i=1

(xi − x̄)yi

R/(m− 2)
,

where

R =
m∑
i=1

(yi − ȳ − b(xi − x̄))2 .

If V R ≥ V R0 is greater than the Fisher statistics for degrees of freedom k1 = 1
and k2 = m− 2 = 5 with 95% (99%) probability, the rhythm is classified by ACF95

(ACF99) to be SR, otherwise it is VF.
The critical threshold parameter to obtain the ROC is V R0, (V R0 ≈ 6.61(16.3)

at 95% (99%)).

VF filter algorithm. The VF filter algorithm (VF) [9] applies a narrow band
elimination filter in the region of the mean frequency of the considered ECG signal.

After preprocessing, a narrow band-stop filter is applied to the signal, with
central frequency being equivalent to the mean signal frequency fm. Its calculated
output is the “VF filter leakage”. The VF signal is considered to be approximately
of sinusoidal waveform.
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The number N of data points in an average half period N = T/2 = 1/(2fm) is
given by

(6) N =
⌊
π

(
m∑
i=1

|Vi|

)(
m∑
i=1

|Vi − Vi−1|

)−1

+
1
2

⌋
,

where Vi are the signal samples, m is the number of data points in one mean period,
and b. . .c denotes the floor function. The narrow band-stop filter is simulated by
combining the ECG data with a copy of the data shifted by a half period. The
VF-filter leakage l is computed as

(7) l =

(
m∑
i=1

|Vi + Vi−N |

)(
m∑
i=1

(|Vi|+ |Vi−N |)

)−1

.

In the original paper [9] this algorithm is invoked only if no QRS complexes or
beats are detected. This is done by other methods. Since we employ no prior QRS
detection, we use the thresholds suggested by [5].

If the signal is higher than a third of the amplitude of the last by the VF-
filter detected QRS complex in a previous segment and the leakage is smaller than
l0 = 0.406, VF is identified. Otherwise the leakage must be smaller than l0 = 0.625
in order to be classified as VF.

The critical threshold parameter to obtain the ROC is the leakage l0.

Spectral algorithm. The spectral algorithm (SPEC) [2] works in the frequency
domain and analyses the energy content in different frequency bands by means of
Fourier analysis.

The ECG of most normal heart rhythms is a broadband signal with major har-
monics up to about 25 Hz. During VF, the ECG becomes concentrated in a band
of frequencies between 3 and 10 Hz (cf. [4], [15], with particularly low frequencies
of undercooled victims).

After preprocessing, each data segment is multiplied by a Hamming window
and then the ECG signal is transformed into the frequency domain by fast Fourier
transform (FFT). The amplitude is approximated in accordance with ref. [2] by
the sum of the absolute value of the real and imaginary parts of the complex
coefficients5. Let Ω be the frequency of the component with the largest amplitude
(called the peak frequency) in the range 0.5− 9 Hz. Then amplitudes whose value
is less than 5% of the amplitude of Ω are set to zero. Four spectrum parameters
are calculated, the normalized first spectral moment M

(8) M =
1
Ω

jmax∑
j=1

ajωj

jmax∑
j=1

aj

,

jmax being the index of the highest investigated frequency, and A1, A2, A3. Here ωj
denotes the j-th frequency in the FFT between 0 Hz and the minimum of (20Ω , 100
Hz) and aj is the corresponding amplitude. A1 is the sum of amplitudes between
0.5 Hz and Ω/2, divided by the sum of amplitudes between 0.5 Hz and the minimum
of (20Ω , 100 Hz). A2 is the sum of amplitudes between 0.7 Ω and 1.4 Ω divided

5Normally one would take the modulus of complex amplitudes
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by the sum of amplitudes between 0.5 Hz and the minimum of (20 Ω , 100 Hz). A3

is the sum of amplitudes in 0.6 Hz bands around the second to eighth harmonics
(2 Ω−8 Ω), divided by the sum of amplitudes in the range of 0.5 Hz to the minimum
of (20Ω , 100 Hz).

VF is detected if M ≤ M0 = 1.55, A1 < A1,0 = 0.19, A2 ≥ A2,0 = 0.45, and
A3 ≤ a3,0 = 0.09.

The critical threshold parameter to obtain the ROC is A2,0, the other threshold
parameters (A1,0, A3,0, M0) being kept constant.

Complexity measure algorithm. The complexity measure algorithm (CPLX)
[20] transforms the ECG signal into a binary sequence and searches for repeating
patterns.

Lempel and Ziv [10] have introduced a complexity measure c(n), which quanti-
tatively characterizes the complexity of a dynamical system.

