
Holomorphy of the scattering matrix with respect to c−2

for Dirac operators and an explicit treatment of
relativistic corrections

W. Bulla1, F. Gesztesy2, K. Unterkofler1,2,3

1 Institut für Theoretische Physik, TU Graz, A-8010 Graz, Austria.
2 Department of Mathematics, University of Missouri, Columbia, MO 65211, USA.

3 Supported by Fonds zur Förderung der wissenschaftlichen Forschung in
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Abstract We prove holomorphy of the scattering matrix at fixed energy with respect to c−2 for
abstract Dirac operators. Relativistic corrections of order c−2 to the nonrelativistic limit scattering
matrix (associated with an abstract Pauli Hamiltonian) are explicitly determined. As applications
of our abstract approach we discuss concrete realizations of the Dirac operator in one and three
dimensions and explicitly compute relativistic corrections of order c−2 of the reflection and trans-
mission coefficients in one dimension and of the scattering matrix in three dimensions. Moreover,
we give a comparison between our approach and the first-order relativistic corrections according to
Foldy-Wouthuysen scattering theory and show complete agreement of the two methods.



1. Introduction

We provide a general framework for the nonrelativistic limit of scattering theory for general Dirac
operators. Our treatment is based on an abstract approach employed in [10], [11] to obtain explicit
expressions for first order corrections of bound state energies with respect to c−2.

Historically, the first rigorous treatment of the nonrelativistic limit of Dirac Hamiltonians seems to
go back to Titchmarsh [36] who proved holomorphy of the Dirac eigenvalues (rest energy subtracted)
with respect to c−2 for spherically symmetric potentials and obtained explicit formulas for relativistic
bound state corrections of order O(c−2) (formally derived in [32]). Holomorphy of the Dirac resolvent
in three dimensions in c−1 for electrostatic interactions were first obtained by Veselic [38] and then
extended to electromagnetic interactions by Hunziker [16]. An entirely different aproach, based on an
abstract set up, has been used in [6] to prove strong convergence of the unitary groups as c−1 →∞.
Employing this abstract framework, holomorphy of the Dirac resolvent in c−1 under general conditions
on the electromagnetic interaction potentials has been obtained in [10], [11]. Moreover, this approach
led to the first rigorious derivation of explicit formulas for relativistic corrections of order O(c−2) to
bound state energies. (Earlier, a justification of the fact that formal perturbation theory according
to Foldy and Wouthuysen yields correct results has been given in terms of spectral concentration in
[12], [37].) In the case of eigenvalue degeneracies of the unperturbed Pauli Hamiltonian, an extension
of the results in [10], [11] appeared in [41] (see also [14]). Relativistic corrections for energy bands
and corresponding corrections for impurity bound states for one-dimensional periodic systems were
treated in [5]. Convergence of solutions of the Dirac equation based on semi group methods have also
been obtained in [31].

Much less activity has been devoted to the nonrelativistic limit of the Dirac scattering theory. In fact,
we are only aware of the proof of strong convergence of wave and scattering operators as c−1 →∞ in
[39] and [42] and a recent treatment of the scattering amplitude in [14] based on a different approach.

In Section 2, based on the abstract approach of [6], we summerize the main results of [10], [11]
concerning the holomorphy of the Dirac resolvent operator with respect to c−2 near c−2 = 0. In
Section 3 we review some of the results of [22] on abstract scattering theory needed in Sections 4 and
5. Our main result on the holomorphic expansion of the abstract scattering matrix in c−2 around its
nonrelativistic counterpart at c−2 = 0 is established in Section 4. We also provide an explicit formula
for the correction term of order c−2 of the scattering matrix in terms of nonrelativistic scattering
quantities (see Theorem 4.2). Concrete realizations of our abstract approach in Section 4 in one
and three dimensions are presented in Section 5. In particular, we explicitly compute relativistic
corrections of order c−2 of the reflection and transmission coefficients in one dimension and of the
scattering matrix in three dimensions. Finally we compare our approach and the first order relativistic
corrections according to Foldy-Wouthuysen scattering theory and show complete agreement of the two
methods in Appendix A.

2. The Abstract Approach

The aim of this section is to summarize the main results obtained in [10], [11] (based on the abstract
approach of [6]) concerning holomorphy of the Dirac resolvent operator with respect to c−2 near
c−2 = 0. Let Hj , j = 1, 2 be separable, complex Hilbert spaces and introduce self-adjoint operators
α, β in H = H1 ⊕H2 of the type

α =
(

0 A∗

A 0

)
, β =

(
1 0
0 −1

)
, (2.1)

where A is a densely defined, closed operator from H1 into H2. Next, we introduce the abstract free
Dirac operator H0(c) by

H0(c) = cα + mc2β, D(H0(c)) = D(α), c ∈ R \ {0}, m > 0 (2.2)
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and the interaction V by

V =
(

V1 0
0 V2

)
, (2.3)

where Vj denotes self-adjoint operators in Hj , j = 1, 2, respectively. Assuming V1 (resp.V2) to be
bounded with respect to A (resp. A∗), i.e.,

D(A) ⊆ D(V1), D(A∗) ⊆ D(V2), (2.4)

the abstract Dirac operator H(c) reads

H(c) = H0(c) + V, D(H(c)) = D(α). (2.5)

Obviously H(c) is self-adjoint for |c| large enough. The corresponding self-adjoint (free) Pauli opera-
tors in Hj , j = 1, 2 are then defined by

H0
1 = (2m)−1A∗A, H0

2 = (2m)−1AA∗, (2.6)
H1 = H0

1 + V1, D(H1) = D(A∗A), (2.7)
H2 = H0

2 + V2, D(H2) = D(AA∗). (2.8)

Introducing in H the operator B(c) [16]

B(c) =
(

1 0
0 c

)
, (2.9)

we recall [10], [11]

Theorem 2.1 Let H(c) be defined as above and fix z ∈ C \ R. Then
(i) (H(c)−mc2 − z)−1 is holomorphic with respect to c−1 around c−1 = 0

(H(c)−mc2 − z)−1

=
{

1 +
(

0 (2mc)−1(H1 − z)−1A∗(V2 − z)
(2mc)−1A(H0

1 − z)−1V1 (2mc2)−1z(H0
2 − z)−1(V2 − z)

)}−1

·

·
(

(H1 − z)−1 (2mc)−1(H1 − z)−1A∗

(2mc)−1A(H0
1 − z)−1 (2mc2)−1z(H0

2 − z)−1

)
. (2.10)

(ii) B(c)(H(c)−mc2 − z)−1B(c)−1 is holomorphic with respect to c−2 around c−2 = 0

B(c)(H(c)−mc2 − z)−1B(c)−1

=
{

1 +
(

0 (2mc2)−1(H1 − z)−1A∗(V2 − z)
0 (2mc2)−1[(2m)−1A(H1 − z)−1A∗ − 1](V2 − z)

)}−1

·

·
(

(H1 − z)−1 (2mc2)−1(H1 − z)−1A∗

(2m)−1A(H1 − z)−1 (2mc2)−1[(2m)−1A(H1 − z)−1A∗ − 1]

)
. (2.11)

First order expansions in (2.10) and (2.11) yield

(H(c)−mc2 − z)−1

=
(

(H1 − z)−1 0
0 0

)
+ c−1

(
0 (2m)−1(H1 − z)−1A∗

(2m)−1A(H1 − z)−1 0

)
+ O(c−2)

(2.12)
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(clearly illustrating the nonrelativistic limit |c| → ∞) and

B(c)(H(c)−mc2 − z)−1B(c)−1

=
(

(H1 − z)−1 0
(2m)−1A(H1 − z)−1 0

)
+ c−2

(
R11(z) R12(z)
R21(z) R22(z)

)
+ O(c−4)

(2.13)
:= R(0)(z) + c−2R(1)(z) + O(c−4)

R11(z) = (2m)−2(H1 − z)−1A∗(z − V2)A(H1 − z)−1,

R12(z) = (2m)−1(H1 − z)−1A∗,

R21(z) = (2m)−2[(2m)−1A(H1 − z)−1A∗ − 1](z − V2)A(H1 − z)−1,

R22(z) = (2m)−1[(2m)−1A(H1 − z)−1A∗ − 1]. (2.14)

3. On Abstract Scattering Theory

In this section we summarize some of the results on abstract scattering theory obtained by Kuroda
[22] which are most relevant to us in Sections 4 and 5. For additional material on scattering theory
in the present context we refer to [1], [2], [3], [4], [7], [17], [19], [23], [24], [25], [28].

We define in the Hilbert space H = H1 ⊕H2

Ĥ1 := H0(c)−mc2, Ĥ2 := H(c)−mc2 (3.1)

and introduce the following factorisation of V :

Vj = v
1/2
j |vj |1/2, j = 1, 2, (3.2)

where

v
1/2
j := Uj |Vj |1/2, |vj |1/2 := |Vj |1/2, j = 1, 2 (3.3)

with Vj = Uj |Vj | the polar decomposition of Vj .

