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We study the connections between Gelfand-Dickey (GD) systems and their modified
counterparts, the Drinfeld-Sokolov (DS) systems in the case of general matrix—valued”
coefficients with entries in a commutative algebra over an arbitrary field. Our main re- .
sults describe auto-Backlund transformations for the GD hierarchy based on Miura-type .-
transformations associated with factorizations of nth order linear differential éxﬁressidné. ’

1. Introduction

The main topic of this paper is to detail the connections between Gelfand-
Dickey (GD) systems and their modified counterparts, the Drinfeld-Sokolov (DS)
systems. Similar to the well-known case of the Korteweg—de Vries (KdV) and mod-
ified Korteweg—de Vries (mKdV) hierarchy [28], these connections are effected by
Miura-type transformations associated with factorizations of nth order linear dif-
ferential expressions. A characteristic feature of the underlying formalism isan
explicit description of auto-Backlund transformations of the GD equations.

In order to explain some of these points in more detail we consider matrix-valued
formal pseudo-differential expressions of the type

n
n= 420 (L.1)
7=0
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.
P = E pi(2)d, z€R, n,reN, (1.2)

j=—o©

commuting with each other, i.e.,
[P, L,]=0. (1.3)

Here we assume ¢;(z), 0 < j < n (and hence pj(z), —00 < j < r) to be m x m
matrices, m € N with smooth entries in z and, in order to avoid technicalities in the
introduction, that the highest coefficient g, is a (nonzero) constant (i.e. independent
of z € R) multiple of the identity m x m matrix

gn = diag(c,...,c), c¢#0. (1.4)

(gn an invertible diagonal m x m matrix, or even more generally, ¢, invertible, would
be sufficient.) Moreover, we assume that

n-1,uv = O: 1 Sp,v<m (15)

and that Py, = p,0; is Lo, = ¢,07 admissible (see Sec. 2). Under the present
simplifying assumption (1.4) this is equivalent to the fact that p, is also a (nonzero)
constant multiple of the m x m identity matrix

pr = diag(d,... ,d), d#0. (1.6)

(Actually, we deal later on with general matrix algebras with entries in a commuta-
tive algebra over an arbitrary field, but for the sake of simplicity we only consider
the algebra of smooth complex-valued functions in the introduction.) The Gelfand-
Dickey equations associated with the Lax pair ((P,)4, L,) are then defined by
d :

—VL, = [(P,-)+,Ln], reE N, (17)

di, ,
where (P )y = E_;:o p; 0L represents the formal differential operator par‘tf of P,. In
terms of the coefficients ¢; of L, (1.7) yields the GD system

at,.qj,u,u = fj,f',u,u(Q(M R 7Qn—2), 0 S J S n-— 2¢ 1 S 12304 S m, (18)
where
n—2 )
[(P)+) Laduw = D im0y 1<y <m. (1.9)
i=0

The special scalar case m =1, n = 2, r € N, r # 0(mod 2) then represents the KdV
hierarchy whereas n = 3, r € N, r # 0(mod 3) describes the Boussinesq hierarchy
of equations. The modified Gelfand-Dickey or Drinfeld—Sokolov system associated
with (1.7) is defined as follows. Consider m x m matrices ¢x(z,t), 1 < k < n with
smooth entries in (z,t) such that

D ¢k =0. (1.10)
k=1
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Introduce the matrix differential expressions

0 0 0 /™ (02 + ¢n)
/™ (85 + 61) 0 0 0
M, = 0 /™0 +62) : : :
: e e 0 0
0 0 ga/™(0s + dn-1) 0
(1.11)
0 0 - 0 g,
@6, 0 0 0
Mo = 0 w"e, . : : , (1.12)
: . 0 0
0 o0 gma, o
gi/™ = diag(ct/™, ... ") (1.13)
Then :
M? = diag(Ln1,-- , Lnn), (1.14)
where ' k
Lng = Apgnot - ArsiAe = 3440, Gok =dn, (1.15)
>j=0
Ar = ¢ (00 + 6k), Argn=Ar, 1<k<n. ~(1.16)

Because of condition (1.9), qn-1,k satisfy (1.5), i.e.,

qn— l,k,p,,yiﬂ 1<k<n, 1<;1,1/<m

and hence all L, ; are of the type (1.1). Moreover, due to (1 17) one can conjuga,te
L, i into Lo _qna :

Lpp=KnxLonKDl, 1<k<n, V ('1‘.18)

n,k’
where K,  denotes a certain formal pseudo~d1ﬂ"erent1al expression (the Zakharov—
Shabat dressing operator) :

-1
Kneg=14 > Xnki®, 1<k<n. o (119)

j=—o00

Next, suppose that Py, = p,0], r € Nis Ly, admissible in the sense of (1. 6) and
define

Qo = diag(Po,, ..., Po,), (1.20)
o, =K, QDr -_1 :diag(Pr,l;-'- :Pr,n)y
Py =KniPo K7}, 1<k<n, (1.21)
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where
Kn =diag(Kn1,...,Knpn). (1.22)

Then the Drinfeld—Sokolov (DS) equations assoc1ated with the Lax pair ((Qr)+,
M,,) are defined by

E(;-Mn = [(Q))4,M,], reEN. (1.23)

Equation (1.23), rewritten in terms of the coefficients ¢ of M,,, then yields the DS
system '

atr(f’k,p,u = gk,",[l,ﬂ(¢l) ce )¢ﬂ)v 1 S k S n, 1 S H,V S m. (124)

At this point we are ready to describe the close connection between GD and DS
systems. In fact, suppose (¢1,...,d,) satisfy the DS system (1.23) resp. (1.24).
Define Ak, Ln &, and ¢;j g, 1 <k < n asin (1.15).- Then the identity (1.14) together
with the diagonal structure of Q, in (1.21) readily proves that (go,--.,qn-2%),
1 < k < n are n solutions of the GD system (1.7) resp. (1.8). In short, one solution
(¢1,-..,¢n) of the DS equations implies n solutions (go,k, ... ,¢n-2%), 1 <k < n
of the GD equations. In the scalar case m = 1 this observation goes back ‘to
Sokolov and Shabat [33] (see also [2, 4, 8, 23, 30, 35, 36]). Our main purpose in
this paper is to prove a converse of this statement in the following sense: Given

a solution (go,1,... ,gn—2,1) of the GD equations (corresponding to the Lax pair
((Pr1)+,Ln,1)), construct a solution (¢1, ... , ¢, ) of the corresponding DS equations
and hence n — 1 further solutions (go ;... ,qn—2,k), 2 < k < n of the GD equatwns

related to each other by (1.11), (1.15), and (1.16) and hence by generalized Miura-
type transformations. This result will be proven in a general algebraic setting in
Sec. 4 and supplemented by a detailed analytic treatment in the scalar case m =1
in Sec. 5. As a by-product one obtains the auto-Backlund transformations: foi' the
GD equations in terms of the factorization of L, 1 in (1.15). ‘

