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Abstract. We study Halphen’s equation and provide solutions in terms
of elliptic functions of the second kind. The connection between Hal-
phen’s equation and algebro-geometric solutions of the Boussinesq hier-
archy is discussed.

1. INTRODUCTION

We consider the third-order differential equation
(2, 0) + (@) ¥ (2,2) + (S ah(@) — 2)d(za) =0, z€C (L1

where 9(z,-) : C — CU{oo}, z — (2, z) and the coefficient ¢; : C — CU{oo}
has the form

q1(z) =hg —g(g+2)p(z), hy€C, geN, g#2 (mod3). (1.2)

Here p(z) = p(z, w1, ws) denotes the elliptic Weierstrass function with fun-
damental periods 2wi,2ws, and invariants go, g3 (see, e.g., [1]). The po-
tentials (1.2) were introduced by Halphen [21, Ch. IV, p. 179] in the case
hg =0, g2 =0 (g = n—1) and are associated with the third-order differential
expression
3

= % + ql(m)% + %qu(l’) + qo(z). (1.3)
The nonlinear evolution equations of the Boussinesq (Bsq) hierarchy are
generated by Lz and certain differential expressions P, of order m (m # 0
(mod 3)) such that the commutator [L3, Pp,| is a first-order differential ex-
pression. Then [Ls, P,,] = 0 yields the stationary equations of the Bsq
hierarchy. Next introduce a time parameter t,, replacing ¢;(z) and go(x)
by ¢1(tm,x) and qo(tm,x), tm € C. Then %Lg — [Ls, Pn] = 0 gives rise
to the nonlinear evolution equations of the Bsq hierarchy. By definition,
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solutions of any of the stationary Bsq equations [Ls, P,,] = 0 are called
algebro-geometric Bsq solutions or algebro-geometric Bsq potentials. More
generally, this concept can be extended to pairs of differential expressions
(L, P,) of order n, respectively r (n, r relatively prime), generating the non-
linear evolution equation of the Gelfand—Dickii hierarchy. From the work of
Segal and Wilson [37] one may obtain that solutions of n*’-order differential
equations L,1 = zv are necessarily meromorphic if the coefficients of L,
are algebro-geometric potentials. Note that solutions of stationary equations
yield commuting pairs of differential expressions (L, P;). By appealing to
a result of Burchnall and Chaundy [3], [4] this results in an algebraic rela-
tionship between L, and P, and naturally leads to a plane algebraic curve
Kr_1.

Recent work by Gesztesy and Weikard [16] revealed that an equation
y'(z) + q(x) y(x) = Zy(z), q(x) elliptic, which has a meromorphic funda-
mental system of solutions with respect to x for all values of the spectral
parameter Z € C necessarily yields elliptic algebro-geometric solutions of the
Korteweg—de Vries (KdV) hierarchy.

Weikard [39] proved an analogous theorem for the entire Gelfand-Dickii
hierarchy (this includes for n = 2 the KdV and for n = 3 the Bsq hierarchy)
for rational and simply periodic algebro-geometric potentials. It is assumed
that this is also true for elliptic algebro-geometric potentials.

Within the Bsq hierarchy Halphen potentials play the same role as the
Lamé-Ince potentials [14] in connection with the Schrédinger operator and
the KdV hierarchy.

The usual approach for solving Halphen’s equation is by an argument
already used by Halphen himself (cf. Hermite [22], p. 372) of the form

g—1 d ~
Y(z,x) = emZaj(z,,%,v)% (1.4)
=0

where ¢(Z, z) is a solution of ¢ — (2 p(z) + 2)¢ = 0. An extended version of
this argument was used by Eilbeck and Enol’skii [7] to compute a solution
in the case g = 3(g2 = 0, hg = 0) and by Enol’skii and Kostov [9] in the case
g =4(g2 = 0,hqy =0) (cf. [12]).

Our approach relies on a powerful theorem of Picard which guarantees the
existence of an elliptic solution of the second kind, when the fundamental
system of (1.1) is meromorphic. As pointed out in Remark 3.9 of [18], these
two approaches are intimately connected.
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Section 2 recalls some basic facts about the Bsq hierarchy. In Section 3
we prove the existence of a meromorphic fundamental system for Halphen’s
equation, if go = 0. Using a theorem of Picard we express the solutions
of Halphen’s equation in terms of elliptic functions of the second kind. If
the invariant go # 0, there exists only a finite number of cases such that
the fundamental system of Halphen’s equation is meromorphic. However,
as pointed out in Remark 10 there exist algebro-geometric Bsq potentials
in that case too if one chooses ¢o and ¢; in (1.3) appropriately. Remark 5,
respectively, the results from Subsection 3.2 discuss some exceptional cases
of the spectral parameter z. In Section 4 we present a couple of examples
including the corresponding algebraic curves. Appendix A demonstrates the
rational limit where the half-periods w; — 00, w3 — oo and ¢;(x) becomes
—g(g+2)/2%. And finally Appendix B summarizes some basic representation
theorems for arbitrary elliptic functions.

2. THE STATIONARY BOUSSINESQ HIERARCHY AND COMMUTING
OPERATORS

In this section we briefly recall some basic facts about the Bsq hierarchy,
[5], [6]. Suppose gp and g; are meromorphic on C and introduce the third-
order differential expression

L= L gy i zec (2.1)
37 4B Chdx B 41,2 T 4o, . .
For each fixed m € No(= N U {0}) with m # 0 (mod 3) we write
m=3n+e €e€c{l,2} (2.2)

and then construct two distinct differential expressions of order 3n 4+ 1 and
3n + 2, respectively, denoted by P,,, where m =3n+ 1 or m = 3n+ 2. In
order for these differential expressions P, to commute with L3, one proceeds
as follows (cf. [5] for more details).