Y := B(c)−1

(
|v1|1/2 0

0 |v2|1/2
)

=
(
|v1|1/2 0

0 1
c |v2|1/2

)
, (3.4)

Z := B(c)

(
v

1/2
1 0
0 v

1/2
2

)
=

(
v

1/2
1 0
0 cv

1/2
2

)
, (3.5)

Rj(z) := (Ĥj − z)−1, z ∈ ρ(Ĥj) j = 1, 2. (3.6)

The following asumptions 3.1-3.3 and 3.5- 3.8 are basic in the approach of [22]:

Assumption 3.1 Y and Z are closed operators from H to another Hilbert space K = K1 ⊕K2 with
D(Ĥ1) ⊆ D(Y ) and D(Ĥ1) ⊆ D(Z).

(This implies that Y R1(z), ZR1(z) ∈ B(H,K), see [18], p. 191.)

Assumption 3.2 ZR1(z)Y ∗ is closable and the closure of ZR1(z)Y ∗ ∈ B(K) for one (or equivalently
for all) z ∈ ρ(Ĥ1)

Q1(z, c) := [ZR1(z)Y ∗](a), G1(z, c) := 1 + Q1(z, c), (3.7)
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where (a) denotes the closure.

Assumption 3.3 Let z ∈ ρ(Ĥ1) ∩ ρ(Ĥ2). Then G1(z, c)−1 ∈ B(K) and

R2(z) = R1(z)− [R1(z)Y ∗]aG1(z)−1ZR1(z). (3.8)

Thus propositions 2.6 and 2.7 in [22] hold: Define

Q2(z, c) := [ZR2(z)Y ∗](a), G2(z, c) := 1−Q2(z, c), z ∈ ρ(Ĥ2). (3.9)

Then

G2(z, c) = G1(z, c)−1, z ∈ ρ(Ĥ2). (3.10)

Remark 3.4 From our assumptions on H0(c) and V in chapter 2 we infer that

(i) V 1/2 is Ĥ0(c) bounded with bound 0 and hence Assumption 3.1 is fulfilled.
(ii) V 1/2 is Ĥ0(c)1/2 bounded implying that Assumption 3.2 is fulfilled.
(iii) The second resolvent equation gives

(1 + [ZR1(z)Y ∗](a))(1− [ZR2(z)Y ∗](a)) = 1, (1− [ZR2(z)Y ∗](a))(1 + [ZR1(z)Y ∗](a)) = 1
(3.11)

(see e.g. [1], p. 369) and thus Assumption 3.3 is fulfilled.

Next let Ej denote the spectral measures associated with Ĥj , j = 1, 2.

Assumption 3.5 There exists a Hilbert space C, a non-empty open set I ⊆ R, and a unitary operator
F from E1(I)H onto L2(I; C) such that for every Borel set I ′ ⊆ I one has FE1(I ′)F−1 = χI′ , where
χI′ denotes the operator of multiplication by the characteristic function of I ′.

Assumption 3.6 There exist B(K, C)-valued functions T (λ, c, Y ) and
T (λ, c, Z), λ ∈ I, such that

(i) T (·, c, Y ) and T (·, c, Z) are locally Hölder continuous in I with respect to the operator norm.

(ii) There exist dense subsets D ⊆ D(Y ∗) and D′ ⊆ D(Z∗) such that for any u ∈ D and v ∈ D′ one
has

T (λ, c, Y )u = (FE1(I)Y ∗u)(λ), T (λ, c, Z)v = (FE1(I)Z∗v)(λ) for a. e. λ ∈ I. (3.12)

Assumption 3.7 For one (or equivalently all) z ∈ ρ(Ĥ1) either
Y R1(z) ∈ B∞(H,K) or ZR1(z) ∈ B∞(H,K).
Here B∞(H,K) denotes the set of compact operators from H to K.

Assumption 3.8 The subspace generated by {Ej(I ′)Y ∗u | u ∈ D(Y ∗), I ′ ⊆ I a Borel set} is dense
in Ej(I)H, j = 1, 2.

Remark 3.9 [22] Since H is separable, Assumption 3.5 is equivalent to assuming that Ĥ1 has
absolutely continuous spectrum in I with constant multiplicity. Moreover, C is determined uniquely
up to unitary equivalence and F is uniquely determined up to unitary equivalence with decomposable,
unitary operators on L2(I; C).
Since these assumptions are identical with the ones in [22] we have all the results of ([22] §3, §4 ) at
our disposal; e.g., the norm limits

G1±(λ, c) := n− lim
ε↓0

G1(λ± iε, c), Q1±(λ, c) := n− lim
ε↓0

Q1(λ± iε, c) (3.13)
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exist (see [22] Theorem 3.9) and introducing

e±(c) := {λ ∈ I | G1±(λ, c) is not one to one }, e(c) := e+(c) ∪ e−(c) (3.14)

(e(c) is a closed set of Lebesgue measure zero [22]) we get for λ ∈ I \ e±(c) the existence of the
boundary values

G2±(λ, c) = n− lim
ε↓0

G2(λ± iε, c) (3.15)

and

G2±(λ, c) = G1±(λ, c)−1 (3.16)

(see [22] Theorem 3.10).

Also Theorems 3.11- 3.13 and 6.3 of [22] are valid. In particular, we obtain for the fibers of the
scattering operator

Theorem 3.10 [22] For λ ∈ I \ e(c) the scattering matrix S(λ, c) in C associated with the pair
(Ĥ2, Ĥ1) is given by

S(λ, c) = 1− 2πiT (λ, c, Y )G2+(λ, c)T (λ, c, Z)∗. (3.17)

S(·, c) is unitary in C and locally Hölder continuous on I \ e(c) with respect to the norm in B(C).

4. Holomorphy of the scattering matrix in c−2 and relativistic cor-
rections

In this section we combine Sections 2 and 3 and establish a holomorphic expansion of the abstract
scattering matrix with respect to c−2 around its nonrelativistic counterpart at c−2 = 0. Moreover, we
explicitly determine the first correction of the scattering matrix of order c−2 in terms of nonrelativistic
scattering quantities in Theorem 4.2.

Let I ⊆ R+ := (0,∞) and define

I±0 := {λ | λ ∈ I \ e±(c−2 = 0)}, I0 = I+0 ∩ I−0. (4.1)

In addition we strengthen Assumptions 3.2 and 3.6 by introducing

Assumption 4.1 (i) For λ ∈ I, T (λ, c, Y ) and T (λ, c, Z) are holomorphic in c−2 around c−2 = 0 and

(ii) for λ ∈ I+0

Q1+(λ, c) = lim
ε↓0

Q1+(λ + iε, c) (4.2)

is holomorphic in c−2 around c−2 = 0.

Based on Theorem 2.1 we now turn to the expansion of G2+(λ, c), λ ∈ I+0.

G2+(λ, c) = (G1+(λ, c))−1 = (1 + Q1+(λ, c))−1 = lim
ε↓0

(1 + ZR1(λ + iε)Y ∗)−1 =

(4.3)

= lim
ε↓0

{
1 + Z

((
0 cA∗

cA −2mc2

)
− (λ + iε)

)−1

Y ∗
}−1

:= G
(0)
2+(λ) +

1
c2

G
(1)
2+(λ) + O(c−4),
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where (n), n ∈ N0 denotes the order of the expansion involved.

(Since G2+(λ, c) = limε↓0 G2(λ + iε, c) is continuous in z = λ + iε and holomorphic in c−2 we may
interchange the limits.)

Next define

g2(z) := (1 + v
1/2
1 (H0

1 − z)−1|v1|1/2)−1, z = λ + iε, ε > 0, g2±(λ) := lim
ε↓0

g2(λ± iε). (4.4)

We then get

G
(0)
2+(λ) = lim

ε↓0

(
g2(z) 0

−v
1/2
2

A
2m(H0

1 − z)−1|v1|1/2g2(z) 1

)
, z = λ + iε (4.5)

and

G
(1)
2+(λ) = lim

ε↓0

(
b11(z) b12(z)
b21(z) b22(z)

)
, z = λ + iε (4.6)

with

b11(z) = −g2(z)v1/2
1 R11(z)|v1|1/2g2(z) + g2(z)v1/2

1 R12(z)|v2|1/2v1/2
2

A

2m
(H0

1 − z)−1|v1|1/2g2(z),

b12(z) = −g2(z)v1/2
1 R12(z)|v2|1/2,

b21(z) = v
1/2
2

A

2m
(H0

1 − z)−1|v1|1/2g2(z)v1/2
1 R11(z)|v1|1/2g2(z)− v

1/2
2 R21(z)|v1|1/2g2(z)

−v
1/2
2

A

2m
(H0

1 − z)−1|v1|1/2g2(z)v1/2
1 R12(z)|v2|1/2v1/2

2

A

2m
(H0

1 − z)−1|v1|1/2g2(z)

(4.7)

+v
1/2
2 R22(z)|v2|1/2v1/2

2

A

2m
(H0

1 − z)−1|v1|1/2g2(z),

b22(z) = v
1/2
2

A

2m
(H0

1 − z)−1|v1|1/2g2(z)v1/2
1 R12(z)|v2|1/2 − v

1/2
2 R22(z)|v2|1/2,

where (cf. 2.14)

R11(z) = (2m)−2z(H0
1 − z)−1A∗A(H0

1 − z)−1, R12(z) = (2m)−1(H0
1 − z)−1A∗,

(4.8)
R21(z) = (2m)−2z2(H0

1 − z)−1A(H0
1 − z)−1, R22(z) = (2m)−1z(H0

1 − z)−1.

