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Abstract. We present a novel approach to the Kadomtsev-Petviashvili (KP) hierar-
chy and its modified counterpart, the mKP hierarchy based on factorizations of formal
pseudo-differential operators and a matrix-valued Lax operator for the mKP hierar-
chy. As a result of this framework we obtain new Bäcklund transformations for the
KP hierarchy and the possibility of transferring classes of KP solutions into those of
mKP solutions, and vice versa. As an application of our techniques we provide a new
derivation of soliton solutions of the KP and mKP equation.

1. Introduction

In this note we extend previous results on the Gelfand-Dickey (GD) and Drinfeld-Sokolov

(DS) hierarchies and GD Bäcklund transformations in [8]-[13] to the nonlinear evolu-

tion equations of the Kadomtsev-Petviashvili (KP) and modified Kadomtsev-Petviashvili

(mKP) hierarchy (see Section 2 for precise definitions of the (m)KP hierarchy). Our main

new technique, when compared to the traditional approach to the KP hierarchy (see

(2.16)), consists of replacing the usual first-order formal pseudo-differential Lax operator

L1 = ∂x +
−1∑

j=−∞
uj∂

j
x (1.1)

by an nth-order formal pseudo-differential operator

Ln = ∂nx +
n−2∑
j=−∞

qj∂
j
x, n ≥ 2. (1.2)

This enables us to derive new KP Bäcklund transformations by studying factorizations

of Ln into n − 1 first-order formal differential operators Ak, 1 ≤ k ≤ n − 1 and one

first-order formal pseudo-differential operator Ãn of the type

Ln = ÃnAn−1 · · ·A2A1, (1.3)

Ak = ∂x + ηk,x, 1 ≤ k ≤ n,
n∑
k=1

ηk,x = 0, (1.4)

Ãn = An +
−1∑

j=−∞
bn,j∂

j
x. (1.5)
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Associated with the factorization (1.3) we introduce the following matrix-valued Lax

operatorMn

Mn =



0 0 . . . 0 Ãn

A1 0
. . . 0

0 A2
. . . . . .

...
...

. . . . . . . . . 0

0 . . . 0 An−1 0


, n ≥ 2 (1.6)

for the mKP hierarchy (see (2.43)). The Miura-type identity

Mn
n =


Ln,1 0 . . . 0

0 Ln,2
. . .

...
...

. . . . . . 0

0 . . . 0 Ln,n

 , (1.7)

where

Ln,k = Ak−1 · · ·A2A1Ãn · · ·Ak+1Ak, 1 ≤ k ≤ n (1.8)

are of the form (1.2) (here indices are taken mod n), then implies in a manner well-

known from GD and DS systems (see, e.g., [13] and the references therein) the fol-

lowing link between solutions of the KP and mKP hierarchy: any solution (η, bn) =

(η1, . . . , ηn, bn,j)j≤−1 of the mKP hierarchy (2.43) yields n solutions q
k

= (qj,k)j≤n−2, 1 ≤
k ≤ n of the KP hierarchy (2.16). Our main result in Theorem 2.5 and Corollary 2.6

reverses this procedure, i.e., given a solution q
1

= (qj,1)j≤n−2 of the KP hierarchy we con-

struct an associated solution (η, bn) = (η1, . . . , ηn, bn,j)j≤−1 of the mKP hierarchy and

n − 1 further solutions q
k

= (qj,k)j≤n−2, 2 ≤ k ≤ n of the KP hierarchy. (We note that
2
n
qn−2 and ηk, 1 ≤ k ≤ n− 1 solve the KP equation (2.21) and mKP equation (2.52) in

standard form.) In this way whole classes of solutions such as soliton solutions, rational

solutions etc. can be transferred from the KP hierarchy to the mKP hierarchy and vice

versa.

It must be pointed out at this occasion that the use of Ln respectivelyMn in the context

of the KP respectively mKP hierarchy is not new but goes back to an observation in

[21]. However, our particular factorization of Ln into n − 1 formal 1st-order differential

operators and one formal 1st-order pseudo-differential operator was not studied in [21]

and no connections to KP Bäcklund transformations were established. It is our use of Ln

instead of the traditional Lax operator L1 (see, e.g., [3], [4], [5], [14], [17], [26], [29]) or the

partial differential operator L = ∂2
x + ∂t2 + u (see, e.g., [11], [12], [19], [23], [24], Chapter

3) in conjunction with the matrix-valued Lax operatorMn for the mKP hierarchy which

allows one to obtain n− 1 further solutions of the KP hierarchy as opposed to just one

further such solution in the context of L1 or L.
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The efficiency of our approach is illustrated by Example 2.9 where we provide a new

derivation of soliton solutions of the KP and mKP equation. In particular, by choosing n

appropriately (n = 2N +2), our formalism allows one to construct the N -soliton KP and

associated (2N−1)-soliton mKP solutions without recourse to formal pseudo-differential

operators but solely within the class of formal differential operators.

In order to be widely applicable, we present our main results in Section 2 in a general

algebraic framework.