In order to simplify notation we have dropped the e-dependence; i.e.,
instead of fe(e), gée) we simply write f;, g¢ further on.

Pick n € Np, € € {1,2}, and define the sequences {f,(x)}i—0,. n+1,
{94(x) }e=0,....n+1 recursively by

(0,1) fore=1,

dy € C,
(1,d,) fore=2, 0

(fo,90) = (co,dg) = {

3foe =201 200 T 20190-1 5 T Q1.090-1 + 390 f o1, + 2902 f o1, (2.3)
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1 5 5
Sgﬁ,a: = Sqogé—l,x + q0,290-1 — 6 fﬂ—l,mxwwx % Q1f€—1,:cxa: Tz qLCUfZ—l,;m:
- (% q1,zx + % Q%)fz_m - (% q1,zxx + %qlql,x)fﬂ—lu l= 17 Nt L.

Explicitly, one computes
(i) Let m =1 (mod 3) (i.e., e = 1):

fo=0, go=1, 3f1 =q + 3ci, (2.4)
391 =qo+3d1, 3fo=2qoza+ 3qq + 1290 +di,q1 + 3ca, et
(ii) Let m =2 (mod 3) (i.e., e = 2):
Jfo=1, go=dy, 3f1=2q +doq1 +3cy, (2.5)
391 = —% 1,z — %q% +doqo + 3dy, etc.,

where {c,}¢—1,..n and {d,}¢—o,...» are integration constants which arise when
solving (2.3).
Given (2.3) one defines the differential expression P,, of order m by

P = ; (fn—e a2 T (9n—rt—3 n—ﬁ,z)%
+(% fn*f,m: —On—tax T % Q1fnfg))L§, (2.6)

£=0,...,n, m=3n+e¢ €€ {1,2}, n € Ny,

and verifies that

d
[Pm7 L3] = 3fn+1,:p % =+ % fn—l—l,mx + 39n+1,:p7
m=3n+e¢ cc€{1,2},neNy (2.7)
(where [+, -] denotes the commutator symbol). The pair (L3, P,,) represents

the Lax pair for the Bsq hierarchy. Varying n € Ny and ¢ € {1,2}, the
stationary Bsq hierarchy is then defined by the vanishing of the commutator
of P, and L3 in (2.7), that is, by

[P, Ls] =0, m=3n+e¢, €€ {1,2}, n € Ny, (2.8)
or equivalently, by
foi12 =0, Gni1. =0, e € {1,2}, n € Ny. (2.9)

By definition, solutions (go,q1) of any of the stationary Bsq equations (2.9)
are called stationary algebro-geometric Bsq solutions or simply algebro-
geometric Bsq potentials.
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Next, we introduce two polynomials F;,, and G,,, both of degree at most
n with respect to the variable z € C :

2) =3 foi@), (2.10)
(=0

x) = Zgn_g(a;)ze, m=3n+e¢, €€ {1,2}, n e Ny. (2.11)

Given (2.10) and (2.11), (2.8) (or equivalently, (2.9)) becomes
2Gmzaex + 2Q1sz +q, me —3(z—q0)Fngz +2q.Fn = 0, (2.12)
t Fonwwzos + 2 01 Fmgas + 5 QlaFmge + (3 g0 + 2 41) Frng
+(§ Qlaze + 3 (101,2) Fn +3(2 = 00)Gmg — 00,0Gm = 0. (2.13)
Both equations can be integrated (cf. [5]) to get
Sm(2) = —§ FnaszaFm + § FingooFina — 13 Fovga = § 0 FmaaFm
— 13 Q1o Fme P+ 15 01 Fn e = 5 (3 Dee + 00) o 4 2 Gma G
— G+ 1Gl = 3(2 — q0) FrGm, (2.14)

where the integration constant Sy, (z) is a polynomial in z of degree at most
2n—14+¢,m=3n+e¢, e {1,2}, ne Ny,

2n—1+e€
Z smp?t, m=3n+e€ €€ {l,2}, ne Ny, (2.15)
and
Tm( ) = 1 Fm :m:szm,a:me 1 Fm x:pa:xFQ (2.16)
+%Fm$xme$me$_ 1%)8Fr:jza:m_ _F F’r?mzwac 18(J1memsz3—L

18Q1 oFmgaa Py — 501 Fmgae FoaFin + 350120 Fmac Py
gfh eFm e FmzFm — ﬁ(th,mme + %QIFm P '
+ G FnaaFl — H0aal P — 0aFp o + 50t FnaFy
— G F P+ (%47 — 5560 + 150021 + (2 — 0)?) F,
+ (2 = 90)Gyy + $FrmgazcGoy = 3 FmacaGmaGm + FnGiy 1o
+ $Fman (G + GmeaGim) — FinaGm zaGma — 1(2 — q0) FGim
+ 241 FnGo + 201 FinaaGoy = 301 FinaGinaGim + 15010 Fm oG
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+ %Q1FmG?n,z + %%Fme,me + %QI,ImeG?n - %q1,meGm,xGm
+ (Z - QO)Fm,meGm,a: - %(z - QO)FT?%Q;Gm - 2(Z - QO)FiGm,xm

where the integration constant 7T}, (z) is a monic polynomial of degree m,
m—1
Tr(2) = 2"+ ) tmgz?, m=3n+e ec{l,2},neNy. (217
q=0

Next, we consider the algebraic kernel of (Ls — z), z € C (i.e., the formal
nullspace in a purely algebraic sense),

ker(Ls — z) = {¢p : C — CU {00} meromorphic : (L3 — z)yy =0}, z¢€C.

