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Chapter 1

Introduction

The Boussinesq (Bsq) equation,
Utt = Ugg + 3(u2)$x — Ugzzx, (11)

was originally introduced in 1871 as a model for one-dimensional weakly nonlinear dispersive
water waves propagating in both directions (cf. the recent discussion in [77]). It is customary
to cast the equation in yet another form and instead write it as the system of equations

1 2
qo,t + g aan + 30 = 0, q1t — 290z = 0. (1.2)

Introducing
01, 1) = —(6u(r, 37V24) + 1)/4, (13)
equation (1.1) results upon eliminating gy (cf. also [38]).

The principal subject of this paper concerns algebro-geometric quasi-periodic solutions of
the completely integrable hierarchy of Boussinesq equations, of which (1.2) is just the first
of infinitely many members. In order to be able to give a more precise description of the
concepts involved, we briefly recall some basic notation in connection with the Boussinesq
hierarchy.

The Boussinesq hierarchy is defined in terms of Lax pairs (L3, P,,) of differential expressions,
where L3 is a fixed one-dimensional third-order linear differential expression,

d? d 1
- 4 1.4
de3 T By T e T (14)

and Py, is a differential expression of order m # 0 (mod 3), such that the commutator of
L3 and P,, becomes a differential expression of order one. For the Boussinesq equation (1.2)
itself, we have m = 2, that is,

L3

a2 2
= @ + g‘ha (1-5)

and the resulting Lax commutator representation of the Boussinesq equation then reads

Py

qo,t + %QI,mzx + %q1q1,:p = 07

1.6
q1,t — 2qo0,z = 0. (1.6)

d .
Bsqs(qo, q1) = %L?’ — [P2, L3] =0, that is, {

1



2 1. Introduction

A systematic, in fact, recursive approach to all differential expressions P, will be reviewed
in Section 3.1.

However, before turning to the contents of each section, it seems appropriate to review the
existing literature on the subject and its relation to our approach. Despite a fair number
of papers on the Boussinesq system, the current status of research has not yet reached the
high level of the KdV hierarchy, or more generally, that of the AKNS hierarchy. From
the perspective of completely integrable systems, the reasons for this discrepancy are easily
traced back to the enormously increased complexity when making the step from the second-
order operator Lo associated with the KdV hierarchy to the third-order operator L3 in
connection with the Bsq hierarchy. On an algebro-geometrical level this difference amounts
to hyperelliptic curves in the KdV (and AKNS) context as opposed to non-hyperelliptic ones
that arise in the Bsq case.

The classical paper on the Bsq equation, or perhaps more appropriately, the nonlinear string
equation, is due to Zakharov [94]. In particular, he introduced the basic Lax pair (L3, Ps)
and discussed the infinite set of polynomial integrals of motion. In many ways closest in
spirit to our approach is the seminal paper by McKean [72] (see also [71]) describing spatially
periodic solutions of the Bsq equation. In contrast to [72] though, we concentrate here on the
algebro-geometric (i.e., finite-genus) case and make no assumptions of periodicity in order to
describe all algebro-geometric quasi-periodic solutions. The application of inverse scattering
techniques for the third-order differential expression L3 to the initial value problem of the Bsq
equation is discussed in great detail by Deift, Tomei, and Trubowitz [18] and Beals, Deift,
and Tomei [8]. General existence theorems (local and global in time) for solutions of the Bsq
equation can also be found, for instance, in Craig [17], Bona and Sachs [10], and Fang and
Grillakis [29], and the references therein. In particular, [8], [10], [17], [18], [65], [72], and
[73] further discuss and contrast the blow-up mechanism for solutions of the nonlinear string
equation obtained by Kalantarov and Ladyzhenskaya [59]. Other special classes of solutions
have been considered by a variety of authors. For instance, certain classes of rational Bsq
solutions are treated by Airault [4], Airault, McKean, and Moser [5], Chudnovsky [16],
and Latham and Previato [64]. In addition, the classical dressing method of Zhakarov and
Shabat to construct particular classes of solutions for very general systems of integrable
equations, as described, for instance, in [95], [96], [97], and [98], should be mentioned in
this context. Moreover, certain algebro-geometric Bsq solutions, obtained as special solutions
of the Kadomtsev-Petviashvili (KP) equation or by the reduction theory of Riemann theta
functions, are briefly discussed by Dubrovin [24]|, Matveev and Smirnov [66], [67], [68],
Previato [81], [82], Previato and Verdier [84], and Smirnov [88], [89]. The latter solutions
appear as special cases of a general scheme of constructing algebro-geometric solutions of
completely integrable systems developed by Krichever [61], [62], [63] and Dubrovin [23],
[25] (see also [9], [37], [76], [86]).

Next we describe the content of this paper. Since the inevitable complexity of the Bsq
formalism tends to cloud the simplicity of the basic ideas involved, we decided to include a
corresponding treatment of the KdV hierarchy in Section 2.1-2.3, especially since the latter
case is by far the most transparent one within the Gelfand-Dickey hierarchy. Following Al’ber
[6], [7] (see also [19], Ch. 12, [34]) we describe a recursive approach to Lax pairs of the KdV
hierarchy in Section 2.1 and establish its connection with the Burchnall-Chaundy theory [13],
[14], [15] and hence with hyperelliptic curves branched at infinity. Combining the recursive
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formalism of Section 2.1 with a polynomial approach to represent positive divisors of degree n
on a hyperelliptic curve of genus n originally developed by Jacobi [58] and applied to the KdV
case by Mumford [75], Section IIL.a.1 and McKean [74], a detailed analysis of the stationary
KdV hierarchy is provided in Section 2.2. The corresponding time-dependent formalism of
the KdV hierarchy is then developed in Section 2.3. Our presentation of Sections 2.1-2.3
follows the one in [40].

Our principal contribution to this subject is a unified framework that yields all algebro-
geometric quasi-periodic solutions of the entire Boussines hierarchy at once.

In Section 3.1 we develop a recursive construction of the stationary Bsq hierarchy. The
stationary Boussinesq hierarchy is then obtained by imposing the ¢-independent Lax com-
mutator relations

[Pn,L3] =0, m=#0 (mod3)), (1.7)

assuming go and g to be t-independent. From the differential expression P, we construct two
polynomials S,,(z) and T,,(z) in z, which are both z-independent. This leads immediately
to the classical Burchnall-Chaundy polynomial (cf. [13], [14]), and hence to a (generally,
non-hyperelliptic) curve K,,—1 of arithmetic genus m — 1, the central object in the analysis
to follow.

The recursive approach of Section 3.1 is then combined with a fundamental polynomial
approach (in the spirit of Jacobi’s treatment of the hyperelliptic case in Section 2.2) to
represent positive divisors of degree m on Bsq curves of genus n in order to analyze the
stationary Bsq hierarchy in Section 3.2. Rather than studying the Baker-Akhiezer function
¥ (i.e., the common eigenfunction ¢ of the commuting operators Lg and P,,) directly, our
main object is a meromorphic function ¢ equal to the logarithmic x-derivative of v, such that
¢ satisfies a nonlinear second-order differential equation. Moreover, we describe Dubrovin-
type equations for the analogs of Dirichlet and Neumann eigenvalues when compared to the
KdV hierarchy.

Section 3.3 then presents the explicit theta function representations of the Baker-Akhiezer
function, the meromorphic function ¢, and in particular, that of the potentials ¢; and ¢ for
the entire Boussinesq hierarchy (the latter being the analog of the celebrated Its-Matveev
formula [57] in the KdV context).

Sections 3.4 and 3.5 then extend the analyses of Sections 3.2 and 3.3, respectively, to the
time-dependent case. Fach equation in the hierarchy is permitted to evolve in terms of an
independent deformation (time) parameter ¢,. As initial data we use a stationary solution of
the mth equation of the Boussinesq hierarchy and then construct a time-dependent solution of
the rth equation of the Boussinesq hierarchy. The Baker-Akhiezer function, the meromorphic
function ¢, the analogs of the Dubrovin equations, and the theta function representations of
Section 3.3 are all extended to the time-dependent case.

Chapter 4 investigates Halphen’s equation and provides a variety of explicit examples illus-
trating the Bsq formalisms.

Finally, in Chapter 5 we represent the diagonal Green’s function within this formalism.

In Appendix A we provide an introduction to the theory of Riemann surfaces and their theta
functions. Appendix B is a collection of results on trigonal Riemann surfaces associated with
Bsqg-type curves.
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It should perhaps be noted at this point that our elementary algebraic approach to the
Bsq hierarchy and its algebro-geometric solutions is in fact universally applicable to 1 + 1-
dimensional hierarchies of soliton equations such as the KdV hierarchy [40], the AKNS
hierarchy [39], the combined sine-Gordon and mKdV hierarchy [36], and the Toda and Kac-
van Moerbeke hierarchies [12] (see also [37]).

Finally, we mention that a combination of the Bsq formalism developed in this paper and the
Picard-type techniques introduced in a recent explicit characterization of all elliptic solutions
of the KdV hierarchy in [45] (see also [44]) are expected to yield a similar characterization
of all elliptic solutions of the Bsq hierarchy, a topic that continues to attract considerable
interest (see, e.g., [66], [68], [81], [82], [88]). Recently Weikard [92] (cf. [91]) proved an
analogous theorem for the entire Gelfand-Dickii hierarchy for rational and simply periodic
algebro-geometric potentials.



Chapter 2

The Recursive
Approach to the
Korteweg de Vries
Hierarchy and
Hyperelliptic Curves

2.1. The Recursive Approach to the KdV
Hierarchy

Following the treatment in [40] we present in this section the recursive approach to Lax
pairs of the KdV hierarchy and its connection with the Burchnall-Chaundy theory [13], [14],
[15] and hence with hyperelliptic curves branched at infinity. Originally, this approach was
advocated by Al'ber [6], [7] (see also [19], Ch. 12, [34], [39], [41]).

Suppose gy € C*(R) (or gy meromorphic on C) and introduce the second-order differential
expression
d2

lr=50m

+qo(z), xze€R (or C). (2.1)

In order to explicitly construct odd-order differential expressions P, # 0 (mod 2) commut-
ing with Lo, that will be used later to define the stationary KdV hierarchy, one proceeds as
follows.

Pick n € No(= NU{0}) and define {fo(x)}o<s<n+1 recursively by

fO =1, (22)

2f10) = 5 forean(®) + 200(2) fi10(8) + 02 () fra(w), 1S E<nA1

5



6 2. The Recursive Approach to the Korteweg de Vries Hierarchy

Explicitly, one computes

1 1 3 1
fo=1, f1:§QO‘|‘Cla f2:§qo,m+§q(2)+01§qo+62, etc., (2.3)

where {c/}1<¢<y, are integration constants. Given (2.2), one defines the differential expression
of order r by

n n
1 d
Pr= 3 (=g fucta t Fuorgy JEA+ 3 keeh, kg€ 0<f<n,
(=0

- r=2n+1, n € Ny, (2.4)

and verifies
[Py, L] =2fn410, r=2n+1, ne N, (2.5)
(where [ ., . ] denotes the commutator symbol). The pair (Lo, P,) represents the celebrated

Lax pair for the KdV hierarchy. Varying n € Ny, the stationary KdV hierarchy is then
defined by the vanishing of the commutators of P, and Lo in (2.5), that is, by

[Pr,Lo] =0, r=2n+1, n€ Ny, (2.6)
or equivalently, by
fn+1,m =0, n €Ny (27)

Explicitly, one obtains for the first few equations of the stationary KdV hierarchy

40,z = 07
1

3
7 Daze T 5 Q000 +c1q0z =0, (2.8)

1

16 q90,xxxTe 3 40 90,zxx 4 40,z 40,zx 3 40 490,z 1 4 q0,zxx 9 40 90,2

+c2q0 =0,

etc.

By definition, solutions gg(x) of any of the stationary KdV equations (2.8) are called algebro-
geometric finite-gap potentials associated with the KdV hierarchy. If f 41, = 0, one
also calls qg a stationary n-gap solution.

Next, we introduce the polynomial F;. of degree n with respect to z € C,

n
Fr(z,m) =) fae(@)?', fo=1, r=2n+1 (2.9)
/=0
Explicitly, the first few polynomials F,. read
F =1,
1
F3=2z+ (5 g +c1), (2.10)
1 1 3 1
Fs=2"+ (5o +a)z+ (5 000 + éq(% +e 5 a0+ ),

etc.
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Given (2.9), (2.6) respectively, (2.7) becomes
1

iFr,a:xz _Q(Z_QO) Fr,x+q0,z F.=0. (211)
Multiplying (2.11) by F, and integrating once results in
1 1
R.(2) = =5 Praw Fr + ZF,fw + (2 — qo) F2, (2.12)

where the integration constant R,(z) is seen to be a monic polynomial in z of degree 2n + 1.
Thus we may write

Ry(2) = H (z — Em), {Em}o<m<an C C. (2.13)

Next, we consider the kernel (i.e., the formal null space in a purely algebraic sense) of
(L2 - Z)7 z € C,

(L= 2)¢ =0, ¢=1(z,2), 2€C (2.14)

and, taking into account (2.6), that is, [P, Ls] = 0, compute the restriction of P, to the
ker(Ly — z). Using

Yog = (Z - QO)¢’ Vrex = (Z - QO)d}x - QOM/J, etc., (2'15)

to eliminate higher-order derivatives of v, one obtains from (2.2), (2.4), (2.7), (2.9), and
(2.11),

d
Pr — Fr 5 - r{%, s 2.1
ker(Lo—z) ( (2 I’) dx +a (Z :L‘)> ker(L2—z) ( 6)
where
1
Gr(z,x) = —§Fr,x + ke (2), (2.17)
and (cf. (2.4))
kr(2) =) ko2t (2.18)
=0

The construction of P, in (2.4) and (2.16) should be contrasted with the one based on for-
mal pseudo-differential expressions originally developed by Gel’fand-Dickey [33] and further
refined by Adler [3] (see also [19], Ch. 1).

Still assuming fy, 11, = 0 as in (2.7), [Py, L2] = 0 in (2.6) yields an algebraic relationship
between P, and Lo by a celebrated result of Burchnall and Chaundy [13], [14], [15] (see also
[93]). The following theorem gives a detailed account of this relationship.

Theorem 2.1. Assume fp41,. =0, that is [Py, La] =0 for somer =2n+1, n € Ny. Then
the Burchnall-Chaundy polynomial F(,_1y/2(L2, ;) of the pair (Lz, P) explicitly reads (cf.
(2.13) and (2.18))

2
Firryy2(La, Pr) = (P,, - kr(L2)> — Ry(Ls) =0, (2.19)
n 2n
kr(z) = Zkﬁgzg, R.(z) = H (z—=FEn), z€C, r=2n+1, n € Ny.
/=0 m=0



8 2. The Recursive Approach to the Korteweg de Vries Hierarchy

Proof. Let ¢); € ker(Ls — z), j = 1,2 be linearly independent. Since [P,, Ls] = 0, one can
represent P, as a 2 X 2 matrix P,(z) on ker(Ly — 2),

2
Pepj = Prjsthrs (2.20)
k=1
D ( L1 > _ < Pri1 Priz ) ( P >
"\ e Pro1 Prao o )7
_ WL, 42) _ W, Pryy) :
Prd = ) T T W) 0 TR (2.21)

Using (2.11) and (2.15)—(2.18) one verifies
tr(Pr(2)) = 2kr(2), (2.22)

W(Prwl(z)v Prw2(z))

W (1(2),12(2))
(Here tr(.) and det(.) denote the trace and determinant, respectively and W (f, g) = f g f'g

det(P,(2)) = = k. (2)% — R.(2). (2.23)

denotes the Wronskian of f and g. The characteristic polynomial det(y —P,(z)) = Pr(z)
then yields
2
Fo-1)/2(2,9) = y* =y tr(Pr(2)) + det(Pr(2)) = (y — kr(2))” — Re(2) = 0. (2.24)

The result (2.19) then follows from the Cayley-Hamilton theorem, since z € C is arbitrary. O

Remark 2.2. Equation (2.24) naturally leads to the (possibly singular) hyperelliptic curve
Ka-1y/2:

2
Ke—tyo:  Furo1)2(zy) = (y— ke (2))” — Re(2) =0, (2.25)
n 2n
:angzz, R.(z) = H (z—En), r=2n+1, neNy
= m=0

of (arithmetic) genus n = (r — 1)/2. In the nonsingular case, where E,, # E for m # m/,
the Riemann theta function associated with (the one-point compactification of ) K._1)/2 then
yields an explicit expression for qo(z) originally derived by Its and Matveev [57].

Finally, introducing a deformation parameter t, € R in ¢y (i.e., qo(x) — qo(z,t,)), the
time-dependent KdV hierarchy is defined as the collection of evolution equations (varying

re 2N0 + 1),
d
dTLz( 2 = [Pr(ts), La(t)] =0, (x,t,) €R? r=2n+1, n € Ny, (2.26)
or equivalently, by
KdV,(q0) = qo4, — 2fns12 =0, (2,t,) €ER?® r=2n+1, neN, (2.27)
that is, by

5 Fraar +2(2 = @0) Fr — a0 Fr =0,
(z,t,) €R?, r=2n+1, neN. (2.28)
Explicitly, one obtains for the first few equations in (2.27),
KdVi(q) = 90,6 — 902 =0,

KdV,(q0) = qo,,
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1 3

KdV3(qo) = qo,t5 — 1 0wz = 5 90902 — 100 =0, (2.29)
1 5 5 15
KdV5<(]0) = qo,t5 — T6 q0,xxxxr — é 40 90,xxx — Z 490,z 90,0 — § Q(2) q0,x
1 3
—C (Z q0,zzz + 5 q0 qo,x) — €240,z = 0,

etc.

Remark 2.3. We chose to start by postulating the recursion relation (2.2) and then developed
the whole formalism based on (2.2), (2.4)-(2.6). Alternatively, one could have started from

(Ly = 2)y(P) =0, (Pr—y(P))Y(P) =0, P=(zy(P))eli1p\{Ps}  (230)
and obtained the recursion relation (2.2) and the remaining stationary results of this section
as a consequence of (2.9) and (2.16). Similarly, starting with

(Ly — 2)9(P,t,) = 0, (82 —P)(Pt,) =0, t, R, (2.31)

one infers the time-dependent results (2.26)—(2.29).

2.2. The Stationary KdV Formalism

In this section we continue our discussion of the KAV hierarchy and focus our attention on the
stationary case. Following [40] we outline the connections between the polynomial approach
described in Section 2.1 and a fundamental meromorphic function ¢(P,z) defined on the
hyperelliptic curve K(,_1)/; in (2.25). Moreover, we discuss in some detail the associated
stationary Baker-Akhiezer function (P, x, z¢), the common eigenfunction of Ly and P, (we
recall that [P, Lo] = 0), and associated positive (Dirichlet and Neumann) divisors of degree
(r—1)/2 on K(;_1)/2- The latter topic was originally developed by Jacobi [58] and applied
to the KdV case by Mumford [75], Section IIl.a.1 and McKean [74].

We recall the hyperelliptic curve K(,_1)/5 in (2.25),

Koozt Foorype(zy) = (y—k(2))® = Re(2) = 0, (2.32)
n 2n
kr(2) =Y k', Rp(2) =[] (= Em),
/=0 m=0

where r € 2Ny + 1 will be fixed throughout this section and denote its one-point com-
pactification (joining the branch point Py) by the same symbol K(,_1y/2. (In the following
K(r—1y/2 will always denote the compactified curve.) Thus K(,_1)/2 becomes a (possibly sin-
gular) two-sheeted hyperelliptic Riemann surface of arithmetic genus (r —1)/2 in a standard
manner. We now introduce a bit more notation in this context. Points P on K(,._1)/, are
represented as pairs P = (z,y(P)) satisfying (2.32) together with P, = (00, 00), the point
at infinity. The complex structure on K(,_1)/2 is defined in the usual way by introducing
local coordinates (p, : P — (2 — z9) near points Py € K(,_1)/o which are neither branch nor
singular points of K(,_1)/2, Cp,, : P — 1/2/? near the branch point Py, € K—1y/2 (with
an appropriate determination of the branch of z!/ 2) and similarly at branch and/or singular
points of K(,_1)/2. The holomorphic sheet exchange map (involution) * is defined by

Ke—1)2 = Kp—1)/2
* " } , 2.33
{ P = (2,4;(2) — P* = (2,41 (mod (2) 4 =1,2 (2:33)
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where y;(2), j = 1,2 denote the two branches of y(P) satisfying F(,_1y/2(2,y) = 0, that is,
(y —91(2)) (y = 92(2)) = (y = k:(2))> = Rr(2) = 0. (2.34)
Finally, positive divisors on K(,_1)/p of degree n = (r — 1)/2 are denoted by
K—1y/2 = No

_____ Pty p_, Dy p,(P) = { m if P occurs m times in {Py,...,P,} .  (2.35)

0if P {Py,..., Py}

Given these preliminaries, let (P, z,z¢) denote the common normalized (cf. (2.39)) eigen-
function of Ly and P,, whose existence is guaranteed by the commutativity of Ly and P, (cf.,
e.g., [13], [14]), that is, by

[P, Lo] =0, r=2n+1 (2.36)

for a given n € Ny, or equivalently, by the requirement,
Jn+1,2 =0. (2.37)

Explicitly, this yields
Lop(P, x,20) = 29(P, 2, 20), Prp(P,x,20) = y(P)Y(P, 2, x0), (2.38)
P =(2,y(P) € Ky-1)2 \ {Px}, z€R

for some fixed g € R with the assumed normalization,

(P, xo,x9) =1, PeKu_1y2\ {Px}- (2.39)

Y(P,z,z0) is called the stationary Baker-Akhiezer (BA) function of the KdV hierarchy.
Closely related to 1(P,x,x¢) is the following meromorphic function ¢(P,x) on K¢._1y/o de-
fined by

(P, x,x
¢(Pz) = W7 P ey 12 z€R, (2.40)
such that
WP, 10) = exp (/ d'd(P.2)), P eKy_ns\ {P). (2.41)
o

Since ¢(P,z) is a fundamental object for the stationary KdV hierarchy we next seek its
connection with the recursion formalism of Section 2.1. Recalling (2.16) and (2.17), one
infers

1

Pap = Foape + ( — 3Fre+ by )i =y (2.42)
and
(P), = (%Fr,x + k)Y + (2 — q0) Fr — %Fr,m)w =y (2.43)

using (2.15). Thus

¢ o % o Yy - k'r' + %Fr,x . (Z - QO)FT — %Fr@x (2 44)
1/] E; Yy — kr - %Fr,m ‘ .

Introducing

Dy(z,x) = Fr(z,z), (2.45)
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Nos1(2,2) = (2 — qo) Fy (2, 2) — %Fr,m(z, ) (2.46)

then yields
y(P) — kr(2) + %Dnjx(z,x)

HEz) = Dn(z, ) (2.47)
- y(P) - ]‘j:f?;r)l(—z’%xD)nx(z,x)’ p= (Z’y(P)) € K(rfl)/Q (2.48)

and
D21) Nuga(0) = (4(P) = kr(2))” = 1 Doler)? (2.49)

In order to motivate our introduction of the basic quantity ¢(P,x) we started with the
common eigenfunction (P, x,zg) of Ly and P,. However, given (2.12) and the definitions
(2.45), (2.46), we could have defined ¢(P, z) as in (2.47) and then verified that ¢ (P, z, z¢) in
(2.41) satisfies (2.38) and (2.39). Since by (2.9) D,, and N1 are monic polynomials with
respect to z of degree n and n + 1 respectively, we may write

n

Dn(z7$) = H(Z - Nj(x))v (250)
j=1

Npt1(z,x) = H(z — (). (2.51)
=0

Defining

fij (@) = (i (), y(fj (@) = (i (@), kr(uj(2)) + %Dn,m(ﬂj($)v$)) € Kp—1)/2s

1<j<n, z€R, (2.52)
. . 1
vo(@) = (ve(@), y(2e(@)) = (ve(@), kr(ve(@)) = 5Dno(ve(@), ) € Koy 2,
0<l<n, zcR, (2.53)
one infers from (2.47) and (2.48) that the divisor (¢(P,z)) of ¢(P,z) is given by
(6(P,2)) = Dig(a),....00 () (P) = DPrg s (@), in () (P)- (2.54)

Here we used our convention (2.35) and the additive notation for divisors. Equivalently,
vo(x),...,0n(x) are the n + 1 zeros of ¢(P,z) and P, f11(x), ..., fn(x) its n + 1 poles.

Further properties of ¢(P,x) and (P, x,z() are summarized in

Lemma 2.4. Assume (2.36)-(2.40), P = (2,y(P)) € Ky—1)/2 \{Pxo}, 7 =2n+1, and let
(z,2,70) € C x R% Then

(7). ¢(P,x) satisfies the Riccati-type equation

¢ (P, x) + ¢(P,z)* = 2z — qo(x). (2.55)
(i) 0(P.a) o(P",a) = = =) (2.56)
Dy, »(z,x)

(iii). ¢(P,x) + p(P*, x) = (2.57)

Dy(z,z)
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2(y(P) — kr(2))

(v). d(P,x) — ¢(P", ) = : (2.58)
D, (z, )
(4P = Ko (2)o(P.2) + (1(P*) = ke (2) (P, 3) = (259)
* _ Dn(Z, 33')
(v). V(P x,x0) Y(P*,z,20) = Do (.20)" (2.60)
) . _ Npqa(z,2)

(UZ). 1/13:(13733%0)%:(13 ,.T,.%'()) - _m (261)

g Dy(z,2) \'/*? C -
(vii). (P, x,x9) = (Dn(z,xo)> exp{(y(P) — kr(2)) /xo dz'Dy(z,2") 1}, (2.62)

(viii). Npt1,2(2,2) = —(2 — qo(2))Dp o (2, x). (2.63)

Proof. (2.55) follows from ¢ = 1,/ and ¢z = (2 — qo). (2.56)—(2.59) follow from (2.47),
(2.49), and

y(P) +y(P*) =2k (2),  y(P)y(P*) =k (2)? = Ru(2). (2.64)

(2.60) follows from (2.62) and (2.56) and (2.61) from (2.60) and (2.56). In order to prove
(2.62) it suffices to insert (2.48) into (2.40). (2.63) finally follows by differentiating (2.49)
with respect to = (using (2.12) and (2.45)) and checking the resulting equation at the n + 1
zeros vy(z) of Npi1(z,x). O

A comparison of (2.50), (2.51) and (2.60), (2.61) reveals that the divisors Dp_ 4, (a),....jin (z)
and Dy (). pn(x) i (2.54) are the Dirichlet and Neumann divisors associated with Lo =
# + qo(z) (see [40] for further spectral interpretations in this context). In particular,
(2.56), (2.60), and (2.61) clarify the role played by D,, and Ny41. Up to normalizations, D,
represents the product of the two branches of ¥ and N1 the product of the two branches
of 1., their zeros represent Dirichlet and Neumann eigenvalues of Lo with the corresponding

boundary conditions imposed at the point x € R.

The reader puzzled by our definition (2.45) might compare with (3.65) in the Bsq case where
F, and D,, considerably differ from each other but the analogs of (2.56), (2.60), and (2.61)
remain valid as can be seen from (3.90), (3.93), and (3.94). Using the hyperelliptic curve
(2.32) we could have replaced y — k.(z) by R.(2)Y/? in (2.44), (2.47), (2.48) and (2.49).
However, a quick look at (3.82) reveals that the polynomial behavior of the numerator and
denominator of ¢( P, x) with respect to y in (2.44), (2.47), and (2.48) is the key in generalizing
this formalism from the KdV to the Bsq case.