Finally, we emphasize that the KP hierarchy plays an important role in a variety of

different fields including modern string theory and in connection with the solution of the

Schottky problem of compact Riemann surfaces [26], [32]. Moreover, a large variety of

completely integrable nonlinear evolution equations can be derived by special reductions

from the KP or mKP hierarchy [15], [30]. (For more complex systems requiring an

extension of Ln of the form
∑n
j=−∞ uj∂

j
x with un 6= 1, un−1 6= 0 in general, see, e.g., [18],

[20], [36]. A suitable modification of our approach extends to this situation.)

2. KP and mKP hierarchies

We start by briefly reviewing the following algebraic framework (see, e.g., [1], [2], [5],

Chapter 1, [6], [7], [13], [22], [25], [29], [31], [33]-[35] for details).

Let A be a commutative differential algebra defined over C with unity 1 and a derivation

∂ : A→ A satisfying the following conditions:

(i): ∂ is surjective on A (i.e., for every f ∈ A there exists a g ∈ A such that ∂g = f).

(ii): A is closed under exponentiation (i.e., for any f ∈ A the expression
∑∞
n=0 fn/n! =

ef yields an element of A).

The polynomial algebra (algebra of formal differential operators) generated by A ∪ {ξ}
is then given by

A[ξ] =
{ N∑
j=0

ajξ
j | aj ∈ A, 0 ≤ j ≤ N, N ∈ N0

}
, (2.1)

where

ξ0a = a, ξja =
j∑
`=0

(
j

`

)
a(`)ξj−`, j ∈ N,

a(0) = a, a(`) = ∂`a, ` ∈ N, a ∈ A. (2.2)

We also introduce the algebra of formal pseudo-differential operators with coefficients in

A

A((ξ−1)) =
{ M∑
j=−∞

ajξ
j | aj ∈ A, j ≤M, M ∈ Z

}
(2.3)
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with the extended Leibniz rule

ξ−ja =
∞∑
`=0

(−1)`
(
j + `− 1

`

)
a(`)ξ−j−`, j ∈ N,a ∈ A. (2.4)

For elements S =
∑M
j=−∞ sjξ

j ∈ A((ξ−1)) one writes

S+ =
M∑
j=0

sjξ
j, S− =

−1∑
j=−∞

sjξ
j, S = S+ + S− (2.5)

and calls S+ the (formal) differential operator part of S. The order of S is defined by

ord(S) = max{j ∈ Z | ג∽ 6= 0}. (2.6)

Consider for a fixed n ∈ N an element of A((ξ−1)) of the form

Ln = ξn +
n−2∑
j=−∞

qjξ
j ∈ A((ξ−1)). (2.7)

Then there exists an element Kn = 1+
−1∑

j=−∞
χjξ

j ∈ A((ξ−1)) (the formal dressing operator

of Zakharov-Shabat [33], [37]) such that

Ln = Knξ
nK−1

n . (2.8)

Moreover, Kn is unique up to right multiplication by a constant coefficient operator

M = 1 +
−1∑

j=−∞
cjξ

j, cj = const, j ∈ N. (2.9)

On the subalgebra B of A generated by qj, j ≤ n− 2, we associate the degree (weight)

deg(q
(`)
j ) = n + `− j, ` ∈ N0 (2.10)

with q
(`)
j . B becomes a Z-graded algebra and ∂ is then homogeneous of degree 1. (In

making use of the grading (2.10) it is implicitly assumed that there is no polynomial

relation between the q
(l)
j .) Defining deg(ξ) = 1, this grading naturally extends to B[ξ]

and B((ξ−1)). Ln is then homogeneous of degree n. (We recall that Kn, unlike Ln, is

not an element of B((ξ−1)).)

Next, for L ∈ A((ξ−1)), we denote by CA({L}) the centralizer

CA({L}) =
{
P ∈ A((ξ−1)) | [P, L] = 0

}
(2.11)

and by Z(CA({L})) the center of the centralizer of {L}.

Let P0,r = ξr, r ∈ N, Pn,r = KnP0,rK
−1
n then Pn,r = (Ln)

r
n and Pn,r ∈ CA({L}), i.e.,

[Pn,r, Ln] = 0. Writing

(Pn,r)+ = (L
r
n
n )+ = ξr + pr−2ξ

r−2 + . . . + p0, r ∈ N, (2.12)
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one obtains, e.g., for r = 1, 2, 3 :

(Pn,1)+ = ξ, (2.13)

(Pn,2)+ = ξ2 +
2

n
qn−2, (2.14)

(Pn,3)+ = ξ3 +
3

n
qn−2ξ +

3

n

(
qn−3 +

3− n

2
∂qn−2

)
. (2.15)

Let the elements of the algebra A depend on the parameters tr, r ∈ N. Then for any

fixed n, the KPn hierarchy is defined by the system

∂trLn = [(Pn,r)+, Ln], r ∈ N. (2.16)

In terms of the coefficients qj of Ln, (2.16) yields the KPn system

KPn,r,j(q) = qj,tr − E\,∇,|(q) = ′, q = {q`}−∞<`≤\−∈ ,
−∞ < j ≤ n− 2, r ∈ N, (2.17)

where the E\,∇,| are differential polynomials in q` of degree r + `− j.