(2.18)
Taking into account (2.8), that is, [P, L3] = 0, computing the restriction of
Py, to ker(Ls-z), and using

¢xwm = wx + (Z - %QI,:B - QO)wa etc., (219)

to eliminate higher-order derivatives of 1, one obtains from (2.3), (2.6), (2.9),
(2.10), (2.11), (2.12), and (2.13)

d? d
Pm’ker(Lgfz) = (Fm@ + (Gm - %Fm,x) % + Hm) ‘ker(Lg,fz)' (220)

Hpy,(z,z) = %me(z,ac) + % () Fn(z,2) — G (2, 2), (2.21)

where we suppressed an integration constant which can be trivially imple-
mented.

Still assuming f,, 1 , = 9,11, = 0 as in (2.9), [P, L3] = 0 in (2.6) yields
an algebraic relationship between P,, and L3 by appealing to a result of
Burchnall and Chaundy [3], [4] (see also [11], [19], [35], [41]). In fact, one
can prove

Theorem 1 ([5]). Assume f,, .1, = Goy1, = 0; that is, [P, Ls] = 0,
m =3n+e¢, € € {1,2}, n € Ng. Then the Burchnall-Chaundy polynomial
Fm—-1(Ls, Pn) of the pair (Ls, Py,) explicitly reads (cf. (2.15) and (2.17))
fm—l(L?n Pm) = Pr?l + Pm Sm(L3) - Tm(L3) = 07
2n—1+e

m—1
Sm(z) = Z Smpe’s  Tm(z) =2+ Z tm,q2?, (2.22)
p=0 q=0

m=3n+e¢, €€ {1,2}, n € Ny.
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Remark 2. F,,,_1(Ls, P,,) = 0 naturally leads to the plane algebraic curve
]Cm—lu
K1 Fao1(2,9) =y° +y Si(2) = Tin(2) = 0 (2.23)

of (arithmetic) genus g=m—1. For m > 4 these curves are nonhyperelliptic.
(We denote points P on the curve K,,—1 by P = (2,y) € K1 \ {Px}-)

When m = 1, corresponding to g = 0, there are no nonzero holomorphic
differentials on Kgy. When m = 2, corresponding to g = 1, the only holomor-
phic differential on K, is dz/(3y(P)? + Sp(2)). Recall also that m # 0
(mod 3), so we need not consider holomorphic differentials for the case
m = 3. One verifies that dz/(3y(P)?+ S (2)) and y(P)dz/(3y(P)?+ Sm(z))
are holomorphic differentials Ky with zeros at P of order 2(m — 2) and
(m—4), respectively, for m > 4. It follows that the differentials (m = 3n+e,
ee{l1,2})

A 1dz for1 </<g—n,

10(P) = 5y PrTs. e {y(P)ZHn—g—ldz forg—nti<t<g 2V

form a basis in the space of holomorphic differentials H*(KC,) (cf. [6]).

Curves of the form above are trigonal curves and have been studied
by, e.g., Matveev and Smirnov in [27], [28], [29], Previato and Verdier in
[36], Previato in [34], and Eilbeck, Enol’skii, and Leykin in [8]. Finally,
introducing a deformation parameter t,, € C into the pair (go,q1) (i-e.,
qe(x) — qe(x,tp), £ = 0,1), the time-dependent Bsq hierarchy is defined as
a collection of evolution equations (varying m = 3n+¢, € € {1,2}, n € Np)

d
WIB(tm) - [Pm(tm)7 LS(tm>] =0,
m
(z,tm) €EC%, m=3n+e¢ ec{1,2}, n €Ny, (2.25)
or equivalently, by
q0,t (QT,tm)*?)g 1 ('Iatm):()a
B _ stm n+1l,x
SC]m(QOa(h) { A, (w,tm) _ 3fn+17$(96‘,tm) =0,
(z,tm) €EC*,m=3n+e¢ ec{1,2}, n €Ny (2.26)
Explicitly, one obtains for the first few equations in (2.26)
qo,t; — 9o,z = 0,
B 7 _ )t )
sni(g0, 1) { qut; — qre =0,

+ 2 Qlose + 201010 — dogos =0
Bs ’ — q0,to 6 ,LLT 3 X T 3
q2(qo0,q1) { Qts —2G0s — doqiz =0,
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q0,t4 + %8 91, zxxxe + %q1q1,xa:a: + §q1,xq1,a:x + %Q%QLJ:
Bsqa(qo,q1)={ —3 0%,z + ¢ (§ Qlaozz + 3 (1012) — d1G0z =0,
@ty — 5 90zex — 391902 — 3 91,290 — 1240, — d1G1,2 =0,
etc. (2.27)

From the work of Segal and Wilson [37] one may obtain that solutions of
L3 = z1) are necessarily meromorphic if the coefficients of L3 are algebro-
geometric potentials. That this condition is also sufficient for elliptic algebro-
geometric solutions of the KdV hierarchy was recently proven by Gesztesy
and Weikard in [16] (see also [15], [17]).