After preprocessing, a 0− 1 string is generated by comparing the ECG data xi
(i = 1...n, n being the number of data points) to a suitably selected threshold.
The mean value xm of the signal in the selected window is calculated. Then xm
is subtracted from each signal sample xi. The positive peak value Vp, and the
negative peak value Vn of the data are determined.

By counting, the quantities Pc and Nc are obtained. Pc represents the number
of data xi with range 0 < xi < 0.1Vp and Nc the number of data xi with range
0.1Vn < xi < 0. If (Pc +Nc) < 0.4n, then the threshold is selected as Td = 0. Else,
if Pc < Nc, then Td = 0.2Vp, otherwise Td = 0.2Vn. Finally, xi is compared with
the threshold Td to turn the ECG data into a 0− 1 string s1s2s3 . . . sn. If xi < Td,
then si = 0, otherwise si = 1. Now, from this string a complexity measure c(n) is
calculated by the following method, according to [10].

If S and Q represent two strings then SQ is their concatenation. SQπ is the
string SQ when the last element is deleted. Let v(SQπ) denote the vocabulary
of all different substrings of SQπ. At the beginning, c(n) = 1, S = s1, Q = s2,
and therefore SQπ = s1. For generalization, now suppose S = s1s2 . . . sr and
Q = sr+1. If Q ∈ v(SQπ), then sr+1 is a substring of s1s2 . . . sr, therefore S does
not change. Q has to be renewed to be sr+1sr+2. Then it has to be judged if Q
belongs to v(SQπ) or not. This procedure has to be carried out until Q 6∈ v(SQπ),
now Q = sr+1sr+2 . . . sr+i, which is not a substring of s1s2 . . . srsr+1 . . . sr+i−1,
thus c(n) is increased by one. Thereafter S is combined with Q, and S is renewed
to be S = s1s2 . . . srsr+1 . . . sr+i, and at the same time Q has to be renewed to
be Q = sr+i+1. The above procedures are repeated until Q contains the last
character. At this time the number of different substrings of s1, s2, . . . , sn is c(n),
i.e., the measure of complexity, which reflects the rate of new pattern arising with
the increase of the pattern length n.

The normalized C(n) is computed:

(9) C(n) =
c(n)
b(n)

,

where b(n) gives the asymptotic behavior of c(n) for a random string:

(10) b(n) =
n

log2 n
.

Evidently, 0 ≤ C(n) ≤ 1. In order to obtain results that are independent of n, n
must be larger than 1000.
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Since n is given by window length wl times sampling rate, we choose wl = 8s.
If C < C0 = 0.173 the ECG is classified as SR, if 0.173 ≤ C ≤ 0.426 as VT, and

if C > C1 = 0.426 as VF. A shock is recommended only if C > C1.
The critical threshold parameter to obtain the ROC is C0.

Standard exponential algorithm. The standard exponential (STE) algorithm
counts the number of crossing points of the ECG signal with an exponential curve
decreasing on both sides. The decision for the defibrillation is made by counting
the number of crossings. This simple algorithm is probably well-known, but we did
not find any description of it in the literature.

The ECG signal is investigated in the time domain. First, the absolute maxi-
mum value of the investigated sequence of the signal is searched. An exponential
like function Es(t) is put through this point. This function is decreasing in both
directions. Hence, it has the representation:

(11) Es(t) = M exp
(
−|t− tm|

τ

)
.

Here, M is the amplitude of the signal maximum, tm is the corresponding time,
τ is a time constant. In our investigation, τ is set to 3 seconds. The number of
intersections n of this curve with the ECG signal is counted and a number N is
calculated by

(12) N =
n

T
,

where T is the time length of the investigated signal part. If N > N0 = 250
crossings per minute (cpm), the ECG-signal is classified as VF. If N < N1 = 180
cpm, SR is identified. Otherwise the signal is classified as VT. Figure 3 illustrates
the situation (note that each QRS complex intersects the exponential function two
times).

A shock is recommended only if N > N0.
The critical threshold parameter to obtain the ROC is N0.

Modified exponential algorithm. A modified version of STE, called MEA lifts
the decreasing exponential curve at the crossing points onto the following relative
maximum. This modification gives rise to better detection results.

This algorithm works in the time domain. First, the first relative maximum
value of the investigated sequence of the signal is searched and an exponential like
function En,1(t) is put through this point. Here, it has the representation:

(13) En,j(t) =

{
Mj exp

(
− t−tm,j

τ

)
tm,j ≤ t ≤ tc,j

given ECG signal tc,j ≤ t ≤ tm,j+1

with Mj being the value of the j-th relative maximum of the signal, tm,j the cor-
responding time and τ the time constant. Here, τ is set to 0.2 seconds. tc,j is the
time value, where the exponential function crosses the ECG signal.