Example 2.1. For qn−2 and qn−3 the equations for r = 2 read

qn−2,t2 = (2− n)∂2qn−2 + 2∂qn−3, (2.18)

qn−3,t2 = ∂2qn−3 + 2∂qn−4 −
1

3
(n− 1)(n− 2)∂3qn−2

−2

n
(n− 2)qn−2∂qn−2. (2.19)

For qn−2,t3 one gets

qn−2,t3 =
1

4
(n2 − 6n + 9)∂3qn−2 −

3

2
(n− 3)∂2qn−3

+3∂qn−4 −
3

n
(n− 3)qn−2∂qn−2. (2.20)

We can eliminate qn−3, qn−4 from (2.20) by (2.18) and (2.19) and writing q̃n−2 = 2
n
qn−2

yields the KP equation in standard form

∂q̃n−2,t3 =
1

4
∂4q̃n−2 +

3

2
∂(q̃n−2∂q̃n−2) +

3

4
q̃n−2,t2t2 . (2.21)

Remark 2.2. (i) The traditional approach uses n = 1, L1 = ξ +
∑−1
j=−∞ ujξ

j. Then

Ln = (L1)
n, (i.e., qn−2 = n u−1, etc.) and [∂tr − (P1,r)+, L1] = 0 implies

[∂tr−(P1,r)+, (L1)
n] = 0. The opposite direction can be proven using the dressing operator

Kn: assume

[∂tr − (Pn,r)+, Ln] = 0, r ∈ N (2.22)

and define L1 = L1/n
n . Then Pn,r = P1,r and (2.22) is equivalent to

[(∂trKn)K
−1
n − (P1,r)+, Ln] = 0 (2.23)

respectively to

[K−1
n

(
(∂trKn)K

−1
n − (P1,r)+

)
Kn, ξ

n] = 0. (2.24)
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This immediately implies

[K−1
n

(
(∂trKn)K

−1
n − (P1,r)+

)
Kn, ξ] = 0 (2.25)

which is equivalent to

[(∂trKn)K
−1
n − (P1,r)+, L1] = 0. (2.26)

Hence we obtain

∂trL1 = ∂tr(KnξK
−1
n ) = [(∂trKn)K

−1
n , L1] = [(P1,r)+, L1], r ∈ N. (2.27)

However, the choice of Ln with n ≥ 2 is better suited for deriving Bäcklund transforma-

tions as will become clear in Corollary 2.6.

(ii) The reduction to the corresponding equations of the GD hierarchy now simply becomes

qj = 0 for j ≤ −1.

(iii) Since the equations for r = 2 have the form

qj,t2 = ∂qj−1 − Ẽn,2,j(qn−2, . . . , qj), j ≤ n− 2, (2.28)

where the Ẽn,2,j are differential polynomials in (qn−2, . . . , qj), one can express every qj in

terms of ∂r∂st2qn−2 with r + 2s + j − n + 2 = 0, j ≤ n− 3, 0 ≤ s ≤ n− 2− j,

r ≤ n − 2 − j. This possibility of expressing all qj, j ≤ n − 3 in terms of one function

is well-known to be related to the τ -function formalism underlying the (m)KP hierarchy

(see, e.g., [3], [4], [5], Chapter 7, [16], [17], [28]).

In order to generate the modified KPn hierarchy we consider the algebra (A)n of n× n-

matrices, n ≥ 2 with entries in A and similar to (2.1) and (2.3) we then define (A[ξ])n

and (A((ξ−1))n. Let

Ak = e−ηkξeηk = ξ + ∂ηk ∈ A[ξ], 1 ≤ k ≤ n,
n∑
k=1

∂ηk = 0, (2.29)

Bn =
−1∑

j=−∞
bn,jξ

j ∈ A((ξ−1)), (2.30)

Ãn = An + Bn, (2.31)

and define

Mn =



0 0 . . . 0 Ãn

A1 0 . . . 0 0

0 A2
. . .

...
...

...
. . . . . . 0 0

0 . . . 0 An−1 0


∈
(
A((ξ−1))

)n
. (2.32)

On the subalgebra B̃ of A generated by ηj, 1 ≤ j ≤ n− 1, bn,j, j ≤ −1 we associate the

degree (weight)

deg(η
(`)
j ) = `, deg(b

(`)
n,j) = `− j + 1, ` ∈ N0 (2.33)
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with η
(`)
j and b

(`)
n,j. B̃ becomes a Z-graded algebra and ∂ is then homogeneous of degree

1. This grading naturally extends to B̃[ξ] and B̃((ξ−1)) defining deg(ξ) = 1. HenceMn

is homogeneous of degree 1. Then

(Mn)
n = diag

(
Ãn · · ·A2A1, A1Ãn · · ·A2, . . . , An−1 · · ·A2A1Ãn

)
= diag (Ln,1, . . . , Ln,n) , (2.34)

where the Ln,k, 1 ≤ k ≤ n are of the form

Ln,k = ξn +
n−2∑
j=−∞

qj,kξ
j, 1 ≤ k ≤ n, (2.35)

qn−2,k = ∂2 ((n− 1)ηk + (n− 2)ηk+1 + . . . + ηk+n−2)

+ (∂η1∂η2 + ∂η1∂η3 + . . . + ∂ηn−1∂ηn) + bn,−1 (2.36)

and it is understood that indices are taken mod n. The expressions for qn−2−j,k have the

form

qn−2−j,k = bn,−1−j + F\,|,‖(η, b\,|), | ∈ N0, 1 ≤ k ≤ n, (2.37)

η = (ηk)1≤k≤n , bn,j = (bn,−m)
1≤m≤j ,

where the F\,|,‖ are differential polynomials in ηk of degree j + 2 and in bn,−m of degree

j + 1−m.