Theorem 3. Let q be an elliptic function. Then q is an elliptic algebro-
geometric KdV potential if and only if the equation y" (z) 4+ q(x)y(x) = Zy(x)
has a meromorphic fundamental system of solutions with respect to x for all
values of the spectral parameter zZ € C.

Recently Weikard [39] (cf. [38]) proved an analogous theorem for the entire
Gelfand—Dickii hierarchy for rational and simply periodic algebro-geometric
potentials. It is assumed that this is also true for elliptic algebro-geometric
potentials.

3. HALPHEN POTENTIALS ASSOCIATED WITH THE BSQ HIERARCHY
In this section we study in detail Halphen potentials
q(z) = hg —glg+2)p(z), hy€C, geN, g#2 (mod3) (3.1)
and the associated linear third-order differential equation

" (z,2) + (hg — g(g +2) p(x)) V' (z,2) — (5 9(9 + 2)¢' (x) + 2)¥(z,2) = 0,
z€C, hgeC, g#2 (mod3). (3.2)

Since we expect that (3.2) will lead to algebro-geometric Bsq potentials only
when the fundamental system is meromorphic, we investigate when (3.2)
possesses a meromorphic fundamental system around x = 0. We distinguish
two cases.

(i) g2 = 0,hy = 0. If go = 0 the Laurent series ([1], p. 656) for p(z)
reduces to

p(x) = 9:1—2 (1 + i 03mx6m). (3.3)

m=1
According to the theory of Fuchs, z = 0 is a regular singular point of (3.2).
By the method of Frobenius we set (see, e.g., [25])
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U(z,x) =P mez, ro € C\ {0} (3.4)
/=0

which yields from the indicial equation p = —g, 1, (¢+2). This directly leads
to the following three linearly independent meromorphic solutions

Yi(z,m) =Y eI rgpy =130 =0, (3.5)
=0
o st glg +2) ST g 4 304 4= Bm)esrsison
3t (30+3)(30+g+4)(30+2g+5) ’ 0
Yoz, ) =Y ™, s =raee =0, (3.6)
£=0

ozt glg +2) Sl L m)esnraensom
33 (30+3)(30+g+4) (30 —g+2) ’ 0

oo
Ys(z, @) =Y rex’ ™9, rappn =1y =0, (3.7)
=0
£+1)/2
rages = zrse + g(g + 2) Z%L;)/ ](3€ +2—g—3m)camT3e+3—6m leN
Bt (B30+3)3l—g+2)(30—2g+1) ’ 0
where [s] denotes the integer part of s € R. Note that the denominators
in the coefficients rsp;3 in (3.6) and (3.7) can not become zero since g # 2
(mod 3). Thus we have proven that (3.2) possesses a meromorphic funda-
mental system, whenever go = 0 and hy = 0.

Remark 4. Halphen studied invariants of X" +Y"™ = ZP, m,n,p € N and
applied this to differential equations to prove the meromorphy of their fun-
damental systems. In the case of equation (3.2) this polynomial reads h3 =
A + B with h3 = (£9@+2)° (2)3, ¢ = —9(g+2) '(z), A = —9(9+2) B _
w 422 $ ’ 22 & ) 4 )

(—9(g+2))

1622 93-

(ii) If go # 0, direct computations show that meromorphic fundamental
systems exist for the following six cases (cf. Example 1-4):

g:1, h1:0, g:3, h3::|:2 392,

30
g=4, hy=0, g=6, hg ::|:7 392. (3.8)
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In general, however, if g > 7 and g # 0, a constant h, € C does not exist
such that the fundamental system is meromorphic for arbitrary spectral
parameters z € C.
Setting 1a(z, ) =Y 2, 1022t yields, for ry41 9 finite, the condition
[(g+1)/2]
0=2rg 00— ghgrg12+9(9g+2) Y (9+1—m)cnrgriama (3.9)

m=2
The solution of this equation for hy will in general always contain a term
dependent of z if g > 7.

Remark 5. Let 11(z,x) be a solution of
V" (z,2) + @ (@) ¥ (2,2) + (3 qe(@) — 2)U(z,2) =0, z€C,  (3.10)
and define il(z,x) by z/?l(z, x) = 1(—z,2). Then o(z,x) given by
" du(z,7)
¥i(z, ')
yields a second linearly independent solution of (3.10). It is well known (cf.

Ince [25], p. 122, or [13]) that the third linearly independent solution can be
represented as

V3(z, —11(2, x)

Pa(z,7) = 1(z, ) da’ (3.11)

¥a(2,2) dr’ +o(z, 1) Y1(z, ')

W1, ¥r; )2 Wi, on; )2
(3.12)

where W(f,g;x) = fg» — fzg denotes the Wronskian of f and g.

Note that if z = 0 (3.10) reduces to the well-known third-order differential
equation which is fulfilled by the product of two solutions of a second-order
differential equation of the type y”(z) + q(z) y(z) = Zy(z) (see, e.g., [10],
Part III, Chapter V, Section 71, Ex. 1, or [23], p. 511, equation (3.15)).