Next we turn to the operators T (λ, c, Y ) and T (λ, c, Z)∗, λ ∈ I. We introduce the abbrevations

kd(λ, c) :=

√
2mλ(1 +

λ

2mc2
), k0(λ, c) :=

ckd(λ, c)
λ + 2mc2

, λ > 0. (4.9)

If λ ∈ (λ1, λ2) = I, then kd(λ, c) ∈
(√

2mλ1

√
1 + λ1

2mc2
,
√

2mλ2

√
1 + λ2

2mc2

)
=: Ĩ. (Especially in the

case I = (0,∞) we have I = Ĩ = Ĩ2 = (0,∞).)

By Assumption 3.5 , α2 and hence A∗A, AA∗ are absolutely continuous in Ĩ2 with constant multiplicity.

6



Now we consider the analogs U0, M of F and T when A∗A replaces Ĥ1.

Let U0 be the unitary operator that diagonalizes A∗A on Ĩ2. For h ∈ E0(Ĩ2)H1 (where E0(·) denotes
the spectral measure for A∗A) U0 yields

U0 : E0(Ĩ2)H1 → L2(Ĩ2, dµ; C), (U0A
∗Ah)(µ) = µ(U0h)(µ), µ ∈ Ĩ2. (4.10)

In addition we need the operator M(k, D) : D(D)→ C, where D : D(D)→ H1, D(D) ⊆ K1

or K2, D closed

M(k, D)h = (U0E0(Ĩ2)Dh)(k2), h ∈ D(D), k :=
√

µ, for a. e. k ∈ Ĩ . (4.11)

In concrete applications the closure of M(k, D) will be a Hilbert Schmidt operator. This closure is
then denoted by M(k, D), too.

Now we are in position to construct the unitary operator F that diagonalizes H0(c)−mc2 on I ⊆ R+.
For f ∈ E1(I, c)H (where E1(·, c) denotes the spectral measure for H0(c)−mc2) F yields

F : E1(I, c)H = E1(I, c)(H1 ⊕H2)→ L2(I, dλ; C),

(Ff)(λ) =

√
kd

ck0

(
(U0f1) +

k0

kd
(U0A

∗f2)
)

((kd)2), f =
(

f1

f2

)
, (4.12)

(F [H0(c)−mc2]f)(λ) = λ(Ff)(λ), λ ∈ I ⊆ R+. (4.13)

We note that on the subspace of positive energies the abstract Foldy Wouthuysen transformation
coincides with the abstract spectral transformation (see [33], [34]). The representation (4.12), (4.13)
is due to the supersymmetric structure of α.

Given these facts we can now express T (λ, c, Y ) : K → C, λ ∈ I in terms of M from (4.11) in the form

T (λ, c, Y )f =

√
kd

ck0

[
M(kd, |v1|1/2)f1 +

k0

ckd
M(kd, A∗|v2|1/2)f2

]
, f =

(
f1

f2

)
∈ K. (4.14)

For T (λ, c, Z)∗ : C → K, λ ∈ I, we get

T (λ, c, Z)∗h =

√
kd

ck0

(
M(kd, v1/2

1 )∗h
ck0

kd
M(kd, A∗v1/2

2 )∗h

)
, h ∈ C. (4.15)

Now we can expand T (λ, c, Y ) and T (λ, c, Z)∗, λ ∈ I with respect to c−2 as follows: Define

ks :=
√

2mλ (4.16)

then, for |c−2| small enough,

T (λ, c, Y ) =
∞∑
j=0

c−2jT (j)(λ, Y ), (4.17)

T (λ, c, Z)∗ =
∞∑
j=0

c−2jT (j)(λ, Z)∗, (4.18)
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where

T (0)(λ, Y ) =
√

2m
(

M(ks, |v1|1/2) 0
)
, (4.19)

T (0)(λ, Z)∗ =
√

2m

(
M(ks, v1/2

1 )∗
1

2mM(ks, A∗v1/2
2 )∗

)
, (4.20)

T (1)(λ, Y ) =
√

2m
(ks)2

8m2

(
M(ks, |v1|1/2) 0

)
(4.21)

+
√

2m
(

(ks)3

8m2 M ′(ks, |v1|1/2) 1
2mM(ks, A∗|v2|1/2)

)
,

where M ′(ks, |v1|1/2) denotes the derivative of M(k, |v1|1/2) with respect to k at k = ks and

T (1)(λ, Z)∗ =
√

2m
(ks)2

8m2

(
M(ks, v1/2

1 )∗
1

2mM(ks, A∗v1/2
2 )∗

)
(4.22)

+
√

2m

(
(ks)3

8m2 M ′(ks, v1/2
1 )∗

− (ks)2

8m3 M(ks, A∗v1/2
2 )∗ + (ks)3

16m3 M ′(ks, A∗v1/2
2 )∗

)
.

We can now state the following result for the fibers of the scattering operator.

Theorem 4.2 For λ ∈ I0, the scattering matrix S(λ, c) associated with the pair (H(c)−mc2, H0(c)−
mc2) is holomorphic in c−2 around c−2 = 0 and we get the following expansion

S(λ, c) = 1− 2πiT (λ, c, Y )G2+(λ, c)T (λ, c, Z)∗ =
∞∑
j=0

c−2jS(j)(λ)

= S0(λ)− 1
c2

2πi
{

T (1)(λ, Y )G(0)
2+(λ)T (0)(λ, Z)∗ + T (0)(λ, Y )G(1)

2+(λ)T (0)(λ, Z)∗

+T (0)(λ, Y )G(0)
2+(λ)T (1)(λ, Z)∗

}
+ O(c−4). (4.23)

We therefore get

S(0)(λ) = 1− 2πi
{

2mM(ks, |v1|1/2)g2+(λ)M(ks, v1/2
1 )∗

}
, λ ∈ I0 (4.24)

the scattering matrix for the associated pair of Pauli operators (H1, H
0
1 ) (illustrating the nonrelativistic

limit) and the explicit correction term of order c−2

S(1)(λ) =
(ks)2

4m2
(S(0)(λ)− 1)− 2πi

{
(ks)3

4m
M ′(ks, |v1|1/2)g2+(λ)M(ks, v

1/2
1 )∗

− 1

2m
M(ks, A∗|v2|1/2)

[
v

1/2
2 A(H0

1 − λ− i0)−1|v1|1/2
]
g2+(λ)M(ks, v

1/2
1 )∗

+
1

2m
M(ks, A∗|v2|1/2)M(ks, A∗v

1/2
2 )∗ +

(ks)3

4m
M(ks, |v1|1/2)g2+(λ)M ′(ks, v

1/2
1 )∗

− (ks)2

(2m)2
M(ks, |v1|1/2)g2+(λ)

[
v

1/2
1 (H0

1 − λ− i0)−1A∗A(H0
1 − λ− i0)−1|v1|1/2

]
g2+(λ)M(ks, v

1/2
1 )∗

+
1

2m
M(ks, |v1|1/2)g2+(λ)

[
v

1/2
1 (H0

1 − λ− i0)−1A∗|v2|1/2
][
v

1/2
2 A(H0

1 − λ− i0)−1|v1|1/2
]
g2+(λ)M(ks, v

1/2
1 )∗

− 1

2m
M(ks, |v1|1/2)g2+(λ)

[
v

1/2
1 (H0

1 − λ− i0)−1A∗|v2|1/2
]
M(ks, A∗v

1/2
2 )∗

}
, λ ∈ I0. (4.25)
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Remark 4.3 Even though we may take Kj = Hj , j = 1, 2,K = H for the applications we have
in mind in Section 5, generalizations to singular interactions (of Yukawa-type) usually require the
introduction of weighted L2-spaces or certain Sobolev spaces, where Kj ⊂6= Hj , j = 1, 2 (see e.g. [2],
[19], [20], [26]). For completeness we included this generalization in Sections 3 and 4.

Remark 4.4 Following the usual convention we have subtracted the rest energy mc2 from H0(c) and
then studied I ⊆ R+. Similarly one could add the rest energy and consider I ⊆ (−∞, 0).