Note that

qn−2,k+1 − qn−2,k = −n∂2ηk, 1 ≤ k ≤ n, (2.38)

(where indices are again taken mod n).

Define Qn,r by

Qn,r = diag (Pn,r,1, . . . Pn,r,n) , Pn,r,k = (Ln,k)
r
n , 1 ≤ k ≤ n, r ∈ N, (2.39)

i.e., (see (2.13), (2.14), (2.15)),

(Pn,1,k)+ = ξ, (2.40)

(Pn,2,k)+ = ξ2 +
2

n
qn−2,k, (2.41)

(Pn,3,k)+ = ξ3 +
3

n
qn−2,kξ +

3

n

(
qn−3,k +

3− n

2
∂qn−2,k

)
. (2.42)

Then the mKPn hierarchy is defined by the system

∂trMn = [(Qn,r)+,Mn], r ∈ N. (2.43)

In terms of the coefficients ηk, bn,j, (2.43) yields the mKPn system

mKPn,r,j(η, bn) = ∂ηj,tr − G\,∇,|(∂η, b\) = ′, ∞ ≤ | ≤ \, ∇ ∈ N,

mKPn,r,j(η, bn) = bn,j,tr − G\,∇,|(∂η, b\) = ′, −|,∇ ∈ N, (2.44)

η = (ηk)1≤k≤n , bn = (bn,−m)
m∈N ,
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where the G\,∇,| are differential polynomials in ηk, 1 ≤ k ≤ n of degree r + 1 for j ≥ 1,

respectively of order r + 1 − j for j ≤ −1 and in bn,−m of degree r − m for j ≥ 1,

respectively of order r −m− j, for j ≤ −1.

Remark 2.3. The possibility of using a matrix-valued Lax operator Mn in connection

with the mKP hierarchy and an nth-order (formal pseudo-differential) operator Ln in

connection with the KP hierarchy was first observed in [21]. However, our particular

factorization of Ln into n − 1 1st-order formal differential operators and one 1st-order

formal pseudo-differential operator and, especially, its use in obtaining KP Bäcklund

transformations modeled after our treatment of the GD and DS hierarchies in [13] appears

to be new.

Example 2.4. For r = 2 we get for ηk, bn,−1, bn,−m

∂ηk,t2 = ∂3ηk − 2∂ηk∂
2ηk −

2

n
∂qn−2,k, 1 ≤ k ≤ n− 1, (2.45)

∂ηn,t2 = ∂3ηn − 2∂ηn∂
2ηn −

2

n
∂qn−2,n + 2∂bn,−1 (2.46)

bn,−1,t2 = ∂2bn,−1 − 2bn,−1∂
2ηn + 2∂bn,−2. (2.47)

bn,−m,t2 = ∂2bn,−m − 2bn,−m∂2ηn + 2∂bn,−m−1

−2

n

m−1∑
p=1

(−1)p
(
m− 1

p

)
bn,−m+p∂

pqn−2,n, m ≥ 2. (2.48)

This yields the following identities

2

n
qn−2,k = −ηk,t2 − (∂ηk)

2 + ∂2ηk, 1 ≤ k ≤ n− 1,

2

n
qn−2,k = −ηk−1,t2 − (∂ηk−1)

2 − ∂2ηk−1, 2 ≤ k ≤ n− 1, n ≥ 3,

2

n
qn−2,n = −ηn,t2 − (∂ηn)

2 + ∂2ηn + 2bn,−1

= −ηn−1,t2 − (∂ηn−1)
2 − ∂2ηn−1, (2.49)

and

ηk,t2 + (∂ηk)
2 + ∂2ηk = ηk+1,t2 + (∂ηk+1)

2 − ∂2ηk+1, 1 ≤ k ≤ n− 2, n ≥ 3

ηn−1,t2 + (∂ηn−1)
2 + ∂2ηn−1 = ηn,t2 + (∂ηn)

2 − ∂2ηn − 2bn,−1,

ηn,t2 + (∂ηn)
2 + ∂2ηn = η1,t2 + (∂η1)

2 − ∂2η1 + 2bn,−1. (2.50)

For ηk,t3 we get

∂ηk,t3 = ∂4ηk +
3

n
qn−2,k+1∂

2ηk +
3

n
(qn−3,k+1 − qn−3,k)∂ηk

−3(n− 3)

2n
(∂qn−2,k+1 − ∂qn−2,k)∂ηk −

3

n
∂qn−3,k +

3(n− 3)