The difference to STE is, that here the function does not have the above repre-
sentation over the whole investigated signal part, but only in the region from the
first relative maximum to the first intersection with the ECG signal. Then, the
function En,j(t) coincides with the ECG signal until it reaches a new relative max-
imum. In some way one can say that the function MEA(t) is “lifted” here from
a lower value to a peak. From that peak on it has again the above representation
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Figure 3. A 8 second episode of SR rhythm is investigated with
the standard exponential algorithm (STE). The exponential func-
tion intersects the signal 12 times.
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with M being the value of the next relative maximum. This is done until the curve
reaches the end of the investigated ECG sequence.

The number of the liftings n of this curve with the ECG signal is counted and a
number N is calculated by

(14) N =
n

T
,

where T is the time length of the investigated signal part. If N > N0 = 230
crossings per minute (cpm), the ECG-signal is classified as VF. If N < N1 = 180
cpm, SR is identified.

Otherwise the signal is classified as VT. Figure 4 illustrates the situation. A
shock is recommended only if N > N0.

The critical threshold parameter to obtain the ROC is N0.

Signal comparison algorithm. This new algorithm (SCA) compares the ECG
with four predefined reference signals (three sinus rhythms containing one PQRST
segment and one ventricular fibrillation signal) and makes its decision by calculation
of the residuals in the L1 norm.

The algorithm works in the time domain. After preprocessing, all relative max-
ima of a modified ECG signal are searched. The relative positions in time tj and
amplitude aj of these points are considered.
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Figure 4. A 8 second episode of SR rhythm is investigated with
the modified exponential algorithm (MEA). The exponential func-
tion is lifted 7 times.
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We call this set M0, with M0 = {(tj , aj)|aj is a local maximum}. With this
information a probability test for being the peak of a possible QRS complex is
performed. For a detailed description of this test see steps 1 and 2 in Appendix B.
In a normal ECG, most of the relative maxima M0 of the ECG signal, which are
not the peaks of an QRS complex, are sorted out and omitted by this procedure.
On the other hand, in an ECG signal with ventricular fibrillation only such peaks
are preserved, which are peaks of a fibrillation period.

In other words: Most of the relative maxima, which exist due to noise in the
ECG signal are deleted. Furthermore, nearly all relative maxima, which are peaks
of insignificant elevations (in this algorithm also P waves and T waves) are deleted
as well. This selection procedure is carried out by setting adaptive thresholds.
The value of the thresholds is calculated by use of different parameters, that were
selected by experiments with ECG signals. The result is a set of points X, which
is a subset of M0. In fact, the temporal appearance of the points in X is related
to the frequency of the heart beat. The average frequency found by this points is
related to a certain probability factor. This factor, together with other results, is
finally used to make a decision whether the signal is VF or not.

Now, the central idea of the algorithm is applied. The points in X are used to
generate four artificial signals. The first signal looks like a normal sinus rhythm,
that has its QRS peaks exactly at the points of X. A reference signal which consists
of one PQRST segment is fitted from one maximum of X to the next. To fit the
different size of the peaks it is scaled linearly. It has all features that a normal
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ECG signal should have (narrow QRS complex, P wave, T wave). The second
artificial signal is the average of about 700 normal sinus rhythm signals found in
16 files of the MIT database and 16 files of the CU database. The third artificial
signal has QRS complexes and an elevated T wave. The fourth signal, which we
use as a reference for a ventricular fibrillation signal, has the shape of a cosine like
function, which has its peaks at the points of X and therefore simulates ventricular
fibrillation.

The next step is the calculation of the residuals with respect to the reference
signals. We call the ECG signal E(t), the reference signals that simulate a healthy
heart Sj(t), j = 1, 2, 3, and the ventricular fibrillation signal F (t). The following
parameters are calculated

RF =
∫
I

|E(t)− F (t)|dt , RSj =
∫
I

|E(t)− Sj(t)|dt , j = 1, 2, 3,

IF =
∫
I

|F (t)|dt , IE =
∫
I

|E(t)|dt , ISj =
∫
I

|Sj(t)|dt ,(15)

where I = [t0, t1] with t0 = min {tj |tj ∈ X} and t1 = max {tj |tj ∈ X}. Thus, I is
the temporal interval from the smallest tj in X to the largest tj in X. Now, four
further values are calculated

V RF =
c1 RF

min(IF, IE)
, V RSj =

c2 RSj
min(ISj , IE)

, tj =
V RF

V RSj
, tj,0 = 1, j = 1, 2, 3.(16)

c1 and c2 are two constants that were suitably chosen by tests. Finally, V RF and
V RS are compared. If all tj , j = 1, 2, 3 are smaller than 1, the signal is classified
as VF, otherwise it is considered to be SR.
Note: Using an L2 norm did not improve the quality.
The critical threshold parameter to obtain the ROC are tj,0.

