|

Letters in Mathematical Physics 15 (1988) 313-324. 313
© 1988 by Kluwer Academic Publishers.

On Relativistic Energy Band Corrections in the
Presence of Periodic Potentials

W.BULLA
Institut fiir Theoretische Physik, Technische Universitit Graz, A-8010 Graz, Austria

F. GESZTESY*
Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, U.S.A.

and

K. UNTERKOFLER
Institut fiir Theoretische Physik, Technische Universitit Graz, A-8010 Graz, Austria

(Received: 4 December 1987) R

Abstract. A previously developed formalism to compute relativistic corrections of bound state energies for
spin-3 particles is applied to relativistic corrections of energy bands of one-dimensional, periodic
Hamiltonians. We explicitly describe Floquet theory for periodic Dirac operators on the line. Extensions
including impurity potentials and/or v3> 2 dimensions are straightforward and sketched at the end.

1. The Abstract Approach

For convenience, we summarize the main results obtained in [8,9]. Let J#, be
separable, complex Hilbert spaces and introduce self-adjoint operators «, f in
H=H, @ H_ of the type

0 A* 1 0
- - 1.1
" (A 0 ) d (0 —1)’ ( ),

where A4 is a densely defined, closed operator from 4, into #_. Next, we introduce
the abstract free Dirac operator H%(c) by

H%c) = ca + mc?p, DH(c) = D(0), ceR\{0}, m>0 . (L.2)

and the interaction V by
vV, 0
V= * , (1.3)
(o )
where V', denotes self-adjoint operators in #, , respectively. Assuming V', (resp. V_)
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to be bounded w.r. to A4 (resp. 4%), i.e.,

V. )=2924), 2V_)=22(4%), (1.4)
the abstract Dirac operator H(c) reads

H{)=H’(c)+V, D(H(c)) = Y(a). (1.5)

Obviously H{(c) is self-adjoint for | ¢| large enough. The corresponding self-adjoint (free)
Pauli operators in 5, are then defined by

H° =(2m)~'4*4 , HC =(2m)~'44*, (1.6)
H,=H°+V,, D(H,) = D(A*4), (w7
H_=H° +V_, D(H_ )= D(AA*).

Introducing in # the operator B(c) [12]

1 0
B(c)—(O ) (1.8)

[

we recall [8, 9]

THEOREM 1.1. Let H(c) be defined as above and fix ze C\R. Then (a)
(H(c) = mc? — z)~ ! is holomorphic w.r. to ¢~* around ¢c™' = 0

(H(c) - mc? — z)~!

{1 + ( 0 @me)~"H, —2)7 ' A¥(V_ ~Z))}l X
@me) "AHS - 2)7V, @Cmc?)T1zZ(H® -2)"N(V_-2)

X( (H+ _Z)_l (zmc)Al(H-# _Z)IA*>‘ (19)
Qmc)'AHS - 2)7' 2mc?)T'z(HC - z)7!

(b) B(c) (H(c) — mc? — z)'B(c) " is holomorphic w.r. to ¢~ around ¢ > = 0
B(c)(H(c) — mc?> - 2)"'B(c) ™!

~ {1 N (0 Qme*) "V H, - 2)7'AX(V_ - 2) )}“ «
- 0 @me?) ' [Qm) TAH, - 2)"1A*-1](V_ - 2)

x ( #H, -2 (2me?)H, - 7)1 4 )
Qm)AH -2 @me) T [@m) AW, -2 ax-11) (11O
First-order expansions in (1.9) and (1.10) yield
(H(c) - mc* —z2)7!
_<(H+ -z)! 0>+c*1< 0 @2m)~YH . —z)‘lA*)+
0 0 Qm)TAH, - 7)-! 0
+0(c-2) (1.11)
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(clearly illustrating the nonrelativistic limit |c|— c0) and

B(c)(H(c) — mc? - z)"'B(c)™!