Returning to the special case m = 1, it should perhaps be mentioned at thls
point that besides the n x n matrix Lax pair ((Q,)+,My) for the DS equations
(1.23), originally due to Sokolov and Shabat [33] and. further developed in [2, 4, 8,
23, 30, 35, 36], scalar Lax pairs have also been developed for (1.24), see, e.g., [20—
22, 27]. Since the Backlund transformations, however, are most naturally described
in terms of factorizations (1.15) of L, = Ly, we have consistently chosen the
approach effected by (1.11), (1.21). ’

In Sec. 2 we recall the general algebraic framework in connection with GD sys-
tems as developed by Wilson [34] (see also [8, 23, 25, 35, 36]). Although we provide
a fairly complete collection of the results of [34] in order to set-up the basic notation
needed in Secs. 3-5, we assume a certain familiarity of the reader with this material
(and hence provide no proofs).

In Sec. 3 we develop the corresponding algebraic set-up for the DS equations.
We derive the analogs of all the GD results of Sec. 2 for the general matrix-valued
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DS systems (m € N) following the lines of Kuperschmidt and Wilson [23] and
Wilson [36] (see also [30]) in the scalar case m = 1. Although our generalization to
arbitrary m € N appears to be novel, we only sketch some of the proofs since the
main techniques involving circulant matrices are familiar from the work [23].

In Sec. 4 we prove our main results concerning the connections between GD
and DS systems within the general algebraic approach developed in Secs. 2 and
3. In Theorem 4.1 we recall the well-known fact that a solution of the DS equa-
tions yields n solutions of the corresponding GD equations. In Theorem 4.2 we
prove a first form of a converse to Theorem 4.1 by assuming the existence of a
factorization of L, = Lp; of the type (1.15), (1.16). If in addition the coeffi-
cients (qok,- - - ,qn—2,k) associated with L, x, 1 < k < n (see (1.15)) all satisfy the
corresponding GD equations (1.7) respectively (1.8), then (¢1,...,6,) in (1.15),
(1.16) satisfies the DS equations (1.23) respectively (1.24). Under the additional
hypothesis of the existence of formal eigenvectors of L, = L,,; we prove our main
result in Theorem 4.9: given a solution (go,1,... ,¢n—2,1) of the GD equations, we
find necessary and sufficient conditions in terms of a basis of the formal eigenspace
of L, such that (¢1,...,¢n), constructed with the help of this basis, satisfies the
DS equations. Corollary 4.10 then describes the auto-Backlund transformations of
the GD equations associated with the factorization of L, = L, ;. Our general ap-
proach includes recent generalized (m)KdV equations discussed e.g., in [3, 24] and
the references therein. . ~

While Secs. 2—4 are purely algebraic in nature, we finally give a detailed analyt-
ical treatment of the particular scalar case m = 1 in our final Sec. 5 by specializing
to sufficiently differentiable complex-valued coefficients ¢; in the nth order (scaiar)
differential expression L,,. Under minimal diﬁ'erentia,bility_requirements on the co-
efficients ¢; we derive the zero-curvature representation of the GD equations as a
by-product of Theorem 5.8. ‘We then continue along these lines and reprove:all
major results of Sec. 4 in the analytical context. In particular, we provide a-dé-
tailed study of factorizations of L, and its relation to solutions (¢,...,¢,). Our
hypotheses in Sec. 5 are sufficiently general.to include singular solutions (such as
rational ones). This point is significant since blow-up of solutions in finite time even
for initial data in the Schwartz space is known to occur for GD and DS equations
under appropriate conditions. (see, e.g., [6] and [9]). Due to the very general condi-
tions on the coefficients ¢; the results in Sec. 5 are new. In particular, in contrast to
other possible approaches based on-bi-Hamiltonian structures or inverse scattering
techniques [4, 7, 31] we do not require (almost) periodicity or decay conditions on
the coefficients ¢; as [#] — oco.” The special cases n = 2;7 = 3 and n = 3,r = 2
representing the (modified) KdV and Boussinesq equation were separately studied
in [16] and [15] respectively.

Due to the very general framework developed in Sec. 4, our methods can be
applied to the case where L, is a formal pseudo-differential expression and hence
to the Kadomtsev—Petviashvili (KP) hierarchy. These results will appear elsewhere
[17].
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2. Gelfand-Dickey Systems

In this section we give a short summary of the algebraic set-up of Wilson [34]
(see also [8, 23, 25, 35, 36]) in the context of Gelfand—Dickey (GD) systems [13,
14] (see also [1, 8, 32]). Let A be a commutative algebra over the field (F,+,")
(as usual, we denote the unit element for addition by‘ 0, and the unit element for
multiplication by €),  a derivation on A and

N
A[&]={Zaj£j |a; eA,osjgN,NeNo} (2.1)

i=0

the polynomial algebra generated by A U {{}, where

i '
0, _ i (J Dej—l
a=aq, E’a_;(l>a()£’ ,J €N, 22)
al® = q, a(l) =(0"a), l€N, a€c A.
We also need
A =4 D & lajeA j<M, MeZ,, - (2.3)
j=—o00
where - » ' o
§a= Z(—l)’ (J- T 1) aWei~t jeEN, a€A. (2.4)

Denoting by M,,(A), m € N the algebra of m X m-matrices over F with entriesin
A, we introduce =

assuming the following ba.sic hypothesis on ¢,, and g,_1 for the rest of this secfion.
Hypothesis 2.1. (i) Suppose ;1” is a diagonal matrix of the type
In :‘diavg(cl,... yCm), cééF\{O}, 1<pu<m. | (2.6)
G
cu=cy then gn_1,, =0, 1< p,vr<m. (2.7)

At this point it suffices to restrict A to

_=lr,o OO
B=F [{qj'#,V}OS;ESN:_I \ {qn-—l,u',u’ if ey = ¢, }IENU] (2.8)
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and denote again by 0 the corresponding restriction of d to B. 0 naturally extends
to the algebra M,,(B) by (9¢),,, = 9(qu,,). We also introduce

i=0

N
M (B)lg] = {Zwé" |7j € Mn(B), 0<j <N, N ENO}, (2.9)

whose elements are called formal differential operators, and
M .
Ma(B)(E1) =4 D sif |s; € Mu(B), j<M,MeZ},  (210)
j=—o0

whose elements are called formal pseudo—dlfferentxal operators. For § =
Eﬁ_m 5;89 € M, (B)((€71)) one writes o

M -1
Se=) 85, S_= 3 s (2.11)
j=0 j=—o00 '

and calls the differential expression Sy the (formal) differential operator part of S.
The order of S is defined by

order (S) = max{j € Z|s; # 0} (2:12)
Associating the degree (weight)

deg(g) ) =n+1—j

with q( ‘)‘ ,» B becomes a Z-graded algebra and 0 is then homogeneous of degree 1.