Wavelet based algorithms. The continuous wavelet transform of a signal f ∈ L2

is defined by

(17) Lψf(a, b) =
1√
cψ |a|

∫
R

f(t)ψ
(
t− b

a

)
dt,

where ψ is the mother wavelet, ψ ∈ L2, and admissible, i.e.,

(18) 0 < cψ := 2π
∫
R

|ψ̂(ω)|2

|ω|
dω <∞.

Here, ψ̂ denotes the Fourier transform of ψ

(19) ψ̂(ω) :=
1√
2π

∫
R

ψ(x) exp(−iωx) dx.

The wavelet transform Lψf contains information about the frequency distribution
as well as information on the time distribution of a signal.

According to Lemma 1.1.7 from [12], the Fourier transform of Lψf is given by
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(20) L̂ψf(a, ω) =

√
2π |a|
cψ

ψ̂(−aω) f̂(ω).

WVL1. A new simple wavelet based algorithms (WVL1) operates like SPEC in the
frequency domain.

The idea of this first wavelet algorithm is the following: First, a continuous
wavelet transform of the ECG signal is carried out using a Mexican hat as mother
wavelet. Then a Fourier transform is performed. Now, the maximum absolute
values are investigated in order to make the decisions for the defibrillation process.

However, one can show that these maximum values are located on a hyperbola
in the (a, ω) plane of the Fourier transform of the wavelet transform of the ECG
signal, i.e., on a curve that has the representation aω = C, C being a constant. The
values on this curve in the (a, ω) plane are the Fourier transform of the ECG signal
multiplied by a weight function g(ω). Therefore, if one searches for the maximum
values of L̂ψf in the (a, ω) plane of the wavelet transform, it is sufficient to search
for the maxima of the weighted Fourier transform of the ECG signal f̂(ω).

Since we are looking for maxima of the modulus of L̂ψf , we need to consider the
maxima of 1√

ω
f̂(ω) only.

In WVL1 the function 1√
ω
f̂(ω) is handled exactly like the spectrum in the algo-

rithm SPEC. The same spectrum parameters are calculated and also the thresholds
for the decision have the same values like the algorithm in SPEC.

In WVL1, the critical threshold parameter to obtain the ROC is A2,0.

WVL2. This new method of detecting ventricular fibrillation uses a discrete wavelet
transform. It is split into two parts.
(i) Finding VF:. The first part uses the algorithm SPEC to search for typical VF
properties in the ECG. If the algorithm decides that the ECG part contains VF,
then the result is accepted as true and no further investigation is carried out. This
procedure can be justified by the high specificity of the SPEC algorithm. If the
algorithm yields that the ECG part is “no VF”, a further investigation is carried
out to confirm this result or to disprove it.
(ii) Discrete Wavelet Transform (DWT):. This part is only carried out, if the first
part of the algorithm considers the ECG episode to be “no VF”. In this case a dis-
crete wavelet transform is applied, that searches for QRS complexes in the following
way:

The third scale of a discrete wavelet transform with 12 scales and a “Daubechies8”
wavelet family is used. Numerical tests have shown that this scale makes it easiest
to distinguish VF from “no VF”. If the signal in the third scale has a value higher
than a certain threshold, the according ECG part is considered as QRS complex.
The threshold used in this investigation is set to 0.14 max(ECG signal). Multiple
peaks belonging to the same QRS complex are removed.

If more than two but less than 40 QRS complexes are found within an 8 second
episode, “no VF” is diagnosed. Otherwise the two spectral parameters FSMN and
A2 from the first part are investigated again. If FSMN < 2.5 and A2 > 0.2, the
considered ECG part is diagnosed as VF.
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The mentioned range for the number of found QRS complexes has the following
reason: Sometimes, especially in ECGs with a high amount of noise, the DWT part
makes wrong interpretations and “finds” QRS complexes also in QRS free episodes.
Therefore, a minimal number of three QRS complexes is demanded to confirm the
existence of QRS complexes. On the other side, if the DWT part “finds” more than
40 QRS complexes (equal to a pulse of 300 beats per minute), the signal is likely to
be VF, since such high sinus rhythms do not appear. The limits of the range were
chosen from experiments with data.

In WVL2 no IROC is calculated due to the special structure of the algorithm.
Since it consists of two parts and the second part is not executed always, we do
not have a single parameter that includes the calculations of both algorithm parts
in every ECG segment. Hence we cannot calculate an IROC value. Using the
parameters of the SPEC algorithm as an IROC parameter does not yield an ROC
curve over the full range.

Finally we want to compare the VF detection algorithms with two algorithms, that
are originally used for QRS detection. The decision thresholds of these algorithms
have been optimized to be suitable for VF detection.