=( H, —2)7! 0)+c_2(R11 R12>+O(c_4)
@Qm)~'AH, -z 0 Ry Ry

=Ry(2) + ¢ ?R,(2) + O(c™™), (1.12)
Ry =Qm)2H, -2 'A*z -V )AH, -2)7',
Ry =Q2m) '(H, —2)7'4*,
Ry, = 2m)2[@m)'A(H, —2)"'4* 1] (z - V_)AH, - 2)7*, (1.13)
Ry, = (2m) ' {2m)'A(H, —2)7'A*-1].

Analyzing the relationship between the spectrum of (H, —z)~! and R,(z) (cf.
Lemma 2.2 in [9]) one obtains the following result on relativistic eigenvalue corrections.

T
W

THEOREM 1.2. Let H(c) be defined as in (1.5) and assume E € 6,(H , ) to be a discrete
eigenvalue of H . of multiplicity myeN. Then, for ¢ =2 small enough, H(c) — mc? has
precisely m, eigenvalues (counting multiplicity) near E, which are all holomorphic w.r. to
¢~ More precisely, all eigenvalues E,(c~?) of H(c) — mc? near E,, satisfy

E(c™)=Eo+ Y (¢™)E;,, j=1.. jo Jo<mp (1.14)
p=1

and if m; denotes the multiplicity of E;(c ~2) then I, m; = m.
In addition, there exist linearly independent vectors

— f+ 'I(C_z) - .
f(c ')=< J , j=1L . g0 1=1...,m (1.15)
e ’ ’
s.t. f; are holomorphic w.r. to ¢~ near ¢~ = 0 and
H, [ 0)=Eof.;0), f_;(0)=02m)~'4f, ;(0) (1.16)

and

H(c) - me)fye™N) =E () fc™), j=1...j0 I=1...,m. (LI7)

The eigenvectors f;,(c ~") can be chosen to be orthonormal. Finally, the first-order corrections
E, | in (1.14) are explicitly given as the eigenvalues of the matrix

Cm)~2(Af., (V_ - E)AL), rs=1,...,m,, (1.18)
where { f,}7%0 | is any orthonormal basis of the eigenspace of H | to the eigenvalue E,,.

Remark 1.3. (a) The main idea of [8, 9] behind Theorem 1.2 was to look for eigenvalues
of the resolvent (H (c) — mc?* — z) ~! and applying the strong spectral mapping theorem
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[17] instead of looking directly for eigenvalues of the unbounded Hamiltonian
H(c) - mc?. For earlier results on the nonrelativistic limit we refer to [4, 12, 21, 22].

(b) Theorem 1.2 for m; =1 is due to [8,9]. In the general case m,>1 only
holomorphy of E;(c ") w.r.toc™'nearc™' = 0 and E;(c ") - mc® - E, 0(c™2)
has been proven in [9]. The above result for m > 1is due to [23]. The basic idea to prove
holomorphy of E; w.r. to ¢~ is the following: Since (H(c) — mc> — z) ' is normal for
ze C\R, (1.11) implies that the projection P;(c ~") onto the eigenspace of the eigenvalue
(E;(c™!) — 2)" is holomorphic w.r. to ¢ ' near ¢~' = 0. To prove that E,(c~") is
actually holomorphic w.r. to ¢ ~2 near ¢ ~2 = 0 one calculates

3 . 0
B/_(C—z)EB(C)Pj(C_I)B(C)_l=<(1) S) (% 3) (é 1/6)

+ [terms holomorphic w.r. to ¢ =2]

Tc—co

= [terms holomorphic w.r. to ¢ ~2] . (1.19)
Here I3j(c‘2) and p; are the corresponding prc;jetc;itions associated with
B(c) (H(c) — mc®> —z)7'B(c)~" and (H, —z)~" of dimension m;, respectively. Thus,
I Fj(c ~2) || is bounded as ¢ ~>— 0 and, hence, Butler’s theorem ([13], p. 70) proves that
P.(c72) and (E;(c™") - z) ! are actually holomorphic w.r. to ¢~ near ¢ 2 = 0.