This grading naturally extends to M,,(B) and, defining
deg(é) =1, (2.14)

extends to Mpn(B)[€] and My, (B)((¢€71)). Mu(B)[€] is then a Z-graded algebra
and L,, is homogeneous of degree n. The product of two homogeneous elements of
M, (B)((€71)) of degree r and s respectively is then homogeneous of degree r + s.
The derivation § on B has kernel equal to F,

Ker(9) = F, (2.15)

but in general 4 will not be surjective, i.e., Ran (d) C B. As shown in [34], it is
possible to extend B to an algebra B and (9 to a derivation 8 on B such that

Ker(d) = F, Ran(0) = B (2.16)
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and also the grading extends to B with d being homogeneous of degree 1. The
following key result (which requires B instead of B) describes the Zakharov—Shabat
dressing operation in an algebraic setting:

Theorem 2.2. There ezists an element K, € M,,(B)((£™1)) of the type

-1
Kn=em+ 3 Xnj€, xXnj€Mn(B), j<-—1, en=diagle,...,e) (2.17)

j==co

such that
L, = KnLonK; !, (2.18)

where

Lopn = qné™. (2.19)
The normalization K, = ey, + [ lower order terms ] logether with the assumplion
that K,, be homogeneous of degree zero uniquely determines K, . S

In the following we shall, without further notice, always work with the unique
degree zero part of K,,. Without repeating the details of the proof of Theorem 2.2 in
[34], it should be mentioned that it is Hypothesis 2.1 which allows one to determine
the coefficients xn ; of K. For a given element L € M,,(B)((¢"!)) we denote by

Co({L}) = {P € Mu(B)((¢"") I[P, L] = 0} (220

([P,Q] = PQ — QP the commutator of P and Q) the centralizer of {L} in
M (B)((€71)) and its center by

Z(Cs({L))={Q e Ca({L}) |[Q,P]=0for all P € Cx({L})}.  (2:21)

Similarly Cg({L}), Z(Cg({L})) denote the corresponding subalgebras with B re-
placed by its extension B. We also denote by Cp({q}) the centralizer of {q} in
M, (B) and by Z(Cg({¢})) its center.

Theorem 2.3. (1)
Cp({Lon}) = C({Lo,n}) - (2.22)
(i) S = Ejﬂi_oo 5;67 € Mp(B)((€71)) commutes with Lo, = g,&™ iff each s;,
J £ M s a constant matriz commuting with g,. Cp({Lon}) ts commutative iff
cy #F ¢, for all p # v. (Cp({Loyn}) is of course commutative if m = 1.)
(i) |
Z(Cs({Ln})) = Ce({Ln}) = Z(Ce({Ls})) - (2.23)

In particular, Cp({Ln}) is commutative. If ¢, # ¢, for all 4 # v (or if m = 1)
then Cg({Ln}) is commutative too and hence coincides with Cp({L,}). Next,
following [34], we call Py, = p,&" € Mn(B)[€], r € Ng, Lo n-admissible iff

py = diag(dy,... ,dm), dy € F (2.24)

and d, = d, whenever ¢, =¢,, 1 < g, v < m.
H I H
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One then proves

Lemma 2.4. Py, = p.&" € Mn(B)[] is Lon-admissible iff Po, €
Z(C({Lon }))(= Z(Cg({Lo,n}))). Or equivalently, Po, = p.&™ is Lon-admissible
iff pr € Z(Ce({an}))-

Theorem 2.5. Assume that Py, = p,£" € My (B)[€], r € N commutes with
Loy, te., [Poy,Lon] =0. Let K, € M, (B)((¢€~1)) be given by (2.17), i.e., L, =
K',%Lo’nK_1 and define

P. = K.Py . K;! € My (B)(€71)) (2.25)
so that P, commutes with Ly, i.e., [Pr,L,] = 0. Then actually
P, € Mu(B)(E) (2.26)
iff Py, is Lo n-admissible, i.c., iff Py, € Z(Cs({Lon}))-

Theorem 2.6. Let Py, = p,§" € My (B)[€] be Lo n-admissible. Then
(i) CB({Ln}) contains a unique element of the form

P, = Py, + [ lower order terms] (2.27)

which ts homogeneous of degree r.

(i) Ce({Ln}) comsists of the (in general infinite) sums of elements in (i). In
particular, the leading coefficient in any element of Cg({L,}) is a constant matriz
commuting with gq,,.

If d is a derivation on B, then d is called an evolutionary derivation on B iff d
and @ commute i.e., iff e

d(b) = O(db), b€ B. @)

d (like 8) naturally extends to M, (B) by (dg)u,, = d(qu,,) and also extends to
My (B)[E], M (B)((€71)) coefficientwise, i.e.,

d( > sjgf) = Y (ds;)el. (2.29)

j=—o00 j=—o00

(An evolutionary derivation is uniquely defined by its values on all ¢; , ., \Man-1,4 0

if ey = ¢}, 0 < j < n—1, above. These values can be arbitrarily prescribed.)
For P € Cg({Lyn}),order (P) > 0, the evolutionary derivation J0p associated with
P is defined by

6PQn,;t,1/ = 0>
Opgjup = {coefficient of & in [Py, Ln]uy}, 0<j<n—1, 1<pw<m.
(2.30)
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Associating a “time” parameter {p € R with P,
Otp By = 0P uy, 0<j<n—-1 1<puv<m (2.31)

represents the system of nonlinear evolution equations corresponding to the Lax
pair (P4, L,). If P = P, is homogeneous of degree r > 1 then the right-hand side
of Eq. (2.31) are differential polynomials in ¢; homogeneous of degree n — j + r.
Since [P, L,] = 0 by hypothesis (P € Cg({Ln})),