Li algorithm. The Li algorithm (LI) [11] is based on wavelet analysis, too.
The wavelet transform of an ECG signal is calculated using the following equa-

tions

S2jf(n) =
∑
k∈Z

hkS2j−1f(n− 2j−1k)(21)

W2jf(n) =
∑
k∈Z

gkS2j−1f(n− 2j−1k)(22)

Here, S2j is a smoothing operator and S20f(n) = dn, dn being the ECG signal.
hk and gk are coefficients of a lowpass filter H(ω) and a highpass filter G(ω),
respectively. Scales 21 to 24 are selected to carry out the search for QRS complexes.
QRS complexes are found by comparing energies from the ECG signal in the scale 23

with the energies in the scale 24. Redundant modulus maximum lines are eliminated
and the R peaks detected. Different methods from [6] are used to improve the
detection quality:

Method 1: Blanking, where events immediately following a QRS detection are
ignored for a period of 200ms.

Method 2: Searching back, where previously rejected events are reevaluated when
a significant time has passed without finding a QRS complex. If no QRS complex
was detected within 150% of the latest average RR interval, then the modulus
maxima are detected again at scale 23 with a new threshold.

If the number of found QRS complexes is 0 or higher than 5 times the window
length in seconds, the ECG segment is classified as VF.

The critical threshold parameter to obtain the ROC is the number of found QRS
complexes.

Tompkins algorithm. This algorithm is based on a QRS complex search (TOMP)
[16]. It uses slope, amplitude and width information to carry out this task.

After preprocessing, the ECG signal is band filtered by a low pass filter and a
high pass filter to reduce interference and high frequency noise. Then, the signal
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is differentiated to provide the QRS complex slope information. The difference
equation for the slope y(j) of the ECG data x(j) reads

(23) y(nT ) =
1

8T

(
− x(nT − 2T )− 2x(nT − T ) + 2x(nT + T ) + x(nT + 2T )

)
,

where T is the sampling period of the ECG signal. Afterwards the signal is squared
to make all data points positive. A moving window integration with a window width
of 150ms (e.g., 54 points at a sampling rate of 360Hz) is applied. Thresholds are
set up to detect QRS complexes.

This algorithm uses a dual threshold technique and a searchback for missed
beats. If the number of found QRS complexes is smaller than l0 = 2 or higher than
l1 = 32, the ECG segment is classified as VF.

The critical threshold parameter to obtain the ROC is l0.

3. Results

For all algorithms tested in this paper we used the same prefiltering process de-
scribed at the beginning of the previous section. The function filtering.m for prepro-
cessing can be found on the website http://www2.staff.fh-vorarlberg.ac.at/~ku/VF.

First, we investigated ECG episodes of window length according to the original
papers, and then of window length of 8 seconds since that yielded the best results.
For the investigation we simulated a continuous analysis by selecting the data in
steps of one second. The decision of an algorithm analyzing an episode of a certain
window length was assigned to the endpoint of that interval. By its very nature this
continuous monitoring of an ECG signal contains transitions of different rhythms.
All algorithms were tested under equal conditions. Finally, we recorded the results
together with the annotations in an output file.

The quality parameters are presented in the following tables and figures. The
perfect algorithm would have values for sensitivity, specificity, positive predictivity,
accuracy and IROC of 100%, assuming that the annotations are 100% correct.

The data sets were taken from the BIH-MIT database (48 files, 2 channels per
file, each channel 1805 seconds long), the CU database (35 files, 1 channel per file,
each channel 508 seconds long), and the AHA database (files 7001 - 8210, 40 files,
2 channels per file, each channel 1800 seconds long)6. Thus, the total number of
decisions per algorithm (window length = 8s) was 2 · 48 · (1805 − 7) + 35 · (508 −
7) + 2 · 40 · (1800− 7) = 333 583.

The annotations of these databases are on a beat to beat level. When taking an
arbitrary 8 second episode which includes a VF sequence at the end, it was assumed
that the overall classification is VF.

The testing was done automatically by an application written with MATLAB,
since there is no chance to inspect 330 000 ECG episodes by hand.

6ANSI/AAMI EC38:1998 Ambulatory electrocardiographs: “The incidence and variety of VF
in the AHA and MIT databases are not sufficient to allow those databases to serve as substitutes
for the CU DB for the purposes of 5.2.14.5. An evaluation of VF detection using the 80 records of

the AHA DB and the 48 records of the MIT DB should supplement the required CU DB evaluation,
however, as the CU DB does not contain a sufficient sample of signals likely to provoke false VF
detections.”

http://www2.staff.fh-vorarlberg.ac.at/~ku/VF
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Numerical results. Table 1 shows the values for the sensitivity, the specificity
and the integrated receiver operating characteristic of the investigated algorithms.
The great differences in performance on different databases can be easily explained
by the different nature of this databases (see Footnote 6). The overall results were
directly calculated from the 333 583 decisions of VF/no VF.