According to a theorem of Picard ([31], [32], [33]; see also [24], [2], pp. 182
187, [25], pp. 375-376) a differential equation with doubly periodic coeffi-
cients and a meromorphic fundamental system possesses solutions which are
in general elliptic of the second kind. Since there exists at least one solu-
tion which is elliptic of the second kind and every elliptic function can be
expressed in terms of o functions, we set (see Appendix B, Theorem 14)

ba(z,2) = ra) : oz =a;(2) oy~ (2),...,a4(2)), (3.13)
H o (x)o(a;(2)) 1
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which yields

(B + (g — 9(g + 2)p()) W) - Mp’(a*r)wa)

= (20> + 9)p(@) (A = Y- C(ay))

<.
Il
-

Jj=1 7=1
g g
#3cw-a)(3( D Cloe—a) +9¢(a) —Aa) +plas)lo — 9)
j=1 0=1, U#£]
g
+hg+3 Z p(ag—aj)> +c1 =2, c€C (3.14)
0=1, (£j
if and only if
s= (0~ 29+ 1Y), (3.15)
j=1
A=Y Clay), (3.16)
j=1
g
hg = (2—29) ) pla;), (3.17)
j=1
g g
0=3( 3 Clar—a)tola) ) + 220 pla)  (318)
(=1, (#j =1
+(9—pla)+3 D olae—ay)
=1, £

In order to derive (3.14) we used
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Yo' _ (Yayr | (Yays g Yay Yoy
pial oA e i el (3.19)
! g
Pt Y Gl - )~ g6o) (3.20)
a j=1
(Z—é)/ = gp(z) = > _plx —a;), (3.21)
a j=1
Loy — S oap([ D0 Clar—a)+ oclar) A (322
@ e j=1 (=1, (#]
g _ g 2 g
e = D c@)]) + 15 ) + L @) + g0 [r— D o))
j=1 j=1 j=1
g g g
Y @)+ Y plw—a)| D Clar—a5) + 9C(as) = Aol
Jj=1 Jj=1 {=1, b#£j
o) (L) =13 6l(a) + D plas)é(ay) + S0/) (3.23)
@ j=1 j=1
T p(2) A = D0 C(a)] = C@) Y pla) + D Clw - a)p(ay)
Jj=1 Jj=1 j=1
! 3
(o) = G st - Sctw)] (3.24)
g 9 g
= 39¢(@) ([ = D¢ + 9> 0lay)
j=1 J=1
33 e -a) =3 e —a)[ D Clar - a5) + g¢(a5) ~ A
j=1 J=1 (=1, L#j
£33 ¢ —ap([ DD clar—a) +g¢la) ~ M)+ gplay)
j=1 0=1, t#£j
g 2 1.9 g
Y o)+ LTS ) + - )]
=1, t#] j=1 j=1
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+ 6g Zi: p(a;) [/\a -3 C(Gj):|

=1
+ 32((%‘)([ > Clae—aj) + g¢lag) — )\ar
J=1 0=1, 0#£]
g
+gp(a)+ Y pla aj))
=1, (]
g g
+3) @(aj)[ > Clae—a5) + g¢lay) - Aa]-
Jj=1 =1, 1#£j5

Remark 6. The transformation a — —a (ie., aj — —aj, 1 < j < g)in
(3.13) yields a solution of L3tp_, = —z1¢_,. By Remark 5 this yields two
further solutions of (3.2).

3.1. The equiharmonic case gy = 0,hy = 0. In the equiharmonic case
where go = 0 and hy, = 0, the two other solutions of (3.2) can be obtained
in the following way. We start with

Remark 7. Given ¢'(v) = z, z # 0, there exist three different points v;, j =
1,2,3, with '(v;) = z and v; + v2 +v3 = 0. Assume ©'(v;) = ¢'(vi), v; #
vg, J,k=1,2,3. Then

ol02) = pl—va 1) = =) — o)+ § (LI ZE LY (5

This implies

p(v1) + p(v2) + p(v3) = 0 and ((v1) + ((v2) + ((v3) = 0. (3.26)
Now
0% (v;) = 49 () — gap(v;) — g3, 5 =1,2,3 (3.27)
yields
2= o) +p)eor) + o*(w),  Gk=123 j#k  (328)

From that we conclude that for go =0

. 1 V3
p(v2) = p(v1)as, p(vs) = p(v1)a3, ag = ¥™/3 = 5 T (3.29)

It follows that v9 = a3 w1 and v3 = 04:2), V1.
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We define
%,1(27 (IZ) = wa(al,la <5091, %, w)'} wa72(27 1‘) = wa(al,% <5092, %, .%'),
1/%1,3(27 (IZ) = wa(al,?n ceey ag,37 2, 1’), (330)

where ¢ (a;1) = ¢'(aj2) = ¢'(aj3), aje=a5 " aj, £=1,2,3, 1<j<g.
One immediately recognizes that the conditions (3. 15) (3 17) are fulfilled
if go = 0,hy = 0, and hence ¥, (2, ), k = 1,2, 3, are solutions of (3.2).
The product Dy(z, x) = ¥q,1(2, ) Ya,2(2, ) V¥q,3(2, x) of all three solutions
then reads