2. Floquet Theory for One-Dimensional Dirac Operators
Let

0 1 1 0
_ - 2.1
a (1 0)’ 7 (0 —1) @1

denote the Pauli matrices in C2? and define in L2(R) ® C? the free Hamiltonian

1 d
H()=¢c — —®a +mc®’Qa;,
i dx

PD(H(c)) = H*'R)®C?, ceR\{0},m>0. (2.2)
To avoid technicalities, we assume the interaction V to satisfy
Ve L*(R) real-valued, V(x + a) = V(x) for some a > 0 (2.3)

and define the full Hamiltonian in L?(R) ® C? by

me? + V cp )

HCE)=H% )+ T®1=
© © ( cp -mc?+V

P(H() = H¥'(R)®C2, (2.4)
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where

, (P =H*'(R). (2.5)

1
p=—
1

& e

Since H(c) is periodic with period a > 0, we get the direct integral decomposition [17]

UH(c)U~! = J ’ d6H(c, 0), (2.6)
[—n/a, n/a)
where
®
PR =712 J dOL2((-aj2, a/2)), (2.7)
27T [ —nfa, nja)
@
U: YR) » % J d0L>((~a/2, a/2)), 2.8)
277: [—n/a, n/a) o

WO =Y e "% f(v+na),

ve(—-a/2,a/2), 0e[ - n/a, nja), fe F(R),

U=-T®1. (2.9)

(Here U denotes the (unitary) closure of U and #(R) the Schwartz space.) The fibers

2
H(c, 0) = Hc, 0) + V®1=(mc tV CPo ),

CPeo -mc2+V
D(H(c, 0)) = D(py)®C?, (2.10)
respectively,
L ld
T idy’
D(po) = {g(0)e H* (- a/2, a/2))| g(60, —a/2+) = '*g(6, a/2-)} 2.11)

are operators in L*((—a/2, a/2)) ® C? respectively in L*(( —a/2, a/2)).
In order to study the spectrum of H (¢, 8) we first consider the discriminant associated
with H(c). Let

Hl)f=Ef, EcR (2.12)
in the distributional sense, or equivalently,

0 [V(x) — mc* - E]/ic

[V(x) + mc? - E]/fic 0 >f(x) ‘ (2.13)

f’(x)=<
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Then f is of the type

f=c1(;:>+c2(wl), u, v real, j=1,2. (2.14)

2 Uy

Assuming a fundamental system ®(c) of the form

(e, %, E) = ( “")(c, % E), (2.15)
iy Uy
where
®(c, —af2,E) =1 (2.16)
and, hence,
Det[®(c, x, E)] =1, ceR\{0}, xeR, EcR, (2.17)

the Floquet determinant (discriminant) [16] D(c, £) is defined as
D(c, E) = Tr[®(c, a/2, E)] = u,(c, a/2, E) + v5(c, a/2, E), Ee€eR. (2.18)

Suppressing the c-dependence of all quantities involved for a moment, we get (for fixed
ceR\{0})

LEMMA 2.1. D(E), E<€R is a real-valued, analytic function on R with
(i) D'(E)Y+#0 for |D(E)| <2 and
(i) if D(E,) = +2 forsomeE,, R, then D'(E,,) = 0iff u,(a/2,E) = v,(a/2,E) =0
(in this case one has D"(E,,) S 0).
Proof. Clearly u, (x, E), v5(x, E) are analytic w.r. to E € R. From (2.17) and (2.18) one
infers :

D(E)? = [u,(a/2, E) — vy(a/2, E)}* + 4[1 — uy(a/2, E)v,(a/2, E)] . (2:19)

Differentiating (2.13) wir. to E, taking

() (2)
iy Uy

and solving the resulting inhomogeneous first-order system in the standard way yields

aj2
—-cD'(E) = f ds {[v,(s, E)? + vy(s, E)*luy(a/2, E) +
—aj2

+ [MI(S, E)2 + MZ(S1 E)z]vl(a/Q" E) +

+ [ul(S9 E) UI(S7 E) - u2(s’ E) Uz(sa E)] [Uz(a/27 E) - ul(a/Q'a E)]} . (220)
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’Multiplying (2.20) with 4v,(a/2, E), observing (2.19), results in
—c4v,(a/2, E)D'(E)