Remark 4.5 For later purpose (see e.g. (5.40) we note that Assumption 4.1 (ii) implies that

v
1/2
1 (H0

1 − λ− i0)−2|v1|1/2 =
d

dλ
v

1/2
1 (H0

1 − λ− i0)−1|v1|1/2. (4.26)

5. Applications

Finally, we illustrate the abstract result of Theorem 4.2 with the help of two concrete realizations:
One-dimensional Dirac operators in Section 5.1 and three-dimensional ones in Section 5.2. General
references on relativistic spectral and scattering theory relevant in the present context are [8], [15],
[21], [25], [26], [27], [30], [34], [35], [39], [43].

5.1 The Dirac operator in L2(IR)2

The free Dirac operator H0(c) in L2(R)2 is defined by

H0(c) := cpσ1 + mc2σ3, m, c ∈ R+, D(H0(c)) = H2,1(R)2, (5.1)

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, p := −i

d

dx
, D(p) = H2,1(R). (5.2)

Let V be the maximal multiplication operator with the real-valued function v = v(x), and for some
α > 0 assume

eα|·|v(·) ∈ L1(R) ∩ L2(R). (5.3)

The Dirac operator H(c) in L2(R)2 is then defined as

H(c) := H0(c) + V, D(H(c)) = D(H0(c)). (5.4)

H(c) is self-adjoint and

σess(H(c)) = (−∞,−mc2] ∪ [mc2,∞). (5.5)

In order to prove this statement we note that f ∈ H2,1(R) implies f ∈ L∞(R) and thus

||vf ||2 ≤ ||v||2 ||f ||∞ <∞ implying D(p) ⊆ D(V ). (5.6)

The integral kernel k(x, y) of V (H0(c)− z)−1 is given by (see e.g. [13])

k(x, y) = v(x)eik̃|x−y|
i

2c

(
k̃−1

0 sgn(x− y)
sgn(x− y) k̃0

)
, z ∈ C \ {(−∞,−mc2] ∪ [mc2,∞)}

(5.7)

ck̃(z) = (z2 −m2c4)
1
2 , Im k̃(z) > 0, k̃0(z) =

ck̃(z)
z + mc2

(5.8)
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This integral kernel is in L2(R×R)2 and therefore the potential V is relatively compact with respect
to H0(c). Weyl’s theorem [29], p. 112 then yields (5.5).

Subtracting the rest energy according to (3.1) we therefore identify

H1 = H2 = K1 = K2 = L2(R), I = R+, e = ∅, C = C2, (5.9)

A = A∗ = p = −i
d

dx
, D(A) = H2,1(R), (5.10)

V1 = V2 = V, V = v1/2|v|1/2, v1/2 = |v|1/2 sgn(v),
(5.11)

Y = Y ∗ = B(c)−1|v|1/2, Z = Z∗ = B(c)v1/2.

Then clearly Assumptions 3.1-3.3, 3.5 and 3.7 are satisfied. Assumption 3.6 follows from the explicit
expression (5.18) and Assumption 3.7. Assumption 3.8 is clearly satisfied if Ran(|v|1/2) is dense in
L2(R). This in turn is satisfied if supp(|v|1/2) = R. If supp(|v|1/2) ⊂6= R one simply replaces |v|1/2 by
|ṽ|1/2, where

|ṽ(x)|1/2 :=
{
|v(x)|1/2, x ∈ supp(v)

e−x
2
, x 6∈ supp(v),

(5.12)

since then V = v1/2|v|1/2 = v1/2|ṽ|1/2. Hence we always may assume supp(|v|1/2) = R without loss of
generality.

It remains to verify Assumption 4.1.

(i) Holomorphy of Q1+(λ, c), λ > 0.

The integral kernel q(x, y, λ, c) of

Q1+(λ, c) = v1/2B(c)(H0(c)−mc2 − λ− i0)−1B(c)−1|v|1/2 (5.13)

reads

q(x, y, λ, c) = v(x)1/2eik|x−y|
i

2

 1
ck0

1
c2

sgn(x− y)

sgn(x− y) k0
c

 |v(y)|1/2, λ > 0,

(5.14)

kd(λ, c) = ks(λ)(1 +
λ

2mc2
)1/2, ks(λ) =

√
2mλ, k0(λ, c) =

ks(λ)
2mc

(1 +
λ

2mc2
)−1/2.

Define the compact set M ⊆ C

M :=
{

c−2 ∈ C
∣∣∣ |c−2| ≤ |c−2

0 | <
2m

λ
and 2|Imkd(λ, c)| ≤ ks

λ

m|c2
0|
≤ α

}
. (5.15)

Using

|kd| ≤ ks(1 +
λ

2m|c2
0|

)1/2, |k0

c
| ≤ ks

2m|c2
0|

(1− λ

2m|c2
0|

)−1/2, | 1
ck0
| ≤ 2m

ks
(1 +

λ

2m|c2
0|

)1/2

(5.16)

and a matrix norm || · || in C2 we get for c−2 ∈M the bound

||q(x, y, λ, c)|| ≤ const(λ, α) |v(x)|1/2|v(y)|1/2eα2 |x|eα2 |y|. (5.17)
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For c−2 ∈ M and fixed λ we have a family of uniformly bounded Hilbert Schmidt operators. Since
the integral kernel q(x, y, λ, c) is a holomorphic function of c−2 around c−2 = 0 we get holomorphy of
Q1+(λ, c) by (5.3) and (5.13).

(ii) Holomorphy of T (λ, c, Y ), λ > 0.

The integral kernel t(x, λ, c) of T (λ, c, Y ) : L2(R)2 → C2, is explicitly given by (see [30] and (4.12))

t(x, λ, c) =
1√
4π

1√
ck0
|v(x)|1/2

 e−ik
dx k0

c e−ik
dx

eik
dx −k0

c eik
dx

 , (5.18)

||t(x, λ, c)|| ≤ const(λ, α)|v(x)|1/2eα2 |x|. (5.19)

(We note that F maps L2(R)2 → L2((0,∞); C2), see [30].)

For c−2 ∈ M this is also a family of uniformly bounded Hilbert Schmidt operators, with integral
kernel holomorphic in c−2 and therefore T (λ, c, Y ) is holomorphic in c−2 around c−2 = 0.

The holomorphy of T (λ, c, Z)∗ follows analogously.

The operator U0 that diagonalizes A∗A = p2 is given by U0 : L2(R)→ L2((0,∞), dµ; C2),

(U0f)(µ) =
1√
2
µ−1/4

(
(UF f)(

√
µ)

(UF f)(−√µ)

)
, f ∈ L2(R), (5.20)

with

(UF f)(k) := s− lim
R→∞

∫
|x|≤R

dxe−ikxf(x), f ∈ L2(R) (5.21)

the Fourier transform in L2(R). Thus we get M(kd, |v|1/2) : L2(R)→ C2,

M(kd, |v|1/2)f =
1√
2
(kd)−1/2

 (UF |v|1/2f)(kd)

(UF |v|1/2f)(−kd)



= (kd)−1/2 1√
4π


∫∞
−∞ e−ik

dx|v(x)|1/2f(x)dx∫∞
−∞ eik

dx|v(x)|1/2f(x)dx

 = (kd)−1/2 1√
4π

 < |v|1/2ψ01(kd), f >

< |v|1/2ψ02(kd), f >

 ,

f ∈ L2(R), (5.22)

where

ψ0j(kd, x) := eεik
dx, ε := (−1)j+1, j = 1, 2, (5.23)

< ·, · > denotes the scalar product in L2(R), and M(kd, A∗|v|1/2) : L2(R)→ C2,

M(kd, A∗|v|1/2)f = (kd)1/2 1√
4π

 < |v|1/2ψ01(kd), f >

− < |v|1/2ψ02(kd), f >

 , f ∈ L2(R). (5.24)
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For the adjoint operators we get M(kd, v1/2)∗ : C2 → L2(R),(
M(kd, v1/2)∗h

)
(x) = (kd)−1/2 1√

4π
v(x)1/2

(
eik

dxh1 + e−ik
dxh2

)
(5.25)

and M(kd, A∗v1/2)∗ : C2 → L2(R),(
M(kd, A∗v1/2)∗h

)
(x) = (kd)1/2 1√

4π
v(x)1/2

(
eik

dxh1 − e−ik
dxh2

)
, h =

(
h1

h2

)
∈ C2.

(5.26)

The physical solutions ψs±j of the Schrödinger equation are defined by the Fredholm (resp. Lippmann-
Schwinger) equation

v1/2ψs±j := g2±(λ)v1/2ψs0j , ψs0j(k
s, x) := eεik

sx, ks =
√

2mλ, ε = (−1)j+1,

j = 1, 2, λ > 0, (5.27)

where g2±(λ) has been defined in (4.4). From Jost function techniques we know that e± = ∅, implying
that g2±(λ) is invertible for all λ ∈ R+ (see e. g. [9], [28]).