Returning to D, (z,z) and N,,11(z,x) we note that (2.2), (2.9), (2.45), and (2.46) yield
DO = 17

1
D, :Z+§QO+CL (2.65)

1 1 3 1
Do :,22+ (§q0+01)2+§QO,1’z+ §Q8+CI§QO+C2,
etc.
and

N1:Z—QO7
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1 1 1
N2:Z2+(—§(IO‘|‘01)Z—ZCJO,m—iqg—Cl(ZO, (2.66)
1 1 1 1
N3=Z3+(—§CI0+C1)22+(—g%,m—éq(z)—cli%-i-@)z‘
1 3, 3, 1 1 1,
_EQO@xmc_gqo_§QO,x_§q0q07xa¢_clzq0,xm_61§q0_02q0a

etc.

Concerning the dynamics of the zeros pj(z) and v(x) of Dy (z, z) and Ny41(z, z) one obtains
the following equations first derived by Dubrovin [22] in the Dirichlet case.

Lemma 2.5. Assume (2.87), (2.50), (2.51) and let x € R. Then
—2 (y(isj (@) — kr(p5(2)))

(7). pjz(x)= . , 1<j<n. (2.67)
[T (@) = ()
k=1
kA
(i), vpa(e) = =2 (v(w) —go(a:))(y(ﬁj(m))—kr(vg'(w)))7 0<ti<n. (2.68)
I (wel@) = vim(2))
o’

Proof. (2.67) is clear from (2.50) and (2.52), and (2.68) follows from (2.51), (2.53) and
(2.63). O

We conclude this section with some hints concerning trace formulas for the KdV invariants
in terms of Dirichlet and Neumann data.

Lemma 2.6. Assume (2.37) and let x € R. Then

L1 .
(). 5ao(z) +er=— > i (@),
J1=1
1 3 ) 1 =
§ 0ael@) + S Faga@) te= Y w@ k), (269
Ji,j2=1
71<J2
etc.
1 n
(i) G a0(@) 1= 3w (a),
£1=0
1 1 ) 1 -
3 q0,z2() + 3 qo(2)” +c1540(2) —e2 =~ > v (@) vy (2), (2.70)
01,02=0
fl<€2
etc.
Here
1 2n 1 2n 1 2n 9
1 = _5 Z Em17 Co = 5 Z Em1Em2 - g( Z Eml) ) (2'71)
m1=0 mi,mz=0 m1=0
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etc.

Proof. (2.69) and (2.71) follow by comparison of powers of z substituting (2.50) into (2.9)
(taking into account (2.3)) and (2.12) (taking into account(2.13)). (2.70) is proven similarly
using (2.32), (2.49)—(2.51), and the fact that Dy, ;(z,7)? = O(22""2%) as z — 0. O

For a systematic approach to trace formulas based on a second-order nonlinear differential
equation satisfied by the diagonal Green’s function of Ly in the Dirichlet case (2.69) and an
analogous treatment of the Neumann case (2.70), see [40]. (The latter approach goes far
beyond the special algebro-geometric situation presented in this section.)

2.3. The Time-Dependent KdV Formalism

In our final KdV section we indicate how to generalize the polynomial approach of Sections
2.1 and 2.2 to the time-dependent KdV hierarchy. Again we lean on the material presented
in [40].

Our starting point is a stationary n-gap solution q(()o) (x) associated with KC,, satisfying

KdVoni1 () = =2 fp41.=0, z€R (2.72)

for some fixed n € Ny and a given set of integration constants {c/}1<¢<,. Our aim is to
construct the r-th KdV flow

KdV,(q0) =0, qolx,tos) =ay (), v €R (2.73)
for some fixed r € 2Ng + 1 and o, € R. In terms of Lax pairs this amounts to solving
d -
dt LQ(tT) - [PT(tT)vLQ(tT)] =0, & €eR, (2'74)
[Pan+1(tor), La(to,)] = 0. (2.75)
As a consequence one obtains
[Pgn_,_l(tr), Lg(tr)] =0, tr € R, (276)
2
(Ponta(t) = Kansa(La(t))) = Ransa(La(t))
2n
=[] (ZL2(t:) = Em), t €R (2.77)
m=0

since the KdV flows are isospectral deformations of La(to,).

We emphasize that the integration constants {¢;} in P, and {¢¢} in Pyy,41 are independent
of each other (even if » = 2n+ 1). Hence we shall employ the notation P, l;:r, F,.,G,, etc. in
order to distinguish them from Psy,11,k2n+1, Font+1, Gon+1, etc. In addition, we followed a
more elaborate notation inspired by Hirota’s 7-function approach and indicated the individual
r-th KdV flow by a separate time variable ¢, € R. (The latter notation suggests considering
all KdV flows simultaneously by introducing t = (¢, t3,ts5,...).)

Instead of working directly with (2.74) and (2.76), we find it more convenient to take the
following equations as our point of departure,

1 - _
q0,t, = 5 Fr,xx:c - 2(Z - QO) Fr,:c + 40,z Fra (xa tr) S R27 (278)
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1

1
-5 Font1 Fongt g0 + ~ an%w + (2 — qo) F22n+1 = Rynt1, (z,t,) € R (2.79)

4
where (cf. (2.9))

F2n+lzxtr an thr a

Fonii(z,2,t0,) = Fs2) (2 =3 1 £l (2.80)
=0
for fixed to, € R, n € Ny, r € 2Ng + 1. Here fy(x,t,) and fg( )(:U) are defined as in (2.2)
with go(z) replaced by qo(x,t,) and q(()o) (z), respectively.

In analogy to (2.45), (2.46), (2.50), and (2.51), we introduce

n

Dn(z,,ty) = Fanya(z,2,t,) = [ [ (2 = pi(z, tr), (2.81)
j=1
1
Nn—i—l(za xz, tr) = (Z - QO(CCv tr))FQn-l—l(Zy xz, tr) - 5 F2n+1,:cx(zy xz, t?")
n

H (z — ve(z, ty) (2.82)

=0

such that
1

Dy(z,x,t) Npy1(z,2,t,) = Ropy1(2) — ZDWU(Z’ z,t,)2. (2.83)

Hence we can define, in analogy to (2.47) and (2.48), the following meromorphic function
(P, x,t.) on K, the fundamental ingredient for the construction of algebro-geometric solu-
tions of the time-dependent KdV hierarchy,

y(P) — kan+1(2) + %Dn,x(27xatr)
Dy (z,x,t,)
Nn+1('z7$atr)

= , P=(zyP)) ek, 2.85
W(P) —Fanir(2) — WDty | V) (2:59)
As in (2.52) and (2.53) one introduces Dirichlet and Neumann data by
:&j(xatr) = (Mj(%tr),y(ﬂj(x,tr)))
1
= (,U/j(xatr)a k2n+1(ﬂj($7tr)) + iDn,x(Nj('r7tT‘)7‘T7t’f)) € K, (286)

1<j<n, (z,t)€cR?

o(P,z,tr) = (2.84)

ve(z,t,) = (l/g(I,tr)7y(l>g($,tr)))
= (e, ), Kams (vl 1)) — %Dn@(l/g(x,tr),az,tr)) € Kn, (2.87)

0<l<n, (x,t,)€R?
and infers that the divisor (gb(P, x, tr)) of ¢(P,z,t,) is given by
(@(P.,tr)) = Dig(aty)...on(wtr) (P) = Db s @) oin a) (P)- (2.88)
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Next we define the time-dependent BA-function (P, z, x, t,,to,r) by
x tr ~
(P, z,xo,tr, to,r) = €xp {/ da'¢(P, 2’ t,) +/ ds(Fr(z,mo, $)p(P, xg, S)
o tO,r

_%F,,,x(z,xo,s)+/%T(z))}, Peka\{Ps}, (u,t,) €R2,  (2.89)

with fixed (z9,t0,) € R% The following lemma records some properties of ¢(P,x,t,) and
Y(P,z,z0,tr,to,) (see [40] for the original result).

Lemma 2.7. Assume (2.78)-(2.82), P = (z,y(P)) € Kn \ {Px}, and let (z,z,x0,tr, to,r)
€ C x R*. Then

(7). ¢(P,x,t,) satisfies

¢o (P2, 1) + G(P, 2, t,)* = 2 — qolx, t), (2.90)
60, (P2, 1) = 0u(Fr(2, 2, 0) 8P, ) = L Bz, 1) + K (2)). (291)
(1). (P, x, xo, t,, to,) satisfies
Voa (P, 20, b, to ) + (qo(@, tr) — 2)Y(P, 2, 20, tr, t0,) = 0, (2.92)
Ui, (P 0, s o) = (Fr(e, 2, 0)0(Pra, 1) = 5 Fra(,, 1)
+ ke (2))9 (P, z, 0, by, to,) (2.93)

(i-e. (L — 2)0 = 0, (Pags1 — 90 =0, 1y, = Poyb).

(idi). S(P,x,t,) p(P*,x, 1)) = — Dot (2.94)
(iv). $(Px,ty) + S(P*, a,t,) = W (2.95)
(0). §(P.x,ty) — (P*,,1,) = (y(gi (Z”Zﬁ)l(z)), (2.96)
(P) = a2 DR, 10 + (0(P) = k()P nty) = Tt

(2.97)

Proof. (i). (2.90) follows from (2.79), and (2.84). In order to prove (2.91) one first derives
from (2.78), (2.79) and (2.84) that

- 1 -
(0 +20) (b1, — O0u(Frp — EFT’I +En(2))) = 0.
Thus
Ou, (B — 5 Fr (2) = O S 4229 209

where C' is independent of x (but may depend on P and t,). The high-energy behavior
o(P,x,t,) ‘ |: O(|2]"/?) (cf. (2.84)) then proves C' = 0 since the left-hand side of (2.98) is

meromorphic on C,, (and hence especially near Py).
(ii). (2.92) is clear from (2.89) (¢ = ¥, /v) and (2.90). (2.93) follows from (2.89) and (2.91).
(iii)—(v) follow as in Lemma 2.4 (ii)—(iv). O
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Next we introduce

Nei1(z,2,t,) = (2 — qolz, t.) Ep (2,2, ) — %F zz(2, 2, b)) (2.99)
and note that by (2.78),
Net1a(z2,t,) = —qo(@, tr) = (2 = qo(@, 1)) Fra (2,2, 8. (2.100)
In analogy to (2.63) one also obtains
Nnt1,2(2, 2, tr) = =(2 = qo(2, ) Dn o (2, @, tr). (2.101)

We recall (cf. [40]),
Lemma 2.8. Assume (2.78)-(2.82) and let (z,z,t,) € C x R2. Then
(1). Dyt (2,2,t,) = Fp(2,2,t,)Dpo(2, 2, t,) — Fro(z, @,t,) Dy(2, 2, t,). (2.102)
(13). Dpgt,(2,2,t,) = 2(NT+1(z,x,tr) n(z, 2, tr) — Npy1(z, @ tr)Fr(z,x,tT)). (2.103)
(14i). Npt1t,.(2,2,t,) = Fr,x(z,x,tT)Nn 1(z,2,t) — nx(z,x,tT)NTH(z,x,tr). (2.104)
Proof. In order to prove (2.102) consider ¢y, (P) — ¢¢, (P*) and combine (2.84) and (2.91).
(2.103) follows from (2.102) using (2.82). (2.104) is a consequence of (2.82), (2.102), and
(2.103). 0
The remaining analogs of Lemma 2.4 (v)—(vii) then read (cf. again [40])

Lemma 2.9. Assume (2.78)-(2.82), P = (z,y(P)) € Kn \ {Px}, and let (z,z,z0,tr, o)
€ C x R*. Then

I _ D t
(). (P, 20, by to)O(P*, 2, 30, by o) — 2 Rr(2)(tr = o) _Dnlaaite) =g 4y
Dn(Z, xo, tO,’r‘)

7 4N ¢
(i0). Ga(P.2s 20, brs o, Ju (P 0, 0, by t0,) = —e2Rr(2)(tr = to) Mnia (B2 10) g 56
Dn(za Zo, tO,r‘)

o 1/2 B
(iid). (P, w0, by, tos) = <D”(”)> exp{kr(z)(tr o)

Dn(za :L‘OatO,T
1 b Fo(z,20,5)
de' ————F—— ds——~"""2 ) 4. 2.107
v Dy (z, 2, t,) +/to,r sDn(Z,l'O,S)) ( )
Proof. (2.105) follows from (2.89), (2.95) and (2.102). (2.106) is clear from ), (P) 15 (P*)

d(P) p(P*)(P)(P*), (2.94), and (2.105). (2.107) finally is a consequence of (2.89), (2.9 )_
(2.96), and (2.102) by splitting up ¢(P) = 5(¢(P) + ¢(P*)) + 2(¢(P) — ¢(P*)) in (2.89). O

xT

+ (P~ kna () [

Zo

The dynamics of the zeros uj(z,t,) and vy(x,t,) of Dy(2,x,t,) and Ny41(2,2,t,), in analogy
to Lemma 2.5, are then described by Dubrovin’s equations as follows.

Lemma 2.10. Assume (2.78)-(2.82) and let (x,t,) € R%. Then

(Z) Mj,a:(m;tr) _ -2 (y(fj(z,tr)) - k2n+1 (Mj(x7tr))) , 1< ] < n, (2.108)

H (,Uj (l’, tr) - :uk(JT, tr))
=
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-2 Fr(ﬂj(xa tr),x, tr)(y(ﬂj(‘r’ tr)) — k2n+1(ﬂj(l’v tr)))

Wt (@5 1) = — ., 1<j<n.
H (:Uj ($a tr) - Nk(xa tr))
=
(2.109)
(i1). vea(z,ty) = —2 (W(ma tr) — QE:L(xvtr)) (y(ﬁg(x,tr)) - k2n+1(’/€($7tr))) 7
H (ve(z, tr) — vim(2, )
Al
0</t<n, (2.110)
VZ,tT(x7t7‘) _ -2 NT(V5($7tT);xﬂtT)(y(ﬁf(m7t7“)) - an_H(I/g(x,tr))) : 0<(<n.
H (ve(z, ty) — v (@, 1))
Tt
(2.111)

Proof. (2.108) and (2.110) are completely analogous to (2.67) and (2.68). (2.109) (respec-
tively, (2.111)) follows from (2.81), (2.86), and (2.102) (respectively, (2.82), (2.87), and
(2.104)). O

The initial condition
qo(z,to,) = q(()o)(ac), r€eR (2.112)
in (2.73) is taken care of by
fj(z,to,) = i (z), 1<j<n, zeR (2.113)
(cf. (2.80) and (2.81)). There is, of course, an analogous condition

v to,) =0 (z), 0<l<n, zeR (2.114)

Finally, the trace relations in Lemma 2.6 extend in a one-to-one manner to the present
time-dependent setting by substituting,

qo(z) — qo(, ty), (2.115)
M](x)ﬁuj(‘r?tT)v 1§j§n7 Vf(m)ﬁyf(m7t7")7 OSESH,

keeping {cy}1<i<p as in (2.71) since Ky, is t,-independent.



Chapter 3

The Recursive
Approach to the
Boussinesq Hierarchy
and Algebraic Curves

3.1. The Recursive Approach to the Bsq
Hierarchy

In analogy to the KdV case in Section 2.1 we now develop the recursive approach to the Bsq
hierarchy. These results are new.

Suppose qg, q1 are meromorphic on C and introduce the third-order differential expression

d? d 1
= — — + = C. 3.1
d.fCS + q1 dx + 2 QLx + q0, HARS ( )

(For computational reasons we found L3 as in (3.1) more convenient to work with than its

L3

alternative Lz = % + Ch% + qo-)
For each fixed m € Ny (= NU{0}) with m #Z 0 (mod 3)) we write
m=3n+¢e, €€{1,2}, (3.2)

and then construct two distinct differential expressions of order 3n+1 and 3n+2, respectively,
denoted by P,,, where m = 3n + 1 or m = 3n + 2. In order for these differential expressions
P, to commute with L3, one proceeds as follows.

Pick n € Ny, € € {1,2}, and define the sequences {fg(e)(ac)}g:07,,,7n+1 and {gés) (@) }e=0,..n41
recursively by

() () (&) o) (0,1) for e =1, 2)
) = \G 7d = d € C,
(o"s907) = (co”, o) {(1,d82)) for e = 2, 0
SfZ(f’E) = 2géi)1,xxm + 2QIgéi)1,x + ql,wgéi)l + 3610fg(i)17w + 2q0,wfg(i)17 (33)

19
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1 5 5
3050 = 3009y, + W20y - G £ vannn — e P awe — 1 @S

3 2 1 2
- (Z Q,zz t+ g Q%)fg(i)l’x - (6 Q,zzz g QIQLx)fg(i)p (=1,...,n+1

However, as most of the ensuing discussion can be made for both cases simultaneously, we
write

fo=17  g=d. (3.4)
and only make the distinction explicit when necessary.

Explicitly, one computes

(i) Let m =1 (mod 3) (i.e., e =1):

i =0, g =1,
3fV =i 130, 3¢ = go + 341",

(

2 4
3f2 = QOm-i- QOQ1+61)2QO+d§)q1+3C§1)a

3
1 1 4 1 2
39; ) = _E N, zxxxr — 6 Qix - EQ% - § 4191 2% + g Qg
1 1
+ cgl)( ~glar 3 q%) + d(l)qo + 3d(1) (3.5)
1 1 7 35 9 , 14
3f3 = _277 QI,mx;Bzzax - ﬁ Q191 zxxx — 54 qi1, axq1 rxxr m ql,;m: - 27 Q1 ql,zx
3B, 7 14 7 14 ,
5 Mie T gy g+ = g 10902z + 9 . + 9 %N
1 1 5 5
+ Cg ) ( — § q1,zxxx — § q191,cx — E q%x - 277 qu + § q%)
2 4
+ d(l) (§ Gzt 3 Q1) + Cgl) 2q0 + dé” q + 365)1)7
a 14 3 28 7 7 9 14
393 =57 %3y Q0 — g Wati@ia = 7g 90010 ~ 5 3 90,02
7 i T T
9 4049191 ,zx 27 40,2291, xx 18 q41,2490,xxx 27 40,291, xxx
_7 _T b
27 4190,xxxx 54 q0491,xxxx 27 40, xxxrTT
+C(1)(_1 _ 5 _d 5 9 2)
1 9 q0,xxxx 18 q091,zx 9 4190,zx 18 41,290,z 9 qo4;
1 1 1 4 1 2
+dg)(_EQLx:m:x_EQix_EQ% 3q1q1$m+3Qg)
1 1
+ e (- Glan — 3 41) + dst g0 + 3dSY,

etc.

(ii) Let m =2 (mod 3) (i.e., e = 2):
2 2 2
( )1, ( ) — d[() ),

1 1
37 =200 +d7a 4347, 30" = —C drew — 50 + a0 + 3477,
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3f5”

395" = (-
+dj

3£ =

393

(2) _

1 5 5o 5,
= ( - § q1,xxxr — § q191,zx — ﬁ 12 Ch T + g QO)

2 4

3 Q.ax + 3 qq1) + 052) 2q0 + dﬁ a1 + 3652),
LIRS TP O DO SR D
9 q0,xxxx 9 4140 18 qo091,xx 9 41490,xx 18 490,291,z

9 1 1 4 1 2

) ( - E q1,xxxx — 6 C]ix - 277 qu - g 4191, zx + g QO)
1 1
+ ng) ( 6 A zz — 3 qf) + d§2) qo + 3d§2), (3.6)

4()3 4£ 379 2720 740
27 31 qo041 9 q041 o o7 Q1C]o ez~ o5 q049191,zx

26 @ § 14
27 q0,zxq1,xx 27 41491,240,x 9 41,290,zzx 27 490,291 ,x2xx

4 8 2
— 5 9190, zxxx — ?7 9091, xxxx — 277 q40,zxrrre

9
7 35 49
ﬂ 191,z — 54 91,291, xxx — m 1 2z

+d(

1
+ d(()Q) ( - 277 q1,zzzrze —

14 35, 7 . , 14,
T G — 5 (e — g7 G+ g W0%0ae T g G+ g aq)
1 5 5 5 5

+ Cg ) ( - § ql,zxxr — § q191,zx — E Qi 27 Q1 + 5 Q(Z])

2 4

+d§2) (3QOmz + 3610611) +Cé)2QO+d§)(I1 +3c( )

8 . 2 5, 20 20 35 5,
= 943 q1 — o7 9091 — o7 qO 241 — o7 4090,291,z + 31 4191 &

40 16 70 11
409190,z — 277 qo,m + 243 CI1Q1 xx + — 18 QI,:CQL:L":):

Y

LT 2 68 7,
27 Q1Q1 xT g 90,290,z T ﬁ N N xxx T 277 1 22z
10 8 17

67
qo41,2x — 27 40490, xxxx + — ]1 QIC]sz‘mc + — 162 q1,zx91,zxxx

27

i L5 L L

27 91,291, zxxxx ]1 91491 zxxxre 162 q1,zxxrrrre
+d()(143 28 7 _l 9 _14

27 81 qul 9 q0,29141,x 18 QOQLx 27 Q1q0 Tx

_ z 14 _ 7 7 7

9 q04191,zx 27 40,291, xx 18 q1,290,zxx 27 40,291 ,xzx
T e L dotteens - gorennn)

27 q190,zxxx 54 4041, xxxx 27 q0,xxxrre
n (2) ( 1 b ) ) 5} 2)

c I _ _ _ .

1 9 q40,xxxx 18 40491 ,xx 9 41490,zx 18 41,2490,z 9 qoq1

) 1 1 4 1 2
—|—d§ ) (—EQI,xmzx_ gqax_ﬁcﬁ) 3q1q11x+ 3(]8)
(2)

1 1
+ C§2)( - 6q1,:vx - 3 ql) + d2 qo + 3d(2)

etc.,
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where {cgs)}gzl ..... " {dgs)}g:() ..... n» are integration constants, which arise when solving (3.3). It
is convenient to introduce the homogeneous case where all free integration constants vanish.
We introduce

Fe) _ r(e) ~(e) _ (o)
ffa o fga ’c,E,E):dés):O,p:l,...,Z’ g; o g; |c§f):dz(f>:0,p:1,...,€ (37)
and use (cf. (3.3))
V=0, P=1 d"=1 dP=0 (3.8)
We do not list these functions explicitly, however, this notation allows us to write
¢ )4
1 2 2
fg(E) _ Z( f( ) —|—c(5 f( )) géa) _ Z(dl() )g( ) —l—c( )gé )p) (3.9)
p=0 p=0

Given (3.3) one defines the differential expression P, of order m by

- d? 1 d
Pn=>) (fés—)z ) (950 - 3 i) e

=0
1
+ (6 f7(L€—)€,xx gfls)ﬁ x +3 qlfns)ﬁ )L + Z km €L3’ (310)
kmeeC, £=0,...,n, :3n—|—£,£€{1,2},n6No,
and verifies that
d 3
—3n+€,€€ {1,2}, n € Ny (3.11)
(where [+, -] denotes the commutator symbol). The pair (L3, P,,) represents the Lax pair

for the Bsq hierarchy. Varying n € Ny and ¢ € {1, 2}, the stationary Bsq hierarchy is then
defined by the vanishing of the commutator of P,, and L3 in (3.11), that is, by

[P, Ls] =0, m=3n+e¢, e € {1,2}, n € Ny, (3.12)
or equivalently, by

=00 gl =0, ce{1,2},neN,. (3.13)

n
Explicitly, one obtains for the first few equations of the stationary Boussinesq hierarchy,
m=1(Ge,n=0ande=1):
902=0, q..=0
m=2 (ie,n=0and e =2):

1 2 2 2
- 6 q1,zxx — g 9191,z + d(() )qo,x = 07 2(10,95 + d(() )q1,m =0.

m=4(le,n=1lande=1):
1 1 2 4 4

- TS 9, zxxrr — g q191,xxx — g qQ1,291,2x — § Q%ql,x + g 49090,z
1 2
+ C(l)( - 6 q1,xxx — g Q1Q1,z) + dgl)qo,m = 07
2 4 4
Q0,zzz + 5 91902 + 5 41,290 + 051)241071; + dgl)(ﬂ,x = O, (314)

g fhrrr T g AEDE T g
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m=>5(ie,n=1ande=2):

1 ) ) ) 5)
5 9091 32z T = 4190, xxx + - G129, + = q1,290,xx

§ q0,xa:a:acaz + 18 s 9 9 » s 6
2 P+ 2 (L +1 +2
9 4140,z 9 4049191,z 0 18 ql,zxxrx 3 4191, zzx 3 q1,291,zx
4 4 9 1 2 2
+ § Q%QI,m - g QOQO,x) + Cg ) (6 QT § (J1(J1,x) - dg )qo,x =0,
1 5 25 5 10
- § ql,xxxrr — § 4191, zxx — 18 q1,291,xx — § 191,z + ? 4040,z
4 4 2
+ d(2) (3 q0,zzz + 3 3 10 + 30 xQO) + Cg ) 2o« + d§ ) g1,z = 0.
ete.

By definition, solutions (qo, ¢q1) of any of the stationary Bsq equations (3.14) are called sta-
tionary algebro-geometric Bsq solutions or simply algebro-geometric Bsq poten-

tials.

Next, we introduce two polynomials Fj,, and G,,, both of degree at most n with respect to

the variable z € C,
£=0
= ngf_)g(ﬂc)zéy m=3n+e¢,ec€{l,2}, neNg.