Dy 2y = [ 20 = 001()) 1] 000~ 032()) ] o1z~ a2
o= = G @otan ) L o(otaa) K otwjolass()
_ ﬁ o(x—a;j1(2) o(x —a;a(2)) o(r —a;3(2))
i o(@)alaji(2)) o(w)o(a;z(2) o(w)o(a;s(2))
g
=11 3 (¥ (@) = ¢'(a;n) (3.31)
j=1
The Wronskian W (1)1, %a,2,%4q,3) is given by
_ 02 Vas | VasVa 0.1 Va2
W(d)a’l’ %,27 1/)&3) =D ( )<¢a 2 wa 3 * ¢a 3 ¢a 1 * 1%,1 77/}a,2
AR R
- %,2 %,1 %,1 %,3 1/’(1,3 dJa,Q). (332)
With
Yos _ 1 zg: ple) T ellaes) 5y 54 (3.33)
%,; 2 =1 p(.’L‘) p(aé,j) ’ T
and
" g / / / /
Vi . J@)+ 9laen) ¢/ + P asr) o
b T 2D D ) o gl O

k =1,2,3, we may evaluate W (14 1,%a2,%a3) at = a; since it is inde-
pendent of z. This yields

(% 1,% 2,% 3) H aj, (aﬁ,l))
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zg: 9'(aj1) + ¢'(ar2) ' (aj1) + ¢ (as2)
s plaj1) — plaez) plaji) — plass2)
9'(aj1) + ¢ (aé 3) 9'(aj1) + ¢'(as3)
plaji) —plaes) plaji) — plass) ) (3.35)
¢ (a50) + ¢ (arn) (ajn) + ¢'(ars)  9'(ajn) + ¢ (ar)
* <£:§#j@(%’ au )<Z ay, @(%3) @(%1) - p(aﬁ,z) )}
Note that
/ T 2 v 2
) = 0OF _yo) + p()p(e) + p0)) (2 =0),  (336)

p(x) — p(v)
and hence all remaining fractions in (3.35) will cancel out. Thus 1,,1(2, )
and ¥,2(2,2), ¥q3(%,x) will not form a fundamental system when one of

the values p(aj1) =0, 1 < j < g. In this case we can apply either Remark 5
or the results from Subsection 3.2 to obtain a fundamental system.

Remark 8. Halphen used the following

g—1 P~
= e”Zaj(z,é,v)M, (3.37)

4 dx
j=0

to solve (3.2) where ¢(Z, z), which he called “élément simple”, is a solution
of

¢ — (2p(z) + 2)p = 0. (3.38)

3.2. Reduction of the order of the differential equation. Here we
briefly discuss the well-known process of the reduction of the order of a
differential equation when one solution is known and apply it to Halphen’s
equation.

Having determined the solution v,(z,2) = ¥1(z, ), we now consider the
reduced equation (d’Alembert’s method) and write

Yoz, x) = wl(z,x)/ u(z,2') d2’. (3.39)
This yields
”+3% "+ B2+ q)u=0. (3.40)

Ya Ya
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Picard’s theorem applies again, and hence we set

H" 2= bj(2))o()o(a;(2))?
e = i ole = a(2)P0(~b(2) 4y
b(Z) = (bl(z)v SRR

by(z)). A similar analysis as before yields, for ¢ € C

/ !

%( _}_37& Z+(3¢*+Q1)Ub)

% (3.42)

c+gC(x ( Ab+Zc —2§j<(aj>)

+ZC$—a] (

J=1

S clas—ar) - 96as) ~ Xy - Zc ;b))

z1é¢j

g

+3 ¢z —by) ZCb—bg — g¢(bj) + 2X + 3Aa —ZCb—a@) 0.
j=1 0=1, U#]

(=1
Equation (3.42) is fulfilled if and only if the following conditions hold

g

() =2 Clay), (3.43)
j=1

>

S

I
(]

<.

M- L

0=2 ((aj — ag) — g¢(az) Ab—Zc 1<j<g, (3.44)
0=1, (#£j

g g
0=2 > ¢(bj—be) —gllbj) + 20 +3Xa — D _C(bj—ar), 1<j<g,

=1, (#£j] =1
(3.45)

g g
— 9O plar) = > (b)) (3.46)
(=1 (=1

The second solution us of (3.40) can be obtained either by the transformation
a— —a,b— —b (ie, aj — —aj, bj = —bj, 1 <j <g) or by

ws(z,7) = up(z, ) / S )

uf (2,2 ) Y3 (z,a") (3.47)
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4. EXAMPLES

4.1. Example 1. g = 1. Differential expressions

d3 d 3
L = — — _ =
d2
Curve
fl(z,y)Zyg—i—zy—f—%:O- (4.1)

Elliptic solutions of the second kind

Va,j(z,x) = %m @) = Lar;) 240, j=1,2,3.

Product of solutions
Di(z,2) = =3¢ (a10) + 5¢'(x) = 2+ 3¢'(x),  €=1,2,3.

4.2. Example 2. g = 3. Differential expressions

Ly = d—3+(2\/3 ~15 (g;))i—E /(z)
d* V392 d? d 5

Py = —— —20¢(v)— + (104/3 — =~ 0g2).

1=+ (5 p(r) 75 =209/ (@) 7~ + (10v/3g2 0() — 5 90)
Curve

375 225 1375
Falery) = o' +y (=55 0 = T VB2 gs + 7B ) + o g0’
2625 3375 1505 3 55
\/_.92 g3+ —— 16 gg‘l‘? 3922 224-?9322—24:0. (4.2)

Elhptlc solutlon of the second kind

o(z — a;(2))

<
—~
I3
8
~—
D
>
Q
O
8

a(z) = (a1(z),...,a3(z)),

o1 o(@a(a; ()’
= gwm +¢'(a2) + ¢/(a3), Ao = ((a1) + ((az) + C(as),
392 = —4(p(a1) + p(az) + p(az)),

3

0=-7Y plas) — 9p(ay)

(=1
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4 Z ( +@(aj> ( Z @ +@aj))’1§j§3'

(=1, o o=, p(a;)
Series solutions
v =a? - V3T o)
Y=z + \/?xg—%m +ri2x —i—%\/@sz—FO(ﬂ), ry2 € C,
Y3 —xs—i-\/?;—k 1Z5+7‘4,3x— \/g()@zﬁ
(st it )= (3 + ) et 40 mac e

To obtain the results for the case hs = —24/3¢gs simply replace /ga by
g2 in all expressions above.