For the nonrelativistic limit we get from (4.24) the well known formula

S(0)(λ) =
(

T l(0)(λ) Rr(0)(λ)
Rl(0)(λ) T r(0)(λ)

)
= 1− 2πi2mM(ks, |v|1/2)g2+(λ)M(ks, v1/2)∗

= 1 +
2m

2iks

 < |v|1/2ψs01(k
s), v1/2ψs+1(k

s) > < |v|1/2ψs01(k
s), v1/2ψs+2(k

s) >

< |v|1/2ψs02(k
s), v1/2ψs+1(k

s) > < |v|1/2ψs02(k
s), v1/2ψs+2(k

s) >

 , λ > 0,

(5.28)

where T l(0), Rl(0), T r(0), Rr(0) denote the transmission and reflection coefficients from left resp. right
incidence.

We note that ψs+1 = T (0)fs+, ψs+2 = T (0)fs− where f s± are the Jost solutions in the notation of [9]. We
also note that ψs−2(k

s, x) = ψs+1(−ks, x) and ψs−1(k
s, x) = ψs+2(−ks, x). One has e.g.,

1
T l(0)(λ)

= 1− 2m

2iks

∫
R

e−ik
sxv(x)fs+(ks, x)dx,

1
T r(0)(λ)

= 1− 2m

2iks

∫
R

eik
sxv(x)fs−(ks, x)dx,

Rl(0)(λ)
T l(0)(λ)

=
2m

2iks

∫
R

eik
sxv(x)fs+(ks, x)dx,

Rr(0)(λ)
T r(0)(λ)

=
2m

2iks

∫
R

e−ik
sxv(x)fs−(ks, x)dx. (5.29)

Calculating the remaining terms on the right hand side of (4.25) yields:

2nd term

iks

16m

 < |v|1/2ψs01(k
s), v1/2ψs+1(k

s) > < |v|1/2ψs01(k
s), v1/2ψs+2(k

s) >

< |v|1/2ψs02(k
s), v1/2ψs+1(k

s) > < |v|1/2ψs02(k
s), v1/2ψs+2(k

s) >


(5.30)

+
(ks)2

8m

 − < x|v|1/2ψs01(k
s), v1/2ψs+1(k

s) > − < x|v|1/2ψs01(k
s), v1/2ψs+2(k

s) >

< x|v|1/2ψs02(k
s), v1/2ψs+1(k

s) > < x|v|1/2ψs02(k
s), v1/2ψs+2(k

s) >

 .
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3rd term

−i

4m

 < |v|1/2ψs01(k
s), v1/2pψs+1(k

s) > < |v|1/2ψs01(k
s), v1/2pψs+2(k

s) >

− < |v|1/2ψs02(k
s), v1/2pψs+1(k

s) > − < |v|1/2ψs02(k
s), v1/2pψs+2(k

s) >


(5.31)

+
iks

4m

 < |v|1/2ψs01(k
s), v1/2ψs01(k

s) > − < |v|1/2ψs01(k
s), v1/2ψs02(k

s) >

− < |v|1/2ψs02(k
s), v1/2ψs01(k

s) > < |v|1/2ψs02(k
s), v1/2ψs02(k

s) >

 .

We remark that the integral kernel of v1/2A(H0
1 − λ− i0)−1|v|1/2 is given by

v1/2A(H0
1 − λ− i0)−1|v|1/2(x, x′) =

i

2
v(x)1/2sgn(x− x′)eik

s|x−x′||v(x′)|1/2. (5.32)

4th term

− iks

4m

 < |v|1/2ψs01(k
s), v1/2ψs01(k

s) > − < |v|1/2ψs01(k
s), v1/2ψs02(k

s) >

− < |v|1/2ψs02(k
s), v1/2ψs01(k

s) > < |v|1/2ψs02(k
s), v1/2ψs02(k

s) >

 . (5.33)

5th term

iks

16m

 < |v|1/2ψs01(k
s), v1/2ψs+1(k

s) > < |v|1/2ψs01(k
s), v1/2ψs+2(k

s) >

< |v|1/2ψs02(k
s), v1/2ψs+1(k

s) > < |v|1/2ψs02(k
s), v1/2ψs+2(k

s) >


(5.34)

+
(ks)2

8m

 < |v|1/2ψs−1(k
s), xv1/2ψs01(k

s) > − < |v|1/2ψs−1(k
s), xv1/2ψs02(k

s) >

< |v|1/2ψs−2(k
s), xv1/2ψs01(k

s) > − < |v|1/2ψs−2(k
s), xv1/2ψs02(k

s) >

 .

6th term

iks

8m2

(
m11 m12

m21 m22

)
, (5.35)

where

m11 =< |v|1/2ψs−1(k
s), v1/2(H0

1 − λ− i0)−1p2(H0
1 − λ− i0)−1|v|1/2v1/2ψs+1(k

s) >,

m12 =< |v|1/2ψs−1(k
s), v1/2(H0

1 − λ− i0)−1p2(H0
1 − λ− i0)−1|v|1/2v1/2ψs+2(k

s) >,

m21 =< |v|1/2ψs−2(k
s), v1/2(H0

1 − λ− i0)−1p2(H0
1 − λ− i0)−1|v|1/2v1/2ψs+1(k

s) >,

m22 =< |v|1/2ψs−2(k
s), v1/2(H0

1 − λ− i0)−1p2(H0
1 − λ− i0)−1|v|1/2v1/2ψs+2(k

s) > . (5.36)

7th term

−i

4mks

(
n11 n12

n21 n22

)
, (5.37)

where

n11 =< |v|1/2p(ψs−1(k
s)− ψs01(k

s)), v1/2p(ψs+1(k
s)− ψs01(k

s)) >,

n12 =< |v|1/2p(ψs−1(k
s)− ψs01(k

s)), v1/2p(ψs+2(k
s)− ψs02(k

s)) >,

n21 =< |v|1/2p(ψs−2(k
s)− ψs02(k

s)), v1/2p(ψs+1(k
s)− ψs01(k

s)) >,

n22 =< |v|1/2p(ψs−2(k
s)− ψs02(k

s)), v1/2p(ψs+2(k
s)− ψs02(k

s)) > . (5.38)
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8th term

−i
4m

 < |v|1/2p(ψs−1(ks)− ψs01(ks)), v1/2ψs01(ks)) > − < |v|1/2p(ψs−1(ks)− ψs01(ks)), v1/2ψs02(ks)) >

< |v|1/2p(ψs−2(ks)− ψs02(ks)), v1/2ψs01(ks)) > − < |v|1/2p(ψs−2(ks)− ψs02(ks)), v1/2ψs02(ks)) >

 .

(5.39)

Using (4.26) we get

iks < |v|1/2ψs−1(k
s), [v1/2(H0

1 − λ− i0)−2|v|1/2]v1/2ψs+1(k
s) >

= −m < |v|1/2ψs−1(k
s), xv1/2ψs01(k

s) > +m < x|v|1/2ψs01(k
s), v1/2ψs+1(k

s) >

−iks
d

dλ
< |v|1/2ψs01(k

s), v1/2ψs+1(k
s) > . (5.40)

Summing up we get for the first order correction term of order c−2 of the scattering matrix (in terms
of transmission and reflection coefficients)

S(1)(λ) =:
(

T l(1)(λ) Rr(1)(λ)
Rl(1)(λ) T r(1)(λ)

)
=

(ks)4

8m3

dS(0)(λ)
dλ

+
1

4imks

 < |v|1/2pψs−1(k
s), v1/2pψs+1(k

s) > < |v|1/2pψs−1(k
s), v1/2pψs+2(k

s) >

< |v|1/2pψs−2(k
s), v1/2pψs+1(k

s) > < |v|1/2pψs−2(k
s), v1/2pψs+2(k

s) >



+
ks

4im

 < |v|1/2ψs−1(k
s), v1/2ψs+1(k

s) > < |v|1/2ψs−1(k
s), v1/2ψs+2(k

s) >

< |v|1/2ψs−2(k
s), v1/2ψs+1(k

s) > < |v|1/2ψs−2(k
s), v1/2ψs+2(k

s) >

 , λ > 0.