In terms of homogeneous quantities we define (cf. (3.7) and (3.8))

Fy=F| ) =dF) =0, p=1,..., Ge =G ‘cﬁ):d;s):o,p:l,...,n
We may then write
n ~ ~ n ~ ~
Fro= Y (e Fyjro +d)  Fjin), Go= D (e, Gaja +dS) Gajia).
j=0 Jj=0

Explicitly, the first few polynomials F;,, G,, read
=0 G;=1,
Fo=1, Gy=d,
(1)

1 1
F4=§q1+cgl), Gi=z+gq+d,
F5:Z+BQO+CZ(())3QI+C§)7 GS—d()Z_EQIx:v_g P+ d()g%-i-dg),
1 1 2 4 2 1
F7:Z(§(J1+C§))+§q0,xx+§QOQ1+C§)§q0+d()§QI+C()
1 1,1 1 4
Gr = 2 5 d( 9\ Jgo rXxTxr — L 7 _73
7=z +Z(3CI0+ 1 )+3( 18(11, qu,x 2761
1 2, 11 1 L 5 () 1)
Y TT o > T 4 Txxr T o d o d )
$00ar+360) e 3 (— e —30) + Go + dy

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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@ 1

qQ + 0(2))

2

Fy =22 dy
3 z+z(3qo+ 3
1 1 ) 53 ) D

+§(_§q1xzzx_§q1q1xx_277 12q11+3q0)

4 2
Qo.2x + qoq1)+c( )*qo+d(2)*q +052),

21,2
o3 (3 3 3 3

1
33
Gg = dé2)22 + z(

1 1 2 2
18 q1,zx — QQ%+d( )gq0+dg ))
g P 5 poas)
3 9 q0,xxxx 9 4190 18 q091,zx 9 4190,zx 18 40,291,z
o) 1 1 1 4 1 2
+ d(() ) g ( - E 91, zxxr — 6 Q%,x - ﬁ Q% - §Q1Q1,m + g QO)
1 1 1
—|—C§2)* (_7(]1,:0:1:_ 2) +d( )7(]0—|—d; )’ (320)
3 6 3
etc.
Given (3.15) and (3.16), (3.12) (or equivalently, (3.13)) becomes
2 Gm,xac:c +2 q1Gm,x + q17:r:Gm -3 (Z - QO)Fm,:c + 2(10,me = 0, (321)
1 5) 5 3 2
- Fm,:pxmrm + 6 q1Fm,mrx + Z q1,mFm,xx + (Z q1,zx + g q%)Fm,m
1 2
+(6 QLJ:J::I: + g q1q1,x)Fm + 3(Z - QO)Gm,w - qo,me =0. (322)

Multiplying (3.21) by Gy, and (3.22) by F},, and taking the difference one can integrate the
resulting expression to get

1 1 1 b5 9
Sm(z) = _6 Fm,a}xszm + 6 Fm,xa}me,x - ﬁ F’r?q,7$gj - 6 q1Fm,szm - ﬁ q1,a:Fm,me
5 1,1
+ 15 wkFy, — 3 (2 Qaz + G)Fp 4 2CmeaGm — Gpy o + 01Gry — 3(2 — q0) FrnGim,
(3.23)

where the integration constant Sy, (z) is a polynomial in z of degree at most 2n —1+¢, m =
3n+e, e €{1,2}, n € Ny,
2n—1+e
Z smp??s m=3n+e, ec{1,2}, necN. (3.24)

Similarly, multiplying (3.22) by ( m,azzFm— }1 F,% -t 3 @ F2+G? ) and (3.21) by (3 a1 FrGm
—(z— QO)F,%) and summing one can integrate the resulting expression to get the second
integration constant T,(z),

1 1

Tm(z) = E Fm,xa:mem,a:a:Fm Fm7gj$xxF,r%L7x

Y
1 1 4 1 ) 1 )
+ % Fm,zx:me,x:rFm,x - @ Fm@x - %Fmmeﬁz + E q1Fm,xmszm
1 1 1
18 q1 sz,zsz% - § q1Fm,zzsz,sz + 18 q1, ma:Fm sz
2 7

7
+ § QLJ;Fm,xIFm,me - 5 q1Fm,xxFr%L,g; + % Q1Fm sz
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5 2 2 1 2 7 3 1 2
+ T8 QIFm,xasz - ﬂ q1,mem7g3Fm - 478 Q1,sz@ + E q1,xq1Fm,me

1 2 1 1
— G Pt (5@ — o G+ 5 QLaeqr + (2 — @0)?) F,

6 271 36 1 T 18
1 1

+ (Z - QO)G%@ + 6 Fm,x:cxa:ng - g Fm,xmch,xGm + Fmng@;p

1 2 2
+ g Fm,a:x (Gm’x + Gm,szm) - Fm,xGm,szm,x —q1 (Z - QO)Fme
+ g q1 Fme + 6 (J1Fm,me - g q1Fm,xGm,asz + ﬁ q1,a;Fm,me

1 , 4 1 , 1
+ g Q1Fme,x + g (I1Fme,me + 6 q1,x:1:Fme - g q1,:1:Fme,xGm

1

+ (Z - qO)Fm,mFme,x - Z (Z - QO)F%,xGm - 2(Z - QO)F%Gm,mza (325)

where the integration constant 7T),(z) is a monic polynomial of degree m,
m—1
Tm(z) =2""+ Z tmg??, m=3n+e¢, € {l,2}, ne Ny (3.26)
q=0

Next, we consider the algebraic kernel of (Ls — z), z € C (i.e., the formal nullspace in a
purely algebraic sense),

ker(Lsz — z) = {¢ : C — CU {oo} meromorphic | (L3 —z)y =0}, =ze€C. (3.27)

Taking into account (3.12), that is, [Py, L3] = 0, computing the restriction of Py, to ker(Ls-z),
and using

1
¢xxx = 7‘]1’9[]56 + (Z - §q1,x - q0)1/17 etc., (328)

to eliminate higher-order derivatives of ¢, one obtains from (3.3), (3.10), (3.13), (3.15), (3.16),
(3.21), and (3.22)

d? 1 d
Prlyoirn s = (s + (G = 5 Fma) =+ Hin) e s’ (3.29)
Here
1 2
Hun(2,2) = ¢ Finao(2,2) + 5 q1(2)Fin(2,2) = G2, 2) + kin(2) (3.30)
and (cf. (3.10))
b (2) = 3 k02" (3.31)
=0

is an integration constant. The presence of this constant &, (z) in (3.30), and hence in (3.29),
corresponds to adding an arbitrary polynomial in L3 to the non-trivial part of the differential
expression Py, (cf. (3.10)). This polynomial in Lz obviously commutes with L3, and without
loss of generality we henceforth choose to suppress its presence by setting ky,(z) = 0.

Again the reader might want to contrast our construction of P, in (3.10) and (3.29) with
the one based on formal pseudo-differential expressions in [3], [19], Ch. 1, and [33].
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Still assuming £\, = g%, . = 0 as in (3.13), [Py, Ls] = 0 in (3.10) yields an algebraic

relationship between P,, and L3 by appealing to a result of Burchnall and Chaundy [13],
[14] (see also [32], [49], [83], [93]). In fact, one can prove

Theorem 3.1. Assume fﬁgl@ = gﬁf_)H@ = 0, that is, [Py, L3]

{1,2}, n € Ng. Then the Burchnall-Chaundy polynomial F,—1(Ls, P,
explicitly reads (cf. (3.24) and (3.26))

Fm-1(L3, Pp) = P2 + Py, Sm(L3) — Trn(L3) = 0,

0, m =3n+e¢e¢ €
) of the pair (Ls, Py,)

2n—1+e m—1
Sm(z) = Z Smpe’s Tm(z) =2+ Z tm, g2, (3.32)
p=0 q=0

m=3n+e¢, e € {1,2}, n € Ny.

Proof. Let ¢j(z) € ker(L3 — z), j = 1,2,3 be linearly independent. Since [Py, L3] = 0 one
can represent P, as a 3 X 3 matrix P,, on ker(Ls — z),

3
Py = Z Prnj kU (3.33)
k=1
P Pmii Pmiz Pmi3 1
Pun| ¥2 | = Pm21 Pm22 Pmos v |, (3.34)
Y3 Pmsi Pmsz2 Pmsas Y3
oy WPy, 2, 13) oy Wb, Pty vs)
) = ) T = T, )
w ) apm / .
Pm,3,j(z) = foifi/szfbg ¢$]), 1<j5<3.

(Here W (f,g,h) denotes the Wronski determinant of f,¢ and h.) Using (3.21), (3.22) and
(3.28)—(3.31) one verifies
tr(Pm(2)) = 3 km(2), (3.35)
Mi(Pm(2)) = Pm1.1Pm22 + Pmi1,1Pm.33 + Pm22Pm33

— Pm23Pm32 — Pm31Pm13 — Pm12Pma21
_ W(Pn1, P2, 3) + W (1, P2, Putps) + W (Pnib1, Y2, Pribs)

W (91, v2,13)
= 3kn(2)? + Sm(2), (3.36)
det(Pyn(2)) = 2L s Zﬁsm%) — Fin(2)? + b (2)Sm(2) + Ton(2). (3.37)

The characteristic polynomial det(y — Py, (2)) = 0 of P,,,(2) then yields
Frn-1(2,9) = y* = 4> t2(Ppn(2)) + y M1(P(2)) — det(P(2))
= (y = km(2))’ + (¥ = km(2))Sm(2) = Trn(2) = 0. (3.38)

Since z € C is arbitrary, the result (3.32) then follows from the Cayley-Hamilton theorem
(as in the proof of Theorem 2.1). O
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Remark 3.2. Equation (3.38) naturally leads to the plane algebraic curve KCp,—1,

K1 Fn-1(z,y) = (y — km(z))?) + (Y = km(2)) Sm(z) — T (2) = 0, (3.39)
n 2n+1—s
km(z) = kaygzg, Sm(z) = Z smp?t, 0<s<2n+1,
=0 p=0

m

Tm(z):Ztquq, tmm =1, m=3n+1lorm=3n+2, neN
q=0

of (arithmetic) genus m — 1. For m > 4 these curves are non-hyperelliptic.

Examples illustrating this formalism can be found in Chapter 4.

Finally, introducing a deformation parameter ¢,, € C into the pair (qo,q1) (i-e., q(x) —
qe(x,tm), £ = 0,1), the time-dependent Bsq hierarchy is defined as a collection of evolution
equations (varying m = 3n +¢, € € {1,2}, n € Ny)

d

C17113(751%) - [Pm(tm)a LS(tm)] =0,
lm
(z,tm) €C%, m=3n+e¢,e€{1,2}, n €Ny, (3.40)
or equivalently, by
q0,tm — 39531@ =0,

Bsa,, (g0, q1) =
ity — 3fr(zil,x = 07

(z,tm) €C?, m=3n+e¢, e € {1,2}, n € Ny, (3.41)
that is, by
W, + & Frnzaae + 2 @1 Fmase + 2 @1oFmes + (3 @1oe + 241 P
Bsd,, (g0, q1) = +(3 @l gzz + 2 ©1q1,0) Fn + 3(2 = 40) G — 90,2Gm = 0,

q1ty, — 2Gm,x:{:a} - 2q1Gm,a¢ - QI,IGm + 3(2 - qO)Fm,x - 2q0,me = 07
(z,tm) €CEm=3n+e e€{1,2},n€Ny. (342

Explicitly, one obtains for the first few equations in (3.41),

qot; — o,z = 0,
Bsq; (g0, q1) =
Q4 — @1,z =0,

2
q0,to + %QI,QC;BI + %Chéh,x - d(() )

40,z = 07
Bsqs (g0, q1) =
2
Qits — 2qoz — d(() )Ch,z =0,

(3.43)
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1 1 2 4 2
qo,t4 + 18 q1,zxxxx + 3 q1q1,a:acac + 3 ququ + 9 Q1QI,m

1 1
BSQM(QO, CI1) = _% qoqo,x + C(l )(% N ,zzz + %q1q1,m) - dg )CIo,z =0,

1 1
\ d1ts — %qo,xazx - %q1q0,z - %quQO - Cg )2q0,x - dg )ql,x = O,

1 5 5 5
q0,t5 + 9 q0,zxxrx + 18 q0q1,a:acm + 9 4190,zzx + 9 q1,zxq0,a:

2
+% 41,2490,z + g Q%qo,x + % QN 9,z + d(() )(Tlg q1,zzzox
+% 4191, zxx + % q1,291,zx + % Q%QI@ - % CIOCIO,z)
B _ (2) (1 2 o d(2) -0
S%(QO, Q1) = +Cl (6 ql,zxx + 3 Q1Q1,m) 1 490, = s

1 5 25 5 2
qits + 9 N, zzzzx + 9 1191 ,zzx + 18 91,241,z + 94141,z

2
*% q090,= — dé ) (% Q0,zzx + %(h%,x + %quCIo)

—ng) 26]0@ - d§2) 1,z = 0

etc.

Remark 3.3. Due to our choice of L3 in (3.1) (as opposed to Lz mentioned immediately

after (3.1)) our Bsqy system in (3.43) differs slightly from the standard Bsq system discussed,
for instance, in [10], [17], [38], and [94]. In fact, the simple transformation (put déQ) =0
for simplicity),
- 1 .
qo — qo = qo + Qe W G=q (3.44)

transforms Bsq, into

Cjo,tg - (fo,m + % ((ﬁ,xwx + 6161,1) =0
Bsdy(qo, ¢1) = , (3.45)
le,tz -2 fio,x + q1,:1:x =0
which in turn transforms into the nonlinear string equation

1
U = bgy + a(uz)m ~3 LT P— (3.46)

where
1
q1(z,t) = —1(6 au(z,t) + 3b), t = to, (3.47)

with a € R\ {0},b € R arbitrary constants. Moreover, we should emphasize that our Bsqs
system in (3.43) or (3.45) differs from the Kaup-Boussinesq system (see, e.g., [85] and the
references therein), whose algebro-geometric quasi-periodic solutions can be derived from an
associated hyperelliptic curve (not branched at infinity) [69], [87] as opposed to the non-
hyperelliptic case typical in our paper (for genus larger than 2).
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Remark 3.4. As in Section 2.1 (c¢f. Remark 2.3) we decided to start by postulating the
recursion relation (3.3) as the point of departure for developing our formalism. Alternatively,
we could have started with

(Ls = 2)¢(P) =0, (Pn—y(P)Y(P)=0, P=(zyP))€na\{Pc} (348
in the stationary case, respectively by

0
Ot
in the time-dependent case. This then yields (3.3) as a consequence of (3.15), (3.16), and
(3.29) and analogously one infers (3.40)—(3.43).

(Ls — 2)(P, ty) =0, Po)U(Pity) =0, tm€R (3.49)

3.2. The Stationary Boussinesq Formalism

We continue our study of the Bsq hierarchy and focus, in particular, on the stationary case.
Our main strategy will be to develop the Bsq material in close analogy to the KdV discussion
in Chapter 2 and establish the connections between the polynomial approach described in
Section 2.1 and a fundamental meromorphic function ¢(P, z) defined on the Boussinesq curve
Krm—11in (3.39). Moreover, we discuss in some detail the associated stationary Baker-Akhiezer
function (P, x, zg), the common eigenfunction of L3 and P,,, and associated positive divisors
of degree m — 1 on K,,—1. The latter topic was originally developed by Jacobi [58] in the
case of hyperelliptic curves and applied to the KdV case by Mumford [75], Section III.a.1
and McKean [74].

Before we enter any further details we should perhaps stress one important point. In spite of
the considerable complexity of the formulas displayed at various places in Sections 2.1-2.2,
the basic underlying formalism is a recursive one as described in depth in [20]. Consequently,
the majority of our formalism can be generated using symbolic calculation programs (such
as Mathematica or Maple).

We recall the Bsq curve K,,—1 in (3.39)

Km-1: fm—l(zvy) = y3 + ySm(Z) - Tm(z) =0,
2n—1+¢ m—1
Sm(z) = Z Smp?t, Tm(z) = 2"+ Z tm,q27, (3.50)
p=0 q=0

m=3n+e¢, e € {1,2}, n € Ny,

(where m = 3n + ¢, € € {1,2}, n € Ny will be fixed throughout this section) and denote its
compactification (adding the branch point Py) by the same symbol K,,—1. (In the following
Kim—1 will always denote the compactified curve.) Thus K,,_1 becomes a (possibly singular)
three-sheeted Riemann surface of arithmetic genus m —1 in a standard manner. We will need
a bit more notation in this context. Points P on K,,_; are represented as pairs P = (z,y)
satisfying (3.50) together with P, the point at infinity. The complex structure on K,,_1
is defined in the usual way by introducing local coordinates (p, : P — (z — 29) near points
Py € K,,—1 which are neither branch nor singular points of K,,—1, (p : P — 2~ 1/3 near
the branch point Py, € K,,—1 (with an appropriate determination of the branch of 2/ 3)
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and similarly at branch and/or singular points of K,,—1. The holomorphic map #*, changing
sheets, is defined by

]Cm—l — ’Cm—la
* N . 3.51
{ P = (2;(2) — P* = (2:yps10m00 3) (), J=1,2.3, (3:51)
P = (P*)*, etc., (3.52)

where y;(z), j = 1,2, 3 denote the three branches of y(P) satisfying F,,,—1(2,y) = 0. Finally,
positive divisors on K,,,—1 of degree m — 1 are denoted by

Km-1 — No,
D ) k if P occurs k
Pl Y p L Dp p (P)= times in {P,..., Pm_1},
0if P& {P,...,Pn_1}.

(3.53)

Specific details on curves of Bsg-type (i.e., trigonal curves with a triple point at Ps,) as
defined in (3.50) can be found in Appendix B.

Given these preliminaries, let (P, x, z¢) denote the common normalized eigenfunction of Lg
and P,,, whose existence is guaranteed by the commutativity of Ls and P, (cf., e.g., [13],
[14]), that is, by

[Pn,L3] =0, m=3n+¢ (3.54)
for a given ¢ € {1,2}, and n € Ny, or equivalently, by the requirement
Bhe=0. g, =0 (3.55)
Explicitly, this yields
L31/}(P,IE,$0) :Z(P)¢(P7x7x0)a szzb(Pv:L'a:L‘O) :y(P) ¢(P7$7l‘0)7 (356)
P=(z,y) € Kn—1\{Px}, xe€C.
Assuming the normalization,
l/J(P, .CL‘(),JZ‘()) = 1, Pe ICm_l\{Poo} (357)

for some fixed o € C, (P, x,x¢) is called the stationary Baker-Akhiezer function for the
Bsq hierarchy. Closely related to (P, x,x) is the following meromorphic function ¢(P,x)
on K,,_1 defined by

_ Q;Z)x(P, Zz, 1'0)
qb(P, $) = m, Pe ICm_17 S C, (358)
such that
(P, x,x0) = exp </w dz'¢(P, x')), P e Kpn1\{Px}- (3.59)

Since ¢(P,x) is a fundamental object for the stationary Bsq hierarchy, we next intend to
establish its connection with the recursion formalism of Section 3.1. In pursuit of this con-
nection, it is necessary to define a variety of further polynomials A,,, Bpm, Cm, Dm—1, Em,
Jm, and N, with respect to z € C,

1 1 1
Apm(z,1) = —Gp(z,1)% — 3 q1(x) F(z,2)* + 1 Fo(z,2)* — 3 F(z,2) Fry 2z (2, ),
(3.60)
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Bp(z,2) = (2 — qo(x)) (— 2 F(2,2)? G(z, ) + %Fm(z,x)2 Fro(z,2))

1
— Gz, a:)2 Gma(2,x) + — Fip2(2, x)2 Gmz(z, 1)

1
6

4

Q1 2(x) F (2, x)2 Gn(z,z) — L ,2(x) F(z, :1:)2 Fno(z,2)

2

1 11
+ 6 Gm(Z, x)Q Fm,xz(zv .CI}) Y QI(x) Fm(za $)2 Fm,m:(za $)

— 5S¢

1

%
+ 2 1(@) Fn(2,2) Gon(2,2)% — 2 1(2)? Fonlz, 2)°

3
2

3

Fw(2,2)? Frp g (2,2) +

18

1
T Fo(z,2) Emm(z,a:)2

9

(@) Fin(2,2) G (2, @) Frz(z, ) + 1q1 () Fin (2, 2) Fipn o (2, x)2

6

1
+ Fo(2,2) G(2,7) Gga (2, ) — 3 Fo(z,z) Fp 2 (2,2) G g (2, )

_l’_

1
6

12

1
QLx:p(:E) Fm(za LL‘)B - 6 Fm(za :L') Gm(za ZL‘) Fm,:m:m(za ZL‘)

1 1
1o Fm(za x) Fm,x(zy 1') Fm,wxm(za I’) - 6 Fm(za x)Q Fm,mxmx(z7 1‘)

— Fi(z,2) G o(2, x)Q,

2 1 )

Cin(z,2) = (2 = q0()) Fun(2,2)* = 2 q1(2) Fra (2, 2) G2, @) + = qr0(2) Fin(2, @)

3 6

1 1
+ G (2, 2)Gp (2, ) + 5 Fro(2,2)Gmz(2, ) — T
— é Gm(2,2)Fpga(2,2) — Fin(2,2) Gy 2z (2, )

1 1
+ 3 Q1 (2)F (2, ) Fro (2, ) + g Fon(z,2)Fy gaa (2, ),

En(z,x) =(2 — qo) <2Fm(z, z)G(z, ) + 1ql(x)l*"m(z, z)?

3

+ Fo(z,2)F 2 (2,2) G (2, ) + % Fp(2,2)* Fop e (2, x))

+ L @1(2)Fp(z,2)Fy (2, 2)Gn (2, 2) — 1 q1 (33)2Fm(z, x)QGm(z, x)

6 ’ ’ 9
1 9 1 2 2

—5 Q1 (2)F z(2, )G (2, 2)* + G () Fr(2,2)*Fp 2(2, )
5

_ 2 2 _ 5 3
12 ql(w)Fm,$(27$) Gm(zax) o4 Q1($)Fm,x(27$)

+ L Q1 (2)F(2,2)Gp(2,2) G (2, 2) — 1 ()G (2, x)3

3
1 1

+ E q1 (l‘)qu(JE)Fm(Z, x)3 - 6 q1,r(x)Fm(Z7 x)Fm,m(za m)Gm(za x)
1 1

- — qlw(x)Fm(z,x)Fm,x(z,x)Q — — q1(2)Fn (2, 2) Fip o (2, 2) G (2, @)

12 18

(3.61)

Fono(z,2)Fp g2 (2, @)

(3.62)
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1

+ Q1 (:L')Fm(za ZE)Fm@(Z, :L')Fm,m:(27 l’) + Fm,mx(za ZL‘)Gm(Z, :L')Gm,z(za :L‘)

wl

1
18 q1 :17( )Fm(za x)2Fm,$z(zy 33)

1
+ E Fm,xx(zu x)QGm(Z, l’) + % Fm,x(zv x)Fm,CC;E(Z7 33)2

1
—2Gnm(z, a:)sz,m(z, x) — 3 q1(x)F(z, $)2Gm7m(z, x)

- Fm ac(za x)Gm(z, x)Gm,;m:(Za .CC) - % Fm(Z, x)Fm,ma}(za x)Gm,ac:c(Za SU)

)

+ = Foz(2,2) Foze (2, 2) Gz (2, ) +

1 1
+—=q (l‘)Fm(Z, x)ZFm mcx(za .T) - = Fm,:r(za x)Fm,:L‘a:x(Zv -T)Gm(za I)

18 ’ 6
1 1
- E Fm,x(za w)QFm,zzx(zy iL‘) + E Fm(za x)Fm,:ﬂx(Za x)Fm,zzm(z7 LI}), (363)
1
Im(2,2) =Hpg(z,2) + (2 — qolz) — 3 q1,0(2)) F(2,2), (3.64)

Din-1(2,2) = (r) (= = aol@) -

Np(z, )

1 1
S Q2)Fn(z,2)3 = G(2, )% + 1 G (2, %) Frnx(2,2)?

1 1
— () Fo(2,2)? Gu(2, ) + 3 Gm(2,2)? Fyp (2, 1) — 3 Fo(z,2)?

- é q1(x) Fi (2, :1:)2 Fo(z,2) — Fp(2,2) Gn(2,2) G a2, )

1 1
+ B Fo(z,2) Fpo(2,2) G (2, ) — 5 Fo(z,2) G (2, %) Fryze (2, 2)

1
+ — F(2,2) Frnz(2,2) Frp gz (2, 2) — Fi(z, w)2 Gmzz(2, )

4
= éFm(z,x)z Fonaza(2:) ), (3.65)
= () 7 (144 — 00(2))? Fon(z,2)° — 144 (= — 00(2)) Gin(2,2)? Fon (2, )
— 144 (2 — qo(2)) q1(2) Fo(2,2)? Gon(2,2) — 144 (2 — qo(x)) Gon(2, 2)3
+120 (2 — qo(z)) @1 () B (2, z)? (2,0) — 24 q1 2z Fon(2, %) Gpu(2, 2)?

33)2 + 16 ql(;zc)2 Fo(z,z) Fp (2, ;zc)2
Gmz(2,2) — 144 q1(2) G (2,2)? G (2, )

—36 (2 —qo(2)) Gm(z,x) Fiy (2,
+ 288 (2 — qo(x)) (2, 2) G (2,
+ 48 q1(2) G (2, 7) Fina(2, %) G2, @) 4+ 60 q1(2) Fino(2,2)° Ga(2,2)
+48 (2 — qo(2)) 1.0 Fin(2,2) — 24 q1(%) q1.0 Frn(2,7)? G (2, )
—84¢1 2 G(2,2)? Frpa(z,2) + 20 q1(2) @12 Fpn(2,2)* Fra (2, )
—84q12 Gml(

Foz
x)

Gm(2,2) Fpo(2,2)* +48 (2 — qo(2)) Fin (2, 2)? Frp 2z (2, )

+48q15 Fn(2,2) G(2,2) Gz (2, 2) + 24 1 g Fin (2, 2) Fip 2(2,2) G (2, )
+20q1(z) Fp(2,2) Fonp(2,7) Fipgaw(2,2) — 96 q1(2) G (2, $)2 Foaz(z, )

— 96 q1(2) G (2, x) Frnz(z, ) Fipy ga (2, 2) — 24 1 (2) Frnz (2, z)? Fopaz(z, )

— 288 (2 — q0) Fin(2,2)? Gnwx(2,2) + 144 1 () Fp(2,2) G (2, 2) G (2, )
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— 120 q1(2) Fin(2,x) Fino(2, %) G ga (2, ) — 288 G (2, %) G (2, ) G g (2, )

— 144 Fp, 2(2,2) G p(2,7) G pa (2, ) — 48 q1 o Fin (2, x)2 Gmzz(2, )

+ 144 F, (2, ) G ga (2, z)% — 96 q1(2)? Fpu(z,2) Gp(z, 1) Foo(z,2)

— 24 q1 2z Fon(2,%) Go(2,2) Fra(2,2) — 6 q1 00 Firn(2, ) Fpp (2, )?

— 21 g2 Frna(z,2)® — 24 q1(2) Fon(2, ) Gon(2, ) Fry g (2, 2)

— 6, (2, 3:)2 Fon zwazz(2,2) + 48 G (2, @) G 2(2, ) Fiy gz (2, )

+ 24 Fy 2 (2,2) G2 (2, %) Fipgaa (2, 2) + 8 q1,2 Fin (2, 33)2 Fopzax(2, )

— 48 F (2, %) Grwa (2, %) Frpgaa (2, 2) + 4 Fpp (2, @) Fiy g0a (2, z)?

— 24 Gn(2,2)? B wawn (2, 2) — 24 G (2, @) Frp2(2, ) Fonwwwa (2, )

+ 144 (z — qo(z)) Fin(2,2) Fpo(2,2) G (2, 2) + 4 qix Fo(z, a:)3), (3.66)
where

c(m) = {_1 form=2 (mod 3) (3.67)

1 form=1 (mod 3)).

The quantities A, ..., Ny, in (3.60)—(3.66) are of course not independent of each other.
There exist various interrelationships between them and S, T}, (cf. (3.50)), some of which
are summarized below.

Lemma 3.5. Let (z,xz) € C x R. Then

(i) Ay Cs — Bon (G + % Fe) + Fon Ev ++ Sn i (G + % F) = 0. (3.68)
(i4). Bun O + A En + S (A (G + % Frna) — Fin Con) — T Fon (G + % Fra) = 0.
(3.69)
(iii). Cr = Fr Jp — (G, + %Fm,x)(Hr — k). (3.70)
(iv). By = gsm P+ % (r) Do 10 (3.71)
(v). €(r) (G + %Fm,x) Dy1 = Fy By — A2, — S, F2. (3.72)
(vi). €(r) Cpy Dy1 = Ty F2 — Apy B (3.73)
(0id). Dy Ny = B Evy — T (A (G + % F) — Fin Con). (3.74)
(viid). €(r) Am Ny = Tin (G + %Fmﬁ — CinEn,. (3.75)
(iz). €(r) Fyy Ny = C2 + Epy (G + %Fm) + S (G + % Fpz)?. (3.76)

(2). N (G + % Fn) = Noo(a1 Fon + Fonn) — €(r) Ton (2 (G + % Fna) S + 3 En).
(3.77)

Proof. This is a straightforward (but tedious) consequence of (3.23), (3.25), (3.60)—(3.66).
O
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Next we derive a first formula for ¢(P, x). By (3.30) and (3.56) one infers

Pt = Fritiee + (G — 5 Fona i+ Hoty =y (3.78)
and hence
(Put), = Eratbas + Ftbzza + G = 5 Pt + (G — 5 P
+ Hpy o + Hpthy
= Fonatbas + (2 = 0 — 5 @12) ) = @ Fonts + (G = 5 Fona s
(G~ § B H st + s = . (3.79)

Using (3.78) in (3.79) in order to eliminate 1,, in terms of ¢ = 1), /1 one infers
(Gm + %Fm,x)(y - Hm) + (Z —qo — %QLI)F% + Hm,x Fy,
(y - Hm)Fm - (Gm,cc - % Fm,a:a:)Fm + QIF% + G%n - in%,z

In fact, (3.80) is just one of three expressions one can derive linking ¢(P, z) and F,, Gp,.