Table 1. Quality of ventricular fibrillation detection algorithms
(sensitivity (Sns), specificity (Spc), integrated receiver operating
characteristic (IROC)) in per cent, rounded on 3 significant digits,
wl = window length in seconds. (*) ... no appropriate parameter exists.

Data Source MIT DB CU DB AHA DB overall results
Parameter wl Sns. Spc. Sns. Spc. Sns. Spc. Sns. Spc. IROC
TCI 3 82.5 78.1 73.5 62.6 75.2 78.3 75.0 77.5 82
TCI 8 74.5 83.9 71.0 70.5 75.7 86.9 75.1 84.4 82
ACF95 8 33.2 45.9 38.1 58.9 51.5 52.2 49.6 49.0 49
ACF99 8 59.4 30.1 54.7 49.3 71.5 40.3 69.2 35.0 49
VF 4 36.7 100 32.2 99.5 17.6 99.9 19.6 99.9 85
VF 8 29.4 100 30.8 99.5 16.9 100 18.8 100 87
SPEC 8 23.1 100 29.0 99.3 29.2 99.8 29.1 99.9 89
CPLX 8 6.3 92.4 56.4 86.6 60.2 91.9 59.2 92.0 87
STE 8 54.5 83.4 52.9 66.6 49.6 81.0 50.1 81.7 67
MEA 8 62.9 80.8 60.1 87.5 49.8 88.6 51.2 84.1 82
SCA 8 72.4 98.0 67.7 94.9 71.7 99.7 71.2 98.5 92
WVL1 8 28.7 99.9 26.2 99.4 26.8 99.5 26.7 99.7 80
WVL2 8 81.1 89.0 61.0 72.1 73.5 89.6 72.0 88.4 (*)
LI 8 3.1 95.1 7.5 94.8 9.3 92.0 9.0 93.9 58
TOMP 8 68.5 40.6 71.3 48.4 95.9 39.7 92.5 40.6 67

Table 2 shows the values for the positive predictivity, the accuracy and the
calculation time of the investigated algorithms.

Table 3 shows the values for the sensitivity of the investigated algorithms, if, due
to an appropriate adaption of the threshold parameters, the specificity were 95%
and 99%, respectively.

Figure 5 and 6 show the ROC curves for all algorithms. For the computation
of the ROC curves, we used 64 nodes. Since some critical threshold parameters are
discrete the points of the ROC curve are not equidistant.

4. Discussion and Conclusions

In real applications of AEDs the specificity is more important than the sensitiv-
ity, since no patient should be defibrillated due to an analysis error which might
cause cardiac arrest. Therefore, a low number of false positive decisions should be
achieved, even if this process makes the number of false negative decisions higher.
But one has to distinguish between our calculated values for specificity and sensi-
tivity and the values in [8]. Our values were determined for the basic mathematical
algorithms, whereas this paper gives recommendations for whole ECG analysis sys-
tems. It also does not consider an analysis without preselection.
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Table 2. Quality of ventricular fibrillation detection algorithms
(positive predictivity (PP), accuracy (Ac), calculation time(ct)) for
a window length of 8 seconds. Positive predictivity and accuracy
in per cent, rounded on 3 digits; calculation time in per cent of the
real time of the data, rounded on 2 digits, wl = window length in seconds.

Data Source MIT DB CU DB AHA DB overall results
Parameter wl PP. Ac. PP. Ac. PP. Ac. PP. Ac. ct.
TCI 3 0.6 78.1 33.9 64.8 41.7 77.8 23.7 77.2 1.5
TCI 8 0.8 83.9 38.9 70.6 54.4 84.9 31.1 83.6 2.1
ACF95 8 0.1 45.9 19.7 54.5 18.2 52.1 8.3 49.0 3.6
ACF99 8 0.1 30.2 22.2 50.4 19.9 45.7 9.1 37.9 3.6
VF 4 91.3 99.9 94.0 85.5 98.0 85.8 97.0 93.1 1.4
VF 8 82.4 99.9 94.5 85.2 98.9 85.7 97.7 93.0 1.9
SPEC 8 60.6 99.8 92.0 84.6 97.3 87.7 96.1 93.8 1.9
CPLX 8 0.1 92.3 52.7 80.3 60.7 86.5 40.8 89.2 2.5
STE 8 0.5 83.4 29.5 63.8 35.1 75.6 20.4 79.0 1.9
MEA 8 0.5 80.8 56.0 81.8 47.5 81.9 23.2 81.3 2.5
SCA 8 5.6 97.9 77.8 89.2 98.0 94.9 81.6 96.2 5.9
WVL1 8 38.9 99.8 92.1 84.1 91.8 87.0 90.5 93.5 1.9
WVL2 8 1.2 88.9 36.6 69.8 59.3 86.8 36.8 87.0 40
LI 8 0.1 94.9 27.5 76.5 19.4 77.8 12.1 86.6 15
TOMP 8 0.2 40.6 26.7 53.2 24.8 49.4 12.7 45.0 0.84

Table 3. Sensitivity of ventricular fibrillation detection algo-
rithms in per cent, wl = window length in seconds.