(5.41)

5.2 The Dirac operator in L2(IR3)4

The free Dirac operator H0(c) in L2(R3)4 is defined by:

H0(c) := cαp + βmc2, m, c ∈ R+, D(H0(c)) = H2,1(R3)4, (5.42)

where

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, αi =

(
0 σi
σi 0

)
, β =

(
1 0
0 −1

)
,

σ = (σ1, σ2, σ3), α = (α1, α2, α3),
p := −i∇, D(p) = H2,1(R3). (5.43)

Define (cf. e.g. [40], p. 305)

Mv,ρ(x) :=
{∫
|x−y|≤1

d3y|v(y)|2|x− y|ρ−3
}1/2

, v measureable, ρ < 3,

Mρ(R3) :=
{

v | Mv,ρ(·) bounded
}

, (5.44)

Nv(x) :=
{∫
|x−y|≤1

d3y|v(y)|2
}1/2

, for all x ∈ R3, and v ∈ L2
loc(R3). (5.45)
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and let V be the maximal operator of multiplication with the real-valued function v = v(x), where

v ∈Mρ(R3) for some ρ < 2. (5.46)
v ∈ L1(R3). (5.47)
veα|·| fullfills (5.46) and (5.47) for some α > 0. (5.48)

The Dirac operator H(c) in L2(R3)4 is now defined as

H(c) := H0(c) + V, D(H(c)) = D(H0(c)). (5.49)

The hypotheses (5.46)-(5.48) then imply

(i) V is H0(c) bounded with relative bound 0 by (5.46). (see [40], Theorem 10.18)

(ii) Since v ∈Mρ(R3) with ρ < 2 it follows that v1/2 ∈Mσ(R3) with σ < 1 and
Mσ(R3) ⊆Mρ(R3), σ ≤ ρ.
Since v1/2 ∈ L2(R3) we have Nv1/2(x)→ 0 for |x| → ∞.
Thus V 1/2 is H0(c) compact (cf. [40], Auxiliary theorem 10.24 and Theorem 10.21).

Subtracting the rest energy according to (3.1) we therefore identify:

H1 = H2 = K1 = K2 = L2(R3)2, I = R+, I±0 = I \ e±(c−2 = 0), C = L2(S2)2,

(5.50)

A = A∗ =
(

p3 p1 − ip2

p1 + ip2 −p3

)
, D(A) = H2,1(R3)2, pj = −i

∂

∂xj
, j = 1, 2, 3,

(5.51)
V1 = V2 = V, V = v1/2|v|1/2, v1/2 = |v|1/2 sgn(v),

(5.52)
Y = Y ∗ = B(c)−1|v|1/2, Z = Z∗ = B(c)v1/2.

(Here S2 denotes the unit sphere in R3.) Due to our hypothesis (5.48), e(c) is a discrete set [26].

Clearly Assumptions 3.1-3.3, 3.5 and 3.7 are satisfied. Assumption 3.6 follows from the explicit
expression (5.60) and Assumption 3.7. Assumption 3.8 can be dealt with in exactly the same way as
in Section 5.1. It remains to verify Assumption 4.1.

(i) Holomorphy of Q1+(λ, c), λ ∈ I+0.

The integral kernel q(x, y, λ, c) of

Q1+(λ, c) = v1/2B(c)(H0(c)−mc2 − λ− i0)−1B(c)−1|v|1/2 (5.53)

is given by

q(x, y, λ, c) = v(x)1/2 eik
d|x−y|

|x− y|
1
4π


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 |v(y)|1/2, (5.54)
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a11 = a22 =
λ

c2
+ 2m, a33 = a44 =

λ

c2
, a12 = a21 = a34 = a43 = 0,

a13 =
a

c2
(x3 − y3), a14 =

a

c2
[(x1 − y1)− i(x2 − y2)],

a23 =
a

c2
[(x1 − y1) + i(x2 − y2)], a24 = − a

c2
(x3 − y3),

(5.55)
a31 = a(x3 − y3), a32 = a[(x1 − y1)− i(x2 − y2)],

a41 = a[(x1 − y1) + i(x2 − y2)], a42 = −a(x3 − y3),

λ ∈ I+0, kd(λ, c) = ks(1 +
λ

2mc2
)1/2, ks =

√
2mλ,

where

a(x, y) := |x− y|−2(kd|x− y|+ i), x, y ∈ R3, x 6= y. (5.56)

Define the compact set M ⊆ C

M :=
{

c−2 ∈ C
∣∣∣ |c−2| ≤ |c−2

0 | <
2m

λ
and 2|Imkd(λ, c)| ≤ ks

λ

m|c2
0|
≤ α

}
(5.57)

Using

|kd| ≤ ks(1 +
λ

2m|c2
0|

)1/2 (5.58)

and a matrix norm || · || in C4 we get for c−2 ∈M the bound (cf. [8])

||q(x, y, λ, c)|| ≤ const(λ, α) |v(x)|1/2|v(y)|1/2eα2 |x|eα2 |y|( 1
|x− y| +

1
|x− y|2 ). (5.59)

For c−2 ∈M and fixed λ we have a family of uniformly bounded operators (using [40], Theorem 6.24,
the fact that v1/2e

α
2
|.| ∈ Mσ, σ < 1 and v1/2e

α
2
|.| ∈ L2(R3)). Since the integral kernel q(x, y, λ, c) is a

holomorphic function of c−2 around c−2 = 0 we get holomorphy of Q1+(λ, c).

(ii) Holomorphy of T (λ, c, Y ), λ > 0.

The integral kernel t(x, λ, c, ω) of T (λ, c, Y ) : L2(R3)4 → L2(S2)2 is given by (see [34] and (4.12))

t(x, λ, c, ω) = (2π)−3/2

√
kd

2

√
λ + 2mc2

c2
e−ik

dωx|v(x)|1/2 ·

·

 1 0 k0
c ω3

k0
c (ω1 − iω2)

0 1 k0
c (ω1 + iω2) −k0

c ω3

 , k0 =

√
λ

λ + 2mc2
, ω ∈ S2. (5.60)

(We note that F maps L2(R3)4 → L2((0,∞);L2(S2)2) ( see [34]).) For λ ∈ I we get

||t(ω, x, λ, c)|| ≤ const(λ, α)|v(x)|1/2eα2 |x|. (5.61)
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For c−2 ∈ M this is also a family of uniformly bounded Hilbert Schmidt operators (since veα|·| ∈
L1(R3), with integral kernel holomorphic in c−2 and therefore T (λ, c, Y ) is holomorphic in c−2 around
c−2 = 0.

The holomorphy of T (λ, c, Z)∗ follows similarly.

In particular, S(λ, c)− 1 is a trace class operator, i. e.,

[S(λ, c)− 1] ∈ B1(L2(S2)2), λ ∈ I \ e+(c). (5.62)

The operator U0 that diagonalizes A∗A is given by U0 : L2(R3)2 → L2((0,∞), dµ;L2(S2)2),

(U0f)(µ, ω))j =
1√
2
µ1/4(UF fj)(

√
µω), j = 1, 2, ω ∈ S2, f ∈ L2(R3)2, (5.63)

with

(UF f)(kω) := s− lim
R→∞

∫
|x|≤R

d3xe−ikωxf(x), f ∈ L2(R3), k =
√

µ, k > 0, (5.64)

the Fourier transform in L2(R3).

Thus we get M(kd, |v|1/2) : L2(R3)2 → L2(S2)2,(
M(kd, |v|1/2)f

)
(ω)j =

1√
2
(kd)1/2(UF |v|1/2fj)(kdω) (5.65)

=
1√
2
(kd)1/2(2π)−3/2

∫
R3

d3xe−ik
dωx|v(x)|1/2fj(x)

=
1√
2
(kd)1/2(2π)−3/2 < |v|1/2ψ0(kdω), fj >, fj ∈ L2(R3), j = 1, 2,

where ψ0(kdω, x) := eik
dωx and < ·, · > now denotes the scalar product in L2(R3).

Similarly we have M(kd, A∗|v|1/2) : L2(R3)2 → L2(S2)2,

(
M(kd, A∗|v|1/2)f

)
(ω) =

1√
2

(kd)3/2(2π)−3/2

(
ω3 ω1 − iω2

ω1 + iω2 −ω3

)(
< |v|1/2ψ0(kdω), f3 >

< |v|1/2ψ0(kdω), f4 >

)
,

f ∈ L2(R3)2. (5.66)

For the corresponding adjoint operators we obtain M(kd, v1/2)∗ : L2(S2)2 → L2(R3)2,(
M(kd, v1/2)∗h

)
(x)j =

1√
2
(kd)1/2(2π)−3/2v(x)1/2

∫
S2

dωeik
dωxhj(ω), hj ∈ L2(S2), j = 1, 2,

(5.67)

and M(kd, A∗v1/2)∗ : L2(S2)2 → L2(R3)2,

(
M(kd, A∗v1/2)∗h

)
(x) =

1√
2

(kd)3/2(2π)−3/2v(x)1/2

∫
S2
dω

(
ω3 (ω1 − iω2)

(ω1 + iω2) −ω3

)(
h1(ω)
h2(ω)

)
eik

dωx,

h ∈ L2(S2)2. (5.68)

The physical solutions ψs± of the Schrödinger (Pauli) equation are defined by the Fredholm (resp.
Lippmann-Schwinger) equation ( see e. g. [1], [28])

v1/2ψs±(ksω) := g2±(λ)v1/2ψs0(k
sω), ψs0(k

sω, x) = eik
sωx, ks =

√
2mλ, λ ∈ I±0, ω ∈ S2.