¢ =

(3.80)

Lemma 3.6. Let P = (z,y) € K;y—1 and (z,z) € C2. Then
(Gm(2,2) + 27 Fna(2,2))y(P) + Cm (2, 2)

o= P (220 P) — Am(e.7) (351)
_ Fm(z7 w)y(P)Q + Am(zv x)y(P) + Bm(Z, l’)
- e(m)Dm-1(z,z) (3.82)
_ —e(m)Np(z, )
" (Gm(z,2) + 27 (2, 2))y(P)? — Cru(z,2)y(P) — Em(2, 1) (3.83)

Proof. (3.81) follows from (3.30), (3.60), (3.62), and (3.80). (3.82) is a consequence of (3.50),
(3.72), (3.73) and (3.81). Similarly, (3.83) follows from (3.50), (3.75), (3.76), and (3.81). O

By inspection of (3.15) and (3.16) one infers that D,,_; and N, are monic polynomials with
respect to z of degree m — 1 and m, respectively. Hence we may write

m—1
Dyi(2,2) = [] (5 — 3@, (3.84)

j=1

m—1
N (z,x) = (z — ve(x)) . (3.85)

=0

Defining

fi(z) = (,uj(a:), ?’:((ng)):i))) elm1, j=1,....m—1, z€C, (3.86)
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one infers from (3.81) that the divisor (¢(P,z)) of ¢(P, ) is given by (cf. (3.53))

((P,x)) = Dig(a),..oiomr(2)(P) = Do iy (@), fim 1 () (P)- (3.88)

That is, Dg(x),..., m—1(x) are the m zeros of ¢(P,x) and Pao, fi1(x),..., fim—1(x) its m
poles.

Further properties of ¢(P,x) and (P, x,z() are summarized in

Theorem 3.7. Assume (3.54)—(3.58), P = (2,y) € Km_1\{Px}, and let (z,2,z0) € C3.
Then

(i) ¢(P,x) satisfies the second-order equation
1

Gu(P,) + 3 65(P,2)$(P, ) + ¢(P,2)° + q1(2) 9(P,7) = 2 = qo() — 5 q1.2(2)-
(3.89)
(i1) 6(P, ) 6(P", 2) (P, ) = m (3.90)
(ii1) 6(P,2) + 6(P*,7) + 6(P™, z) = m. (3.91)
(iv) y(P) (P, x) + y(P*) o(P*, x) + y(P™) o(P*, x)
_ 3T0(2) Fin(z,2) — 2 S5 (2) Am(2, )
o e(m)Dy—1(z, 1) (3.92)
* *x _ Dmfl(zvf)
(v) V(P x,x0) Y(P*, z,x0) (P, x,20) = Do 1(2.70)° (3.93)
(1) (P, 2, 20) Yo (P*, @, 00) b (P, 2, o) = DZZ((Z; ”20) (3.94)
5T 1/3 T
(vii) Y(P,x,x0) = (M) exp </ dax'e(m)Dy,_1(z,2") !
X (Fon(2,2") y(P)? + Ap(2,2) y(P) + ; Fo(z,2") Sm(z))) (3.95)

Proof. (3.89) is clear from ¢ = ¥, /¢ and Vzpr + 1002 + (g0 + %qu —2)Y=0. (3.91) is a
consequence of (3.71), (3.82), and

y(P) +y(P*) +y(P™) = 3km(2), (3.96)
(Y(P) = km(2))* + (Y(P*) = km(2))* + (y(P™) = ki (2))* = =2 S (). (3.97)
Similarly, (3.92) follows from (3.50), (3.82), (3.96), and (3.97). In order to prove (3.90) one
employs (3.81), (3.96), (3.97), and
(y(P) = km(2)) (y(P") — —km(2)) = Tn(2),  (3.98)
(Y(P) = km(2)) (y(P*) = km(2)) + (Y(P7) = km(2)) (y(P™) = km(2))
¥ — km(2)) = Sm(2) (3.99)
to get
T (G + % Finz)® + S Cry (G + 5 Frna)? + C2,

O(P,x) p(P*,x) p(P*,x) = Y R o w—y . (3.100)
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Using (3.65) and (3.66) one verifies that the numerator in (3.100) factors into D}, ; N, and
the denominator into D}, | D,,_1, where D} _; is defined by

D;,_(z,x) =€(r) ((z —qo(x) + lqlvx )Fn (2, x)3 — Gz, a;)3 + i Gm(z,x) F 2(2, a:)2

6
—q1(2) Fr(2,2)* Gu(2,2) — % Gm(z,2)? Fp o2, 2) + é Foa(z,2)?

+ é q1(x) Fi (2, 1‘)2 Fi(z,2) + Fp(2,2) Gu(2,2) G2 (2, )

+ % Fo(z,2) Fpo(2,2) G (2, 2) — % Fo(2,2) G2, ) Fry z2(2, )

1
~1 Fo(z,2) F 2(2,2) Fip oo (2,2) — F (2, :v)2 Gmzz(2, )

1
+ 6 Fr(z, m)2 J — -2 x)) (3.101)

(3.93) immediately follows from (3.90) and (3.95) and (3.94) from (3.93) and (3.90). It
remains to prove (3.95). The latter directly follows after inserting (3.82) into (3.59) and then
replacing B,, according to (3.71). O

Thus, up to normalizations, D,,_1 represents the product of the three branches of ¢ and
N,, the product of the three branches of ., their zeros represent the analogs of Dirichlet
and Neumann eigenvalues of Ls with the corresponding boundary conditions imposed at the
point x € C when compared to the KdV Lax expression Lo.

Returning to Dy,—1(z,x) and N,,(z,z) for a moment, we note that (3.3), (3.15), (3.16),

(3.65),

Dy
Dy

Ds

and (3.66) yield

p— 1,
= 2= q0(®) =67 qr1a(x) — d? a1 () — (dg”), (3.102)
= 5 (64857 4+ 22 (648 q0(2) — 10810 (2) + = (216 00(x)” + 48 1 ()

+72q1(2) Qoo (%) — 72 q0(2) q1.2(2) — 18 q1 2(2) + 36 1 (2) q1,20() )

+ 24 go(2)® + 48 go (@) 1 (2)” + 24 qo(7) 1 (%) qo & () — 12 go(2)” q1,4(2)
+8q1(2)’ q10(z) — 121(2) Q0.0 (2) q1.0(2) — 6 G0(2) q1,0(2)” + 3 q10(2)’
+24q1(2)? Qo2 () + 120(2) q1(2) q102(x) — 691(2) 41,0(7) 41,00 (2)
13

(
3 2
(7 1 1944t 22 4 648 V" go(z) + 648 41 go ()

2 2
+216dY go(2)? + 648V AV gy () + 8641V go(x) qu () + 432 dlY gy ()2

+ 360 cgl) q(z) 1 (:c)2 + 72 dgl) Q1 (a?)3 + 216 cgl) dgl) qo.o(z) + 72 cgl) q0(x) qo.z(x)

+4q (x)Q QLw:va;<1') + 648 d

3 2
+ 72 dgl) q1(2) go.o(z) + 108 cgl) q1,2(x) — 108 dgl) G a(z) =72 dgl) q(2) q1.2(2)
2
+ 144 cgl) q1(x) q1.2(z) + 60 cgl) q1 (x)2 q1,2(x) — 36 cgl) 90,2(x) q1,2(x)

2
184 g1 o (2)? + 216 Y g0 (@) + 144 Y q1(2) @00 (x) + 108 1V dY g1 2o (@)
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+ 36 Cgl) QO(:L‘) Ql,x:r:(l') + 36 dgl) q1 (l‘) Ql,xa:(l‘) —18 Cgl) Ql,x(q:) qdl,xx (33)

3 2
z(—648 cgl) + 1944 d(l) + 1296 dgl) qo(z) + 216 cgl) q(z)* 4216 cgl) q0,2(x)
2

— 216 dgl) Q1,x(33) + 108 C( ) q1 :m:( )) + 36 Cgl) qux(DC) + 24 Cgl) q1 (1') q1,:r:mc($)>a

etc., (3.103)
and
Ni =2 —qo(z),

_ 2 _
No = (2 = ao(@) + 67" q1,0(2))” = dy” (= — q0(@))r () — 67" 1 (2)q1,0(2))
=67 (0 q100(2) = (d57)° (= = qo(@)), (3.104)

Ny = (3888 2141296 2% g1 o (2) + 22 (288 g1 () — 2592 go(z)* + 432 q1 (%) qo 0 ()

— 432o(%) q1,0(x) + 864 q1,4(x)? + 1080 q1(2) 122 () + 216 q1 gz ()
+ z (1440 go(x) q1(x) go,»(x) — 1152 qo(av)3 — 720 qo(a:)2 q1.2(2)
+1921(2)° (7)) — 432q1(7) Q0.0 (%) q1.0(2) + 432 00 (2) 1.2 (7)* + 252 1 0 (@)
— 144 q1(2)? qo za () + 864 00 2 (%) Q0 2 () + T20 qo () @1 (%) @1 ()
+ 360 q1(2) q1,2(%) @1,02(2) + 24 q1(2)* @1 200 (2) — 144 g0 4 () @1 20 (2)
+ 144 g0 (%) 1 (€) + T201,2(2) 1 rza () — 144 o ()" — 288 go(2)” @1 (2)°
(

+ 432 qo(z)” q1(z) qo(x) — 144 qo(a:)?’ Q12(x) + 288 qo(z) 1 (x) 1,2()
+ 48 qo(x) )?
—84¢1(2) qo,0 (%) q1,0(2)* + 84 o(z) q1,0(2)° — 432 0(z) g1 (2)? go,00 ()

)
)
)?
01(2) 0.0(2) q1.0(2) + 48 q0(7)? q1.0(2)* — 401 (2)” qra(
q
)

+21 g1 4(2)" + 288 g0 (@) Go,0(2) Gowe(z) + 168 g1 (2)* q1.0() g0, (2)

+ 144 g2 (%) 1,0() Qo.00 (2) — 144 q1(7) Qo 20 () + 120 qo(2)? 1 (%) @1 0 ()
+120 go(2) 1 (2) ¢1,0(2) 1,00(2) + 30 1 (2) q1,0(2)* @100 (2)

+72q0(7) q1(2)” @120 () — 48 q0(2) G0,2(%) G122 (%) — 28 q1(7)” q1,0(7) @1 2 ()
— 24 G0.2(2) 41,0(2) Q1 20 (2) + 48 01(T) 40,20 () Q1 220 (T) — 401 (%) @1 20 (2)

(z
+ 24 qo(2)? g1 2z (%) + 24 90(7) ¢1,2(2) G122 () + 6 410 ()? @1 zwa ) %
+ (1944af) 2 + 22 (1944 V" — 648 V" — 6484V go() + 216 ¢ g ()
— 4326 oo (@) + 43240 g0 (2) + 1086 graw () + 2 (6484 + 1206 ¢V go(a)
— 1296 d” o) — 1080 " go(2)? + 648 D7 a1 () + 8647 go(2) an (2)
+ 43260 dV gy ()% + 144V go(2) o (2)? + 72d g1 () — 432610 dY go o ()
+ 288 Cgl) qo0() qo.«(z) + 288 dg ) q1(2) oo (z) — 216 cg )3 q1,2(x) + 216 dgl)z q1,2(x)

2
— 288 dgl) g () q1.2(z) — 288 cgl) () q1a(z)+ 24 c§” a1(z)? gz ()
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— 144V go.0(2) 1.0 () + 2704 (@) + 432657 o e () + 7260 41(2) 0.0 ()
+216 i 1Y g1 4 () + 7261 00(2) 1,00 () + 3604 1 (2) 01, ()

+36 M g10(2) g1 pe(z) — T2 c§”2 e (@) = 1267 41(2) 1 g (@) + 728 @1 e (7))

— 648 dgl)g qo(z) — 648 0(11)3 qo(x)* — 648 dgl)g qo(x)* — 648 0(11)2 dgl) qo0(z) q1(z)

— 216 d(l) o(z)® — 864 0(1)2 o(@)? q(z) — 432 cgl) dgl) qo(z) q1(z)* = 360 cgl) ao(x)* q1(x)?
- 72 d qo0(z) q1(zx ) + 432 cg ) dgl) q0(z) qoo(z) + 144 cgl) qg(az)2 qo.2()

x) qo,z(x) + 288 dl1 qo0(x) q1(z) go,»(x) + 216 cgl)g qo(x) q1,2(x)

)q

+ 2164 ql() (1) o (

—216d"” go(x) qra () — 1448 go(2)2 g1 2 (2) + 108 &2 dY g (2) ()
)q

+ 432 c1 qo(x 1(z) q10(x) + 216 cgl) dgl) q (x) q1,2(x) + 264 cg ) q(x) @1 (x)2 ¢ 2(2)
+60d" g1 () g0 (2) — 726t A go0(2) @1 0 () + 48 g0 (2) q0.0 () @1 x<x>
— 48 d q1(x)

2) 40,0 () qro(@) — 181 (@) + 12640 1o () + 66 4 qo(2) qu.o (@)’
48 c& D 01 (@) que(@)? = 346V qu(@)? qua(0)” — 12602 go.o () quo(@)? + 425 g1 0(2)°
= 132¢9° go(2) do.ne () — 216 ¢V 4V 1 (2) g0 2 () — 360 ¢ g0() 01 (%) G0 e ()

— 72 dgl) q1()? qoe () + 144 dgl) 90,2() o,z () + 72 c§1)2 q1,2() Qo2 ()

+108 ¢V 1 (2) 41,0 (2) dose (2) — 7268 o e (1) + 1088V 4V g1 10 ()

+ 72 Cgl) di” q0(x) q1,22(x) + 12 c§” q0(2)* q1 2z () + 180 dg )’ @1 (%) q1,22(x)

+120d1" go(2) g1 (%) qraa(x) + 36 ¢t d1Y g1.0(2) q1za (@) + 1261 qo(2) 41,0(2) 1,00 (%)
+ 60" ¢1(2) q1.0(2) Q100 () + 3¢ @1 2(2)% Qe (@) + 7280 G0(2) Q10 ()

+ 36 Cgl) di” ¢1(2) q1 222 () + 60 Cgl) 90 () ¢1() q1,20x(x) + 12 dgl) 01(%)? g1 pa(2)

—24 dgl) 90,2(%) Q1 z0a(v) — 12 cgl)z q1,2(%) Q1 zax(v) — 18 cgl) 01(%) q1,2(%) Q1 ,200()

+ 2464 4020 (%) @1 wae () — 28 @1 e (2)? + 36 d§1)2 41 zaz (T)

1
+24 dgl) 90(2) 41,3002 () + 12 d( : 91,2(2) CIl,rzmﬂc(x)> 648’
etc.

Concerning the dynamics of the zeros () and vy(z) of Dp,—1(2, ) and Ny, (2, ) one obtains
the following Dubrovin-type equations.

Lemma 3.8. Suppose the curve K,,—1 is nonsingular and assume (3.55) to hold.
(1) Suppose the zeros {j;(x)}j=1,..m—1 of Dm—1(-,x) remain distinct in Q,, where Q,, C C
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is open and connected. Then {p;(z)}j=1,. m—1 satisfy the system of differential equations

-----

—e(m) Fa(p (), 2) (3y (2 (2))* + Sm (15 ()))

Wijo() = , j=1...,m—1, (3.105)

with initial conditions

{1 (o)} j=1,.m—1 C K1, (3.106)
for some fized xoy € Q. The initial value problem (3.105), (3.106) has a unique solution
{i(x)}j=1,...m—1 C K1 satisfying

[Lj GCOO(QM,ICmfl), j=1....m—1. (3.107)

(i1) Suppose the zeros {ve(x)}i=o,.. m—1 of Nm(-,x) remain distinct in §,,, where Q, C C is
open and connected. Then {vy(x)}o=o,..m—1 satisfy the system of differential equations

—e(m) Jm(ve(2), x) (3y(e(2))? + Sm(ve(2)))

m—1
T (vel) = vi(2))
k=0
[

V() = , £=0,...,m—1, (3.108)

with initial conditions

{I?g(l‘o)}g:07_._7m_1 C ]Cmfl, (3.109)
for some fixed xy € Q,. The initial value problem (3.108), (3.109) has a unique solution
{De(x) bo=o,...m—1 C Km—1 satisfying

g€ C®(Qy, Km—1), £=0,...,m—1. (3.110)

Proof. Combining (3.71), (3.72), (3.81) and (3.86) yields

€(m) D10 113 (@), @) = Fon (1 (2),0) [3 (95 (2)) — ko113 (@))) + Sy (@))]  (3.111)

which in turn implies (3.105) using (3.84). Similarly, combining (3.76), (3.77), (3.81) and
(3.87) yields

() N ((2), 2) = Ja(ve(@), ) [3 (y(74(2)) — ko (ve(@)))? + S (ve(e))]  (3.112)
implying (3.108) by means of (3.85). O
We emphasize that 2 (y — ky,) in (2.67) and (2.68) and 3 (y — k)% + Sy, in (3.105) and (3.108)
is precisely the y-derivative of the Burchnall-Chaundy polynomial, that is, % Fm(z,y).

We conclude this section with a few trace formulas for the Bsq invariants in terms of j;(z)
and vy(x) analogous to the KdV case in Lemma 2.6.

Lemma 3.9. Assume (3.55) and let x € R. Then
(i). Form =2:

1 3
g @s(@) + a0(@) +do” ar(@) +df" = () (3.113)

and form > 2:
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m=1 (mod 3) :
1
qum( r) — qo(x —3d Zﬂgl
J1=1
1 1 5 7 )
E QL:mvxz(x) + § qo,mmx(x) + TS Q1(96)Q1,m( ) 36 q1 m( )
1 1 2
2 0()02(@) + 5 ()02l + o r(@) — o) + 5 Vg1 (2)
m—1
3 2
—3d{Vgo(z) + i =31 =34 = = 3" i (@) (), (3.114)
J1,j2=1
71<J2
etc.
m =2 (mod 3) :
1 m—1
2 2
C () — ao(a) +d =3 = 3 g (@)
j1=1
1 1 5 7 1
E ql,xz:m?(x) + § C]o,a:m(JU) + E q1 ($)Q1,xz($) + — 36 q1 :1:( )2 + g QO(I)Ql,x(l‘)
1 2 1 3
5@ (@) + s @) — (@) + (562 — 2 d?”) ana@) + @~ 3¢P)ao()
m—1
2 2
—3d? =3 4347 AP = — > (@) gy (a), (3.115)
.]17]2 1
J1<J2
etc.
(ii). Form =2:
1 3
3 Q1 z(x) —2q0(z) — d(()2) q1(x) — d(()2) = —p(x) — v1(x) (3.116)
and form > 2:
m=1 (mod 3) :
1 m—1
g QL:B( + 3 d Z Vfl
£1=0

2 1 1 1 5
g 90,222 (T) + 3 q(z)q12(x) + 8¢ 2(T)? — 15 @ ()1 22 () + = qo.2(2)q1 ()

9
m—1
2 2

T () + dgl)(h,a:( ) — §1) + 3d(11) + Sdgl) = Z ve, () vy, (), (3.117)
£1,62=0
€1<52

etc.

m =2 (mod 3) :

m—1

1 3

3 Q1 q(x) + 3c§2) — d(()Z) =— Z v, (),
£1=0
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2 1 1 , 1 5
9 90,22z () + 3 qo(x)q12(x) + 1 @ z(x)” — 8 Q1 (2)q1 22 () + 9 9o,.«()q1(x)
2 s (L@ (o D2 L0 @ e @0
- 2—7q1(x) — (§ dy’ =) qa(@)+3¢” +3cy —3dy” &y = Z v, () vg, (),
£1,62=0
01 <lo
(3.118)
ete.

Here cge), cge), d((f), dge), dge) can be expressed in terms of zeros of Sy(z) and T, (z) in analogy

to (2.71).

Proof. It suffices to substitute (3.84) and (3.85) into (3.15) and (3.16) (taking into account
(3.3)) and comparing powers of z. O

Explicit examples illustrating the formalism of this section are provided in Chapter 4.

3.3. Stationary Algebro-Geometric Solutions of
the Boussinesq Hierarchy

In this section we continue our study of the stationary Bsq hierarchy, but now direct our
efforts towards obtaining explicit Riemann theta function representations for the fundamental
quantities ¢ and v, introduced in Section 3.2, and especially, for each of the potentials gg and
q1 associated with the differential expression Ls. As a result of our preparatory material in
Sections 3.1 and 3.2, we are now able to simultaneously treat the class of algebro-geometric
quasi-periodic solutions of the entire Bsq hierarchy, one of our principal aims in this paper.

In the following we freely employ the notation established in Appendices A and B and refer
to this material whenever appropriate.

Lemma 3.10. Let z € C. Near Pso € K1, in terms of the local coordinate ( = z~/3, one
has

1 .
#(P, x) o7 > Bi(x)¢! as P — P, (3.119)
=0
where
1 1 1
= 1 = = —— = —— — T
Bo=1, B1=0, pBo 51 B3 540 + gL
) j—1 -1 ¢
Bj = -3 (ﬁj—z,m +q B2+ Z(3ﬂk,zﬁj—k—1 + BiuBi—k) + Z ﬂkﬂe—kﬂj—2)7 Jj>4.

k=2 {=1 k=0
(3.120)

Proof. In terms of the local coordinate ¢ = z~1/3, (3.89) reads

Gue + 300, + > + @10 =C"2 —q0— 27 g (3.121)

A power series ansatz in (3.121) then yields the indicated Laurent series. U
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Let 0(z) denote the Riemann theta function (cf. (A.59)) associated with K,,,—1 and an ap-
propriately fixed homology basis. Next, choosing a convenient base point Py € Kp,—1\{Px},
the vector of Riemann constants Zp is given by (A.66), and the Abel maps Ap (-) and
ap, () are defined by (A.56) and (A.57), respectively. For brevity, define the function
2: K1 X 0™ g — C™ 1 by

2(P,Q) =Ep —Ap (P)+ap (@), PeKn1,Q=(Q1,-,Qm-1) €™ 'Kp_1. (3.122)
We note that by (A.81) and (A.82), z(-,Q) is independent of the choice of base point Fp.

The normalized differential wg.i)o 20 (x) of the third kind (dtk) is the unique differential holomor-

phic on K, 1\{ P, vo(z)} with simple poles at Ps, and Dp(z) with residues 1, respectively,
that is,

wgo)o,ao(x) P) = (CH+0Q1))dC as P — Px. (3.123)
Then ,
[ A ey =y O+ () + 0(0) 5 P — P (3124)

(2)

where e®) (Pp) is an appropriate constant. Furthermore, let wp__ o denote the normalized
differential defined by

1 nq =3n+1
{Z = m=ontl, (3.125)

m—1
(2)
w P)=— Aini(P) —
el ZT ) 3y P+ 50 2) \w(P)sndz, m =30 +2,
where the constants {\;}j=1 . m—1 are determined by the normalization condition

/ Wi =0, j=1,...,m—1, (3.126)
aj
and the differentials {n;(P)}j=1,. m—1 (defined in (B.7)) form a basis for the space of holo-

morphic differentials. The b-periods of the differential wg)

oo

o are denoted by

2 2 2 2 1 2
0 = 0, U=k [ o

29 = 2 J,, P j=1...,m—1 (3.127)

A straightforward Laurent expansion of (3.125) near P, yields the following result.

oo

in (3.125) is a differential of the second kind (dsk), holomorphic on Kp—1\{Px} with a pole

of order 2 at Ps. In particular, near Pso in the local coordinate ¢, the differential WPQOQ o has
the Laurent series

Lemma 3.11. Assume the curve K,,—1 is nonsingular. Then the differential wg) o defined

win) 5(P) o (7 +u+wl+0(¢%)d¢ as P — Pu, (3.128)
where
Am—1 — A form=1 (mod 3),
u = T B ( ) (3.129)
Am-n—1—(dy’)* form=2 (mod 3),
and
Am—n_1 — 2d") form=1 (mod 3),
= {(d@))s IFCRISCN L form=2 (mod3 (3.130)
0 1 0 Am-n-1+tAm-1 form=2 (mod 3).
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From Lemma 3.11 one infers

P

/ Wg;,z gzo ¢ty eéZ)(Po) +u¢ 4+ 27w + 0(¢) as P — Py, (3.131)
Py —

where e§2)(Po) is an appropriate constant.

The theta function representation of ¢(P,x) then reads as follows.

Theorem 3.12. Let P = (z,y) € Kpno1\{Px}, (z,2) € C*. Suppose that D,y and Dy,
are nonspecial. Then B

. 7a(é(Pwvﬁ(x)))9(&(32(%)))eX o3 B Pw(3)
o) = e s pe = (O~ [, ) 19

Proof. Let ® be defined by the right-hand side of (3.132) with the aim to prove that ¢ = ®.
From (3.124) it follows that

P
exp <e<3>(P0) —/ W ﬂo(x)> = ¢+ o). (3.133)
P (=0

Using (3.88) we immediately see that ¢ has simple poles at fi(z) and P, and simple zeros
at o(x) and (). By (3.133) and a special case of Riemann’s vanishing theorem (Theorem
A.22); we see that ® has the same properties. Using the Riemann-Roch theorem (Theorem
A.12), we conclude that the holomorphic function ®/¢ = ¢, a constant with respect to P.
Using (3.133) and Lemma 3.10, one computes

® _ (1+0Q)¢ T +0oM) o
¢ ¢—0 T+ 0() o L TOK) as P = P, (3.134)

from which one concludes ¢ = 1. O

Similarly, the theta function representation of the Baker-Akhiezer function ¢(P,x,xzq) is
summarized in the following theorem.

Theorem 3.13. Assume that the curve KCp,—1 is nonsingular. Let P = (z,y) € Km—1\{ P}
and let z, xo € ,, where ), C C is open and connected. Suppose that Dy, and Dy, are

nonspecial, for x € Q. Then

0(2(P, fi(x))) 0(2(Poo, fi(

(o p
U(P,w0) = G = S P Z(xE;B exp <(x_x0)(eg2>(p0) _/P wﬁl,z)) (3.135)

Proof. Assume temporarily that
() # pjr(x) for j # j' and z € ﬁu C Q, (3.136)

where ﬁu is open and connected. For the Baker-Akhiezer function 1 we will use the same
strategy as was used in the previous proof. However, the situation is slightly more involved
in that v has an essential singularity at P,. Let ¥ denote the right-hand side of (3.135). In
order to prove that 1) = ¥, one first observes that since

WPy, 1) = exp < / da' 6(P, :c')), (3.137)
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the zeros and poles of ¢ can come only from simple poles in the integrand (with positive and
negative residues respectively). Using (3.86) and (3.105), one computes

Fnt? 4+ Ay + 3FnSm + 36(m) Dy o

¢ = e(m)Dy,
— ST (307 S 4 g T 2 D
m—1
= gg(n];”bm (34 + Sp) — % > Z*fzk +0(1)
- zu—jﬂ;j‘ +0(1), as P — fij(x)
More concisely,
d(P,x') = 5 In(z — p;(2")) + O(1) for P near fi(z'). (3.138)

Hence

xp ([ i (5 (e = (') + O(1))
(z — pji(2))O(1) for P near fi;(x) # f1;(z0), (3.139)
=4 0(1) for P near fi;(z) = fi;(z0),
(2 — i(w0)1O(1)  for P mear fij(w0) # i (x),

where O(1) # 0 in (3.139). Consequently, all zeros of ¢ and ¥ on C;,—1\{Px} are simple
and coincide. It remains to identify the essential singularity of ¢» and ¥ at Ps,. From (3.119),
we infer

/fE da’' ¢(P, ") o (x —20)(C 14+ 0(C)) as P — Px. (3.140)

0
Looking at (3.131) we see that this coincides with the singularity in the exponent of ¥ near
P.. The uniqueness result in Lemma A.26 for Baker-Akhiezer functions then completes the
proof that ¥ = 4 as both functions share the same singularities and zeros. The extension of
this result from x € ﬁu to z € {1, then simply follows from the continuity of ap and the
hypothesis of D,) being nonspecial for z € €,. O

Next it is necessary to introduce two further polynomials K,, and L,, with respect to the
variable z € C,

Kp(2,2) = (e(m) N (2, ) — T (2, 2) Co (2, 2)) (G (2, @) + 27 Ep (2, 2)) 7L, (3.141)
Lin(z,2) = (e(m)Dpm-1(2,2) — (G(2,2) — 27 Frnu(2,2)) A (2, 2)) Fp(2,2) 1. (3.142)

In analogy to our polynomials A,,—N,, introduced in (3.60)—(3.66), it is possible to derive
explicit expressions of K, and L,, directly in terms of F;, and G,, and their z-derivatives.
These expressions then prove, in particular, the polynomial character of K,, and L,, with
respect to z, but we here omit the rather lengthy formulas since they can be generated with
the help of symbolic calculation programs such as Maple or Mathematica.
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Lemma 3.14. Let x € C. Then
Lin(p5(2),2) = — (G113 (2), @) — 27 P (13 (0), ) y(is (@), (3.143)
forj=1,....m—1 and
K (ve(x), ) = T (ve(x), )y (De(x)), (3.144)
for£=0,....m—1.