[Py, L] = [P, L,]. (2.32)
Thus (2.32) represents a formal differential operator of order at most n — 1,
[Py, L] = [P, Ln] € Mn(B)E]. (2.33)

Since
[=P-,Ln) = (¢4 — u)p—1,4,E" ' + [ lower order terms ] , (2.34)

the coefficient of "1 of [Py, Lp)y,, = [—P-, Ln]u,, vanishes for ¢, = ¢, as in the
case of Ly, (see (H.2.1)). (2.31) can be rewritten as

d

——Ln=0pLn =[Py, Ln] (=[-P-,La)). (2.35)
P

In the special case where m = 1, the sequence of nonlinear evolution equations

d

—L,=[(P)4,Ln], r€EN, (2.36)
dt, ,

where ¢, = e, ¢go—1 =0, ¢, =tp,, and

P, = ef" + [ lower order terms ] € Cg({Ln}), r€ N (2.37)

are homogeneous of degree r, represent the Gelfand-Dickey hierarchy [13] N
ever r is a multiple of n, i.e., » = hn for some h € N and hence P, = L" the
evolution equations (2.36) are trivial. More generally, one calls (2.31), (2.35) a
Gelfand-Dickey system.

Example 2.7. m=1,q, = ¢,¢,_1 = 0.
For n > 1,7 > 1 we have

r—2

Pr=(La)* ="+ Y pi€, (2.38)
j=—co |
ie., forr=1,2,3,
(P1)+ = €€, (2.39)
2
(P2)y = € + —dn-2, (2.40)

3 3 3 -
(Ps)y = e + ;‘In—zf + ; (Qn—s + Tna(In-—z) . (2.41)
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n=2r=13,5T:

Ly = e+ qo, (2.42)
(P1)+ =€, (2.43)
3 3
(P3)+ = 853 + §q0£ + Z@qU y (244)
5 15 ) 5
(Ps)+ = e’ + 541053 + 184052 + §(3q§ +58%q0)€ + E(333(I0 + 6¢0090) ,
(2.45)

7 35 1
(Pr)y = e + 5(1065 + Zaqof‘* + g(35q3 +1059%¢0)€3
1 1
+ T6(175‘934° +210900q0)€> + ﬁ(mqg + 245(8q0)* + 350908 g0

1
+1610%q)¢ + 6—4(210q§aq0 + 4208q08%qo + 210¢08°qo + 630°q0) .

(2.46)
qo,t, = 040 , ‘ (2.47)
1 3
qo,ts = 133(10 + §Q0340 ; (2.48)
1 5 5 15 ,
Qo5 = 750700 + 5900720 + 7090090 + 45000 (2.49)
1
o, = 57 (3740 + 14¢08° g0 + 420¢00* g0 + 7007080 + 70¢59° g0
+ 280409909 g0 + T0(9q0)° + 14oqgaqo) . (2.50)
These are the first four equations of the KdV hierarchy.
n=3r=124:
Lz3=ef’+né+qo, »,(2_551)‘
(P1)+ =€, (2.52)
2
(P)y =€’ + 341, (2.53)
4 4 2 2 o
(P = et + 3 @&+ (g g + 3 8¢:1)¢" + 9 (3%q1 + 30¢0 + 4) . (2.54)
Q1 = 0q1
got, = 90, (2.55)
q1,t, = —0%q, +20qq ,
2 2
do,t, = 62‘10 - § 8341 - §Q1‘9Q1 ) (2-56)
1 2 2 2 4 4
- _ I g 23 L oy 2 2, 2 %
Q1,1 g0ty 3°q0 3 010°0 — 3 (Oq)" + 3 91990 + 3 20041,
2 1, 2 e Ao, 2 2
Qo =~ °q1 + 3 0%qo 7 710°q1 3 0q:10°q1 + 3 091090 + 3 41090

4 4
9 a;0q1 + 3 q00q0 - (2.57)
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These are the first three members of the Boussinesq hierarchy.

Theorem 2.8. Let P,Q € Cp({L,}).
(1) If order(P) > 0 then

0pQ = [P4,Ql =[-P_,Q]. (2.58)
(ii) If order(P) > 0, order(Q) > 0 then
0pQ+ = [-P-, Q4]+ (2.59)
and the corresponding evolutionary derivations Op and O0g commaute,
[6p,8q] = 0, (2.60)
i.e., the flows defined in accordance with (2.31) commaute.

For P = Zﬁ_m p;i€ € My (B)((€71)), the coefficient p_; is called the residue
of P and one writes Res (P) = p_y. If d is an evolutionary derivation on B, then
T € B is called a (polynomially) conserved density for d iff dT' € Ran ((9) (i.e.,
dT' = 80X for some X € B). One then proves

Theorem 2.9. For any Q € Cy({Ln}), Tr[Res(Q)] is a conserved density for
all evolutionary derivations Op associated with P € Cp({L,}) (order(P) > 0, see
(2.30)). If Q is homogeneous of degree s, then Tr [Res (@)] is homogeneous of degme
s+ 1. (Here Tr(.) denotes the trace of m x m matrices.)

3. Drinfeld-Sokolov Systems

In this section we provide a short algebraic treatment of Drinfeld~Sokolov (DS)
(or modified Gelfand-Dickey) systems [9] following and extending the treatment in
Kuperschmidt and Wilson [23] and Wilson [36] (see also [30]). We freely use the
notation employed in Sec. 2 and assume the following hypothesis for the rest of this
section.