= ja/z ds{[4 — D(E)*][v/(s, E)? + vy(s, E)?] +

—al2

+ [2u,(s, E)vy(a/2, E) — u,(a/2, E)v,(s, E) + v,(s, E)v,(a/2, E)]? +
+ [2uy(s, E)vy(a/2, E) + uy(a/2, E)vy(s, E) — vy(a/2, E)vy(s, E)]?}. (2.21)

Thus (2.19) implies v,(a/2, E) # 0 for | D(E) | < 2 and, hence, (2.21) proves (i). Next we
assume that D(E,,) = 2 for some E,, e R. If u,(a/2, E,,) = v,(a/2, E,,) = 0, then (2.18)
and (2.19) imply u,(a/2, E,,) = v,(a/2,E,) = 1. Thus D'(E,) =0 by (2.20). Con-
versely, if D’(E,,) = 0, then (2.21) implies

2”7(‘;’ E)vl(a/29 E) - [ul(a/zs E) - UZ(a/zs E)] vj(S7 E) =0 B ] = 11 2.
Since u; and v, are linearly independent, we get
vl(a/st)= 07 ul(a/ZaE) = Uz(a/st): 1

and (2.20) then yields u,(a/2, E) = 0. If D'(E,,,) = 0, then differentiating (2.20) w.r. to
E finally yields

~(c?/2)D"(E,,)

T e
‘v{"

aj2 a2
= J ds[uy(s, E,,.)* + uy(s, E,,)?] J de[v,(t, E,)* + v5(t, E,)?] -
—a/2 —a/2
af2 2
- { Jv dS[MI(S, Em)vl(s7 Em) - u2(S1 Em)v2(S7 Em)]} > 0 (2'22)
—aj2

by Schwarz’ inequality. (The inequality is a strict one since

() (2)
iu, ’ Uy
and linearly independent.) Similarly one discusses the case D(E,,) = —2. O

Concerning the spectrum of H(c, 8) we have

THEOREM 2.2. Let 0 [ - n/a, nja) and fix c e R\{0}. Then
(i) o (H(c, 8) = 9, i.e., H(c, 0) has purely discrete spectrum.
(i) Define the time reversal operator K by

K<f1> - ( é) , (f‘>eL2((-a/2, a/2)) ® C? (2.23)
2 _fZ 2
(where the bar denotes complex conjugation) then

KH(c, )K~'=H(c, -0), 0e(-n/a,0). (2.24)
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(iii) For Oe (—m/a,0) U (0, n/a), H(c, 0) has simple spectrum. The mudtiplicity of
degenerate eigenvalues of H(c, 0), 0€ { + n/a,0} equals two. By choosing an
appropriate enumeration of the eigenvalues E, (c, 0), ne Z of H(c, 0) one may
assume that E | 5,,, , 1,(c, 0) (resp. E , »,,(c, 0)), m e Ny, are strictly monotonously
decreasing (vesp. increasing) w.r. to 8e [ —n/a, 0], i.e.,

S E_(6, 0)<E_i(c, —n/a) < Eqlc, —m/a) < Eo(c, 0) < Ey(c, 0) <
<Ec, ~mfa)< - < E,,_4(c,0) < E,, (¢, —m/a) <
< E,,(c, —mja)< -+ (2.25)

(iv) H(c, 0)is an analytic family for 0 in a neighbourhood of ( — nfa, nja). E, (c, 08),ne Z
are real analytic in ( —n/a, 0) U (0, ©/a) and continuous at + nja, 0. Similarly, the
corresponding eigenfunctions f,(c,0), neZ can be chosen to be analytic in
(—n/a, 0) v (0, n/a) and continuous in + w/a, 0 s.t. f,(c, —nja) = f (c, w/a).

Proof. Assertions (1), (ii), and (iv) follow in complete analogy to the Schrodinger case

as discussed in [6] and [17] (e.g. in connection with (i) one uses
0(po) = { -0+ 2nja)ym|me Z}) while (iii) follows from Lemma 2.1 and the fact that
the eigenvalues E, (c, 0), ne Z of H(c, 0) are precisely the solutions of

2cos(8)=D(c, E). (2.26) O

Remark 2.3. In contrast to the Schrodinger situation the spectrum of H(c, 6) is now
unbounded from below and above, i.e.