The well-known linearization property of the Abel map for completely integrable systems of
soliton-type, is next verified in the context of the Bsq hierarchy.

Theorem 3.15. Assume that the curve IC,,—1 is nonsingular and let x, xo € C. Then

ap(Daw)) = ap, (D)) + U (& — o), (3.145)

Ap, (00(2)) + ap, (D)) = Ap, (P0(z0)) + ap, (Doag)) + US (& — o). (3.146)

Proof. We prove only (3.145) as (3.146) follows mutatis mutandis (or from (3.145) and
Abel’s theorem, Theorem A.14). Assume temporarily that

() # pjr(x) for j # j' and z € ﬁu CC, (3.147)
where ﬁu is open and connected. Then using (3.105), (B.7), and (B.9), one computes
d m—1
IQPO,Z(DH(I)) = Z :U*J,ﬂc(x)wﬁ(u] (z))
j=1
m—n—1 m—1 m—1 |
=—e(m) > elk) Y i) Fulpi(a), @) [T (1) = pp(a))
k=1 j=1 p=1
P7]
n m—1 m—1 L
em) S enlkm—n— 1) S (@) A2, 2) [ (15(0) — pple)) " (3.148)
k=1 j=1 p=1

p#j
Next we consider the two cases m = 3n + 1 and m = 3n + 2 separately and substitute
the polynomials F,(p;(x), z) and Ay, (pj(x),«) in the variable pj(z) into (3.148). Using a
standard Lagrange interpolation argument then yields

d

ee(m —1), m=3n+1,
2z Pia)) = = {

3.149
es(lm—n—1), m=3n+2. ( )

The result now follows for = € SNZ,“ using (3.127), (3.149), (B.11), and (B.16). By continuity
of ap, this result extends from z € Q, to z € C. O

We conclude this section with the theta function representations for the stationary Bsq
solutions qg, q1 (the analog of the Its-Matveev formula in the KdV context).

Theorem 3.16. Assume that the curve KC,,—1 is nonsingular and let x € 2, where Q,, C C
is open and connected. Suppose that Dy ;) and Dy, are nonspecial for x € . Then

qo(z) = 36Qg2)8$ In(0(2(Pso, ft(x)))) + (3/2)w, (3.150)
q1(x) = 303 In(0(2(Puo, fi(x)))) + 3u, (3.151)
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with u and w defined in (3.129) and (3.1530), that is,

An—1 — c(l) form=1 (mod 3),
u = L9 ~ ( ) (3.152)
Am—n—1—(dy’)? form=2 (mod 3),
and
A1 — 2d§1) form=1 (mod 3),
Y /@32 @) _ (3.153)
(dy”)’ — ¢ —dy ' Am—n—-1+ Am—1  form =2 (mod 3).

Proof. Using Lemma 3.11 and Theorem 3.13, one can write ¢ near Py, in the coordinate (,
as

Y(P,xz,0) gio (1 + o (2)¢ + an(z) + O(C?’))
x exp ((z —x0) (¢! —u¢ — 27w + O((?))) as P — P, (3.154)

where the terms «j(z) and as(x) in (3.154) come from the Taylor expansion about P, of
the ratios of the theta functions in (3.135), and the exponential term stems from substituting
(3.131) into (3.135). Using (3.154) and its z-derivatives one can show that

Yz + 3(u — a1 )y + 3(2*110 — gz + 0001 — Q)Y — T3y = o). (3.155)

Since O(¢)v is another Baker-Akhiezer function with the same essential singularity at Ps
and the same divisor on K,;,—1\{ Px}, the uniqueness theorem for Baker-Akhiezer functions
(cf. Lemma A.26) then yields O(¢) = 0. Hence

() = 3(27 w — 27 1 4o (2) + i (2) 1 2 (2) — a2 (T)), (3.156)
q1(z) = 3(u — a1 (x)), (3.157)
where
a1 (2) = =87 0(2(Pos, ji(2))), (3.158)
—27 1 4o (@) + a1 ()1 2 (%) — a2 () = 8ng)8w In 0(2( P, f1(x))). (3.159)
Here
m—1 )
D= Ué?j)a— (3.160)
=3 = Zj

denotes the directional derivative in the direction of the vector of b-periods ng), defined by

vP =W, U8 ), Uy = % /bj W s i=1.,m -1, (3.161)

with wgolg the dsk holomorphic on K,,—1\{Ps} with a pole of order 3 at Py,
W) 4(P) = (¢T3 +0(1))d¢ as P — Py (3.162)
Combining (3.156)—(3.159) then proves (3.150) and (3.151). O

For interesting spectral characterizations of third-order (in fact, odd-order) self-adjoint dif-
ferential operators with quasi-periodic coefficients we refer to [48].
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3.4. The Time-Dependent Boussinesq Formalism

In this section we return to the recursive approach outlined in Section 3.1 and extend the

polynomial approach of Sections 3.2 and 3.3 to the time-dependent Bsq hierarchy.
We start with a stationary algebro-geometric solution (q(()o) (x), qgo) (x)) associated with /Cp,—1

satisfying

_3 f((:?l — 0,
By, (a5 a) = ’ reC,m=3n+e (3.163)
344, =0
gnJrl,x )
for some fixed ¢ € {1,2}, n € Ny, and a given set of integration constants {cﬁg)}g:h“,n,

{déa)}g:()’m’n. Our aim is to construct the rth Bsq flow

Bsq, (g0, q1) =0,  (qo(,to,), g1 (2, to,) = (63 (2),¢\”(x)), @ €C,r=3s+¢ (3.164)

for some fixed &’ € {1,2}, s € Ny, and ¢y, € C. In terms of Lax pairs this amounts to solving

di Ls(t,) — [Po(t), Ls(t,)] = 0, t,€C, (3.165)
[P (to,r), Ls(tor)] =0. (3.166)
As a consequence one obtains
[Pon(ty), L3(t,)] =0, t, €C, (3.167)
Po(t:)? + Po(tr) Sin(L3(t,)) — Tr(L3(t,;)) =0, t. €C, (3.168)

since the Bsq flows are isospectral deformations of Ls3(to ).

We emphasize that the integration constants {6§€l)} and {d&al)} in P,, and {cgs)} and {déa)}
in P, are independent of each other (even for r = m). Hence we shall employ the notation
]BT7 E,, ér, fNIT, etc., in order to distinguish them from P,,, Fy,, Gy, Hm, etc. In addition
we follow a more elaborate approach inspired by Hirota’s T-function approach and indicate
the individual rth Bsq flow by a separate time variable ¢, € C. (The latter notation suggests
considering all Bsq flows simultaneously by introducing ¢t = (¢1, te, t4,t5,...).)

Instead of working directly with (3.165) and (3.167) we find it preferable to take the following
two equations as our point of departure (never mind their somewhat intimidating size),

1~ 5 = ) ~ 3 2 ~
q0,t, = — 6 Fr,x:pxmx - 6 q1 Fr,:vxx - Z q1,x Fr,xz - (Z q1,zx + g Q%) Fr,x
1 2 ~ ~ ~
- (6 QLJ::E:C + § Q1Q1,a;) Fr - 3(Z - q0) Gr,a: + q0,a: Gr: (3169)

qit. = 2 ér,x:px + 2 q1 ér,x + q1,x ér -3 (Z - QO) ﬁ?’,m +2 q0,x ﬁ?’a (.T, t?’) € C27

1 1 1 5)
_6 Fm,;m:a:acFm + 6 Fm,zxacFm,a: - E F’r?z’zx - 6 QIFm,mem
5 5 o 1,1 N
*E QL:va,mFm + ﬁ‘th,x - g (5 qdl,xx +Q1)Fm (3.170)

+2GmgaGm — Ghrw + 011Gy — 3(2 = @0) FnGn = Sm(2),  (a,t,) € C?,
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1 1 1 1
E Fm,:m::):me,xme - ﬂ Fm,xrme%@ + T8 q1Fm,mzx:EF31 + % Fm,zx:me,x:me,x
1 1 1 1
- %FmFm Trr TS QLsz,;txngl - § QIFm,$$sz,$Fm 108 Fr?;L P
2 1 7 )
+ § Q1,me7J:me7me + = 18 q1 mcFm,mcF2 72 Fm xxF2 + ﬁ q1 Fm,x:chn
7 1 7 1
+%Q1Fr2nxxF ﬂ‘]lmeg@,xF 48 q11F3 _6q1F2 Fm“‘ 12 Q1xCJ1meF
2 1
+ (277 Qi)) 36 Q1 T 18 q1,zxq1 + (Z - q0) )Fr% + (Z - QO)G%L + 6 Fm,:cxa:a:ng
1 1
- 3 m x:m:Gm xGm + F, Gm ,TT 3 m ,TT (G2 Gm,aszm) - Fm,me,xasz,x

2 5 4 1
—qi(z— q)F2Gm + = X0 2F.G2 + 2 o 0P, w2G2, = 3 01 Fm e Gm oG + 5 @FnG, ,

7 4 1 1
+ —=q, e Fm xG +-qakFn Gm exGm + — qi, zzFm G q1,meGm,xGm

12 3 6 -3
1
+ (2 —q0)ErmaFnGmz — 1 (z — qo)F%,xGm —2(z— qo)ngGm,m =Tm(z2), (3.171)
(z,t.) € C?,
where (cf. (3.15), (3.16))

(2.2, tr) an (@) Fulzator) =Y 2 @), (3.172)

=0
(z,2,t,) Zg Gm(z,x,t0,) = gT(f_)’e(O) ()2 (3.173)

=0

for fixed to, € C, m =3n+¢e,r =3s+¢', n,s € N, ,¢’ € {1,2}. Here fe(s)(:r,tr),géa)(x, tr)
and fz(s)’(o)(az),gés)’(o)(x) are defined as in (3.3) with (qo(x),qi(x)) replaced by (qo(x,t,),
q1(2, 1)), and (g5 (x), ¢” (x)), respectively.

In analogy to (3.85) one introduces
m— m—

Dp1(z,x,t,) = H (z — pji(z,t)), m(z, 2, t) H (z — ve(z, tr)), (3.174)
where D,,,—; and N, are defined as in (3.65) and (3.66). This implies in particular (cf.
(3.74)),

Dp—1(z,2,t, )N (2,2, t,) = B(z,2,t,) En(z,2,t,) — T (2) (Am(z,x,tr)
X (Gm(z, z,t,) + 271 Foa(z,x, tT)) — F(z,z,t,) Cp (2, z, tr)), (3.175)

and A, B, Cny, Dm—1, Em, Jm, and Ny, are defined as in (3.60)—(3.66). Hence (3.69)—
(3.77) also hold in the present context. Moreover, we recall

Lemma 3.17. Assume (3.169)—(3.173) and let (z,z,t,) € C3. Then

(7!) Dm—l,tr(zaxvtT) = Dm—l,x(zal"tr)<Gr(Z>x7tr) - 5 Fr,x(z>x7tr)
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F zZ, 2,1 1
- F;((z,x,;))(Gm(z,x,tr) = g Fnalzsat)) + Do (2.t
- Fo(z,x,t
x 3 (HT(Z,ﬂfvtr) n FT((Z$7;)) Hm(%x’tr)).
m et g

~ 1~ Jr(z, 2z, )

(ZZ) Nm,tr(zawvtr) = Nm,x(za .fE,tr) (GT(Z, (lZ,tr) + 5 Fr,x(za (lZ,tr) -

X (o2, 12) + 5 Fono(,) ) = Nz, 1) (11, 1) Fr (2, 2)

s :]vr(zax,tr)

+Fr,mc(zul‘7tr) - 7 (Z o1 )(q1(l‘,t7‘) Fm(Z,I,tr) +Fm7xz(z’x7tr))>-
m\%, L lr

Proof. In order to prove (3.176) one combines
04,0y ( InDy,—1(2, x, tr)) = 030, ( InDy,—1(2,x, tr))
= (¢(P,:B,t7«) + ¢(P*, x, tr) + ¢(P**,ac,t7«))tr,
(3.188), (3.192), and

P+ ¢(P)? + ¢(P) = — 0p(——") — B

O(P)* + ¢(P*)? + ¢(P*) o () Fri  Dma
11

_E(iFm,zx‘{'quFm_gvax)'

Similarly, in order to prove (3.177) one combines

&&l%ﬁﬁﬁl>:@@muwwﬁ%MMpa%mhv

Dp—1(z,x,t,)
(3.77), (3.188), (3.178), and
LN S S 2(Gm + % Finw)Sm + 3 Ep,
¢(P)  o(P*)  o(P™) (m) N,

Similarly, Lemma 3.6 remains valid and one obtains

(Gm(z,x,t,) + %Fm@(z, z,t:))y(P) + Cp(z, , t,)
Fo(z,x,t)y(P) — Ap (2, 2, L))

o(Pyz,t,) =

Fu(z,2,t)y(P)? + Ap(z,2,t.)y(P) + Bp(z, 2, t,.)
e(m)Dp—1(z,,t,)

—e(m)Np, (2, z,t,)

P = (z,y) € Km—1.

(Gm(z,z,t,) + %mex(z, 2, t.))y(P)2 — Crn(2, 2, t,)y(P) — Ep(z, 2, t,)

)

(3.176)

(3.177)

(3.178)

(3.179)

(3.180)

(3.181)

(3.182)

In analogy to (3.86) and (3.87) one then introduces (the analogs of) Dirichlet and Neumann

data by

A (5

~ x')tT 7x7t7‘
M](x7tr) - (/’L](x7t7")7 Fm(,u](l’ ) .1 ))) € ,Cm—h
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j=1,....m—1, (x,t,)€C? (3.183)
Cm(Vf(x7tT’)7x7t7‘)

ve(x,t,) = (W<m,t,~), _Gm(yg(x,tr),m,tr) + %Fmvw(yg(a:,tr), x,tr)) € K1,
(=0,...,m—1, (x1t,)¢eC? (3.184)
and hence infers that the divisor ((b(P, T, tr)) of ¢(P,x,t,) is given by
(@(P,2,t1) = Dog(at)ooimr (@itr) (P) = Do s (et ) oofimr () () (3.185)

Next we define the time-dependent BA-function (P, z, zo, t,, o)

xX t'r
(P, x,xg,tr, tor) :exp(/ d:c’¢(P,:c’,tr)+/ ds(FT(z,xo,s)

0 to,r

9 ﬁr,x(za«xO; 3))¢(P7 Zo, 3)

X (¢z(P7 .’L'(),S) + (b(Pa .%'0,8)2) + (é'r(zvm()a S) -
+ (% ﬁnm(z,xo, s) + %ql(:ﬁo, $)Fy(z, o, s) — ém(z, xo, s)))), (3.186)
PeKm1\{Psx}, (z,t)ecC2

with fixed (z¢,t0,) € C2. The following theorem recalls the basic properties of ¢(P, x,t,)
and ¢(Pa x, o, tr, 750,7“)-

Theorem 3.18. Assume (3.169)~(3.173), P = (z,y) € Kpn—1\{Px} and let (2, x, xo, t,, to,)
€ C°. Then

(i) ¢(P,x,t,) satisfies
¢zx(PafEa tr) + 3¢x(P7x>tr) ng(P,:n,tr) + gb(P,:L‘,t,«)g + QI($7tr) QZS(P,iL‘,tT)

=z —qo(z,t,)—271 @z, ty), (3.187)
1, (P, 2, ty) = O0p (F(2,2,1,) (3(P, 2, 4,)* + 62 (P, 2, 1,))
(G2, ty) — 27 Fpa(z,2,t,)) (P2, tr) + He(2,2,). (3.188)

(13) Y(P,x,x0,tr, to,) satisfies
VYaxz (P, 20, to,) + qu(w, t) Ve (P, x, 20, tr, to )
+ (qo(x, t,) + 21 Qz(x,tr) — 2)9(P,x, 0, tr, tor) = 0, (3.189)
Ui, (P, o, try to,) = (Fr(2, 2, t:) (0(P, 2, t,)2 + ¢y (P, t,))
+ (G2, 2,t,) — 27 Fp(2,2,1,)) (P, ty) + He(2, 2, 6) ) (P, 2, 20,y o) (3.190)
(ie., (L — 2)¢ =0, (P — )t =0, ty, = Pp).

(ii1) (P, z,t,) p(P*, z,t,) p(P™, z,t,) = m (3.191)
(1) 6P ) + (" 2,8 + 9P nty) = =B, (3.192)
(0). Y(P) B(P, 2, ) + y(P*) (P*, 2, )

(PSP ) = 3Tm(2) Fn(z,x,t) — 2 Sm(2) A (2, x,t,,). (3.193)

e(m)Dp—1(z,z,t,)
(UZ) ¢(P7x7$07tT7tO,T)¢(P*axaantMtO,T)w(P**vzaIEOatratO,T)
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Dm,1(2,$,tr)
= . 3.194
Dmfl(za-'EOatO,r) ( )
(UZZ) szw(P?x7x07tT7t0,7‘)1/}1‘(P*7$7x07t’r’atO,’I‘)wZ‘(P**amam()at?"at(),r)
Nm 9 7t7”
(2,2, tr) (3.195)

"~ Dpi1(2, 0, toy)

Dp1(z,2,t 1/3 v _
(viit) (P, z, xo, tr, to,) = <Dmm1(12(*,:r0,t(:71)> exp </:m dx'e(m)Dp_1(z, 2, )

X [Fo(z,2 1) y(P)? + A (2,2’ t,) y(P) + ;Fm(z, &' tr) Sm(2)]
- /t "ds <6(m)Dm_1(z,x0,s)_1[Fm(z,xo,s)y(P)2 + An(z,20,8) y(P)

2
+ 5 Fm(za Zo, S) Sm(Z)] X [GT(Z7 Zo, S) -5 FT,:E(Za zo, S)

3 2
1 F,(z, 20, ) F,(z, 0, )
- (Gm(%%o, s) — 5 Fin (2, 20, S)) m} +y(P) W)) (3.196)

Proof. (i). (3.187) follows from (3.170), (3.171) and (3.180). In order to prove (3.188) one
first derives from (3.169)—(3.171) and (3.180) that

[3% +3¢0; + 3(¢2 + ¢z) + Q1] <¢tr — Oy (Fr(¢2 + ¢z) + (ér - %Fr,z)(b + f{T)) =0.

Thus

b1, — 0p(Fr (9 + ¢0) + (Gr — %Fr,z)qﬁ + H,) = C1fi + Cafo, (3.197)

where f;, j = 1,2 are two linearly independent solutions of
(02 43000 +3(6% + ¢2) + a1] f =0

and Cj, j = 1,2 are independent of = (but may depend on P and ¢,). The high-energy
behavior of ¢(P,z,t,) =  O(|z|'/3) (cf. (3.180)) then proves C; = Cy = 0 since the left-

|2|—00
hand side of (3.197) is meromorphic on C,,—1 (and hence especially near Ps).
(ii). (3.189) is clear from (3.186) (¢ = 1/1) and (3.187). (3.190) follows from (3.186) and
(3.188). (iii)—(v) follow as in Lemma 3.7 (ii)—(iv). (3.194) follows from (3.186), (3.192),
and (3.176). (3.195) follows from (3.191) and (3.194). (3.196) follows from (3.186), (3.181),
(3.71), and (3.176). 0

The dynamics of the zeros p1;(x, t,) and vy(x, t,) of Dp—1(2, x,t,) and Ny, (2, z, t,), in analogy
to Lemma 3.8, are then described in terms of Dubrovin-type equations as follows.

Lemma 3.19. Suppose (3.169)—(3.173) and assume that the curve K,,—1 is nonsingular.
(1) Suppose the zeros {pj(x,tr)}j=1,...m—1 of Dm—1(-,x,t,) remain distinct for (z,t,) € Q,
where Q, C C? is open and connected. Then {mj(z, t,)} =1, .m—1 satisfy the system of
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differential equations,
(:L“ tr)? + S (2, tr)))

)

(3y

o (T, tr) = —e(m) Fon(pj(z, ), 2, tr)
M] x t /'Lk(x7t7">)

M.:lE =

j=1,...,m—1, (3.198)
i (s tr) = —e(m) (B (1), 2, 0) (G (), 2 ) = 27 B (g2, 1)
+ By, te), 2, 60) (G (1 (2, 1), 2, 1) — 2_1Fm,x(,uj(x,tr),x,tr))>
By (2,1)) + Sy (. 12)))

m—1 ) jzla"'amily (3199)
T (@ te) = il t)
k=1
k#j
with tnitial conditions
{ﬂj($07 tO,T)}j:L...,m—l S ’Cm—lv (3200)

for some fized (xo,to,) € Qu. The initial value problem (3.199), (3.200) has a unique solution
satisfying

i € C®°(Q, K1), j=1,...,m—1. (3.201)
(1t) Suppose the zeros {v¢(z,t;)}e=0...m—1 of Nm(-,x,t,) remain distinct for (z,t,) € Q,,
where Q, C C? is open and connected. Then {ve(z,tr) }o=0,...m—1 satisfy the system of dif-
ferential equations,

(3y(Af(x7tT>) (Vf(x7t7’)))
—1
H ve(z,ty) — vg(a,ty))
k=9

Viz(x,ty) = —e(m) Jm(ve(z), 2, t,)

Y

0=0,...,m—1, (3.202)
Vi, (str) = =e(m) (T (e, 1), 2, 1) (G (v 1), @, 2) + 27 B (v, 1), 1)
— T welw, )., t) (G (el 1), 0, 10) 4+ 271 P (e, 1), 2,,)) )
o By, 1))* + S (ve(a, 1))

m—1 ) é: Ov"'vm_ 17 (3203)
H (ve(z, ty) — vi(z, ty))
k=0
k2L
with initial conditions
{I}K(xoatO,T‘)}sz,...,m—l € Kmn-1, (3204)

for some fized (xo,t0,) € Q. The initial value problem (3.203), (3.204) has a unique solution
satisfying
Dy ECOO(QV,/Cm_l), £=0,...,m—1. (3.205)

(iii) The initial condition

(g0(,tor), a1(z, to,) = (@) (2), " (), zeC (3.206)
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effects
fj(x,to,) = (@), j=1,...m—1, zeC, (3.207)
(o) =0\ (@), £=0,....m—1, z€C (3.208)

(cf. (3.172)~(5.174)).

Proof. (3.198) and (3.202) are analogous to (3.105) and (3.108). (3.199) follows from (3.176)

and (3.203) follows from (3.177). O
The initial condition
(q0(z,t0,), a1(z,t0,)) = (a5 (@), (2)), @ €R (3.209)
effects
fj(z,to,) =0 (), 1<j<m—1, zeR, (3.210)
D to,) =0\ (x), 0<f<m—1, z€R (3.211)

(ct. (3.172)~(3.174)).

Finally, the trace relations in Lemma 3.9 extend in a one-to-one manner to the present
time-dependent setting by substituting,

(q0(), 1 (x)) — (qo(z, tr), 1 (2, 1)), (3.212)
pi(z) = pi(z,t,), 1<j<m-—1, ve(x) — ve(z,ty), 0<€<m-—1,

keeping {ce}1<i<n, {de}1<i<n as in Lemma 3.9 since K,;,—; is t,-independent.

3.5. Time-Dependent Algebro-Geometric
Solutions of the Boussinesq Hierarchy

In our final and principal section we extend the results of Section 3.3 from the stationary
Bsq hierarchy, to the time-dependent case. In particular, we obtain Riemann theta func-
tion representations for the time-dependent Baker-Akhiezer function and the time-dependent
meromorphic function ¢. We finish this section with the corresponding theta function rep-
resentation for general time-dependent algebro-geometric quasi-periodic Bsq solutions g, ¢1.

We start with the theta function representation of our fundamental object ¢(P, z,t,).

Theorem 3.20. Let P = (z,y) € Km-1\{Px}, (z,2,t,) € C*. Suppose that Dy,,,) and

Dy(xt,) are nonspecial. Then

N _e(g(Poo,g(x,tr)))9(;(13,2(95,@)))ex O (p) Pw(3)
AP = G e o e £ ™ (0~ [ e ) 0219

Proof. The proof carries over ad verbatim from the stationary case, Theorem 3.12. 0

Let wgo)o . 7 =3s+e’, € € {1,2}, s € Ny, be the normalized dsk holomorphic on K,,—1\{Pso},
with a pole of order r at Py,

W (P) =, (70 as P oo, =35+ ¢ € {12}, s€No. (3:214)
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Furthermore, define the normalized dsk

2
0 = Zc (3¢+2)0s) 3€+3+Zd(a) (BC+1)wh) .