Hypothesis 3.1. (i) ¢, = diag(cy, ... ,¢n) has an nth root (i.e., cus 1 <p<m
have an nth root)
gl/n = dlag(cl/",... ,einy . 3.1

(In order to avoid problems with the nonuniqueness of the nth roots of Cyu, we shall
fix the choice of c,/ I <p<min Secs. 3 and 4.)
(ii) ¢ € Mp(A), 1<k <nand

if ¢, = ¢, then Zqﬁk,,,,,, =0, 1<pv<m. (3.2)
k=1
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Given Hypothesis 3.1, we restrict the algebra A to

F [{QSSJ,)“,,,} leNu \{¢$,I,)u,,,,, if ey = c”I}IGNo] (3.3)

and denote the restriction of & to D again by 8. 0 naturally extends to Mm(D)
On D one defines a Z-grading by associating the degree

deg(4f,,) = 1+1 (34)

with ¢g)ﬂ ,- 0 is then homogeneous of degree 1. Since we are now interested in

n x n formal matrix (pseudo-) differential operators with entries in M,,(D)[],
(Mm(D)((€71))) we introduce

(Mm(D)[E]) {ZR ¢ |Rj € Mpa(D), 0<j <N, N€ No} (35)

i=0

and
(Mo (D)€" = { PRT3 ]S € Mpn(D), § <M, M € Z} (3.6)

The role of the basic operator L,, of Sec. 2 is now played by

0 0 ce q}x/n(emf + ¢n)
I/n(€m£ + ¢1) 0 0
e I ' ‘
0 0 1’"(em5+¢n 1) 0
€ (Mm(D)[ED)",
em = diag(e, ... ,e€) (3.7

and on (M,(D))", the algebra of n x n matrices over F with entries in Mm (D),
one can introduce a (mod n)-grading as usual. More precisely, on any algebra of
n x n matrices (with entries in any associative algebra) the natural (mod n)-grading
is defined as follows: R = [Ry]; ;-1 is called homogeneous-of degree r iff Ry, =0
except when k — I = r (mod n). Thus M,, is homogeneous of degree 1(mod n) and
M?" is homogeneous of degree 0 (mod n), i.e., M is a diagonal matrix differential
expression.
Defining

deg(€) = 1 (38)

enables one to extend our Z-grading to (M, (D)[€])" and (Mm(D)((€~1))™. In
fact,; one has : ' ~

Lemma 3.2.
M) = diag(Ln1,.-- ,L,,,n) , (3.9
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where

Lok = Aggngr - App1Ax (3.10)
Ar = 03/ (emé + $k), Appn = Ap, 1<k <n. (3.11)

Thus each operator Ly, is of the type of the operator L, considered in Sec. 2.

In order to derive the analog of Theorem 2.2 in connection with M,, one again
needs to extend the algebra D and the derivation 8 on D to an algebra D with
derivation 8 on D such that

ker(d) = F, Ran(d) = D. (3.12)

Then also the Z-grading on D extends to one on D with being homogeneous of
degree 1.

Theorem 3.3. There ezists an element K,, € (M,,,(D)((€~1)))" of the type
Ko =diag(Kn,...,Knn), ; (3.13)

-1
Knk=em+ Y xnri€ € Mu(D)(E7Y),

j=—o0
Kniin=Knp, 1<k<n (3.14)
such that
M, = KMo K71, -~ (3.15)
where
0 0 -+ o 0 gifre
w/"e 0 0
1/n .. .. :
Mom=| O @& = ~ (3.16)
\ o 0 0 g o /

is the (constant coefficient) leading order term of M,. The normalization Ky =
em + [lower order terms| together with the assumption that each Kni, 1<k <nbe
homogeneous of degree zero uniquely determines K,,. In particular, '

Lok =KniLonKyt, 1<k<n. (3.17)
The proof requires a straightforward generalization of the arguments in [34, 35]

and relies on Hypothesis 3.1. We shall always use the unique degree zero part of
Kr in the following. For a given element M € (M,,,(D)((¢~1)))" we denote by

Co({M}) = {P € (Mn(D)((E™)))" | [P, M] = 0} (3.18)
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the centralizer of {M} in (M, (D)((¢71)))" and its center by
Z(Cp({M})) ={Q € Cp({M}) |[Q, Pl =0 for all P € Cp({M})}.  (3.19)

Similarly Cp5({M}), Z(Cp({M})) denote the corresponding subalgebras with D
replaced by its extension D.
For the uniqueness of the degree zero part of K, in Theorem 3.3 one uses part

(i) of

Theorem 3.4. Given Mg, as in (3.16) let R be defined by

Ry, -+ Ria
R=Redpimi=| : . = |, ReMa(DNEN)", (620
Rn,l e -Rn,n '
where s
Reg= Y Reqjé, Ripj € Mu(D), (3.21)
je—eo
te.,
Rriji1 - Reijim
Ryi; = [Rk,l,j];;n;y_—.l = : . : 1 <k,l<n, —o0 < j<s.
Ritjmai - Riljmm

(3.22)
Then

(i) R commutes with Mo iff each Ry ; is a constant matriz which -commutes
with qi/" and Rg41,141 = Rey (i.e., R is circulant as an n X n malriz).

(i1) e )
Cp({Mon}) = Co({Mon}) (3.23)
(iii)

Z(Cp({Mn})) = Z(Cp({My)) = Co({Mn}). (3.24)

In particular Cp({My}) is commutative.

Sketch of Proof. (i)

[R, Mon] =0 implies [R, (Mon)"] =0, or equivalently,

3.25
[R, diag(Lon, .-, Lon)] =0, ie, [RiiLonl=0, 1<kI<n. (3.25)

Theorem 2.3 (ii) now implies that all R ;; are constant matrices and [Rg,1,j,¢n] =0
which is equivalent to [Rk_l,j,q,l,/"] =0, ie., Rk,z,j,,,,,,(c:/" — ¢/ =0, or equiva-

lently, Rk,1juv(cu — ¢y) = 0. This implies

RMon — Mo R =0, ie.,  Ripris10™ = q/"Riy = Riggi/™. (3.26)
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Hence R must be a circulant. Parts (i) and (iii) then follow as in [34, 23] in
connection with Theorem 2.3.

Remark 3.5. Circulant matrices commute with each other. Let

c1 €y ittt Caop Cp
Cp ‘. . Cn—-1
. Cor
C =circ(ey, ... ,eq) = | -1 , (3.27)
C2
€2ttt Cpol Cp c )

then writing Cy ; = ¢; we get for circulant matrices
Cir = Ch—jy1 (subscripts are taken(mod n)). (3.28)

Using the same notation for B = circ(by, ... ,b,) one infers that

n n
[B,Cljr = E (Bij;mCmk — CimBm k) = Z (brm—j+1Ck—m+1 — Cm—j+10k—m41)

m=1 : m=1

n n
= Z bm—j+1Ck—m+41 — Z bi—jt+1Ck—m4+1 = 0. ' (3.29)
m=1 m=1

In analogy to (2.24) we call

.
y Por = prkgrk, Pry, € Mfﬁ()’
re €N, 1<k<n (3.30)

Qor =cire(Pyyy,...,Por, ) € (Mm(D)[f])

Mg n-admissible iff p,, ;1 < k < n are constant matrices lying in the center of the
/