E,(c.0) — +w.

-+

We also remark that all eigenvalues E,(c, —n/a), E,(c,0), ne Z might be twice
degenerate as the example m = ¥V = 0 shows.

THEOREM 2.4. The spectrum o(H (c)) is purely absolutely continuous
SHE) = 0. (HEO) = U, 4,0, B,©, -

a,(H(c)) = o, (H(c) = 0,

where
4.(0) = { E (c,0), n odd,
E, (¢, —m/a), neven,
B,(c) = {E"(C’ -nja), nodd, 5 (2.28)
E, (c,0), n even,

Proof. Given Theorem 2.2, one can follow the proof of Theorem XII1.90 in [17] step
by step. O
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3. Relativistic Energy Band Corrections for One-Dimensional Systems
Let V satisfy conditions (2.3) and define the Schrodinger operator 4 in L*(R) by
d2
hy,=-Cm)™!' —+ 7V, 9D(h,)=H*>?R), 3.1
dx?

ie., h, = H, in the terminology of Section 1 and

1
A=_
i

d
—, 94)=H*>'([R), V,="V. (3.2)
dx -
Standard Floquet theory for 4., then yields [6, 17]
@
U= J doh () (3.3)
[

- nifa, m/a)

(cf. (2.7) and (2.9)), where

2

ho0) = —m)-t sy,
dv?
Dh..(0)) = {5(0) e H>((~a/2, af2)) | g(6, —aj2+) = "%g(6, aj2-),

g0, —al2+)=¢"%g'(6,a/2-)}, Oe[-n/a, nja)

is the corresponding fiber of &, in L*((—a/2, a/2)).

Then, changing H (¢, 8) into £, (6), E, (¢, 8)into e, (8), n € N (the eigenvalues of 2__(6))
and K into k(kf = f,fe L>((—a/2, a/2))), Theorems 2.2 and 2.4 hold for &_(6).
(Obviously, one ignores the statements on E,, (c, ), —n e N, since now 4_ (6) is bounded
from below.) In particular,

e1(0) <e(—mja) < ex(—m/a) <e,(0) < - -+

<e,y,_1(0)< ey, _(—n/a)< ey, (—m/a) < e, (0)< - 3.5
and
0(ho(6)) = 0 (ho(8) = [, 5], (3.6)
where
an:{en(O), n odd, b :{en(—n/a), nodd,’ nel. 3.7)
e,(—mnj/a), mneven, e,(0), n even

Moreover, e,(0) is a simple eigenvalue of A (0). Theorem 1.2 then yields

THEOREM 3.1. Let Oe[ —n/a,0] and assume e,(0)e a,(h.(0)) to be a discrete
eigenvalue of h_(0) of multiplicity my(0) =1 or 2. Then, for ¢~2 small enough,
H(6, ¢) — mc? has precisely my(0) eigenvalues (counting multiplicity) near e,(0). More
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precisely, all eigenvalues E,(0, c~*) of H(8, ¢) — mc* near ey(6) satisfy
E(0,c ) =e(@)+ Y (e (0, j=1...j0jo<my(0)<2. (3.8)
p=1

The first-order corrections e; (0) are given as the eigenvalues of the matrix

@m)~2(A(O)1.(0), [V — eo(D]A(0)/(0)), 1,5 =1,...,me(0), me(0) <2, (3.9)

where A(6) = pyand { £.(0)y7D is an orthonormal basis of the eigenspace of h.(6) to the
eigenvalue e,(0). We omit the corresponding assertions on holomorphic eigenvectors (cf.
Theorem 1.2).

Remark 3.2. Obviously m,(0) = 1 for 8¢ (—n/a, 0) (cf. Theorem 2.2 (iii)). But also for
fe {—mn/a, 0}, the band edges e,( — n/a), e,(0) are generically nondegenerate [19].

Remark 3.3. Let n =2m + 1, meN,, 0 < 0 < n/2a and assume e,(#) in Theorem 3.1
equals e, (6). Then there exist constants M, M, > 0 s.t.