=0
r=3s+¢, ¢ €{1,2}, s € Ny, (3.215)
where (cf. (3.3))
(&) ey _ )01 o fore' =1, oo
&) de)y = ; d\ e c. 3.216
(G "y ) {(LdéQ)) for & — 2. 0 ( )
In addition, we define the vector of b-periods of the dsk ﬁgo)o 4
~(2) ~(2 ~(2 ~(2 1 (2 .
U1 = (U7E+)1,17 - ‘7U7§+)1,m71)7 Ur(+)1,j " 2mi ), Qg’o)o,rﬂ’ j=1....m-1
j

r=3s+¢e, ¢ €{1,2}, seNyg. (3.217)
Motivated by the second integrand in (3.186) one defines the function I, (P, z,t,), meromor-
phic on KC,,_1 x C? by
(P, ty) = Fo(z,2,1,) (62 (P.a, 1) + 6(P, 2, 1,)°)
+(Gr(z,2,t) = 27 Fra(z,2,6:))0(P 2, ty) + He(2, 2, 1), (3.218)

for r = 3s+ ¢, ¢ € {1,2}, s € Ng. Denote by I,(P,,t,) the associated homogeneous
quantity replacing FT, GT, H, by the corresponding homogeneous polynomials F s GT, H,.
Theorem 3.21. Let r = 3s + ¢, ¢’ € {1,2}, s € Ny, (z,t,) € C2, and { = 2~ V/3 be the local
coordinate near Ps,. Then

I(P,x,t,) o ("4 0(C) as P — Ps. (3.219)

Proof. One easily verifies (3.219) by direct computation for r = 1 and r = 2. Assume
(3.219) is true with r = 3s + &', ¢/ € {1,2}, s € Ny. Then one may rewrite (3.219) as

I(thr) = ¢ +25 z,4,) 7 as P — Ps, (3.220)
7j=1
for some coefficients {0;(x,t,)}jen. Compare coefficients of ¢ in (3.119) and (3.220) by means
of (3.188) and (3.218) to obtain

1

51,x($7 tT) = —§Q1,t,« (l’, t?‘)> (3221)

1 1
(527.@(%, tr) = 6q1,t7-x(x7 tr) - g%,tr (.T, tr)a (3222)

1 1
03 m(x 3 ) 3(10 trm( tr) - 18(]1 trx:p(x t ) (3223)

From (3.41) one infers

d(w, ) = m(ty) = f5] (2, 1r), (3.224)
da(w,tr) = ya(ty) + 27 5 L (@) = 90 (), (3.225)

83w, t) = 73(tr) — 671 F 51 (@ ty) + 9450 o (2 1), (3.226)



3.5. Time-Dependent Algebro-Geometric Solutions of the Boussinesq Hierarchy 55

where 71 (t,), v2(t,), and y3(t,) are integration constants. Next we note that the coefficients
of the power series for ¢(P,x,t,) in the coordinate ¢ near P, (cf. Lemma 3.10), and the

coeflicients of the homogeneous polynomials F »((, x,t,) and ér(g ,x,tr), (and hence those of

H +((, x,t,)) are differential polynomials in gg and g1, with no arbitrary integration constants
in their construction. From the definition of I, in (3.218) it follows that it also can have
no arbitrary integration constants, and must consist purely of differential polynomials in ¢q
and ¢;. From these considerations it follows that vi(¢,) = 7y2(t;) = v3(tr) = 0. Hence one
concludes

E"(vaatT) CiO C_T - fs+1C + (2 fs(j—%,z(x7t7“) - ggi)l(xvtT)) CQ
+ (355 () — 67 FE) (@) G 4+ O(CY) as P — Pu, (3.227)

where the functions fs6 (z,t,) and gggl)(az,tT) are defined as in (3.3) with (go(z),q1(x))
replaced by (qo(x,t,),q1(x,t,)). We note that one may write

1(z,
Frus(Comty) = COFo(Cte) + 1) (1), (3.225)
with analogous expressions for EJT and ]?( . It follows that
La(Poaty) = (P L(Paty) + > F @ t) (6a(Pate) + 6(Pa, 1,)?)
+ (0 ) = 5 T 1) 6P, 1)

1 ~(c! 2 N
g fa@t) + g t) S @ ) = 95 (). (3.229)
Using Lemma 3.10 and (3.227), (3.229) yields
Lig(Paty) = 70+ 0(C) as P — Pu, (3.230)
and the result follows by induction. O
v (3.18) one infers
I, = ch ) Tega +Zd8 VIser1, r=3s+¢e, & e{1,2},seN,. (3.231)

(=0
Thus,

br ey 1 1
/ I.(P,x,7)dT =, (tr —tor) Z (CQ@M df )543“1) +0(¢) as P — Py. (3.232)

tor & (=0

Furthermore, integrating (3.215) yields

s

P ¢ d et ¢ d
2) _ (") € ) £
/PO Lot = 2: Cs (30+2) /CO g3 T 2 Gst (3¢+1) /Co £30+2

=0 (=

o

(3.233)

s e 1 s p 1 )
=~ Cg—)é o3z ng—)é C3e+1 7("421(130) +0(¢) as P — Pu,
=0 £=0
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where egzl (Py) is a constant that arises from evaluating all the integrals at their lowers limits

Py, and summing accordingly. Combining (3.232) and (3.233) yields

¢—0

tr P _
/ L(Px,s)ds = (1~ o) (e () - / 02 )40 as P Pr. (3:234)
to,r Py '

Given these preparations, the theta function representation of (P, z,zo,t,,to,) reads as
follows.

Theorem 3.22. Assume that the curve K,,—1 is nonsingular. Furthermore, let P = (z,y) €
Kimn—1\{Pxo}, and let (z,t,), (zo,to,) € Qp, where Q, C C? is open and connected. Suppose
also that Dy (g1, and Dy(yy,) are nonspecial for (x,t.) € Q. Then

0(2(P, (@, tr))) 0(2(Poo, f(x0, to,r)))

H(E(Pooa B(aﬁ tr))) 0(§(P> E(;U()a t(],r)))

P P _
X exp ((:c — wo)(egQ)(Po) — /p wl(’ilﬂ) + (t — tr,o)(e,(izl(Po) — /P Qg;}rﬂ)).
’ ’ (3.235)

¢(P,.’L', Zo, tT’; tO,’r’) =

Proof. We present only a proof of the time variation here, and refer the reader to Theorem
3.13 for the argument concerning the space variation. Let ¢(P, z, zo, t,, o) be defined as in
(3.186) and denote the right-hand side of (3.235) by ¥ (P, z, xo, t,, to,). Temporarily assume
that

iz, ty) # wi(x,t,) for j # 5" and (x,t,) € ﬁu C Q. (3.236)

where (NZM is open and connected. In order to prove that ¢ = ¥ one uses (3.181), (3.176), the
time-dependent analog of (3.71), and

Fo(¢ + ) + (G — 27 Fru2)¢ + Hy = v, (3.237)

to compute

I, = Fu(¢g + %) + (G — %ﬁm)qb +H,

1/ ~ - ~ 1~ ~ 1
= Fi (yFr + (Fer - FTHm) + (Fm(Gr - iFr,x) - Fr(Gm - iFm,x))¢)
m
1D 1 ~ ~ 1~ 1
= §DL: + E(yFr + (Fm(Gr - §Fr,x) - Fr(Gm - EFm,I))
2
X (me2 + Any + gFmSm)e(m)D;zl)
2 Fm(ér — %ﬁm& — ﬁr(Gm % ma) (o 9 1! L)k, yﬁr
- 9 (3y + Sm) -5 +
3 e(m)Dy, 3= z—m  Fn
A 7 .
_ Mg tr + yry 4 0(1) _ it + O(l) (3.238)
z2—pj  Fy Z = [

as P — [ij(x,t,). More concisely,

0
I.(P,xg,s) = D5 In(z — pj(xo, s)) for P near fij(xo,t,). (3.239)
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Hence

exp (/t dS(ai In(z — pj(zo,5)) + 0(1))>

tO,r
(z — pj(xo,t))O(1) for P near fi;(xo,t,) # [1j(x0, tor), (3.240)
=40() for P near fi;(xo,t,) = f1;(x0,tor),
(2 = pj(zo, o)) ~rO(1)  for P mear fij(xo,to,) # fij(xo,tr),

where O(1) # 0 in (3.240). Consequently, all zeros and poles of ¥ and ¥ on Kp,—1\{Px}
are simple and coincide. It remains to identify the essential singularity of ¢ and ¥ at P.
By (3.234) we see that the singularities in the exponential terms of ¢ and ¥ coincide. The
uniqueness result in Lemma A.26 for Baker-Akhiezer functions completes the proof that
1 =V on (NZM. The extension of the result from (z,t,) € (NZM to (z,t,) € Q, follows from the
continuity of ap and the hypothesis that Dy, ) is nonspecial for (z,t,) € €. O

The straightening out of the Bsq flows by the Abel map is contained in our next result.

Theorem 3.23. Assume that the curve K,,—1 is nonsingular, and let (z,t,), (o, to,) € C2.

Then
2 ~(2)
ap, (Pates) = 2py (Dateoton) + U (@ — 20) + Uy (tr — to,), (3.241)

and

Ap, (Po(7,tr)) + ap (Dy(a,))
~ ~(2
= Ap, (Do(z0, o)) + ap, (Daag to.)) + UP (@ — o) + Q£+)1(tr —tos). (3.242)

Proof. As in the context of Theorem 3.15, it suffices to prove (3.241). Temporarily assume
that Dy 1) is nonspecial for (z,t,) € Q, C C?, where Q, is open and connected. Introduce
the meromorphic differential
0
Az, zo, tr, tor) = g In(y(-,x,x0,tr, to,))dz. (3.243)
z
From the representation (3.235) one infers

2 o2 3
Q, w0, tr o) = —(z = 20w 5 = (b = t0,)0E) 11 = D @l oy @5 (3:244)

j=1
where w denotes a holomorphic differential on C,,—1, that is, w = Z;”:_ll ejw; for some
ej € C,j=1,...,m—1. Since (-, x,x0,tr,to,) is single-valued on ,,—1, all a and b-
periods of 2 are integer multiples of 27 and hence
2wimg = / Q(z, zo, tr, to,) = / w=eg, j=1....,m—1 (3.245)
ag ag
for some my, € Z. Similarly, for some n € Z,
oming = | Q trotor) = —(z — @t —t o
TN (x7x07 T O,T’) (.CU 1’0) wPCXMZ (7’ OvT) Poso,r+1
by, b by,

k

1 ( ) m—1
Z 3 - 2711 E w
/b ﬂj (mO,tO,r)Jlj ($7t7“) ! mJ A 7
Jj=1 Jj=1 k
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- m—1 cp;(zoto,r)
=—(z— mo)/ wl(’i)oﬂ — (t, — tO,r)/ ngl,r—s-l — 2mi Z / Wk
b by i

=1 g (wtr)

m—1
+ 271 Z m]-/ wj = —2mi(z — x0) U2(,213 —2mi(t, — toy) Uﬁi)l,k
j=1 bk

m—1

+ 27T’L'Odp07k('DB(x7tT)) — QWiaPO,k(DB(xo,to,r)) + 271 Z MGTj ks (3.246)
j=1
where we used (A.36). By symmetry of 7 (see Theorem A.4) this is equivalent to

~(2)
ap (Daean) = ap (Daconon)) + US (@ — 20) + Uy (tr — to ), (3.247)

for (z,t,) € Q. This result extends from (z,t,) € €, to (z,t,) € C? using the continuity of
ap, and the fact that positive nonspecial divisors are dense in the space of positive divisors
(cf. [30], p. 95). O

Our principal result, the theta function representation of the class of time-dependent algebro-
geometric quasi-periodic Bsq solutions now quickly follows from the material prepared thus
far.

Theorem 3.24. Assume that the curve K,,—1 is nonsingular and let (z,t,) € §,,, where
Q, C C? is open and connected. Suppose also that Dii(z,t,) and Dy(y 4,y are nonspecial. Then

qO(x) tT‘) = 38Qg2)8x 111(9(1(130079(957 tr)))) + (3/2)w7 (3'248)

q1(2,t) = 302In(0(2(Pes, fi(,1,)))) + 3u, (3.249)
where u and w are defined by (3.152) and (3.153), respectively, and 3U(2) denotes the direc-
Y3

tional derivative introduced in (3.160).

Proof. The proof carries over ad verbatim from the stationary case, Theorem 3.16. O



Chapter 4

Halphen potentials

4.1. Halphen potentials associated with the Bsq
hierarchy

In this section we study in detail Halphen potentials
a1(2) =hy— g(g+Dp(x), hy€C, geN, g#2 (mod 3). (4.1)

and the associated linear third-order differential equation

Y (z,2) + (g — 9l9 +2) () ¥ (2,2) — (3 99+ D9/ (@) +2) oz =0, (42)

z€C, hyeC, g#2 (mod 3).

Here p(x) = p(x,w1,ws) denotes the elliptic Weierstrass function with fundamental periods
2wi,2ws, and invariants gs, g3, (see, e.g., [1]). The potentials (4.1) were introduced by
Halphen [52, Ch. IV, p. 179] in the case hy = 0,92 =0, (9 =n —1).

From the work of Segal and Wilson [86] one may obtain that solutions of L3y = 21 are
necessarily meromorphic if the coefficients of L3 are algebro-geometric potentials. That this
condition is also sufficient for elliptic algebro-geometric solutions of the KdV hierarchy was
recently proven by Gesztesy and Weikard in [45] (see also [43], [46]).

Theorem 4.1. Let g be an elliptic function. Then q is an elliptic algebro-geometric KdV
potential if and only if the equation y"(x)+q(z)y(z) = Zy(x) has a meromorphic fundamental
system of solutions with respect to x for all values of the spectral parameter zZ € C.

Recently Weikard [92] (cf. [91]) proved an analogous theorem for the entire Gelfand-Dickii
hierarchy for rational and simply periodic algebro-geometric potentials. It is assumed that
this is also true for elliptic algebro-geometric potentials.

Since we expect that (4.2) will lead to algebro-geometric Bsq potentials only when the fun-
damental system is meromorphic, we investigate when (4.2) possesses a meromorphic funda-
mental system around x = 0. We distinguish two cases.
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(i) g2 =0,hy = 0. If go = 0 the Laurent series ([1], p. 656) for p(x) reduces to

p(x) = 1 (1 + i 03m:v6m>. (4.3)
m=1

2

According to the theory of Fuchs, z = 0 is a regular singular point of (4.2). By the method
of Frobenius (see, e.g., [56])

P(z,x) = Z rext, 1o € C\ {0} (4.4)

then yields from the indicial equation p = —g, 1, (g + 2). This directly leads to the following
three linear independent meromorphic solutions

Gz ) =Y eI vy = rag =0, (4.5)
=0
raps — zr3e + g(g + 2) Z[ (e 1)/2] (g+ 30+ 4 —3m)c3mr3es3—6m leN
368 = (3e+3>(3e+g+4)(3e+2g+5> ’ 0
) = waeﬂv r3e41 = 3oz = 0, (4.6)
(
. _ ATyt g9(g+2) Z[ /23 (L +1—m)c3mT3r+3—6m /eN
B8 (3€+3)(3€—|—g+4)(3€—g+2) ’ 0
ds(z,x) = re'™9, rapsn =r3ep2 =0, (4.7)
(=0
_ erutglg+2) SL (3042 — g = 3m)esnrariaom
T304+3 = ¢ € Ny,

(304+3)(30 —g+2)(3¢ —2g+ 1) ’
(where [s] denotes the integer part of s € R.) Note that the denominators in the coefficients
r30+3 in (4.6) and (4.7) can not become zero since g # 2 (mod 3). Thus we have proven that
(4.2) possesses a meromorphic fundamental systems, whenever g» = 0, hy = 0.

Remark 4.2. Halphen studied invariants of X™ + Y™ = ZP, m,n,p € N and applied

this to differential equations to prove the meromorphy of their fundamental systems. In
3

the case of equation (4.2) this polynomial reads h® = A% + B with h3 = % p(x)3, 0 =

—g(g;r2)) o (z), A = _g(ZH)?B _ (_91(%;2))3 gs.

(ii) If go # 0, direct computations show that meromorphic fundamental systems exist for
the following six cases (cf. Example 1-4)

g=1, h1 =0,

g =3, h3 =+£24/3g2,

g=4, hy =0,

g =6, h6:i§\/@. (4.8)

In general however, if g > 7 and g # 0, a constant hy € C does not exist such that the
fundamental system is meromorphic for arbitrary spectral parameters z € C.
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Setting o(z, x) = > 50, reoxt™! yields, for ry4q 2 being finite, the condition

[(g+1)/2]
0=z2rg 00— ghgrg12+9(9+2) Y, (9+1—m)cnrgrioma. (4.9)

m=2
The solution of this equation for hy will in general always contain a term dependent of z if
g=>T.

Remark 4.3. Let ¢1(z,z) be a solution of

" (2, 1) + q1(2) Y (2, 7) + (% q1z(x) — z)d;(z,x) =0, zeC, (4.10)
and define 1 (z,x) by ¥1(z, @) = Y1 (—2,2). Then o(z,x) given by
* '92}1(2733,)

Yoz, ) = YP1(2, ) dx’ (4.11)

¥i(z,2')
yields a second linearly independent solution of (4.10). It is well known (cf. Ince [56], p
122, or [38]) that the third linearly independent solution can be represented as

Pa(z, ") P1(z,2")
vl ~ize) W (1, ¥1;2')? Wlon, vr P+ v2(5:0) W (1, Y15 2)?

where W (f,g;2) = fgz — fzg denotes the Wronskian of f and g.

Note that if z = 0 (4.10) reduces to the well known third order differential equation which
s fulfilled by the product of two solutions of a second order differential equation of the type
y'(z) +q(z)y(x) = Zy(z), (see, e.g., [31], Part III, Chapt. V, Section 71, Ex. 1, or [54], p
511, equation (3.15).)

sda’, (4.12)

According to a theorem of Picard ([78], [79], [80], see also [55], [2], p. 182-187, [56], p. 375~
376) a differential equation with doubly-periodic coefficients and a meromorphic fundamental
system possesses solutions which are in general elliptic of the second kind. Since there exists
at least one solution which is elliptic of the second kind and every elliptic function can be
expressed in terms of ¢ functions, we write

Yo(z, ) = ere(2)z ﬁ M, a(z) = (a1(2),...,a4(2)), (4.13)
U o wota,@)

which yields

1
Ya

= (29° + 9)p! (A —ZC@;)

( 7+ (g 9lo + 2)p()) ¥~ Wmm)
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g
+hg+32p(ag—aj)>+cl—z, cg€C
=
if and only if
5
(2 :
2=(g" =59+ 1) ¢),
J=1
g
Ag = ZC(CLJ)’
j=1
g
hy = (2-20) > play),
j=1
g
0=3( D" Clar—aj) +96(a)) = ha) +(2-20) D plar)
=1
t#y

In order to derive (4.14) we used

AN AN A (1%)(
%‘(wa) +(wa) 3

0 g
o=t > iz —a) — g¢(x),
a j=1

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

)+ gClag) = Ao, (4.22)
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/ g
o) (452) = 5 2 0/0) + X plar)cla) + §o'a)
@ j=1 j=1
(@)X = D0 Ca)] = ¢@) Y play) + D ¢ — ay)play), (4.23)
Jj=1 Jj=1 j=1
N\’ 3 / 2 -
(2) = G o't + oot [ra - ) (4.24)
g
~ 39¢(a) ([Aa SMNIDIETHS p(dg))
J=1 j=1
39— ay) =3 e — ag) [ D Cloe — a) + g¢las) — Al
=
9 9 9 g
+3) ((x—aj) ([ZC(CM — a;) + g¢(a;) — /\a} +g9(a;) + Y plar— ag)>
= 7 7
2 419 g g g
WIS )+ = Do cta)] + 60D 0las) [~ D clay)
7j=1 7=1 7j=1 7j=1
+ 32 ¢(aj) < Z C(ag — a;) + g¢(ay) )‘ar + gp(a;) + Z plag — a]))
=1 =

Remark 4.4. The transformation a — —a (i.e., aj — —aj, 1 < j < g)in (4.13) yields a
solution of Lsp_q = —z1_,. By Remark 4.3 this yields two further solutions of (4.2).

4.1.1. The equiharmonic case go = 0,hy; = 0. In the equiharmonic case, where g =

0, hg = 0, the two other solutions of (4.2) can be obtained in the following way.
We start with

Remark 4.5. Given ¢'(v) = z,z # 0 there exist 8 different points vj,j = 1,2,3 with
o (vj) = z and vi + v +v3 = 0. Assume ¢'(vj) = ¢'(vi),v; # vk, j, k=1,2,3. Then

_ — o(vs) — L9 (w) = ¢'()\
p(v2) = p(—v3 — v1) = —p(vs) — p(v1) + < (0s) — plon) ) . (4.25)

This implies
p(v1) + p(v2) + p(v3) =0 and ((v1) + ((v2) + ((v3) = 0. (4.26)
Now

2 R .
0" (v)) = 49%(v)) — g2p(vj) — g3, j=1,2,3 (4.27)
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yields
g . .
ZZ = 5)2(2}]')+p(vj)p(vk)+92(vk)a .77k: 1,2,3 j #k (428)
From that we conclude that for go =0
: 1. V3
o(2) = plvi)as,  plvs) = pvr)od,  az == 2 piE (429)
It follows that vo = az vy and vy = a% 1.
We define
Q,ba,l(za LE) = dja(al,la cee 7ag,1) Z, CC),
wa,Q(zax) = ¢a(a1,27"'aag,27zv$)7 (430)
Ya3(2, ) = Ye(ars,...,a93,2,2),

where ¢ (a;1) = ¢'(aj2) = ¢'(aj3), ajr=a5 taj, £=1,2,3, 1<j<g.
One immediately recognizes that the conditions (4.15)-(4.17) are fulfilled if go» = 0,hy = 0
and hence v, (2, x), k = 1,2, 3 are solutions of (4.2).

The product Dy(z,x) = 14,1(2, &) Ya2(z, T) wa 3(z,z) of all three solutions then reads

(2,
o(z —a;2(2)) ﬁ oz —a;3(2))

1 o(2)alaja(2)) 5 o(w)o(a;s(2))

S
Q
—~~
N

8
~

I

<.
I
_

I
—<
SR
—~
8
|
S
<
=
| /-\’\
N
~— [ —

<.
Il
—

(4.31)

I
—
[N
—
%\
—
8
S~—
|
%\
—
Q
Y
—
N—
SN—

<.
Il
—

The Wronskian W (4,1, %aq,2,%q,3) is given by
(z x)( 2,2 1/151/,3 3‘/’ al g,z

- -
%,2 ¢a,3 Q;Z)a 3 '(Zja 1 1/’(1,1 T;Z)a,Z

! ) //1 ! L /3 / 5 //2
a a a a a a
- — = — ! = ). (4.32)
wa,Q Q;Z)a,l wa,l wa,B ¢a,3 wa,Q)

W (a1, Va2, %a3) = D

With

/
Vag _ 1 Z AORSACH PP (4.33)
a.j p(x) (am) ’ o

and
//

/
g o (x) + ¢ aek)@(l’)ﬂL@(asvk)’ k=123, (4.34)

Vo 2 2 o) — plark) o) — plasy)

I<s
we may evaluate W (1q1,%q,2,%a,3) at £ = a;1 since it is independent of z. This yields

g
W (a1, %a2,%a3) = —-p(aj1) H o' (a;1) — ¢'(ar1))

=1

t#j
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< @,(aj,l) + @/(CLZ,Q) p’(aﬂ) + p/(as72)
[e§1< plaj1) —plae2) p(aji) — plasz2)
l<s

_ 9'(a51) + 9'(ars) p'(a)1) + 9'(as,3)
plaj1) — p(ae 5) ©(aj1) — p(as3) ) (4.35)

(Z o'( + ' (ay, 1)) (Z )+ ¢ (ae3) @'(%1) + p'(am))]'
Z#J »

placs) 7\ = ay,l —plaes)  plaji) — plars)

Note that

2 2

¢ (2)° — p'(v)
p(x) —p(v)
and hence all remaining fractions in(4.35) will cancel out. Thus ¢, 1(2, ), ¥e2(2, ), ¥e,3(2, )
will not form a fundamental system when one of the values p(a;;1) =0, 1 < j < g. In this
case we can apply either Remark 4.3 or the results from Subsection 4.1.2 to obtain a funda-
mental system.

= 4(p(2)* + p(2)p(v) + p(v)%), (92 =0) (4.36)

Remark 4.6. Halphen used the following ansatz

dxz)

g—1 S~
P(z,x) = e Z aj(z, 2, ’U)M (4.37)

to solve (4.2), where ¢(Z,x), which he called “élément simple”, is a solution of
¢ — (2p(z) + 2)p = 0. (4.38)

An extended version of this ansatz was used by Eilbeck and Enol’skii [26] to compute a
solution in the case g = 3,(g2 = 0,hs = 0) and by Enol’skii and Kostov [28] in the case

g=4,(g2 =0,hy = 0), (cf. [35]).

4.1.2. Reduction of the order of the differential equation. Here we shortly discuss
the well known process of the reduction of the order of a differential equation when one
solution is known and apply it to Halphen’s equation.

Having determined the solution 1, (z,z) = ¥1(z,x), we now consider the reduced equation
(d’> Alembert’s method) setting

ia(ea) = v(esm) [ ute )i (4:39)
This yields
”+3ZZ u' + (3 ¢—Z+q1) =0. (4.40)

Picard’s Theorem applies again and hence we write

_ o [ 2 b @),
e

wy(z, = (b1(2),...,bg(2)).  (4.41)

Jj=1
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A similar analysis as before yields

1 w//
+3—“ up + (3
ub( i ( ¢a

g
= ctglle (Ab+ZC )=2> " lay))
j=1 j=1
+ZC($—CL]')<2
l

+ Q1)ub)

Q

= 4]
g g
+) (e —by) <QZC(bj —be) = gG(bs) + 2X + 3Xa
j=1 /=1
C#£]

g
—Zg(bj—ag)> =0, ceC.
/=1

Equation (4.42) is fulfilled if and only if the following conditions hold
g g
= ZC(bj) - 22((%),

0—2Z< = ag) — gClag) — A — Zc —by), 1<j<g,

4#]‘
g9 g
0=2 (b —be) — gC(bs) + 20 +3Xa — > _C(bj —ag), 1<j <y,
P =1
(#j

— )Y plar) =Y o(be)
/=1 /=1

¢(a; — ar) — g¢(a;) Ab—ZC —be>
1

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

The second solution uy of (4.40) can be obtained either by the transformation a — —a,b —

-b, (ie., aj = —a;,b;j — —bj, 1 < j <g), or by

x 1
ws(s,2) = w(z,3) [ w2 )R )

dz’.

4.2. Examples

4.2.1. Example 1. g = 1.

Differential expressions

d3 d

L - _ R |
d2

Py = Pl 2p(x)

Curve

(4.47)

(4.48)
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Elliptic solutions of the second kind
waj(z I’) _ 0'(:[) - CLLj(Z)) emC(aLj),
’ o(z)o(ar (=
z2=—zp(a1j) 2#0, j=1,2,3
Product of solutions
Fy(z,xz) =1, Ga(z,z) =0, (4.49)
1, 1, 2
Diea) =245 ¢/@),  Malen) = (s - 5 0@)" (4.50)
z— 3¢/ (z)
bi(z,0) = —222 4.51
J( ) Yy — [{J(QS‘) ( )
Y tyie(r) + @) - ¢ (452)
z+ 5 ¢/(2) '
_ 1. 2
S ik LS S P P Y (4.53)
(2 = 53¢ (@))y; — p()(z — 3 ¢'(2))
where y;, 1 < j <3 denote the roots of (4.48).
4.2.2. Example 2. g = 3.
Differential expressions
d? d 15
Ly=— + (2 -1 — -
b= V- 150) 2 - ),
d* V392 d? , d 5
Py = — =2 — 1 — —ga).
1=+ (5 p(r)) 7—5 =209/ ()= + (10 /392 () — 5 92)
Curve
375 225
.%@w%=f+y(—jg@2——fv&7%+7v&h2>+——ff+
2625 3 3375 5, 1505 3 5 55
= — 24 =0. 4.54
o V3s et ot 5 VB S e -2 =0 (4.54)
Product of solutions
5
Fy(z,z) = (- 3 V392 — 5 p(z)), Gi(z,z) = z, (4.55)

5 1025 3 25
Ds3(z,z) = 2° + 3 o (x) 22 + 2 <W V3493 + VRL + 10092 p(x)

125 3 125
— 50 3@p@P—2mp@F)+7;v§ﬁpmw+7;%p%m
+ 25092 p(2) ¢’ (z) + 375 /392 p(2)*¢ (z) + 500 p(z)*¢' (z),

1145 2 135
Ny(z,z) = 2 —5 p/($)23 + 22 <W \/3922 —40g3 + —— g2 p()

4
75 - 3 675
— 90 3mgww2+2ﬂmﬂwf)+Z(?*v§g§p%w%—7rg3ﬁ@ﬂ
3 3375
~ 900g2(x) ) () — 450 /B p(a)?6/ (@) + 2 VBaias + o0 g3
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375 5 3375 3375
+ 16 V343 p(x) + 16 92939 () — 5 392 g3 p(x)* — 6750 ga p(x)*

7125 330375
(T g 4+ 28

93) ()3 + 6750 /32 p(z)® + 27000 p(x)°, (4.56)

¢j(z,z) = (yj (z 0 p’(x)) + E go z + 20 \/@z p(x) — 202@(3:)2 — % go ¢ ()

2 12 3
5
— 50 v/3g2 p(x)p' (x) — 150 p(:v)%’(fﬁ)) (yj (- 3 V392~ 5p(x))
25 ~ 3 925 25 .
+24+ 7 V393 + = 95— = g2 0(a) = 50+/3g g(a)? - 10()@(:5)3) (4.57)
_ ! 25 /3g (BB B2 B
= Dalea) (yj (3 392 +5p(x)) + yj ( 5 V393 + LBt 90()
275 875
—50+/3¢2 p(a:)2 — 100 p(a:)3> + 5 go 22— - 39293 p(x) +5 22 p(:c)2
1625 70 1125 3 1875
-3 95 p(x) + < V302 o) - —— V393 p(x)? — — 93 0()’
5 , 100 ) 100 )
+ 250 g2 p()” + 1750 /392 p(x)" + 5 9270 (z) — 5 V3022 p(r) o' (x)
1375 5 4375
— 200z p(x)? ¢ (z) — a8 V393 — g 9295+ 3000 p(l‘)5> (4.58)
5 175 20
= Ny(z,z) (Z/j2 (= — 5 o' (2)) + yj < — 15 RT3V 392 2 p(x) + 20 2 p(z)?
+§’ 50 /3 ! 150 2 E3—5 3
g 92 (z) + g2 () ©'(x) + 150 p(x)” ©'(x) ) + ( 5 V392 p(r))z
725 125 8 675
+ YR 9% Z = e \/5922 z @(95) + e g3z @(fﬂ) —200g2 2 @(@2 — 600 z @(@4
125 40 1375 3 25
+ g B @) = 5 VB2t (n) — == V3g3 p(a) ¢ (@) + 5 2% p(x) ¢/ (2)
3375
~5 93 () p’(m) + 1875 /392 go(m)g p’(a:) —150+/3¢2 2 p(x)?’
-1
FB00p) ) L 1<5< (459)

where y;, 1 < j < 3 denote the roots of (4.54).