2n
∂2qn−2,k

+3(∂2bn,−1 + ∂bn,−2 − bn,−1∂
2ηk)δn,k, 1 ≤ k ≤ n. (2.51)
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Eliminating qn−2,k+1, qn−2,k, qn−3,k+1, qn−3,k, bn,−1, and bn,−2 in (2.51) by (2.18),

(2.38) and the identities (2.49)-(2.50), we see that ηk, 1 ≤ k ≤ n − 1 fulfill the mKP

equation in standard form

∂ηk,t3 =
1

4
∂4ηk −

3

2
∂2ηk(∂ηk)

2 − 3

2
∂2ηk ηk,t2 +

3

4
ηk,t2t2 , 1 ≤ k ≤ n− 1,

∂ηn,t3 =
1

4
∂4ηn −

3

2
∂2ηn(∂ηn)

2 − 3

2
∂2ηn ηn,t2 +

3

4
ηn,t2t2 + 3bn,−1∂

2ηn.

(2.52)

In the special case n = 3, bn,−m = 0, m ∈ N this gives three stationary mKP3 equations

(∂ηk,t3 = 0) which are equivalent to the system of modified Boussinesq equations in [8].

The identity

∂(Mn)
n

∂tr
= [(Qn,r)+, (Mn)

n], (Mn)
n = diag (Ln,1, . . . , Ln,n) , r ∈ N (2.53)

then proves in a trivial way that a solution of the mKPn hierarchy implies n solutions of

the KPn hierarchy.

Corresponding to our work on the GD and the DS hierarchy we now reverse this process,

i.e., given a solution of the KPn hierarchy we construct a solution of the the modified KPn

hierarchy and obtain (n− 1) additional solutions of the KPn hierarchy. (Note that most

of the traditional approaches to the mKP equation use a scalar Lax pair and therefore

are restricted to only one further solution of the KPn hierarchy, see, e.g., [3], [11], [12],

[20], [23], [24], [27].)

We introduce the action of formal differential operators S ∈ A[ξ] on elements ψ of A by

ξψ = ∂ψ. (2.54)

Since ∂ is surjective on A there exists an element x ∈ A such that ∂x = 1. Hence we

define the action of formal pseudo-differential operators on xj by

ξ−1xj = (j + 1)−1xj+1, x0 = 1, j ∈ N0. (2.55)

Our main result then reads as follows.

Theorem 2.5. Given a solution q
1

= (qj,1)−∞<j≤n−2, n ≥ 2 of the KPn hierarchy (2.17),

define the operators Ln,1 and Kn,1 as in (2.7) and (2.8) and construct n vectors ψn,k

lying in the kernel of Ln,1, i.e., ψn,k = Kn,1ψ0,k where ψ0,k = xk−1, x0 = 1, 1 ≤ k ≤ n.

Moreover, assume

(∂tr − (Pn,r,1)+) ψn,k =
n∑
`=1

αn,r,k,`ψn,`, r ∈ N, 1 ≤ k ≤ n, (2.56)
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where αn,r,k,` are possibly tr-dependent constants. Define ∂ηk by

∂η1 = −ψ−1
n,1∂ψn,1, ∂ηk = −W (ψn,1, . . . , ψn,k)

−1∂W (ψn,1, . . . , ψn,k)

+W (ψn,1, . . . , ψn,k−1)
−1∂W (ψn,1, . . . , ψn,k−1), 2 ≤ k ≤ n− 1, (if n ≥ 3),

∂ηn = −
n−1∑
k=1

∂ηk, (2.57)

where W denotes the Wronskian and we assume that W (ψn,1, . . . , ψn,k), 1 ≤ k ≤ n is

invertible. Let bn,−m, m ∈ N be given by (2.36), (2.37). Then

Ln,1 = ÃnAn−1 · · ·A2A1, (2.58)

where

Ak = ξ + ∂ηk, 1 ≤ k ≤ n, Ãn = An +
−1∑

j=−∞
bn,jξ

j. (2.59)

In addition, (η, bn) satisfies the mKPn hierarchy

mKPn,r,j(η, bn) = 0, −∞ < j ≤ n, j 6= 0, r ∈ N, (2.60)

η = (ηk)1≤k≤n , bn = (bn,−m)−m∈N

iff

αn,r,k,` = 0 for k + 1 ≤ ` ≤ n, 1 ≤ k ≤ n− 1 in (2.56). (2.61)

Proof. We have

[
(∂tr −Qn,r)+,Mn

]


ψn,1
A1ψn,2

...

An−1 · · ·A1ψn,n



=


0 . . . 0 d1,n

mKPn,r,1(η, bn)
. . . 0 0

...
. . . 0 0

0 . . . mKPn,r,n−1(η, bn) 0




ψn,1

A1ψn,2
...

An−1 · · ·A1ψn,n

 (2.62)

with d1,n = mKPn,r,n(η, bn) +
−∞∑
j=−1

mKPn,r,j(η, bn).