(5.69)
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For the nonrelativistic limit S(0)(λ) we get from (4.24) the well known result [1], [3], [4] [22], [24], [28]

(S(0)(λ)h)(ω)j = ([1− 2πi2mM(ks, |v|1/2)g2+(λ)M(ks, v1/2)∗]h)(ω)j =

= hj(ω)− 2πi
ks

2
2m(2π)−3

∫
R3

d3xe−ik
sωx|v(x)|1/2g2+(λ)v1/2(·)

∫
S2

dω′eik
sω′(·)hj(ω′)

(5.70)

= hj(ω)− imks(2π)−2

∫
S2

dω′hj(ω′) < |v|1/2ψs0(ksω), v1/2ψs+(ksω′) >,

hj ∈ L2(S2), j = 1, 2, a. e. λ ∈ I.

Calculating the remaining terms on the right hand side of (4.25) yields:

2nd term

− i(ks)3

16m
(2π)−2

∫
S2

dω′ < |v|1/2ψs0(ksω), v1/2ψs+(ksω′) > hj(ω′)

(5.71)

−(ks)4

8m
(2π)−2

∫
S2

dω′ < |v|1/2(ω · x)ψs0(k
sω), v1/2ψs+(ksω′) > hj(ω′), j = 1, 2.

3rd term

i(ks)2

4m
(2π)−2

∫
S2

dω′
(

b1(ω, ω′)
b2(ω, ω′)

)
, (5.72)

where

b1(ω, ω′) = < |v|1/2ψs0(ksω), ω3v
1/2[p3(ψs0(k

sω′)− ψs+(ksω′))h1(ω′)

+(p1 − ip2)(ψs0(k
sω′)− ψs+(ksω′))h2(ω′)] > + < |v|1/2ψs0(ksω), (ω1 − iω2)v1/2 ·

·[(p1 + ip2)(ψs0(k
sω′)− ψs+(ksω′))h1(ω′)− p3(ψs0(k

sω′)− ψs+(ksω′))h2(ω′)] >,

(5.73)

b2(ω, ω′) = < |v|1/2ψs0(ksω), (ω1 + iω2)v1/2[p3(ψs0(k
sω′)− ψs+(ksω′))h1(ω′)

+(p1 − ip2)(ψs0(k
sω′)− ψs+(ksω′))h2(ω′)] > − < |v|1/2ψs0(ksω), ω3v

1/2 ·
·[(p1 + ip2)(ψs0(k

sω′)− ψs+(ksω′))h1(ω′)− p3(ψs0(k
sω′)− ψs+(ksω′))h2(ω′)] > .

4th term

− i(ks)3

4m
(2π)−2

∫
S2

dω′ < |v|1/2ψs0(ksω), v1/2ψs0(k
sω′) > ·

(5.74)

·
(

ω3ω
′
3 + (ω1 − iω2)(ω′1 + iω′2) ω3(ω′1 − iω′2)− (ω1 − iω2)ω′3

(ω1 + iω2)ω′3 − ω3(ω′1 + iω′2) (ω1 + iω2)(ω′1 − iω′2) + ω3ω
′
3

)(
h1(ω′)
h2(ω′)

)
.

5th term

− i(ks)3

16m
(2π)−2

∫
S2

dω′ < |v|1/2ψs0(ksω), v1/2ψs+(ksω′) > hj(ω′)

(5.75)

+
(ks)4

8m
(2π)−2

∫
S2

dω′ < |v|1/2ψs−(ksω), v1/2(ω′ · x)ψs0(k
sω′) > hj(ω′), j = 1, 2.
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6th term

i(ks)3

4m
(2π)−2

∫
S2

dω′ < |v|1/2(ψs0(ksω)− ψs−(ksω)), v1/2ψs+(ksω′) > hj(ω′)

+
i(ks)5

8m2
(2π)−2

∫
S2

dω′ < |v|1/2ψs−(ksω), [v1/2(H0
1 − λ− i0)−2|v|1/2]v1/2ψs+(ksω′) > hj(ω′),

j = 1, 2. (5.76)

7th term

− iks

4m
(2π)−2

∫
S2

dω′
(

d1(ω, ω′)
d2(ω, ω′)

)
, (5.77)

where

d1(ω, ω′) = < |v|1/2p3(ψs0(k
sω)− ψs−(ksω)), v1/2[p3(ψs0(k

sω′)− ψs+(ksω′))h1(ω′)

+(p1 − ip2)(ψs0(k
sω′)− ψs+(ksω′))h2(ω′)] > + < |v|1/2(p1 + ip2)(ψs0(k

sω)− ψs−(ksω)), v1/2 ·
·[(p1 + ip2)(ψs0(k

sω′)− ψs+(ksω′))h1(ω′)− p3(ψs0(k
sω′)− ψs+(ksω′))h2(ω′)] >,

(5.78)

d2(ω, ω′) = < |v|1/2(p1 − ip2)(ψs0(k
sω)− ψs−(ksω)), v1/2[p3(ψs0(k

sω′)− ψs+(ksω′))h1(ω′)

+(p1 − ip2)(ψs0(k
sω′)− ψs+(ksω′))h2(ω′)] > − < |v|1/2p3(ψs0(k

sω)− ψs−(ksω)), v1/2 ·
·[(p1 + ip2)(ψs0(k

sω′)− ψs+(ksω′))h1(ω′)− p3(ψs0(k
sω′)− ψs+(ksω′))h2(ω′)] > .

In order to simplify (5.78) one can use

< |v|1/2σpψs−(ksω), v1/2σpψs+(ksω′) > =
(

a11(ω, ω′) a12(ω, ω′)
a21(ω, ω′) a22(ω, ω′)

)
, (5.79)

where

a11(ω, ω′) = < |v|1/2p3ψ
s
−(ksω), v1/2p3ψ

s
+(ksω′) >

+ < |v|1/2(p1 + ip2)ψs−(ksω), v1/2(p1 + ip2)ψs+(ksω′) >, (5.80)

a12(ω, ω′) = < |v|1/2p3ψ
s
−(ksω), v1/2(p1 − ip2)ψs+(ksω′) >

− < |v|1/2(p1 + ip2)ψs−(ksω), v1/2p3ψ
s
+(ksω′) >, (5.81)

a21(ω, ω′) = < |v|1/2(p1 − ip2)ψs−(ksω), v1/2p3ψ
s
+(ksω′) >

− < |v|1/2p3ψ
s
−(ksω), v1/2(p1 + ip2)ψs+(ksω′) >, (5.82)

a22(ω, ω′) = < |v|1/2(p1 − ip2)ψs−(ksω), v1/2(p1 − ip2)ψs+(ksω′) >

+ < |v|1/2p3ψ
s
−(ksω), v1/2p3ψ

s
+(ksω′) > . (5.83)

8th term

i(ks)2

4m
(2π)−2

∫
S2

dω′·
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·

 < |v|1/2p3(ψs0(ksω)− ψs−(ksω)), v1/2ψs0(ksω′) > [ω′3h1(ω′) + (ω′1 − iω′2)h2(ω′)]

< |v|1/2(p1 − ip2)(ψs0(ksω)− ψs−(ksω)), v1/2ψs0(ksω′) > [ω′3h1(ω′) + (ω′1 − iω′2)h2(ω′)]



+

 < |v|1/2(p1 + ip2)(ψs0(ksω)− ψs−(ksω)), v1/2ψs0(ksω′) > [(ω′1 + iω′2)h1(ω′)− ω′3h2(ω′)]

− < |v|1/2p3(ψs0(ksω)− ψs−(ksω)), v1/2ψs0(ksω′) > [(ω′1 + iω′2)h1(ω′)− ω′3h2(ω′)]


.

(5.84)

Summing up we get for the first order correction term in c−2 of the scattering matrix

(S(1)(λ)h)(ω) =
(ks)4

8m3

(d(S(0)(λ)
dλ

h
)
(ω)

+(2π)−2

∫
S2

dω′
[
(ks)3

4im
< |v|1/2ψs−(ksω), v1/2ψs+(ksω′) > 1

+
ks

4im
< |v|1/2σpψs−(ksω), v1/2σpψs+(ksω′) >

](
h1(ω′)
h2(ω′)

)
,

a. e. λ ∈ I, ω ∈ S2, h =
(

h1

h2

)
∈ L2(S2)2. (5.85)

The analogous expansion of the scattering amplitude up to order O(c−2) can be found in Appendix
A.
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Appendix A. Comparison with the Foldy-Wouthuysen method

In this appendix we compare our approach with the Foldy-Wouthuysen (F-W) method. The F-W-
expansion is in principle a formal expansion of the unbounded Dirac operator in c−2 which is used
by physicists to compute relativistic corrections. (It became popular since the terms in (A.7) have
a nice physical interpretation.) Since the perturbations become more and more singular it is quite
remarkable that this expansion (interpreted appropriately) yields formally correct results (see e.g. [10]
,[12]).