Elliptic solution of the second kind

3 (s
uler) = O [T ZE— B a(e) = (@12, (),

j=1

°= g(p’(al) + ¢/ (a2) + ¢/ (a3)),

Ao = ((a1) + ¢((a2) + ¢(a3),
2¢/3g2 = —4(p(a1) + p(az) + p(a3z)),
3

0=-7> p(a) — 9p(a;)

/=1
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=\ plar) — — plar) — ol
i [
Series solutions
3
== LT+ 0¥,
_ V392 3z 13 . .
R T 213: +ryox’ + 1260\/@21: +0(z7), r4p €C,
w \/ﬁ 1 z \/m ZJ;2
3 x3 4 15 60
‘/W D g3 22 e (7“43 92) 4 5
224~ 360 =2 0 c.
+< 12 " 221 360 o1 Tsa) FT T (°), Ta3 €
To obtain the results for the case h3 = —2./3g2 simply replace J7 by —yg in all

expressions above.

4.2.3. Example 3. g = 4.

Differential expressions

3 d ,
— 2 p(z) —— - 120/ (a),

Ly = da3 dx

P :—5—40 (a:)d—3—60 ’(a:)d—2+(38 + 40 (a;)2)i+160 (z)p/ ()

5= 15 £ a3 & d22 92 & dr P\T) 6 .
Curve

Fulz,y) =9° — 25+ 208 g3 25 +y (3136 g2 g3 — 44 g2 z2)
— 3136 (g2° +4g3%) z=0. (4.60)
Elliptic solution of the second kind
4
1) = e)\a(z)ac (JZ — CLJ(Z))
pals ) IEeEmEn
z=1(p'(a1) + ¢(az2) + ¢'(a3) + ¢ (as)),
Ao = ((a1) + ((a2) + ((az) + ((as),
0 = (p(a1) + p(az) + p(as) + p(as)),

4 2 4 2
18@((13'):12(@(6@%) i(Z 0) + ¢ ij))) C1<j<A4

p(ar) — p(a;)

Series solutions

¥ =25 + i339 + O(mlo),

312

by =1 — ot — P25 g yab L @’ +0(2%), 52 €C

2 48 15 52 77 3168 1582 =
1 z 1 3

71)3: +7i_£+7«5’31‘+0($2), r5,3 € C.

42 x 20
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4.2.4. Example 4. g = 6.

Differential expressions

Ly= dd ( Y 3 — 48 (e )di—m()

dx
5 4

d7 4 d , d
Pr=——+ (330 = 120(2)) 7— = 2800/ ()
316g, 160 0\ d° )
+( 3 +? 3 g2 p(x) + 1120 p(x) )m—i-(SO 3929 ()

28
+ 6720 p(x) p/(az)) y e (3333 V322 + 23030 g5 + 5614 g2 p()

d
+ 30380 /3 g2 p(z)% — 150920 p(x)3> =
| 512
= (19 go — T70+/3 go p(a:)) o ().

Curve

1172432
Fe(z,y) = y3 — 2T+ (T \f922 + 299293)

_(389275254016 5 w\@gﬁ%mgmm@g?) 3

153789 9 3087
20521280 308472947200 .
9 g _ 221280 g o SUSAIZIAIAN o T
+( 63922 020 9 7t T mag V39
9295472 14301619200 , 41817600 )
——— /39293 ) Yy

2 —
V392932 + 2201 92”93 + 7

7
(791904252620800 VGad . TT133027840000
17294403 92 117649 92 93
A6AT27552
W V3 a7 g32 + 1003622400 g3 ) 2 =0. (4.61)

Elliptic solution of the second kind

6
H (z — ay a(z) = (a1(2), -, a6(2)),

%(Z,ff):
z = 22(p'(a1) + (az)+@(a3)+@(a4)+@( 5) + ¢ (a6)),
Ao = ((a1) + C(az) + ¢(a3) + ¢(as) + ¢((as) + ((as),

2 VB = ~10(p(en) + pl02) + plag) + plar) + plas) + plas)),

Series solutions

P =28+ 0(3:10),
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Y2=a \/;Exg - &ﬁ N 1419%2 o= 6;092 a
(9;230 1;,2220\[ 92% = g1 >”” 120”4+ 0(°), 172 € C,
¢3:i+%\/3* : +1§21_§4g§xl2+1f55@2i+6§;6
13%0 \[92 - 7 +rr3x+O(x 2, r73 € C.
To obtain the results for the case hg = —% 3ge simply replace (/g2 by —,/g2 in all

expressions above.

Remark 4.7. If go = 0, all curves above degenerate into cyclic coverings of the line (see,
e.g., [70]), i.e.,

Fy(z:y) = 4> = Tyra(2) = 0. (4.62)
4.2.5. Example 5. ¢ =7.
d? d 63,
L3 = - + (h7 — 63 p(x)) — 5 (7).

Series solutions
Y1 = 2° + O(x).

The ansatz

o)

i1
Py = Z rjow’t

=0
leads to the condition

0 = 54054000 g2 + (55296 2% — 49420800 g3) h7 — 1801800 g h7* + 3575 h7*

for rg 2 being finite. This equation does not have a solution h7 which is independent of z if
g2 # 0.

Remark 4.8. This result does not imply that there exist no commuting pairs of differential
expressions (Ls, Pr) with elliptic coefficients, where go # 0. For example, choose in (3.1)

for the coefficients (q1(x), qo(x)) one of the pairs {(—6 p(z),3 ¢'(z)), (=18 p(x), £15 ¢'(x)),
(=12 p(x), 6 ¢'(z))}. Then there exist corresponding differential expressions P; such that
the commutator [Ls, P;] = 0.

4.3. The rational limit w; — 0o, w3 — 00
In the limiting case, where the half-periods w; — 00,ws — 00, equation (4.2) degenerates
into

" 2 / 2
0" () = S D iz gy 4 (SOED)

2z€C, geN, g#2 (mod 3).

— 2)(z,z) =0, (4.63)
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According to the theory of Fuchs, x = 0 is a regular singular point of (4.63). By the method
of Frobenius

U(z,x) =P ra’, 1o #0 (4.64)
=0

then yields from the indicial equation p = —g, 1, (g + 2). This directly leads to the following
three linear independent meromorphic solutions

Yi(z,x) =Y r™I ey =rgpy0 =0, (4.65)
=0
VAT
= teN
TS T B0 3) 30+ g+ )30+ 29 +5) o
Yoz, ) =Y rex'™, raeiy = rape =0, (4.66)
(=0
ZT3p
= teN
S T B3B3l g+ Bl —g+2) 0
Ys(z,x) =Y re'™9, rapn =12 =0, (4.67)
=0
e ¢ €N

B T 3 3) (30— g+ 2)(30 — 29 + 1)

Note that the denominators in the coefficients r3¢43 in (4.66) and (4.67) can not become zero
since g # 2 (mod 3). Thus (4.63) possesses a meromorphic fundamental system. By another
theorem of Halphen [51], [56, p. 272-275] the general solution of (4.63) must therefore have
the following form

3

Y(z, ) = j;cjg;ge@ , (4.68)

where ¢;,3; € C,j = 1,2,3 and py (x),7 = 1,2,3 are polynomials of degree g. Equation

(4.63) is invariant under the transformation z — ofkz,j = 1,2,3, k = A8 g = 2mi/3,
which finally yields the general solution of (4.63)
2 ijg(agk;x) odkz ~ . ~ ~0
U(z,x) = Z s ¢ El py(Z) = ngx , (4.69)
j=1 =0
~ (690 +11g — 302 — 90 — 6 — 2¢*)Fpy0 +3(g — £ — 1)Fpyq
Torg = ,
o (+3)(l—g+2)((—29+1)

0=0,...,9—3, T1=—Tg, To="0/2.

Remark 4.9. Halphen solved equation (4.63) by using a Darbouz-type transformation ex-
pressing a solution v corresponding to g + 3 in terms of a solution ¥ for g, i.e.,

gy 20 ?;)2(9 Dy QeI g

3

29 +3
Q/ngL?»:ng_ -
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4.3.1. Examples. Rational Bsq potentials. We abbreviate y; = wjy, 1<5<3, wy =
j 3
exp(27i/3).
(i). r=2 (genus g =1):
d 3 d 3 2 2
Ly = — — P 4.71
PT da3  22dx | 23 2T dx2 22 (4.71)
Filzy) =y® —2* =0, (4.72)
FQ(Z,.’E) - 17 G2(zam) - 07 (473)
1 2 1
Dl(z,x):z—ﬁ, Ng(z,x)—ZQ—i—gz—i— 5 (4.74)
2+ %
bj(z,x) = ( fj) (4.75)
Yi — 22
2 1 1
_ Y Y T g (4.76)
z2— % '
I3
(z+ %) .
-, 1<j<3 (4.77)
(Z‘i‘x:s)y] 2(Z+x3)
(ii). » =4 (genus g = 3):
@ 15 d 15 dt 20 4> 40 d
.= % _156d 15 _¢ e 24 4.78
BT A 22dx 23 Tt dat 22d2?2 B da (4.78)
Fa(zy) =y® — 2" =0, (4.79)
)
Fy(z,x) = — 3 Gy(z,z) = 2z, (4.80)
) 200 1000
Dg,(z,x)—zv?’—ﬁz2 6 ET 0
10 225 27000
N4(Z,x) —Z + 3+F22+W, (481)
(z + *3) yi+ (3P — 2 2)
oi(z,x) = z 2 = (4.82)
’ —w ¥ — (5% —2%)
_ 2ty + (@ + P e+ ) L83
- 23_%z2 20602_% (4.83)
B A + 0,3 4 2:5265 221 2;990
(z+x%)y]2~+(202—@)yg (;)2234‘;224‘6%]24‘%)7
1<j<3. (4.84)
(iii). » =5 (genus g = 4):
I & 24d 24
PTdad 22dx | 23
p_ @ 404 1204 40d 320 (4.85)
T A 22dad | 2 da? | 2tdr 2 )
f4(2’,y) = y3 - 25 = 07 (486)
56
F5(z,x) = 2, Gs(z,z) = — (4.87)

z?
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8 224 12544 175616
4 3 52
Dy(z,z) = 2 I I T
16 A 960 5 17920 , 200704 11239424
Ns(z,z) = 2° —l— — 2"+ 64 T AT AT (4.88)
bi(2,7) = —Byi+ (23 + &2 4 Bl - 1250 (4.89)
i\&H L) = -
(5 )
Zyjz+(832_@)y]+x§423+4;177822_3:7£§2 _7096214364 (190
24 _ x% 23 _ 224 22+ 1215944 Z+ 175616 :
_ 45 _|_ 6 4 4 5;660 z3 17959920 52 _ 2025)704 ”_ 112;,1%424
%ng (B 1%22 T 1264 12544)% i (;728 A 64 23+ %zg i 100352 Z+ 282?§56)7

4 <j<3. (4.91)



Chapter 5

On The Asymptotics

Of A Diagonal Green’s
Function

For almost any z € C let {¢(z,z)}3_, be a fundamental system for the differential equation
La(z,x) = z(z, x). (5.1)
Define the on diagonal Green’s function G(z,z) = G(z,z,2)|,—s to be
W) (2,2 (2, 0)
W (1,2, 93)(2)

Lemma 5.1. The diagonal Green’s function (5.2) satisfies a linear differential equation of
order eight.

G(z,x) = (5.2)

Proof. We first recall that the Wronskian in the denominator of (5.2) is a constant, and
can henceforth be ignored in the pursuit of a linear differential equation. Define W; =

Qp?d’&az - 1/12,1;1#3, Wo = ¢1¢3,m - ¢1,x:c¢37 and W3 = 1/)2,:1:1/}1,9% - Q;Z)2,mc1/)1,x- Observe that

repeated use of (3.28) and (5.1) enables one to express the derivatives of order three and

higher of 1,W, as linear combinations of terms of the form wy‘ )Wl(k), 0 < j, k < 2. This linear
system can be solved to obtain a linear eighth order differential equation for G(z, x). O

Remark 5.2. We do not provide the reader with this differential equation due to the com-
plexity of its coefficients.
The linear differential equation for G(z,z) in the special case go(z) = 0 reads

ql,x (l’) GI$$$$CE$I(27 .ZC) - qu(x) Gx;m’za::va:(zu x) + 6 q1 (.%') q1,:v($) G;r:czx:vz(zu $)

+ (24 QLx(fL')Q -6 q1 (SL‘) q1,x:c(37)) Gxx:t:c:r:(zv 33) + (9 q1 (-T)Q Q1,z($)

+ 4729 q1,x($) qdl,xx (x))G:w::rx(Zy -T) + (48 q1 ("L‘) q1,x(l‘)2 -9 q1 (l‘)Q q1,mc($)

49
9 QI,xw(x>242 q1,2(7) ql’mx(x))me(z, ) + (27 2 q1z(7) + 4Q1($)3 q1,:()
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189 41 35
+ T q1,x($)3 + ? C]l(fb”) q1,x(l‘) Q1,m(33) - 9 q1,:):x($) q1,xx:p(x)
+ 24 QLx(x) q1,x:ca:a:($))ze(Z’ x) + (18 q1 (15)2 qu(x)Z - 27 2:2 q1,xz(x)

203 41

—4 q1 (x)S (11,m($) + T q17x($)2 q1,:c:(;(-r) - ? q1 (!T) q1,xx($)2

51 13 15
+ ? q1 (J)) q1,:p(x) q1,zmx(x) - 3 C]1,m($) q1,x:1::m:(x) + ? Q1,m(l‘) q1,:m:xzm($))Gm(Za .%')

35
+ (10 q1 (LL’) q1,x(x)3 + ? qu(UC)Q quz(ﬂ?) -9 q1 ({L‘) q1,xac(x) qum(CL‘)
+ 5 q1 ((L’) q1,ac(x) q1,xa:aca:($) - Q1,m($) q1,acac:cxw(x) + q1,a:($) q1,xzacaca:x(x))G(x) = 07
qo(x) = 0. (5.3)

Lemma 5.3. The diagonal Green’s function (5.2) is of the form

_FT(Zv x) y(z) + AT(Zv x)
3y(2)2 + S-(2) ’

G(z,x) =

Proof. Straight forward but lengthy. (Hint: write the Wronskian in terms of ¢). g

Corollary 5.4. F,(z,x) and A,(z,x) are both solutions of the linear differential equation of
Lemma 5.1.

Proof. This follows by equating coefficients on y in the differential equation. Direct compu-
tation via symbolic mathematics software also verifies this result immediately. g

Theorem 5.5. The diagonal Green’s function (5.2) satisfies the fourth order non-linear
differential equation:

108 (4G +4q1 G* —3G2 +4GGa)’ (2 — qo)?
+(—16+48¢1 G* +32¢; G* —60q1 G2 — T2¢1 G G2 + 601, G G,
+36q1 1,0 G* Go =631, G5 — 1247, G + 1201 G Gy
+ 12047 G Gap — 421 G2 Gag + 96 q1,0 G Gy Gow + 12G2,
+84q1GG2, — 4GS, + 241,40 G® +24q1 @152 G — 181 22 G G2
+ 24 G102 G° Goz — 24 G4 Gapg — 481 G Gy Gy — 24 1,0 G* Gaa
+12 Gy Gop Gor — 12G Gy + 24 G Ggre + 2441 G? G
— 18 G2 G + 24 G Gy Grnn)” = 0. (5.5)

Proof. The Green’s function on the diagonal reads

_ W(¢1,¢2)¢3 _ *
G(Z,.’IJ) - W(w17w27w3) - ¢3¢3> (56)
where

_W(wla ¢27 Tr[)S) .
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Define
ap = Y3, ar = ag = 3, az = ay = ag = 5, (5.8)
and
bo=v5  bi=0h=v5,  b=b =0 =v5 (5.9)
Then
ay = Y5 = —qi5 — (%fh,x +qo— 2)s, by =1y = —quiby — (%(h,x —qo+2)¢¥3. (5.10)
This yields the following system of equations for G(z, x)

G = agbo,
Gy = a1by + apby,
G = agbg + 2 a1b1 + agbo,
Gazz = 3a2b1 +3a1bs — 1Gy — q1 .G,

7
Ga:mcx = _ql,CCIG - 5 quCC - q1Gxx -6 Q1a1b1 +6 a2b2 +3 (QO - Z)(albO - aObl)’
—1 =Gy —3a1b1 + 1G, (5.11)
where the last equation is derived from the Wronskian W (11,9, 13).

Eliminating ag, a1, ag, bg, b1, b2 yields the fourth order differential equation for G(z, ).

g
Finally, we would like to mention the following
Conjecture 5.6. The diagonal Green’s function (5.2) has the asymptotic expansion
G(z,xz) = —1 L 1/3 if(l)zfj + 272/3§:f(2)27j (5.12)
’ z—00 3 : J Z J ’ :
j=0 j=0
where f](k), k = 1,2 are the homgeneous fj(k) satisfing the Boussinesq recursion. k = 1

corresponds to r =1 (mod 3) and k = 2 corresponds to r =2 (mod 3).






Appendiz A

Algebraic Curves and
their Theta Functions
in a Nutshell

This appendix treats some of the basic aspects of complex algebraic curves and their theta
functions as used at numerous places in this paper. The material below is standard (see,
e.g., [11], [30], [50], [60], and [70], (actually Appendix A in [90] contains all we need)), and
we include it for two major reasons: On the one hand it allows us to introduce a large part
of the notation used in Sections 2.3 and 3.2 (which otherwise would take up considerable
space and disrupt the flow of arguments in these sections) and on the other hand, it permits
a fairly self-contained presentation of the Bsq hierarchy and its algebro-geometric solutions
in this paper.

Definition A.1. An affine plane (complex) algebraic curve K is the locus of zeros in C? of
a (nonconstant) polynomial F(z,y) in two variables. The polynomial F is called nonsingular
at a root (zo,yo) if

VF(20,40) = (F=(20,%0), Fy(20, 40)) # 0. (A.1)

The affine plane curve K of roots of F is called nonsingular at Py = (20, y0) if F is nonsin-
gular at Py. The curve K is called nonsingular, or smooth, if it is nonsingular at each of its
points.

The Implicit Function Theorem allows one to conclude that a smooth affine curve K is locally
a graph and to introduce complex charts on K as follows. If F(FPy) = 0 with Fy () # 0,
there is a holomorphic function gp,(z) such that in a neighborhood Up, of Py, the curve K
is characterized by the graph y = gp,(z). Hence the projection

Ty UPO - 7T"Z(UVPO) cC, (z,y) =z, (Az)
yields a complex chart on K. If, on the other hand, F(Py) = 0 with F,(Py) # 0, then the
projection

wy: Up, — 1y(Up) CC,  (2,9) =y, (A.3)

79
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defines a chart on . In this way, as long as K is nonsingular, one arrives at a complex
atlas on K. The space K C C? is second countable and Hausdorff. In order to obtain a
Riemann surface one needs connectedness of K which is implied by adding the assumption
of irreducibility of the polynomial F. Thus, K equipped with charts (A.2) and (A.3) is a
Riemann surface if F is nonsingular and irreducible. Affine plane curves I are unbounded as
subsets of C?, and hence noncompact. The compactification of K is conveniently described
in terms of the projective plane CP?, the set of all one-dimensional (complex) subspaces of
C3.

In order to simplify notations, we temporarily abbreviate xo = z, 1 = ¥y, and zo = =z.
Moreover, we denote the linear span of (2,71, 79) € C3\{0} by [z2 : 21 : 2¢]. In particular,
[z : 21 1 20] € CP? with Lo = {[z2 : 21 : 20] € CP? | 29 = 0} representing the line at
infinity. Since the homogeneous coordinates [zg : 1 : x| satisfy

[zg : @1 @ xo] = [exa : cxy = cxo], ¢ € C\{0}, (A.4)

the space CP? can be viewed as the quotient space of C3\{0} by the multiplicative action
of C\{0}, that is, CP? = (C3\{0})/(C\{0}), and hence CP? inherits a Hausdorff topology
which is the quotient topology induced by the natural map

L Cg\{O} — CP2, (.Tz,xl,xo) = [IL’Q I l’o]. (A5)

Next, define the open sets

U™ ={[xy: 21 : 2g) € CP? | 2, A0}, m=0,1,2. (A.6)
Then
U = [mo:agao] <$2, :m) (A.7)
Trog Xo
with inverse
(fO) 1 C? = U (wo,m1) > [wo 2y 1 1], (A.8)

and analogously for functions f' and f? (relative to sets U' and U2, respectively), are
homeomorphisms. In particular, U?, U', and U? together cover CP2. Moreover, CP? is
compact since it is covered by the closed unit (poly)disks in U?, U', and U?2.

Let P be a (nonconstant) homogeneous polynomial of degree d in (2,1, (), that is,
P(cxa, cx1, cxo) = PP (29, 21, 20), (A.9)
and introduce
K= {[.%'2 A J}o] S (C]PQ ’ P(xg,l'l,xo) = 0}. (A.IO)

The set K is well-defined (even though P(u,v,w) is not for [u : v : w] € CP?) and closed in
CP?. The intersections,

K"=KnU™, m=0,1,2 (A.11)
are affine plane curves when transported to C2, that is,
]CO = {(332,951) S C2 | 73(23271‘1, 1) = 0} (A.12)

represents the affine curve F(z,y) = 0, where F(z2,21) = P(x2,21,1), and analogously for
K1 and K2. We recall that F(xa,21) is irreducible if and only if P(xa, 21, 7¢) is irreducible.
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Given the affine curve defined by F(z2,z1) = 0, the associated homogeneous polynomial
P(z2,x1,20) can be obtained from

P(CCQ, X1, CC()) = ng(wa ml)a (A13)

Zo To
where d denotes the degree of F (and P).

The element [zo : 21 : 0] € CIP? represents the point at infinity along the direction o : x1
in C? (identifying [xo : 21 : 0] € CP? and [z3 : z1] € CP!). The set of all such elements
then represents the line at infinity, Lo, and yields the compactification CP? of C2. In other
words, CP? = C? U L, CP! = CU {00}, and Lo, =2 CP!. The projective plane curve K then
intersects Lo in a finite number of points (the points at infinity).

Definition A.2. A projective plane (complex) algebraic curve K is the locus of zeros in CP?
of a homogeneous polynomial P in three variables.

A homogeneous (nonconstant) polynomial P(x2,x1,x0) s called nonsingular if there are no
common solutions (x20,21,0,%00) € C3\{0} of

P(x2,0, 71,0, 0,0) = 0, (A.14)
VP(x20,21,0,200) = (Prys Py Pao) (22,0, 21,0, To,0) = 0. (A.15)

The set K is called a smooth projective plane curve (of degree d € N) if P is nonsingular
(and of degree d € N).

One verifies that the homogeneous polynomial P(z2, x1, o) is nonsingular if and only if each
K™ is a smooth affine plane curve in C2. Moreover, any nonsingular homogeneous polynomial
P(x2,x1,x0) is irreducible and consequently each ™ is a Riemann surface for m = 0, 1, and
2. The coordinate charts on each K™ are simply the projections, that is, zo/x¢ and x; /x¢ for
K0, xo/x1 and xo/x1 for K, and finally, x1/xe and xg/xo for KC2. These separate complex
structures on K™ are compatible on K and hence induce a complex structure on K.

The zero locus in CP? of a nonsingular homogeneous polynomial P(z2,z1,z0) defines a
smooth projective plane curve K which is a compact Riemann surface. Topologically, this
Riemann surface is a sphere with g handles, where

g=(d—1)(d—-2)/2, (A.16)

with d the degree of P(xo,x1,70). In particular, K has topological genus g and we indicate
this by writing Ky in our main text, or simply K, if no confusion can arise. In general, the
projective curve K4 can be singular even though the associated affine curve ICS is nonsingular.
In this case one has to account for the singularities at infinity and properly amend the genus
formula (A.16) according to results of Clebsch, Noether, and Pliicker.

If ICg is a nonsingular projective curve, associated with the homogeneous polynomial P(z, y, )
of degree d, the set of finite branch points of Iy is given by

{[z:y:1] € CP* | P(z,y,1) = Py(z,y,1) = 0}. (A.17)
Similarly, branch points at infinity are defined by
{21y : 0] € CP2 | P(2,5,0) = P, (2,9,0) = 0}. (A.18)

The set of branch points B of Ky then being the union of points in (A.17) and (A.18). Given
B = {Pi,..., P} one can cut the complex plane along smooth nonintersecting curves C, (e.g.,
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straight lines if Py, ..., P, are arranged suitably) connecting P, and Py forg=1,...,7—1,
and defines holomorphic functions fi, ..., fq on the cut plane IT = C\ UZ;% Cq4 such that

P(z,y,1) =0 for y € Il if and only if y = f;(z) for some j € {1,...,d}. (A.19)

This yields a topological construction of Ky, by appropriately gluing together d copies of the
cut plane II, the result being a sphere with g handles (g depending on the order of the branch
points in B). If Iy is singular, this procedure requires appropriate modifications.

Next, choose a homology basis {aj,bj}jg-zl on K4 for some g € N in such a way that the
intersection matrix of the cycles satisfies

ajobk :5j,k7 j,k: 1,...,g (AQO)
(with a; and by, intersecting to form a right-handed coordinate system).
Turning briefly to meromorphic differentials (1-forms) on /Cy, we state the following result.