This implies

mKPn,r,1(η, bn)ψn,1 = ((∂tr − (Pn,r,2)+)A1 − A1(∂tr − (Pn,r,1)+)) ψn,1

= −A1(∂tr − (Pn,r,1)+)ψn,1

= −A1

n∑
`=1

αn,r,1,`ψn,` = −
n∑
`=2

αn,r,1,`A1ψn,` (2.63)
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since

A1ψn,1 = (ξ − ψ−1
n,1∂ψn,1)ψn,1 = 0. (2.64)

Thus mKPn,r,1(η, bn) = 0 iff αn,r,1,` = 0, 2 ≤ ` ≤ n.

mKPn,r,2(η, bn)A1ψn,2 = ((∂tr − (Pn,r,3)+)A2 − A2(∂tr − (Pn,r,2)+)) A1ψn,2

= − (A2(∂tr − (Pn,r,2)+)) A1ψn,2,

= −A2A1(∂tr − (Pn,r,1)+)ψn,2,

= −A2A1

n∑
`=1

αn,r,2,`ψn,` = −
n∑
`=3

αn,r,2,`A2A1ψn,`. (2.65)

Here we used (2.63) and

A2A1ψn,2 = (ξ + ∂η2)(ξ + ∂η1)ψ2 =
(
ξ2 + ∂(η1 + η2)ξ + ∂η1∂η2 + ∂2η1

)
ψn,2

= ∂2ψn,2 − ∂(η1 + η2)∂ψn,2 + ∂η1∂η2ψn,2 + ∂2η1ψn,2 = 0. (2.66)

Therefore mKPn,r,2(η, bn) = 0 iff αn,r,2,` = 0, 3 ≤ ` ≤ n.

Iterating this process we finally get mKPn,r,n(η, bn) +
−∞∑
j=−1

mKPn,r,j(η, bn)ξ
j


=
(
(∂tr − (Pn,r,1)+)Ãn − Ãn(∂tr − (Pn,r,n)+)

)
(An−1 · · ·A1) (An−1 · · ·A1)

−1

=
(
(∂tr − (Pn,r,1)+)ÃnAn−1 · · ·A1 − ÃnAn−1 · · ·A1(∂tr − (Pn,r,1)+)

)
·

· (An−1 · · ·A1)
−1

= [(∂tr − (Pr,1)+) , Ln,1] (An−1 · · ·A1)
−1 = 0 (2.67)

and therefore mKPn,r,n(η, bn) and mKPn,r,j(η, bn) for all j ≤ −1 must vanish. Hence

(2.60) holds iff (2.61) is valid.

The auto-Bäcklund transformations of the KPn hierarchy are then described in

Corollary 2.6. In addition to the hypotheses in Theorem 2.5 assume that

(∂tr − (Pn,r,1)+) ψn,k =
k∑
`=1

αn,r,k,`ψn,`, 1 ≤ k ≤ n, n ≥ 2 (2.68)

instead of (2.56). Then by (2.35), the solution (η, bn) constructed in Theorem 2.5 of

the mKPn equations (2.60) yields (n − 1) further solutions q
k
, 2 ≤ k ≤ n of the KPn

equations (2.17), i.e., q
k

satisfy

KPn,r,j(qk) = 0, −∞ ≤ j ≤ n, r ∈ N, qk = (qג,k)−∞<ג≤n−2, 2 ≤ k ≤ n. (2.69)
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In the case that we restrict to solutions of the KP hierarchy which are characterized

by (L1,1)
n = Ln,1 = (Ln,1)+ (i.e., Ln,1 is a formal differential operator) we can improve

Theorem 2.5 in the following way. (We note that since Ln,1 = (Ln,1)+ in this case,

Pn`,1 = (Pn`,1)+, ` ∈ N and then [Pn`,1, Ln,1] = 0 implies that qj, 0 ≤ j ≤ n − 2 are tn`
independent.)

Theorem 2.7. Assume q
1

= (qj,1)−∞≤j≤n−2, n ≥ 2 is such that qj,1 = 0 for −j ∈ N
and define the operator Ln,1 as in (2.7). Let ψn,k, 1 ≤ k ≤ n be a basis of the kernel of

Ln,1, i.e., Ln,1ψn,k = 0, 1 ≤ k ≤ n and assume that the Wronskian W (ψn,1, . . . , ψn,k) is

invertible for all 1 ≤ k ≤ n. Define ∂ηk by

∂η1 = −ψ−1
n,1∂ψn,1, ∂ηk = −W (ψn,1, . . . , ψn,k)

−1∂W (ψn,1, . . . , ψn,k)

+W (ψn,1, . . . , ψn,k−1)
−1∂W (ψn,1, . . . , ψn,k−1), 2 ≤ k ≤ n− 1, (if n ≥ 3),

∂ηn = −
n−1∑
k=1

∂ηk. (2.70)

Then

Ln,1 = An · · ·A2A1, (2.71)

where

Ak = ξ + ∂ηk, 1 ≤ k ≤ n. (2.72)

Moreover, q
1

satisfies the KPn hierarchy iff

Ln,1(∂tr − (Pn,r,1)+)ψk = 0, 1 ≤ k ≤ n− 1, r ∈ Nn, (2.73)