{Ml-|(eo(~n/a)—eo(*n/a+‘85'>*| o |ea(—n/a><}
0

¢"?< min min

in. , M, —
implies e ey 501 le; 1(0) —e; (—mfa)| le'; (—nja)|
eo ~m/a) + ¢ Fe; 1(~mfa) > eg(6) + c7?e; 1(0),
fe(—n/a, 0], j=1,..., jo (3.10)

if both denominators do not vanish. Otherwise take the e, ,(.) with the lowest k giving
anonvanishing denominator in the first term, or from the nonvanishing e; (- n/a)’s that
with the lowest k in the second term, correspondingly.

The opposite inequality holds for » e N even. Consequently, for ¢ large enough, the
band edges of the nth band are determined by e,(6) + ¢ e, ,(6) at 6 = —n/a, 0 to first

order w.r. to ¢ 2.

Proof. By Theorem 2.2 (iii) we have
E (c, —nja) - mc2>E, (c,0) — mc?, ¢ 220,0e(—n/a,0].

Equation (3.10) then follows by a Taylor expansion w.r. to (¢ =2, 6) near (0, —n/a). [J

4. Generalizations

We briefly sketch generalizations including impurities and higher-dimensional systems.
We start with a short discussion of impurities in one dimension. In order to avoid the
use of quadratic form techniques [13, 17] we assume the impurity potential U to be
essentially bounded, Ue L*(R). The full Dirac Hamiltonian H,(c) in L*(R) ® C?,
respectively the corresponding Schrédinger operator 4, ,, in L*(R) then read

Hy(©)=H()+ UR1, D(H,y(c)=H>'R)®C?, ceR\{0}, .1
hy v=hy+U, D, )=H*>R), (4.2)
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with H(c) (resp. h.,) given by (2.4) (resp. (3.1)). For a short-range impurity one assumes
UeL'R,(1+|x])dx). 4.3)

Because of (4.3), &, , has only finitely many eigenvalues in each gap of its essential
spectrum [ 18] (here, by definition, each gap is an open interval and the band edges are
never eigenvalues of 4, ). Moreover, if

j dxU(x) 0, (4.4)

it is known that 4, ., has precisely one eigenvalue in each gap sufficiently far out
(see [25,7] and the references therein). However, if [rdxU(x)=0,
Ue L'(R, (1 + |x|*)dx) and U is reflectionless, then %, . has no eigenvalues in the
distant gaps of the spectrum [7]. The coupling constant threshold behaviour of periodic
Hamiltonians subject to short-range impurities is discussed in [15].

The case of long-range impurity potentials

oI+ xD7*< UM< +[x[)7™, 0<a<2, =5 (4.5)

where the eigenvalues accumulate at the ends of each gap in o, (%,, ) is considered
in [14, 24]. In either case, Theorem 1.2 applies to any eigenvalue (impurity level) e,
of h,, yin a gap of g, (k. )- In particular, for ¢~ small enough,

<O
E; U(c_z) =ey,u T Z (C_Z)pej,p, v J=Lisjor JoSmy y<2 (4.6)
p=1
are the only eigenvalues of H,(c) near e, ;, and the first-order relativistic corrections
e; |,y are given by the eigenvalues of the matrix

J
Cm)~Af, o, (V+ U—eo NAS 1), Bs=1,...,mg . 4.7

Here {f, y}%{ is any orthonormal basis of the m, ,~-dimensional eigenspace of 4, ¢
to the eigenvalue ¢, . '

All the above results now extend in a straightforward manner to higher-dimensional
systems. In fact, the direct integral decomposition (cf. Section 2) for v-dimensional
Schrodinger operators has been developed in [1-3, 6, 17]. Since the corresponding
fibers have compact resolvent, the approach of Section 3 immediately extends to v 2
dimensions. The main difference to the one-dimensional situation concerns the fact that
due to eigenvalue denegeracy, bands might overlap and according to the
Bethe—Sommerfeld conjecture (see, e.g., [20] and the references therein) only finitely
many gaps in the spectrum may exist (cf. also [11]). Finally, one can add an impurity
potential (and external magnetic fields [10]) and consider relativistic corrections to
impurity bound states in analogy to (4.6). The existence of such eigenvalues has been
discussed in [5].
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