4.3. Example 3. g = 4. Differential expressions
d3 d

Ly= 25— 24@(93)% — 12¢/(2),
Ps= & — 40¢( )d—3 — 60 ’(ac)d—2 +(38g2 + 40 (95)2)i +160p(x)e’ (z)
°7 dab L) 43 AL 42 92 v dx PRI L)
Curve
Fulz,y) = y° —2° +208 g32° + y(313692g3 — 44 go2%) — 3136(g2> +4g3%) 2 = 0.
(4.3)
Elliptic solution of the second kind
4
_ M@ T 2 —0i(2) _
wa(’z?w) =€ j:]‘_[lO'(fE)O'(a‘Z(Z))’ a(z) - (CLl(Z),...,(I;l(Z)),
z=1(p'(a1) + ¢'(a2) + ¢'(a3) + ¢'(aa)),
= ((a1) + ((az2) + ((a3) + ((aa),
0 = (p(a1) + plaz) + p(as) + p(aa)),
Vo3 N (gl + o) M
) =5 3 (e ot ) 3 Z; o)

1 < j < 4. Series solutions

¢1—l‘ +312$ +O( )
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3 2
%—xfix‘l—@x +r50T +<£* : >$7+O($8), 5.2 € C,

48 15 7 3168
39
¢:x4+E%—2—0+T53$+O( ), 7“5736((:.

4.4. Example 4. g = 6. Differential expressions

d? d
e ( \/39 — 48 p(z )d——24p( x),

d 4 d° d*
P7:d 7+( \/3g2—112p(x))%—280p( )d—

(316 g2 160

B3
3 +? Sggp(x)+1120p(x)>—3 (80\/39@

L3 =

a2 8
+ 6720 p() p’(:c)) = (3333 V3 go? + 23030 g3 + 5614 g2 p(z)

d
+ 30380 /3 g2 p(x)? — 150920 p(x)g) 4

dx
512

- (19 92— 70/3 g2 p(fb’)) @' (x).

Curve
1172432
Fe(z,y) = y3 — 2T+ ( Y] \/_gz + 299293)

389275254016 8716731904
- ( 923 \/_92

> g3 + 2972416 g ) p

453789 3087
20521280 308472947200 .
9 4 2.2 CPR
+( 63922 020 92 7t " sageag V392
225472 - , , 14301610200 , 41817600 - 2)
7 g293 %2 72401 g2~ g3 —7 9293 | Y
(791904252620800 VB3, 7133027840000
17294403 92 117649 92 9
464727552
% V3923 g5? + 1003622400 g5 ) 2 =0. (4.4)

Elliptic solution of the second kind

6
2.x) = eta®)T M
wa( Y ) ]:H10_(x>0_(a](z>)>

22(p(a1) + @' (a2) + ¢'(a3) + ¢'(as) + ' (as) + ¢'(as)),
Ao = ((a1) + ¢(a2) + ¢(a3) + ((as) + ((as) + ((as),

a(z) = (a1(z),...,a6(2)),

z
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30
— V392 = —10(p(a1) + p(az) + p(as) + p(as) + p(as) + p(ae)),

3 = (¢(ar) +'(a))\?
432@% — 42¢(aj) 462#(@(%0—@(60]'))

Series solutions
¥ =28 + O(mw),
V3g2 3 z 4 1lgo 5 2 SngG

Y2 = 21 © 1207 490:” 630
(9520 1;3230‘[ 92% = g1 )x + 722" +0(%), 1z € C,
w?’:%“r% 39251 132%_%%+%55@Z%+%
f% 3923f7+r773x+0(:c2), r73 € C.

To obtain the results for the case hg = —% 3g2 simply replace /g2 by
g2 in all expressions above.

Remark 9. If go = 0, all curves above degenerate into cyclic coverings of
the line (see, e.g., [30]); i.e.,

Fylz,y) = y® — Ty4+1(2z) = 0. (4.5)
4.5. Example 5. ¢ =T.
d? d 63,
Ly = T3t (h7 — 63 p(x)) N ().

Series solutions ¥; = 2% + O(z!). Then 9y = >0 ;227! leads to the
condition

0 = 54054000 g2 + (55296 2% — 49420800 g3) h7 — 1801800 g h7* + 3575 h7*
for rgo being finite. This equation does not have a solution h7 which is

independent of z if go # 0.

Remark 10. This result does not imply that there exist no commuting pairs
of differential expressions (Ls, Pr) with elliptic coefficients where g5 # 0. For
example, choose in (1.3) for the coefficients (q1(x), qo(x)) one of the pairs



ON THE SOLUTIONS OF HALPHEN’S EQUATION 1045

{(=6p(x), £3¢'(x)), (—12p(x), £6¢'(x)), (—18p(z), £15¢'(x))}. Then there
exist corresponding differential expressions P-r such that the commutator
(L3, P7] = 0.