Nn = N \ {n`}, ` ∈ N (2.74)

or equivalently, iff

(∂tr − (Pn,r,1)+) ψn,k =
n∑
`=1

αn,r,k,`ψn,`, r ∈ Nn, 1 ≤ k ≤ n− 1, (2.75)

where αn,r,k,` are possibly tr-dependent constants. Finally, assuming KPn,r,j(q1
) = 0,

0 ≤ j ≤ n− 2, r ∈ Nn, we find that η satisfies the mKPn hierarchy

mKPn,r,j(η, 0) = 0, 1 < j ≤ n, r ∈ Nn, (2.76)

η = (ηk)1≤k≤n , bn = (bn,−m)−m∈N = 0

iff

αn,r,k,` = 0 for k + 1 ≤ ` ≤ n, 1 ≤ k ≤ n− 1 in (2.75). (2.77)

Proof. We have

[∂tr − (Pn,r,1)+, Ln,1]ψn,k =
n−2∑
j=0

KPn,r,j(q1
)ξjψn,k (2.78)

= (∂tr − (Pn,r,1)+) Ln,1ψn,k︸ ︷︷ ︸
=0

−Ln,1 (∂tr − (Pn,r,1)+) ψn,k, 1 ≤ k ≤ n, r ∈ Nn.

12



Hence KPn,r,j(q1
) = 0, 0 ≤ j ≤ n− 2 iff (2.75) holds. The rest of the proof is analogous

to that of Theorem 2.5.

We conclude with two examples illustrating our approach.

Example 2.8. (Examples (2.1) and (2.4) revisited). Let n ≥ 4,

Ln,1 =
n∏
j=1

(ξ − kj),
n∑
j=1

kj = 0, kj = const. , kj 6= k`, j 6= `, (2.79)

i.e.,

qn−2,1 =
n∑
j=1

n∑
`=1

j<`

kjk` = dn−2 = const. ,

qn−3,1 = −
n∑
j=1

n∑
`=1

n∑
m=1

j<`<m

kjk`km = dn−3 = const. ,

...

q0,1 = (−1)n
n∏
j=1

kj = d0 = const. , q−j,1 = 0, j ∈ N. (2.80)

The constant solution q̃n−2,1 = 2
n
qn−2,1 trivially fulfills the KP equation (2.21). Solutions

of

Ln,1ψ = 0, ψt2 = (Pn,2,1)+ψ, ψt3 = (Pn,3,1)+ψ,

(Pn,2,1)+ = ξ2 +
2

n
dn−2, (Pn,3,1)+ = ξ3 +

3

n
dn−2ξ +

3

n
dn−3 (2.81)

are then given by

ψn,j(x, t2, t3) = ekjx+(k2
j+ 2

n
dn−2)t2+(k3

j+ 3
n
dn−2kj+

3
n
dn−3)t3 , (2.82)

respectively by,

ψ̃n,j =
n∑
k=1

cj,kψn,k, 1 ≤ j ≤ n, cj,k ∈ C, (2.83)

where we assume (cj,k)1≤j,k≤n to be invertible. Define

∂η1 = −ψ̃−1
n,1∂ψ̃n,1, ∂ηk = −W (ψ̃n,1, . . . , ψ̃n,k)

−1∂W (ψ̃n,1, . . . , ψ̃n,k)

+W (ψ̃n,1, . . . , ψ̃n,k−1)
−1∂W (ψ̃n,1, . . . , ψ̃n,k−1), 2 ≤ k ≤ n− 1,

∂ηn = −
n−1∑
k=1

∂ηk, bn,−m = 0, m ∈ N. (2.84)

Then ηk fulfill the mKP equation (2.52), i.e.,

∂ηk,t3 −
1

4
∂4ηk +

3

2
∂2ηk(∂ηk)

2 +
3

2
∂2ηkηk,t2 −

3

4
ηk,t2t2 = 0, 1 ≤ k ≤ n. (2.85)
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Moreover, define (indices are taken mod n)

q̃n−2,k =
2

n
qn−2,k =

2

n
(∂2 ((n− 1)ηk + (n− 2)ηk+1 + . . . + ηk+n−2)

+ (∂η1∂η2 + ∂η1∂η3 + . . . + ∂ηn−1∂ηn)) (2.86)

=
2

n
qn−2,1 + 2∂

(
W (ψ̃n,1, . . . , ψ̃n,k−1)

−1∂W (ψ̃n,1, . . . , ψ̃n,k−1)
)
, 2 ≤ k ≤ n.