. 1/n .
centralizer of ¢,' ", i.e.,

p €2(Col(a/")) = 2(Co((g.)),  1<ks<n. @3
Remark 3.6. Hence Qg , is My ,-admissible iff Py r, is Lo n-admissible for all
1<k <n '
The analog of Theorem 2.5 is then given by -

mn
Theorem 3.7. Given M, € (Mm(D)[f]) , let Ky = diag(Kn1,...,Knpn) be
the corresponding formal dressing operator (8.13) satisfying Mon = K71 MpK,.
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Assume that Qo , = cire(Pory, .-+ Por,)s Pore = Pré™ € Mp(D)[E] commules
with Mg p, i.e. [Qor, Mon] =0. Define

Q- = KnQo,K7" € (Mu(D)(E)" (3.32)

(which implies [Q,, Mpn] = 0). Then actually

o e (MaD)(E™)" (3:33)
iff Qo is Mo n-admissible.
The elements of Cp({Mn,}) are characterized by
Theorem 3.8. Let Py, = p& and Qoyx,r = circ (0,...,0, PO,, . 0) be

My ,-admissible. (Note that Qg . is homogeneous of degree r with respect to the
Z-grading and homogeneous of degree —k + 1 with respect to the (mod n)-grading.)
Then B

(i) Cp({My}) contains a unique element of the form

Qr = Qokr + [ lower order terms | (3.34)

which is homogeneous of degree r and —k + 1 with respect to the Z and (mod n)-
grading.
(i) Cp({Mn}) consists precisely of the (in general mﬁmte) sums of elements
in (i). In particular, the leading term in any element of Cp({Mn}) is a circulant
constant n X n matriz with m X m malriz entries. commuting with q,. it

In analogy to (2.30) an evolutionary derivation do associated with Q €
Cp({Mn}), order (Q) > 0, degree (Q) = 0(mod n) is defined as a denvatlon
commuting with 0 that satisfies. ~

do(@/$1)uw = (Q4, Malesrp),,, 1<k<n, 1<pv<m.  (3.35)
Associating a time-parameter tg € R with Q,

Otg Pk oy = BQqﬁk,,‘,_,,, 1<k<n, 1< v <m (3.36)

then represents the system of nonlinear evolution equations corresponding to the

Lax pair (Q4+,My). If @ = Q, is homogeneous of degree r > 1 (with respect to

the Z-grading) then the right-hand side of Eq. (3.35) are differential polynomials in
the ¢ homogeneous of degree r + 1. (3.36) can be rewritten as

d . Lo
%MH = 3QMn = [Q+,Mn] = [—’Q_,Mn} . (3.37)
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By (3.11) and Q = diag(Py,..., P,) this is equivalent to

d
EAk = 00 Ak = (Pry1)+Ar — Ax(Pr)+

= —(Pr41)-Ar + Ar(Pr)-
=Res(Pr — Py41), 1<k<n. (3.38)

Note that Ay is of order 1 and (P )_ is of order —1, so that the right-hand side
of (3.35) is a multiplication operator, i.e., a differential expression of order zero.
(3.38) is equivalent to

Orobt = P-1k — (6a/™) po1pp1d™, 1<k <n, (3.39)
l.e., to

6tg¢k’“,,, = p-—l,k,p,u_(C}/n)_lc},/np—l,k-l»l,u,uy 1 S k S n, 1 S ", v S m. (340)

Remark 3.9. If ¢,, = ¢,,, (3.40) simplifies to

6‘Q¢k,#o,llu = P-1,k,po,v0 — P=1,k+1,p0,v0> 1 < k <n. (341)

Summing from & =1 to k = n — 1 then gives

n-—1

Bto Prpo,vo = — Z O1o Bk uo,v0 = P=1,m,40,v0 ~ P=1,1,p0,0 (3.42)
k=1

which shows that the evolutionary derivation dg is compatible with the specializa-
tion (restriction) of the algebra in (3.2), (3.3). In particular, if ¢, = diag(c, .. y¢),
e, ¢x = ¢, 1 < u < m, then the first n — 1 DS equations for ¢1,...,¢,—1 imply
the last one for ¢,,. ' '

In the special case where m = 1 the sequence of nonlinear evolution equations

d
M =124, Mp], reN, - (3.43)
— gl _ —
where ¢, = ¢.'" =e, t, =tg, , and
Q, = diag(P,1,...,Prpn) € Cp({Mn}) (3.44)
with
Prx = e +[lower order terms ], 1<k<n : (3.45)

being homogeneous of degree r, represents the Drinfeld-Sokolov hierarchy [9].
Whenever 7 is a multiple of n, i.e., r = hn for some h € N, the equations (3.43)
are trivial since then Q, = M}. More generally, (3.36), (3.37) are called Drinfeld—
Sokolov systems. '
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Example 3.10. m=1,¢)/" = e.

For n > 1 we have

Ink =€ {In-1k = 0)

n

-1 n-1 1
In—-2,k = Z Z ¢I¢m +0 (E Z ¢k+m—1)

=1 m=1 i=1 m=1

= [‘)((n — Do+ (n—2)dgq1+ -+ ¢k+n—2) + ($162+ ...+ Pn-16n),

1<k<n. (3.46)

n=2,r=1,3,5,7:
Ax = e€ + ¢k, k=12, ¢a=-¢1, (3.47)
My = (121 f:f), Q= (Pal P?,z)’ (3.48)
(Pri)+ = €€, (3.49)
(Pag)+ = €€+ '3“10,16‘5 + %3110,1; ) (3.50)

5 15 5
(Psx)+ = €€ + 540,1:53 + ZBQO,k‘Sz + §(3q§,k + 50% 0,k )€
5
+ '1_6(333‘10,k + 640,k00,) (3.51)
P 5 39 4 1 5 5 3
(Pri)y = e + 540,17«‘;' + zc’iqo,kf + 3 (3599 & + 10597 q0 k)€
1
+ E(17563q0,k + 210q0,k8%’k)£2
1
+ 3—2(70'18,k + 245(8q0,%)* + 35090507 o,k + 1618*qo 1 )¢

] ;
+ —(210¢2 ,0q0,% + 4200890 £ 0% g0 % + 210¢0,x3>qo,x + 630°q0 k) ,
647 (3.52)

where

qo,x = $1d2 + Oy, k=1,2. © o (3.53)

This yields the first four equations of the modified Korteweg-de Vries (mKdV)
hierarchy,

b1, = 061, (3.54)
P16, = 3334751 - g‘¢:126¢1 ) (3.55)