Theorem A.3 (Riemann’s period relations). Let g € N and suppose w and v to be closed

differentials (1-forms) on ICy. Then
A= (faf ). (A21)

s

j=1 J j J J
g

If, in addition w and v are holomorphic 1-forms on Kg4, then

i((/ﬂ@)(/ﬂ)—(/})p)(/ﬂy)):0. (A.22)

j:l J J J J

(11) If w is a nonzero holomorphic 1-form on KCy, then

Im Zg:(/ w)(/ w) | >o0. (A.23)

j=1 7% b

The proof of Theorem A.3 is usually based on Stokes’ theor/(\am and a canonical dissection
of K4 along its cycles yielding the simply connected interior Ky of the fundamental polygon
0K, given by

8169 = alblaflbflagbgaglbgl . a;lbg_l. (A.24)
Given the cycles {a;,b; }?Zl, we denote by {w; }?:1 a normalized basis of the space of holo-

morphic differentials (also called Abelian differentials of the first kind, denoted dfk) on K4,
that is,

/ wp =6k, Jk=1...,g. (A.25)
aj
The b-periods of wy, are then defined by
Tj,k:/ Wk, jakzlvag (A26)
bj

Theorem A.3 then implies the following result.



A. Algebraic Curves and their Theta Functions in a Nutshell 83

Theorem A.4. The matriz T is symmetric, that is,
Tk = Tk,j> Lk=1...,9, (A27)
with a positive definite imaginary part,

Im(7) = (r —7%)/(2i) > 0. (A.28)

Abelian differentials of the second kind (abbreviated dsk), say w®), are characterized by the
property that all their residues vanish. They are normalized by the vanishing of all their
a-periods (achieved by adding a suitable linear combination of dfk’s)

/ w? =0, j=1,...,9, (A.29)

i
which determines them uniquely. (We will always assume that the poles of dsk’s on Ky lie

in /EQ, that is, do not lie on 8/69. This can always be achieved by an appropriate choice
of the cycles a; and b;.) We may add in this context that the sum of the residues of any
meromorphic differential v on Ky vanishes, the residue at a pole Qg € K4 of v being defined
by

1
resg, (V) = / v, (A.30)
'VQO

2

where 7q, is a smooth, simple, closed contour, oriented counter-clockwise, encircling (o, but
no other pole of v.

Theorem A.5. Let g € N. Assume wgl)n to be a dsk on K4, whose only pole is Q1 € /69
with principal part CélndCQl for some n € Ny and w) o dfk on Ky of the type w) =
Dm0 Cm(Q1)(3, dCq, near Q1. Then

(( [ e G- ([ ([ wéff,n>):(fiﬁ)cn_2<cm, n>2 (A3
i—1 a i a;

j j J J

J

In particular, if wg) is normalized and wV) = wj =>4 cj7m(Q1)Cng dq, , then

1,1

271 ,
/b wgl)m = e 1)03-,”_2(@1), n>2 j=1,...,¢. (A.32)

J

Any meromorphic differential w®) on K4 not of the first or second kind is said to be of
the third kind, written dtk. It is common to normalize a dtk w®), by the vanishing of its
a-periods, that is, by

/ w® =0, j=1,...,4. (A.33)
aj
A normal dtk, denoted wg’l)@z, associated with two distinct points 1, Q2 € I/C\g by definition

has simple poles at @, with residues (—1)*! for £ = 1 and 2, vanishing a-periods, and is
holomorphic anywhere else.
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Theorem A.6. Let g € N. Suppose w® to be a dtk on Ky whose only singularities are
simple poles at Q, € Ky with residues ¢, forn = 1,...,N. Denote by w® @ dfk on Kq.

Then
(L] e[

J J

g
Jj=

N Qn
([ ) zemd e [Tu0.
aj n=1 Qo

where Qo € Ieg is any fized base point. In particular, if w® is normalized and w1V = wj,
then

1

N Qn
/ w® ZQWiZCn/ wi, j=1,...,9 (A.35)
bj n=1 0

Moreover, if W(le),Qz is a normal dtk on K, holomorphic on Ko \{Q1,Q2}, then
(3) [ .
/b Wy 05 = 271'2/ wi, j=1,...,g (A.36)
j 2

We shall always assume (without loss of generality) that all poles of dsk’s and dtk’s on IC4 lie

on Ky (i.e., not on 8I/C\g) and that integration paths on the right hand side of (A.34)—(A.36)
do not touch any cycles a; or by.

Next, we turn to divisors on Iy and the Jacobi variety J(ICy) of K4. Let H(Ky) (M(Ky))
and H'(KCy) (ML(K,)) denote the set of holomorphic (meromorphic) functions (i.e., 0-forms)
and holomorphic (meromorphic) 1-forms on K, for some g € Np.

Definition A.7. Let g € Ny. Suppose f € M(Ky), w = h((g,)dCo, € M (K,), and
(Uqo,Cqy) @ chart near Qo € K.

(i) If (f o Céol)(g') =D g Cn(Q0)C™ for some mg € Z (which turns out to be independent
of the chosen chart), the order v¢(Qo) of f at Qo is defined by

vr(Qo) = mo. (A.37)
One defines v¢(P) = oo for all P € Ky if f is identically zero on IC4.
(i) If hqy(Cqo) = Dty @n(Q0)CE, for some mo € Z (which again is independent of the

n=mgo

chart chosen), the order v,(Qo) of w at Qg is defined by
v, (Qo) = my. (A.38)

Definition A.8. Let g € Ny.
(i) A divisor D on Kg4 is a map D: Ky — Z, where D(P) # 0 for only finitely many P € K.
On the set of all divisors Div(KCy) on K4 one introduces the partial ordering

D>E&ifD(P)>E(P), Pek,. (A.39)
(i1) The degree deg(D) of D € Div(Ky) is defined by
deg(D) = Y D(P). (A.40)
PeK,

(111) D € Div(Ky) is called nonnegative (or effective) if
D >0, (A.41)
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where 0 denotes the zero divisor 0(P) =0 for all P € K.
(iv) Let D, & € Div(Ky). Then D is called a multiple of £ if

D>E. (A.42)
D and & are called relatively prime if
D(P)E(P)=0, Pek,. (A.43)
(v) If f € M(Ky)\{0} and w € M(Ky)\{0}, then the divisor (f) of f is defined by
(f): Kg —Z, P vs(P) (A.44)
(thus f is holomorphic, f € H(Ky), if and only if (f) > 0), and the divisor of w is defined by
(w): Kg = Z, P+ v,(P) (A.45)

(thus w is a dfk, w € HY(K,), if and only if (w) > 0). The divisor (f) is called a principal
divisor, and (w) a canonical divisor.
(vi) The divisors D,E € Div(Ky) are called equivalent, written D ~ &, if

D—&=(f) (A.46)
for some f € M(K4)\{0}. The divisor class [D] of D is defined by
[D] = {€ € Div(K,) | £ ~ D}. (A.47)

Clearly, Div(Ky) forms an Abelian group with respect to addition of divisors. The principal
divisors form a subgroup Divp(K,) of Div(K,). The quotient group Div(ICy)/ Divp(Ky)
consists of the cosets of divisors, the divisor classes defined in (A.47). Also the set of divisors
of degree zero, Divo(K,), forms a subgroup of Div(/KCy). Since Divp(KC,) C Divy(Ky), one can
introduce the quotient group Pic(K,) = Divo(KCy)/ Divp(K,) called the Picard group of /Cg.

Theorem A.9. Let g € Ny. Suppose f € M(K,) and w € M (K,). Then

deg((f)) =0 and deg((w)) =2(g —1). (A.48)
Definition A.10. Let g € Ny, and define
L(D) ={f e M(Ky) | (f) 2D}, LND)={we M (K)]|(w)=D}. (A.49)

Both £(D) and L£!(D) are linear spaces over C. We denote their (complex) dimensions by
r(D) = dim £(D), (D) = dim £'(D). (A.50)

i(D) is also called the index of specialty of D.

Lemma A.11. Let g € Ny and D € Div(K,). Then deg(D), r(D), and i(D) only depend

on the divisor class [D] of D (and not on the particular representative D). Moreover, for
w € MK )\{0} one infers

i(D) =r(D— (w)), D e Div(Ky). (A.51)
Theorem A.12 (Riemann-Roch). Let g € Ng and D € Div(KCy). Then r(—D) and i(D) are
finite and

r(—=D) = deg(D) + i(D) — g + 1. (A.52)
In particular, Riemann’s inequality
r(—=D) > deg(D) —g+1 (A.53)

holds.
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Next we turn to the Jacobi variety and the Abel map.
Definition A.13. Let g € N and define the period lattice Ly in CI by

Ly={2€C9z=N+71M, N,M € Z°}. (A.54)
Then the Jacobi variety J(ICy) of ICy is defined by
J(Kg) = C?/Ly, (A.55)

and the Abel maps are defined by
APO: ,Cg - ‘](’Cg)’ P— APO(P) = (Apo,l(P)’ cee 7AP0,g(P))

- (/Pwl,...,/ng) (mod L), (A.56)

Py Py
and
ap,: Div(Ky) = J(Ky), D ap (D)= 3 D(P)Ap (P), (A.57)
Pek,

where Py € Ky is a fized base point and (for convenience only) the same path is chosen from
PytoP forallj=1,...,g in (A.56) and (A.57)'.

Clearly, Ap, is well-defined since changing the path from Py to P amounts to adding a closed
cycle whose contribution in the integral (A.56) consists in adding a vector in L,. Moreover,
ap, is a group homomorphism and J(K,) is a complex torus of (complex) dimension g that
depends on the choice of the homology basis {a;, b; }?:1. However, different homology bases
yield isomorphic Jacobians, see [30], p. 137, and [50], Section 8(b).

Theorem A.14 (Abel’s theorem). Let g € N. Then D € Div(Ky) is principal if and only if
deg(D) =0 and ap (D) = 0. (A.58)

Next, we turn to Riemann theta functions and a constructive approach to the Jacobi inversion
problem. We assume g € N for the remainder of this appendix.

Given the curve Iy, the homology basis {a;, bj}gzl, and the matrix 7 of b-periods of the dfk’s

{w; }?:1, the Riemann theta function associated with Xy and the homology basis is defined

as

0(z) = Z exp (27i(n, z) + wi(n, Tn)), z€ CY, (A.59)
nez9

where (u,v) = 25:1 w;v; denotes the scalar product in CY9. Because of (A.28), 6 is well-

defined and represents an entire function on C9. Elementary properties of  are, for instance,

0(21,- -5 2j—1, =25, Zj41,- - -5 2n) = 0(2), 2= (21,...,24) € CY, (A.60)

0(z +m+7n) = 0(z) exp ( — 2mi(n, 2) — wi(n,7n)), m,n€Z", z <€ C. (A.61)
Lemma A.15. Let { € C9 and define

F:Ky—C, P 0(Ap(P)—¢), (A.62)

where
Ap:Ky—C9, P Ap(P)= (Apa(P),..., Apy4(P))

LThis convention allows one to avoid the multiplicative version of the Riemann-Roch Theorem at various places
in this paper.
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_ (/Ppwl/:wg) (A.63)

Suppose F' is not identically zero on leg, that is, ' £ 0. Then F has precisely g zeros on leg
counting multiplicities.

Lemma A.15 is traditionally proven by integrating dIn(F') along 8169.

Theorem A.16. Let £ € CY and define F' as in (A.62). Assume that F' is not identically

zero on Iag, and let Q1,...,Q4 € K4 be the zeros of F' (multiplicities included) given by
Lemma A.15. Define the corresponding positive divisor Dq of degree g on Kg by

Dg: Ky — No,

m if P occurs m times in {Q1,...,Qq},

PI—)DQ(P):{O ing{Qla“"Qg}’

Q = (Q17 .. -7Q9)7 (A64)

and recall the Abel map ap in (A.57). Then there exists a vector Zp € C9, the vector of
Riemann constants, such that

ap,(Dg) = (£ — Ep,)(mod Ly). (A.65)

The vector Ep, = (Epy,,-- -5 2p,,) 5 given by

- 1 d P ,
Epy; = 51+ 755) — Z/ we(P)/ wi, j=1,...,9 (A.66)
2 (=1 Fo
0]

For the proof of Theorem A.16 one integrates A\poyj(P)dln(F(P)) along 8I/C\g. Clearly, Zp,
depends on the base point % and on the choice of the homology basis {a;, b; }§:1'

Remark A.17. Theorem A.16 yields a partial solution of Jacobi’s inversion problem which
can be stated as follows: Given § € CY, find a divisor Dg € Div(Ky) such that

ap,(Dq) = &(mod Ly). (A.67)

Indeed, if F(P) = 0(Zp, —AAPO(P)+§) Z 0 on 169, the zeros Q1,...,Qq € /69 of F (quaranteed
by Lemma A.15) satz'ffy Jacobi’s inversion problem by (A.65). Thus it remains to specify
conditions such that F' # 0 on K,.

Remark A.18. While 6(z) is well-defined (in fact, entire) for z € C9, it is not well-defined
on J(K4) = CI/L, because of (A.61). Nevertheless, 6 is a “multiplicative function” on
J(KCy) since the multipliers in (A.61) cannot vanish. In particular, if z; = zo(mod Lg), then
0(z;) = 0 if and only if 0(z5) = 0. Hence it is meaningful to state that 6 vanishes at points of
J(ICy). Since the Abel map Ap, maps K, into J(KCy), the function 0(Ap, (P)—§) for § € CI,
becomes a multiplicative function on KCy. Again it makes sense to say that 0(Ap (-) — &)
vanishes at points of KCg.

In the following we use the obvious notation

X+Y={(z+y) €eJ(Ky) |z € X,yeY},
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—X={-ze€J(Ky) |z e X}, (A.68)
X+z={(z+2) €J(Ky) |z € X},

for X,Y C J(Ky) and z € J(Ky). Furthermore, we may identify the nth symmetric power
of Ky, denoted 0"y, with the set of nonnegative divisors of degree n € N on K,;. Moreover,
we introduce the convenient notation (N € N)

Dpg=Dpr +Dg. Dg=Dg, + -+ +Dqy, Q@=(Q1...,Qn) €Ky, (A.69)
where for any @ € Iy,

1 for P=0Q,

(A.70)
0 for P e K, \{Q}.

Dg: Ky — No, PHDQ(P):{

Definition A.19. (i) Define
Wo = {0} € J(K,), W, —ap(0"K,), neN. (A7)

(ii) A positive divisor D € Div(K,) is called special if i(D) > 1, otherwise D is called
nonspecial.
(117) Q € K4 is called a Weierstrass point of K4 if i(¢Dg) > 1, where gDg = Z?Zl Dqg.

Remark A.20. (i) Since i(Dp) =0 for all P € Ky, the curve K1 has no Weierstrass points.
For g > 2, and KCg4 hyperelliptic, the Weierstrass points of KCg4 are given precisely by the 2g+-2
branch points of Kg.

(i) The special divisors of the type Dg with Q = (Q1,...,QN) € oV IC, and deg(@) =N >g
are precisely the critical points of the Abel map ap, : aNng — J(Kg), that is, the set of points
D at which the rank of the differential dap, is less than g.

(111) While 6Ky ¢ o"ICy for m < mn, one has W,, C W, form <n. Thus W, = J(Ky) for
n > g by Theorem A.23 below.

Theorem A.21. The set W,_; +Zp C J(Ky) is the complete set of zeros of 6 on J(K,),
that is,

0(X) =0 if and only if X € W,_; + Ep, (A.72)
(i-e., if and only if X = (ap,(D)+Ep,)(mod Ly) for some D € 697 'Ky). The set W, +Ep,
has complex dimension g — 1.

Theorem A.22 (Riemann’s vanishing theorem). Let £ € CY.
(1) If 0(&) # 0, then there exists a unique D € 09K, such that

§ = (QPO (D) + EPo) (mod LQ) (A'73)

and
i(D) = 0. (A.74)

£ =Ep,(mod L) =27 (1+7)(mod Ly), Ly=Z+7Z, —it>0. (A.75)
(iii) Assume 0(§) =0 and g > 2. Let s € N with s < g — 1 be the smallest integer such that

oW, —W,—§) #0 (i.e., there exist £, F € 0°Ky with £ # F such that 0(ap, (€) —ap, (F) —
€) #0). Then there exists a D € 097Ky such that

é = (QPO (D) + 5Po) (mod Lg) (A'76)
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and

i(D) = s. (A.77)
All partial derivatives of 0 with respect to Ap, ; for j = 1,...,g of order strictly less than s
vanish at §, whereas at least one partial derivative of 6 of order s is nonzero at §. Moreover,
s < (g +1)/2 and the integer s is the same for & and —§.

Note that there is no explicit reference to the base point Py in the formulation of Theorem
A.22 since the set W, — W, C J(K,) is independent of the base point while W alone is not.

Theorem A.23 (Jacobi’s inversion theorem). The map ap, is surjective. More precisely,
given £ = (£ +Ep,) € CI9, the divisors D in (A.73) and (A.76) (resp. D = Dp, if g = 1)
solve the Jacobi inversion problem for § € CY.

We summarize some of this analysis in the following remark.

Remark A.24. Consider the functz’on

G(P)=0(2p, — Ap (P +ZAPO @), P,QieKy j=1,....g (A.78)
7j=1
on Kg. Then

g
G(Qr) = 0Ep, +Y_Ap (@) = 0(Ep, + an (D@1, @4r.@uerr @) =0 (AT9)
j=1
ik
k=1,...,9
by Theorem A.21. Moreover, by Lemma A.15 and Theorem A.22, the points Q1,...,Q4 are
the only zeros of G on K4 if and only if DQ 18 nonspecial, that is, if and only if

i(Dg) =0, Q= (Q1,...,Q) € 09K,. (A.80)
Conversely, G =0 on Ky if and only if Dg is special, that is, if and only ifi(DQ) > 1.

We also mention the elementary change in the Abel map and in Riemann’s vector if one
changes the base point,

API = (APO - APO (Pl)) (HlOd Lg)7 (A81)
Epl = (EPO + (g — 1)AP0 (Pl)) (mod Lg), Py, P, € ’Cg. (A82)

Remark A.25. Let £ € J(Ky) be given, assume that 0(Zp, — Ap,(-) +£) #0 on Ky and
suppose that A (f) (Q1,...,Qq) € 09K, is the unique solution of Jacobi’s inversion
problem. Let f 6 M(Kg)\{0} and suppose f(Qj) # oo for j =1,...,9. Then & uniquely
determines the values f(Q1),..., f(Qg). Moreover, any symmetric function of these values
is a single-valued meromorphic function of £ € J(Kg), that is, an Abelian function on J(Ky).
Any such meromorphic function on J(ICg)ican be expressed in terms of the Riemann theta
function on K4. For instance, for the elementary symmetric functions of the second kind

(Newton polynomials) one obtains from the residue theorem in analogy to the proof of Lemma
A. 15 that

Zf Q;)" Z (P)— > resp—p, (f(P)"dIn(0(Zp, — Ap, +£))), (A.83)

P.eky
f(Pr)=o00
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where an appropriate homology basis {a;, bj}?zl with Gleg = alblaflbfl . a;lbgl avoiding
{Q1,...,Qq} and the poles {P.} of f has been chosen. (We also note that Lemma A.15 just
corresponds to the case n =0 in (A.83).)

Finally, we formulate the following auxiliary result (cf., e.g., Lemma 3.4 in [39]).

Lemma A.26. Let ¢(-,z), x € U, U C R open, be meromorphic on K4\{Ps} with an

essential singularity at P (and o defined as in (3.215)) such that (-, ) defined by

Poo,r+1
- e
(-, x) =Y(-,z)exp (—i(x—xo)/P QPOO,T+1) (A.84)
0
1s multi-valued meromorphic on K, and its divisor satisfies
(%(+,2)) = ~Dy(a)- (A.85)
Define a divisor Dy(zx) by N
(¥(-,x)) = Do(x) — Dpy(a)- (A.86)
Then

Dy(z) € 09Ky, Do(x) > 0, deg(Dy(z)) = g. (A.87)
Moreover, if Do(x) is nonspecial for all x € U, that is, if i(Do(x)) =
up to a constant multiple (which may depend on x € U ).

0, then (-, x) is unique



Appendix B

Trigonal Curves of
Boussinesq-Type

We give a brief summary of some of the fundamental properties and notations needed from
the theory of trigonal curves of Boussinesq-type (i.e., those with a triple point at infinity).

First we investigate what happens at the point (or possibly points) at infinity on our Bsq-
type curves. Fix g € N. The Bsg-type curve K4 of arithmetic genus g = m — 1 is defined
by

Fn-1(2,9) = v* +y Sm(2) — T(2) =0,

2n—1+e¢ m—1
Sm(2) = Y smpPs T(2) = 2"+ D b2, (B.1)
p=0 q=0

m=3n+e¢e,e€{l,2}, n €N

Following the treatment in [75] one substitutes the variable u = z~! into (B.1) to obtain

uBnteyd ¢ (sm’OuQn—l—i-a NI sm’2n_1+s)un+1y _ (tm,ou?’”*a + -+ tmmo1u+ 1) = 0.
(B.2)

Let v = u"*!y in (B.2) to obtain

v3 + (Sm’0u2n71+5 4ot 8m72n—1+g)u3751) N (tm,ou?’”“ + ot tmsn14et + 1),&375 —0.
(B.3)

Let u — 0 (corresponding to z — oo) in (B.3) to obtain v = 0. This corresponds to one
point of multiplicity three at infinity (in both cases € = 1 and ¢ = 2), given by (u,v) = (0,0).
We therefore use the coordinate ¢ = z~1/% at the branch point at infinity, denoted by Pse.

The curve (B.1) is compactified by adding the point Py, at infinity. In homogeneous coordi-
nates, the point at infinity we add is [1: 0: 0] € CP? if g = 0 or g = 1, otherwise the point at
infinity we add is [0 : 1 : 0] € CP2. The point Py is singular in all cases except when g = 1,
or when g =2 and sy, 0 = —1/3.
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Although not directly associated with the Bsq hierarchy, we note that the case e = 0 in (B.1)
is analogous to AKNS, Toda, and Thirring-type hyperelliptic curves, which are not branched
at infinity. In fact, a similar argument to that above, with the coordinate v = u"y in (B.2),
yields the equation v3 = 1 as u — 0. This corresponds to three distinct points Pgj,7=1,2,3
at infinity (each with multiplicity one), given by the three points (u,v) = (0,w;) for j = 1,2, 3,
where the w1, wy, and wg are the third roots of unity. As each point at infinity has multiplicity
one, none are branch points, and consequently each admits the local coordinate u = 1/z for
|z| sufficiently large.

In [14], p. 561, Burchnall and Chaundy define the g-number of an algebraic curve as the
maximum number of double points possible in the finite plane. For Bsq-type curves the
g-number is g = m — 1. For a curve that is smooth in the finite plane, the g-number coincides
with the arithmetic genus of the curve, but in the presence of double points, the g-number
remains the same, while the genus is diminished (according to results of Clebsch, Noether,
and Pliicker, see, e.g., [11] and [70]). We now prove that the g-number of K4, and hence the
arithmetic genus of Ky if Ky is smooth in the finite plane, is m — 1 using a special case of
the Riemann-Hurwitz theorem.

Theorem B.1. Let 7,: K4 — CP! be the projection map with respect to the z coordinate.
Then
> [vp(r.) —1] =29 +4, (B.4)

Pcky

where vp(7,) denotes the multiplicity of 7. at P € Ky, and g is the arithmetic genus of the
curve Kg4.

If equation (B.1) has only double points, this implies that the discriminant A(z) of the curve
(B.1), defined by

A(z) = 21T (2)% + 4 5, (2)3 (B.5)

(modulo constants), is non-zero. A(z) is easily seen to be a polynomial of degree 2m. Hence
in the finite complex plane, the Riemann surface defined by the compactification of (B.1) can
have at most 2m double points, corresponding to the possible 2m zeros of A(z). If all finite
branch points are distinct double points (taking into account the triple point at infinity) one
obtains ZPeICg [vp(7.) — 1] =2m + 2, and so by (B.4), one infers g = m — 1.

Let B denote the set of branch points and let |B| denote the number of branch points counted
according to multiplicity. In the case of Bsq-type curves, deg(7,) = 3, and vp(7,) = 1 for all
P € Kg\B. Moreover, vp(7;) € {2,3} for all P € B. Hence [B] <> pe, [vp(7.)—1] <2|B],
and (B.4) reduces to

g+2<|B| <2g+4. (B.6)
Thus one arrives at an upper and lower bound on the number of branch points on .

When m = 1, corresponding to g = 0, there are no non-zero holomorphic differentials on 4.
When m = 2, corresponding to g = 1, the only holomorphic differential on K is dz/(3y(P)*+
Sm(z)). Recall also that m #Z 0 (mod 3), so we need not consider holomorphic differentials
for the case m = 3. One verifies that dz/(3y(P)? + S(2)) and y(P)dz/(3y(P)? + Spm(2)) are
holomorphic differentials ICy with zeros at Ps of order 2(m — 2) and (m — 4), respectively,
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for m > 4. It follows that the differentials (m =3n+¢, ¢ € {1,2})

1 21z for 1 <4< g—n,
3Y(P)? 4+ Sm(2) |y(P)z*=971dz forg—n+1<{<yg,

ne(P) = (B.7)

form a basis in the space of holomorphic differentials Hl(ng). Introducing the invertible
matrix T € GL(g,C),

T =(Tjk)jk=1,g> Tik :/ M5
ag

(B.8)
elk) = (e1(k), ... eg(k)), (k) = (T7),
the normalized differentials w; for j =1,...,g,
g
Wi = ej(g)nb / Wi = 05k, Js k=1,... ' g (B9)
(=1 Ok
form a canonical basis for H!(KC,). Near Ps, one infers
w= (Wi wg) = (af +al?C+al) ¢+ 0(Ch)dc, (B.10)
where
=1
oo = — {e(g), e=1, (B.11)
Q(g - T'L), €= 4,
(e) _ ) —elg —n), e=1, (B.12)
- {(dff)e(g —n) —el9), e=2,
o _ [(@Velg) +ctVelg = n) — elg — 1), =L
=3 = 2 (2) _ d(2) 3 _ —n-1 d(z) 2 -9 ’
(2e;” = (dy ) )elg —n) —elg —n—1) +(dy ' )’e(9)), =2,
etc.,
and
u(P) =, () +dS¢ + ¢+ dI¢t +0(C9)¢ 2 as P — Pu, (B.14)
with
© () 0,1), e=1, @)
ey ,dy’) = dy”’ € C. B.15
(co sdy”) {(1,d(()2)), I 0 (B.15)
In particular, using (A.32), (B.10), and (B.11), one obtains
1@ _ @ 1/ @ _1 @
ori J, wp. o =0, and 371 ), Whe3 = 50, (B.16)

Finally, we turn our attention to special divisors.

From the theory of elementary symmetric polynomials one infers the following lemma.

Lemma B.2. Pick z € C, and denote by y1(z), y2(2), and y3(z), the three solutions of (B.1).
These solutions are distinct if and only if the discriminant A(z) # 0. Moreover, introduce
Q; = (z,y;) € Kq for j =1,2,3. Then

(i) X5 yi(z) = 0.
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Lemma B.3. Let mq,...,m, € N with Z;Zl m; =g and Q; = (2,y5), J = 1,2,3 as in
Lemma B.2. Suppose Py,...,P. € Ky. If

{Q1>Q27Q3} C {Pla-"va}a (B17)
then the diwvisor Dy, py+...km.p, € 09K, is special. In particular, if one of the points P; €
{P1,..., P} is a triple point, then the divisor Dy, p,+...sm,p, € 09K is special.

Proof. Using the identities in Lemma B.2, one readily computes
3 3

1 _ y; (2) _
Z 3yj(2)2 + Sm(z) 0, Z Syj(z);—i- Sm(z) 0 (B.18)

j=1 7=1

Thus, choosing for simplicity the base point Py = P, a comparison of (A.56), (B.7), and
(B.18) yields

3
> Ap_(Qj) =0(mod Ly). (B.19)

j=1
Thus Dy, p,+--4m,. P, € 09K, is special by Theorem A.21. O
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