Then q̃n−2,k fulfill the KP equation (2.21) , i.e.,

∂q̃n−2,k,t3 −
1

4
∂4q̃n−2,k −

3

2
∂(q̃n−2,k∂q̃n−2,k)−

3

4
q̃n−2,k,t2t2 = 0, 2 ≤ k ≤ n. (2.87)

Example 2.9. In order to derive the standard soliton solutions of the KP and mKP

equation we consider a variant of Example 2.8. For A we choose the algebra of smooth

functions in x, t2, t3, . . . , where we identify x with t1 and ∂ with ∂x. We choose Ln with

n = 2N + 2, N ∈ N,

Ln,1 =
n∏
j=1

(ξ − kj), kn = −
n−1∑
j=1

kj, kj = const. , kj 6= k`, j 6= `,

kn−1 = −1

2

n−2∑
j=1

kj +
1

2

√√√√√√−3
n−2∑
j=1

k2
j − 2

n−2∑
j=1

n−2∑
`=1

j<`

kjk`, (2.88)

i.e.,

qn−2,1 =
n∑
j=1

n∑
`=1

j<`

kjk` = dn−2 = 0,

qn−3,1 = −
n∑
j=1

n∑
`=1

n∑
m=1

j<`<m

kjk`km = dn−3 = const. ,

...

q0,1 = (−1)n
n∏
j=1

kj = d0 = const. , q−j,1 = 0, j ∈ N. (2.89)

The solution q̃n−2,1 = 2
n
qn−2,1 = 0 trivially fulfills the KP equation (2.21). Solutions of

Ln,1ψn,j = 0, (∂t2 − (Pn,2,1)+)ψn,j = 0,

(∂t3 − (Pn,3,1)+)ψn,j = −3

n
dn−3ψn,j, 1 ≤ j ≤ n,

(Pn,2,1)+ = ξ2, (Pn,3,1)+ = ξ3 +
3

n
dn−3 (2.90)

are then given by

ψn,j(x, t2, t3) = ekjx+k2
j t2+k3

j t3 . (2.91)
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Define

aj = ψ̃n,j = (−1)j+1ψn,j + αjψn,N+j, αj ∈ C \ {0}, 1 ≤ ג ≤ N =
n− 2
2

,

ψ̃n,j = ψn,j, N + 1 ≤ j ≤ n. (2.92)

Then the ψ̃n,j, 1 ≤ j ≤ n fulfill (2.90) too. Define ∂xηk by

∂xη1 = −∂x ln ψ̃n,1, ∂xηk = −∂x ln

[
W (ψ̃n,1, . . . , ψ̃n,k)

W (ψ̃n,1, . . . , ψ̃n,k−1)

]
, 2 ≤ k ≤ n− 1,

∂xηn = −
n∑
k=1

∂xηk. (2.93)

Then ∂xηk is a (2k − 1)-soliton solution of the mKP equation (2.52), 1 ≤ k ≤ N (see

Remark 2.10). Moreover, define (indices are taken mod n)

qn−2,k = ∂2
x ((n− 1)ηk + (n− 2)ηk+1 + . . . + ηk+n−2)

+ (∂xη1∂xη2 + ∂xη1∂xη3 + . . . + ∂xηn−1∂xηn) ,

q̃n−2,k =
2

n
qn−2,k, 2 ≤ k ≤ n. (2.94)

Then (using (2.38))

q̃n−2,k+1 = 2∂2
x ln W (a1, . . . , ak), 1 ≤ k ≤ N (2.95)

turns out to be the k-soliton solution of the KP equation (2.21) (see Remark 2.10).

Remark 2.10. (i) In order to identify our soliton solutions with the one in [11] we use

the following dictionary:

ε[11] = −1,

V[11] = −q̃n−2, φ[11] = ∂xη,

−4t[11] = t3, y[11] = t2,

pj,[11] = kj, 1 ≤ j ≤ N,

−qj,[11] = kj+N , 1 ≤ j ≤ N, if kj+N 6= k`+N , 1 ≤ ` ≤ N,

if qj0,[11] = qj1,[11], . . . , qjs,[11], j0 < js, 1 ≤ s ≤ N we modify ajr by

ajr = (−1)jr+1ψjr + αj0ψN+j0 , 1 ≤ r ≤ s. (2.96)

(ii) Due to the simple structure of ψ̃N+j, 1 ≤ j ≤ N + 2, ∂xηN+j, 1 ≤ j ≤ N , is a

(2(N − j) + 1)-soliton solution of the mKP equation and ∂xη2N+1, ∂xη2N+2 are constant.

Similarly, q̃n−2,N+j, 2 ≤ j ≤ N , is a (N + 1− j)-soliton solution of the KP equation and

q̃n−2,2N+1 = q̃n−2,2N+2 = 0.

For simplicity we only presented the soliton solutions of the (m)KP equations (2.21)

respectively (2.52) but the result obviously extends to the entire m(KP) hierarchy in a

straight-forward manner.
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Remark 2.11. On the algebra A of smooth functions we derive the following connection

of our solutions with the τ -function formalism (see, e.g., [4]). Since

q̃n−2,k(x, t2, . . . ) = 2 ∂2
x ln τk(x, t2, . . . ), (2.97)

(2.38) yields

q̃n−2,k(x, t2, . . . ) = q̃n−2,1(x, t2, . . . )− 2 ∂2
x

k−1∑
`=1

η`(x, t2, . . . )

= q̃n−2,1(x, t2, . . . ) + 2 ∂2
x ln W (ψ1(x, t2, . . . ), . . . , ψk−1(x, t2, . . . )) (2.98)

and hence

τk(x, t2, . . . ) = τ1(x, t2, . . . )W (ψ1(x, t2, . . . ), . . . , ψk−1(x, t2, . . . )), 2 ≤ k ≤ n.

(2.99)
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