1 5 5 5 15
b1t = =0°¢1 — =910%¢1 — =$10610%¢1 — —(061)° + — 1041,

b1ir = g (0761 — 14610%61 — 84610610" 1 — 1906:0%9:0%,
—126(0¢1)20%¢1 + 70419341 — 182061(6%¢1)*
+560630610%61 + 42067(041)° — 14045041 ) . (3.57)
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n=3r=1,2
Ak =6£+¢k’; k= 1y2,3) ¢3: _(¢1+¢2) ) (358)
0 0 As Pp 0 0
M3 = Al 0 0 ’ Qr = 0 Pr,2 0 )
0 Ay 0 0 0 Pg3 (3.59)
(Pre)+ = €€, (3.60)
2
(Pei)+ = €€ + 3Lk (3.61)
where
qx = a(2¢k + ¢k+1) + (4162 + ¢163 + ¢263) , (3.62)
qok = 0%k + ¢ (8¢>k+1 - 5¢>k) + ¢192¢3, bk = P43y, k=1,2,3.
(3.63)

This yields the first two equations of the modified Boussinesq hierarchy,

Pr1, = O (3.64)
brt, = —%324% - §32¢k+1 — 203061, — ga((ﬁltﬁz + ¢103 + da¢3) ,
¢k:¢k+3; k:112a3

(3.65)
Finally, the analogs of Theorems 2.8 and 2.9 read
Theorem 3.11. Let P, Q € Cp({M,})
(i) If order (P) > 0, degree(P) = 0(mod n) then
0pQ =[P;,Ql=[-P-,Q] . (3.66)

(ii) If order(P) > 0, order(Q) > 0, degree(P) = 0(mod n), degree(Q) =
0 (mod n) then
0p(Q4) = [-P-, Q4]+ - (3.67)

and the corresponding evolutionary derivations Op and g commule,
[0p,00] =0, (3.68)
i.e., the flows defined in accordance with (3.36) commute.

Theorem 3.12. For anyP € Cp({My}), Tr[tr(Res (P))] is a conserved density
Jor all evolutionary derivations Og associated with Q € Cp({M,})(order (Q) > 0,
degree(Q) = 0(mod n) see (3.35)). If P is homogeneous of degree s, then
Tr[tr(Res (P))] is homogeneous of degree s + 1. (Here tr(.) denotes the trace of
n X n matrices.)
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4. Connections between GD and DS Systems

In this section we exhibit connections between GD systems and their modified
versions, the DS systems, in the spirit of Miura’s transformation connecting the
Korteweg-de Vries (KdV) and modified Korteweg—de Vries (mKdV) equation. As
in Secs. 2 and 3 we shall rely on algebraic methods deferring an analytical treatment
to Sec. 5.

Assuming Hypothesis 3.1, let

n
Lok = Akgn-1 - App1Ae = ) g6éf, 1<k<n (4.1)
j=0

be the operators defined in (3.10), (3.11). Then the g;  are matrix-valued differen-
tial polynomials in the ¢ of degree n — j (since deg(qﬂg)) =1+1). Especially,.

Ink = qn, \ ‘ (42)
n-—1 .
gn-1,6 = Y (@) rr(gd™), 1<k <n. (4.3)
=0 S

Due to the well known special case n =2, m =1,
g2k = q;’/kz =e, qx =0, qor=0¢102+0¢k, d1+¢2=0 k=12 (4.4)

which represents Miura’s transformation [28] linking solutions of the KdV- and
mKdV hierarchy, the expression of ¢jx, 0 < j < n—-1,1 <k < n in terms of
the (#1,...,¢n) in (4.1) corresponds to the generalized Miura transformations be-
tween GD and DS systems. As will become clear during the course of this section,
these generalized Miura transformations, together with the DS equations, provide
auto—Backlund transformations for the GD system. As a simple consequence of
Lemma 3.2 we shall next prove that any solution (¢1,...,¢n) of the DS system
(3.36) yields n solutions of the associated GD system (2.31) in terms of the g;; in
(4.1). More precisely, we have

Theorem 4.1. Assume Hypothesis 3.1. Suppose Q = diag(Py,...,Pp) €
Cp({Mn}) and that (¢1,... ,éy) satisfies the DS system (3.36),

Orobrpwy = 00bkuy, 1<k<n, 1<puv<m. (4.5)

Define gjx by (4.1). Then (qok,-..,q¢n-1,k), 1 < k < n salisfy the GD system
(2.31) with P = P, 1 <k <n, :

0tpk Qi k,uvy = aquj,k,u,V! 0<j<n-1,1<k<n, 1< y,v<m. (46)

Proof. Since (4.5) is equivalent to

d

EMH = [Q+)Mn] ) (4‘7)
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one infers

d
Lz = Q4 M.
dtg
Taking into account the diagonal structure of M? by Lemma 3.2,
MG =diag(Lp,...,Lny),

(4.8) is equivalent to

d
——Lnk =[(Pt)4, Lng], 1<k<n
dip ™ ’

which in turn is equivalent to (4.6).

(4.8)

(4.9)

(4.10)

O

Since d¢ in (4.5) is defined as a derivation over D but dp, in (4.6) is a deriva-
tion over B, our notation in Theorem 4.1 and its proof implicitly imply that the
coefficients in Py, originally expressed in terms of the (matrix) differential polyno-
mials in the ¢, are rewritten as differential polynomials in the g; 5. This notational

convention will be assumed in the following. ;
A first form of a converse of Theorem 4.1 is provided by

Theorem 4.2. Assume Hypothesis 2.1 and suppose that L, = E?:o &,
Por = pr&", pr € Z(CB({4n})), Pr = KnPo,K;! for some r € N are homo-

geneous of degree n and r respectively. Moreover, suppose (qo,.- ..

the GD system

p .
ELn =0p,Ln = [(Pr)+, Ln].

Assume there exists a factorization of L, = Ly, 1 of the form

Lny=An-Ap,

where

,qn—1) satisfies

(4.11)

(4:13)

Ar =g/ E+¢k), S EMn(4), 1<k<n.
This determines (Kn, = Kp1, P, = Py 1)
0 0 0 A,
A 0 - 0 0
Mn = O A2 ..' E E y
Dot . 00
0 0 -+ A,y O
(Mﬁ)" = dla,g (Ln,l; . ;Ln,n); Ln,k = qu,k’sj, 1< k <n,
=0 (4.14)

and

Q, =diag(Pr1,... ,Prn), Py =KniPo, K7} 1<k<n. (4.15)

n,k?
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If (90,6, - 1n-1,k), 1 < k < n satisfy the GD system

d

"“"Lnk:[(Prk)+;Lnk]a 1Sk_<_n;
dtr * ’ ’

then (¢1,... ,¢,) fulfill the DS system

d
M =00, My = [(Qr)4, Ma].