Parameter wl Sns. if Spc. = 95 Sns. if Spc. = 99
TCI 3 15.0 1.0
TCI 8 25.3 1.3
ACF95 8 3.0 0.6
ACF99 8 3.0 0.6
VF 4 71.0 59.2
VF 8 73.4 59.7
SPEC 8 69.8 58.9
CPLX 8 38.8 5.8
STE 8 29.4 10.8
MEA 8 7.0 0.5
SCA 8 79.0 66.4
WVL1 8 56.7 35.2
LI 8 7.3 1.4
TOMP 8 9.1 1.8

Our results show that no algorithm achieves its proclaimed values for the sensi-
tivity or specificity as described in the original papers or in [5] and [7] when applied
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Figure 5. ROC curve for the algorithms ACF, STE, MEA,
WVL1, LI, TOMP
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Figure 6. ROC curve for the algorithms TCI, VF, SPEC, CPLX, SCA
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to an arbitrary ECG episode. The main reason for this is the following: Whereas
all other researchers made a preselection of signals, we simulated the situation of a
bystander, who is supposed to use an AED, more accurately. Hence no preselection
of ECG episodes were made.

The best algorithm SCA, which yields the best value for the integrated receiver
operating characteristic (IROC) is a new algorithm followed by the algorithms
SPEC and VF. Studying the ROC curves in Figure 5 and Figure 6 we see that the
relevant part of the ROC curves lies at the left side. The ROC curve also enables
us to compare different algorithms given a specified specificity.

All other algorithms yielded only mixed results in our simulations. We also
conclude that algorithms developed for QRS detection, like LI and TOMP, are not
suitable for VF detection even when the thresholds are suitably adapted.

Outlook: The currently best algorithm works in the time domain. The two
algorithms SPEC and VF use information on the energy distribution from the fre-
quency domain but do not use any corresponding phase information. Whereas the
algorithm CPLX which uses methods from chaos theory has a poor performance in
the region where Specificity > 80% our current investigations indicate a promising
good performance for new algorithms based on other methods coming from chaos
theory which are currently under development. When finished these algorithms will
be presented elsewhere.

Appendix A. Sensitivity, Specificity, Positive Predictivity, Accuracy,
and ROC

Sensitivity is the ability (probability) to detect ventricular fibrillation. It is given
by the quotient

detected cases of VF
all cases of VF

=
TP

TP + FN
,(24)

with TP being the number of true positive decisions, FN the number of false
negative decisions.

Specificity is the probability to identify “no VF” correctly.
It is given by the quotient

detected cases of “no VF”
all cases of “no VF”

=
TN

TN + FP
,(25)

where TN is the number of true negative decisions, and FP is the number of false
positive decisions.

This means that if a defibrillator has a sensitivity of 90% and a specificity of
99%, it is able 90% of the time to detect a rhythm that should be defibrillated, and
99% of the time to recommend not shocking when defibrillation is not indicated.

Remark: a trivial algorithm which classifies every ECG episode as “no VF” will
reach a specificity of 100%, but will have sensitivity 0%. On the other hand, a
trivial algorithm which classifies every ECG episode as VF will reach a sensitivity
of 100%, but will have specificity 0%. The ROC curve (see below) describes this
inherent tradeoff between sensitivity and specificity.

Furthermore, we calculated the Positive Predictivity and the Accuracy of the
investigated algorithms.
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Positive predictivity is defined by

(26)
detected cases of “VF”

all cases classified by the algorithm as “VF”
=

TP

TP + FP
.

Positive predictivity is the probability, that classified VF is truly VF:
Accuracy is defined by

(27)
all true decisions

all decisions
=

TP + TN

TP + FP + TN + FN
.

Accuracy is the probability to obtain a correct decision.
Specificity and sensitivity always depend on the chosen critical threshold param-

eters which depend, on the other hand, on the databases used for evaluation (see
Footnote 6).

To get rid of at least of the dependence on the chosen critical threshold parameter
one uses the ROC curve. The sensitivity is plotted in dependence of (1−specificity),
where different points in the plot are obtained by varying the critical threshold
parameter in the decision stage of an algorithm.