All these calculations can be done easily by using Mathematica or another
CAS.
APPENDIX A. THE LIMIT w; — 00, w3 — 00

In the limiting case where the half-periods w; — oo, w3 — o0, equation
(3.2) degenerates into

n 2 / 2
" (z,x) — %1& (z,2) + (%

ze€C, geN, g#2 (mod 3).

—2)Y(z,2) =0, (A1)

According to the theory of Fuchs, z = 0 is a regular singular point of (A.1).
The method of Frobenius,

Y(z,x) = pow:cZ, ro # 0, (A.2)
=0

then yields from the indicial equation p = —g, 1, (g + 2). This directly leads
to the following three linearly independent meromorphic solutions:

Yi(z,2) = i ree 92 g = rapge =0, (A.3)
=0

" T 301 3) (30 + ngil)(?,f +29+5) ¢eNo,

Pa(z,2) = irﬂéﬂ, r3er1 = T3042 = 0, (A.4)
=0

" T 301 3)(30 + ;7384)(36 —9+2)’ ¢ € No,

Y3(z,2) = i?"elj_g, 3041 = 73042 = 0, (A.5)
=0

=Tst ¢ € No.

P T B 3 (30— g+ 2)(30 — 29 + 1)’

Note that the denominators in the coefficients r3¢43 in (A.4) and (A.5) can
not become zero since g # 2 (mod 3). Thus (A.1) possesses a meromorphic
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fundamental system. By another theorem of Halphen [20], [25, pp. 272-275]
the general solution of (A.1) must therefore have the following form

3
Y(z,x) = chpg%éx)eﬁjx (A.6)
j=1

where ¢j,8; € C, j = 1,2,3, and pg j(z), j = 1,2,3, are polynomials of de-
gree g. Equation (A.1) is invariant under the transformation x — alkz, j =

1,2,3, k = 2Y/3, a3 = €2™/3, which finally yields the general solution of
(A1),

3 J . g
1/)(2, ,7;) _ Z C]pg(o;iik.%') eo%kx, pg(jj) _ Z fgii'g, <A7)
= z =0
(690 + 11g — 302 — 90 — 6 — 2¢%)Foa + 3(g — £ — 1)Fpq
L+3)(l—g+2)({—2g9+1) ’

EZO,...,Q—S, flz—fo, f2:7:0/2.

To13 =

Remark 11. Halphen solved equation (A.1) by using a Darboux-type trans-
formation expressing a solution ¢ corresponding to g-+3 in terms of a solution
¥ for g, i.e.,

+3 ., 29+3)(g+1)

29 2g+3)(g+1
¢g+322¢g_ - g+ / ( )( )

(U g. (A8)

3

22
APPENDIX B. SOME THEOREMS ON ELLIPTIC FUNCTIONS

For convenience we recall some theorems representing an arbitrary elliptic
function in terms of o- and (-functions which are used in this text. For
general references see, for instance, Akhiezer [2], Markushevich [26], and
Whittaker and Watson [40].

Theorem 12. [[26], Theorem 5.12 (p. 181)]. Given an elliptic function f of
order n with fundamental periods 2wy and 2ws, let aq,...,a, and by,...,b,
be the zeros and poles of f in the fundamental period parallelogram A repeated
according to their multiplicities. Then

olx—ay) ---o(x—ap)

=C
I = ) o —ba )o@ =0
where C' is a suitable constant, o is constructed from the fundamental periods

2wy and 2ws and where b, — by, = (a1 +---+an) — (b1 +---+by) is a period
of f. Conversely, every such function is an elliptic function.
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Theorem 13. [[26], Theorem 5.13 (p. 182)]. Given an elliptic function f
with fundamental periods 2w, and 2ws, let by, ..., b, be the distinct poles of
f in A. Suppose the principal part of the Laurent expansion near by is given

by

ﬁkj S (B.1)
j:1($_bk)j, =1,...,1m )
Then
flz)=C+ Z Z(—l)jflﬁdﬁl)(ﬁ — b, (B.2)
1 j=1 j—1)

where C' is a suitable constant and ((x) is constructed from the fundamental
periods 2wy and 2ws. Conversely, every such function is an elliptic function

if Y ey A1 =0.

Note that this theorem resembles the partial fraction expansions for ra-
tional functions.

Finally, we turn to elliptic functions of the second kind, the central object
in our analysis. A meromorphic function ¢ : C — C U {oo} for which there
exist two complex constants w; and ws with nonreal ratio and two complex
constants p; and p3 such that for i = 1,3, ¥ (x + 2w;) = pb(z) is called
elliptic of the second kind. We call 2w; and 2ws the quasi-periods of .
Together with 2w, and 2ws, 2miwi + 2m3ws are also quasi-periods of ¥
if my and mg are integers. If every quasi-period of 9 can be written as an
integer linear combination of 2w; and 2ws then these are called fundamental
quasi-periods.

Theorem 14. A function v which is elliptic of the second kind and has
fundamental quasi-periods 2wy and 2ws can always be put into the form

olx—ay) --o(x—ap)

w(l') = C'eXp(AfL') U(l’ . bl) o g(x — bn)

for suitable constants C, X, a1,...,a, and by,...,b,. Here o is constructed
from the fundamental periods 2w1 and 2ws. Conversely, every such function
1s elliptic of the second kind.
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