Let f(λ, c−2, ω, ω′) be the Dirac scattering amplitude

f(λ, c−2, ω, ω′) := −2πi
1
kd

(
S(λ)− 1

)
(ω, ω′), a.e. λ ∈ I, ω, ω′ ∈ S2. (A.1)

Then we get by (5.85) the following expansion

f(λ, c−2, ω, ω′) = f (0)(λ, ω, ω′) + c−2

[
λ2

2m

df (0)(λ, ω, ω′)
dλ

− λ

4π

∫
R3

d3xψ̄s−(ksω, x)v(x)ψs+(ksω′, x)

− 1
8πm

∫
R3

d3x(σpψs−(ksω))(x)v(x)(σpψs+(ksω′))(x)
]

+ O(c−4), (A.2)
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where

f (0)(λ, ω, ω′) = −2πi
1
ks

(
S(0)(λ)− 1

)
(ω, ω′)

= −2m

4π

∫
R3

d3xe−ik
sωxv(x)ψs+(ksω′, x). (A.3)

This expansion of the scattering amplitude f(λ, c−2, ω, ω′) coincides with the expansion of the scatter-
ing amplitude t(λ, c−2, ω, ω′) of [14] after multiplying t(λ, c−2, ω, ω′) by a factor−2π2 kd

ck0
= −2π22m(1+

λ(2mc2)−1) and expanding the function e(λ, c−2) = λ(1 + λ(2mc2)−1) with respect to c−2. (We do
not average over spin states in order to keep greater generality.)

Next define the Pauli operators H0
1 , H1 in L2(R3)2 (see e.g. [12], [34])

H0
1 = − ∆

2m
, H1 = − ∆

2m
+ V, D(H0

1 ) = D(H1) = H2,2(R3)2, (A.4)

where we assume that V is the maximal multiplication operator by the real-valued function v(x) with
v ∈ C∞0 (R3) for simplicity. (Here we suppress the trivial spin dependence in H0

1 , H1.) Then

σess(H0
1 ) = σac(H0

1 ) = [0,∞). (A.5)

The first order F-W operators in L2(R3)2 are now defined by (see e.g. [10] ,[12])

H0
FW (c) := − ∆

2m
− 1

8c2m3
∆2, HFW (c) := H0

FW (c) + W (c), (A.6)

D(H0
FW )(c) = D(HFW (c)) = H2,4(R3)2,

where

W (c) := V +
1

4m2c2

[
1
2
∆V + σ(∇V ) ∧ p

]
, p = −i∇. (A.7)

We have

σess(H0
FW (c)) = σac(H0

FW (c)) = (−∞,
1
2
mc2],

H0
FW (c)ψ0

FW = λψ0
FW , ψ0

FW (kFWω, x) = eik
FWωx, (A.8)

where

kFW :=

[
2m2c2 − 2m2c2

(
1− 4λ

2mc2

)1/2
]1/2

= (2mλ)1/2

(
1 +

λ

4mc2

)
+ O(c−4). (A.9)

Before we compare the results of our approach and the F-W-method in connection with scattering
theory, let us briefly recall the corresponding facts for eigenvalues. For simplicity assume E0 to be
a nondegenerate bound state of H1, i.e., H1ψ0 = E0ψ0 for some ψ0 ∈ H2,2(R3)2, ||ψ0|| = 1. Then
the first-order correction term E1 to the corresponding eigenvalue of the Dirac operator cαp + (β −
1)mc2 + V is given by E0 + 1

c2
E1 with [10] ,[11]

E1 =
1

4m2
(σpψ0, (V − E0)σpψ0). (A.10)
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In contrast to this simple formula the F-W-method has some conceptual difficulties since for negative
energies there exists no bound states. Nevertheless a formal perturbation calculation yields

E1 =
1

4m2
(ψ0,

[
− p4

2m
+

1
2
∆V + σ(∇V ) ∧ p

]
ψ0). (A.11)

One can show that (A.10) and (A.11) are equal if e.g. ∂xj∂xlV ∈ C2(R3) ∩ L∞(R3), 1 ≤ j, l ≤ 3. The
result can be explained in terms of spectral concentration as shown in [12]. However, we emphasize
that expression (A.10) is simpler than the traditional F-W-formula (A.11) and at the same time it
is based on an analytic expansion of the Dirac eigenvalue (rest energy subtracted) with respect to
c−2 rather than the somewhat artificial spectral concentration approach. Moreover, (A.11) requires
much more smoothness of the potential V than (A.10) and, in particular, excludes Coulomb-type
singularities (which are included in [10], [11]).

Now we turn to scattering theory. Since we are interested in relativistic corrections to nonrelativistic
scattering quantities for a fixed λ > 0, we consider λ ∈ (0, 1

2mc2) and choose c large enough. According
to our conventions the F-W scattering amplitude fFW (λ, c−2, ω, ω′) for a.e. λ ∈ (0, 1

2mc2) is defined
by

fFW (λ, c−2, ω, ω′) := − 1
4π

g(λ, c−2)
∫
R3

d3xe−ik
FWωxW

[
1− (HFW − λ− i0)−1W

]
eik

FWω′(·),

ω, ω′ ∈ S2,

g(λ, c−2) :=
kd

ck0
(1 + k2

0) = 2m(1 +
λ

mc2
) + O(c−4). (A.12)

Expanding (A.12) in powers of c−2 gives

fFW (λ, c−2, ω, ω′) = f
(0)
FW (λ, ω, ω′) + c−2f

(1)
FW (λ, ω, ω′) + O(c−4), (A.13)

where

f
(0)
FW (λ, ω, ω′) = −2m

4π

∫
R3

d3xe−ik
sωx
(
V
[
1− (H1 − λ− i0)−1V

]
eik

sω′(·)
)

(x)

= −2m

4π

∫
R3

d3xe−ik
sωxv(x)ψs+(ksω′, x) = f (0)(λ, ω, ω′) (A.14)

by (A.3) and

f
(1)
FW (λ, ω, ω′) =

λ2

2m

df (0)(λ, ω, ω′)
dλ

− 2m

4π

∫
R3

d3xe−ik
sωx
(
K(λ)eik

sω′(·)
)

(x) (A.15)

with

K(λ) :=
1

4m2

[
1
2
∆V + σ(∇V ) ∧ p

]
(1−R1V )− 1

4m2
V R1

[
1
2
∆V + σ(∇V ) ∧ p

]
+V R1

{
− ∆2

8m3
+

1
4m2

[
1
2
∆V + σ(∇V ) ∧ p

]}
R1V +

λ

m
V (1−R1V ) +

λ2

2m
V R2

1V

=
1

4m2
(1− V R1)

[
1
2
∆V + σ(∇V ) ∧ p

]
(1−R1V )− 1

8m3
V R1(σp)4R1V

+
λ

m
V (1−R1V ) +

λ2

2m
V R2

1V,

R1 := (H1 − λ− i0)−1, ψs±(ksω, x) =
(
(1− (H1 − λ± i0)−1V )eik

sω(·)
)

(x). (A.16)
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We note that[
σp, V

]
σp = σpV σp− V (σp)2,∫

R3

d3xψ̄s−(ksω, x)
([

1
2
∆V + σ(∇V ) ∧ p

]
ψs+(ksω)

)
(x)

=
∫
R3

d3xψ̄s−(ksω, x)
([
σp, V

]
σpψs+(ksω)

)
(x) (A.17)

since ∫
R3

d3xψ̄s−(ksω, x)
(
[∆, V ]ψs+(ksω)

)
(x) = 0. (A.18)

Using (A.17) and (A.8) we finally obtain∫
R3

d3xe−ik
sωx
(
K(λ)eik

sω′(·)
)

(x)

=
∫
R3

d3xe−ik
sωx

{(
1

4m2
(1− V R1)

[
1
2
∆V + σ(∇V ) ∧ p

]
(1−R1V )

− 1
8m3

V R1(σp)4R1V +
λ

m
V (1−R1V ) +

λ2

2m
V R2

1V

)
eik

sω′(·)
}

(x)

=
∫
R3

d3xe−ik
sωx

{(
1

4m2
(1− V R1)

[
σp, V

]
σp(1−R1V )

− 1
8m3

V R1(σp)4R1V +
λ

m
V (1−R1V ) +

λ2

2m
V R2

1V

)
eik

sω′(·)
}

(x)

=
λ

2m

∫
R3

d3xe−ik
sωx
{

((1− V R1)V (1−R1V )) eik
sω′(·)

}
(x)

+
1

4m2

∫
R3

d3xe−ik
sωx
{(

(1− V R1)
(
σpV σp

)
(1−R1V )

)
eik

sω′(·)
}

(x) (A.19)

and hence (A.15) coincidences with (A.2). However, in analogy to the bound state case mentioned
before, (A.2) is much simpler than (A.15) and requires less smoothness properties of V . (In order
to speed up our treatment we did not factor V into v1/2|v|1/2 and symmetrize the expressions in
(A.12)-(A.19). This can be easily done as in Section 5 and we omit the details.)
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