The ROC curves enables us to compare different algorithms when choosing a
specified specificity.

For more information on ROC curves see [17], [19].

Appendix B. Algorithm details: Signal Comparison Algorithm (SCA)

Here we describe the search for relative maxima and the appropriate choice
among them, used in Section 2 in more detail.

An offset is added to the ECG signal to make its mean value to zero. We
construct a set Z containing the values aj and temporal positions tj of this new
signal, i.e., Z = {(tj , aj)|aj is the value of the ECG signal at time tj}.

All further steps are executed both with the set Z and the set −Z, where −Z =
{(tj , bj)|bj = −aj is the value of the negative ECG signal at time tj} with the help
of the reference signals rECG`, ` being V F , SR1, SR2 or SR3, or, equivalently,
` = 0, 1, 2, 3. Note, that the maxima of Z correspond to the minima of −Z. So we
get 2 ∗ 4 = 8 tests to find out whether a signal is VF or SR. If any of the 8 tests
yields SR, the signal is considered to be SR.

Step 1: All relative maxima aj of Z and their corresponding times tj are deter-
mined. The resulting set is called M0, i.e., M0 = {(tj , aj)|aj is a local maximum},
so M0 ⊂ Z. All aj in M0, that are smaller than A, where A = ∆ ·max(aj) and ∆ is
a threshold, are deleted. The threshold ∆ is set to 0.1 for the VF reference signal
and to 0.2 for the SR reference signals. We call the reduced set M1. In Figure 7 we
see an ECG episode from the CU database (cu21, from t = 148 s until t = 156 s)
together with its selected relative maxima according to the status after processing
step 1. Now, we introduce an index l and set it to l = 1.

Step 2: Ml is reduced further: The maximum aj in Ml is searched. Here,
we call it amax. amax has a corresponding temporal position tmax. Then, the
largest possible temporal interval Il in Z around tmax is searched, so that all values
aj in this interval are equal or smaller than amax and larger than 0.2 amax. All
pairs (aj , tj) except (amax, tmax) in Ml, that are referred to the found interval Il,
are deleted. We get a set that we call Ml+1. This procedure is repeated with all
untreated aj in Ml, until every aj has been considered and afterwards either been
deleted or kept. After each step, l is increased by 1. This means, first we consider
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Figure 7. ECG signal with relative maxima (indicated by stars
left) after applying step 1 of Signal Comparison Algorithm (SCA).
This ECG episode is annotated as noVF, a.u. . . . arbitrary units.
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M1, then M2 = M1\I1, then M3 = M1\{I1∪I2} and so on, until we reach a highest
l, called lmax. In the end, we get a set that we call M , with M = M1\{∪lmax−1

j=1 Ij}.
In the end, the aj in M are the relative maxima in Z, that are higher than A

and are the only ones in certain subintervals of Z. Two different aj in M can only
be neighbors in Z, if they are separated by a valley that is deeper than 20% of the
higher peak of the two. In Figure 8 we again see the ECG episode, together with
its newly selected relative maxima according to the status after processing step 2.

Step 3: A value Ω is calculated from M . The frequency Ω of “peaks” is given
by

(28) Ω =
60NM

tmax − tmin
[min−1],

whereNM is the number of points inM and tmax−tmin is the maximum temporal
range of the elements in M .

Step 4: Now, if two different elements (ai, ti) and (aj , tj) of M are separated
by a temporal distance |ti − tj | smaller than 24

Ω , the element with the smaller a
is deleted from M . This final set is called X. In Figure 9 we again see the ECG
episode as in the figures above and together with its newly selected relative maxima
according to the status after processing step 4.

Step 5: Ω is recalculated by Equation (28) with the help of the recalculated
set X. If Ω > 280, r is set to 2, if Ω < 180, r is set to 0.9, else r is set to 1.

Step 6: The decision is calculated by Equation (16). V RF is calculated for
the ventricular fibrillation reference signal, V RS for the sinus rhythm reference
signal.
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Figure 8. ECG signal with relative maxima left (indicated by
stars) after applying step 2 of Signal Comparison Algorithm (SCA).
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Figure 9. ECG signal with relative maxima (indicated by stars)
after applying step 4 of Signal Comparison Algorithm (SCA).
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In Figure 10 we see the ECG episode together with the corresponding VF ref-
erence signal. In Figure 11 we see the ECG episode together with the first corre-
sponding SR reference signal. c1 is set to 2/r, c2 is set to 1.
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Figure 10. ECG signal with relative maxima and VF reference
signal after applying step 6 of Signal Comparison Algorithm (SCA).
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Figure 11. ECG signal with relative maxima and SR reference
signal after applying step 6 of Signal Comparison Algorithm (SCA).
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