Proof.
Ap = I{n,k-ﬂ-lquz/nél(n_,i‘
implies
d 4 d -1
7oA = (G K k) K by Ak — Ak(_ ni)Ko )
and
Lk = Ko gnl K}
yields

d d )
g Ik = [(EK,.,,C)K,, L Lok

Moreover, (4.16) implies

d -
(_&Ej{n,k)1<n,}c = —(Pri)-
which together with (4.19) yields

d
dt,

For the rest of Sec. 4 we assume the simplifying hypothesis

Hypothesis 4.3. Let ql/ =(gn = pr = ey, = diagfe,... ,e).

— A = —(Pre41)-Ar + Ap(Pri)= = (Pris1)+Ax — Ac(Pr i)+ -
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(4.16)

(4.17)

(4.18)

(4.19)

" (4.20)

(4.21)

(4.22)

(4.23)

By Hypothems 2.1 (ii), Hypothesis 4.3 implies that ¢n_1,, = 0,1 < g,v < m.
(While Hypothesis 4.3 is not essential for the rest of Sec. 4, it considerably simplifies

the amount of notations involved.)

In the following we need to postulate the existence of a formal eigenvector as-

sociated with ep,&. To this effect we introduce hypothesis

Hypothesis 4.4. For a fixed A € F'\ {0} assume there exist n different roots
K, ie. (kp)" =X, Kp # ke, k £ k',1 <k, k' < n. Suppose there exist ¥o(xr) € A

such that 0Wo(ki) = kxVo(ke),1 <k < n.

Then
Oo(kr) = kivo(ke), 1<k<n,

(4.24)
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where 1o(k) denotes the m x m matrix
Yo(kr) = em¥o(kg) = diag (e¥o(kg),...,e¥o(kr)), 1<k<n. (4.25)
We then define the action of en¢ on 9o(kx) by
em& Yo(kr) = Fo(ka),  JEN, 1<k<n (4.26)
and consequently,
em& (ki) = Kivo(kk), JEZ, 1<k<n. (4.27)
Next we introduce the m x m matrices 95 ¢
-1
Ynk = Knvo(kr) = Yolkr) + E Xnj KL o(Kk), 1<k<n. (4.28)
j=—o0
Using Hypothesis 4.3, L, becomes °
Lon=emé" 4+ qn_af™ 24 -4q0, ¢ EMn(A), 0<j<n—-2. (4.29)

According to Theorem 2.2 this determines K,, given Lo = e,£". The n m x m
matrices ¥, ; now solve

(Ln = AN)¢nk =0, KE =M 1<k<n. (4.30)
Furthermore, let the matrices #y, ; satisfy the following conditions:

Hypothesis 4.5. (i) Assume that {n x}i<k<n is a basxs of the (algebralc)
nullspace ker(L, — A). b
(ii) Define the m x m matrices I'; 3 ; by LAk

Tjko=0DPp, 1<k<n=1,
Ljei= Fj,k,z_;F,__ll,k,z—1 - Fj,k+1,l—_11"1‘_11'k+1’1_1, | (4.31)

and suppose that the matrices Fj,k;j, 1<y <n-— 2 are invertible.
Explicitly, one computes
Foko=%nk 1<k<n-1,
it = ((0%n0)0nk = Obnps)¥iiyr), 1<k<n-2,
Poa = (00 07k — 007k ) (O )k — O Wirir)
— (@ nks)¥rhss = O¥ner2)bri) (Oha ks b

- (6¢n,k+2)¢;}c+2)_l)a 1<k<n-3. (4.32)
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Condition (ii) guarantees that one can recover ¢;,0 < j < n — 2 from the ¢, 4,
1 <k < n—1 by successive elimination from the system L, = 0,1 <k <n—1.
It also enables one to factorize (L, — A) into n first-order differential expressions
(see (4.43) below). In the special scalar case m = 1, these conditions reduce to the
nonvanishing of Wronskians W(¢1,... ,%) # 0,1 <k < n as in Theorem 5.11.
Given Hypothesis 4.3, we shall abbreviate the corresponding GD system (2.31)

as
GDn,rj(g0s--- »n-2) =0, 0<j<n-—2, (4.33)

where

GDn,r,j,p,V(q(), e 19n—2) = aier,u,v _6Pr(Ij,u,v =0, 0<j<n~-21 Sp,vsm.
(4.34)

Theorem 4.6. Assume Hypotheses 4.3, 4.4, and 4.5, let L,, be defined by (4:29),
Py, =emt", and P, = K, Py K;'. Then the GD system (2.31) is fulfilled

GDn,r,j (qO; e 7qﬂ-—2) = O) 0 S j S n—2 (435)
iff
O, = (P)1)Ynp =Y ngonpy, 1<k<n—1, (4.36)

=1

where O k1 are constant m X m matrices.

Proof. We have

(GDn,r,n—2(q0a cee )Qn—Z)En_2 +...+ GDn,r,O(q(); . ;Qn—Z)) ¢n,k ‘

(4.37)
=10, = (Br)4), Laldnp = [, = (B)4), (Ln = N¥np .,
=—(Ln = A)(01, = (P )4)¥nk, 1<k<n-1. (4:38)

Condition (i) of Hypothesis 4.5 then gives the equivalence of
(O, = (Pr)4) ¥k = E Yn 100 k1 , (4.39)

=1
and

(Ln - /\)(6¢r - (Pr)+)1/)n,k = 0, 1 __<_ k S n—1. (440)

Hence (4.34) implies (4.35). _
Conversely, Hypothesis 4.5 (ii) is precisely the condition which allows one to
eliminate GD,, ,;(.) in the system

(GDn,r,n—2(q0: s )Qn—Z)fn_2 +...+ GDn,r,O(QO; s aQn—Z)) ¢n,k = 0:
1<k<n-1.

Thus (4.35) implies (4.34). O
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In order to handle the case A = 0 excluded in Hypothesis 4.4, one assumes the
existence of an element z € A such that §z = e. Then

Yor(0) = ema*™t, 1<k<n, (4.41)

¥,k (0) = Kntho,k(0) = 9o,k(0) + Z Xni T 1 xk-j—l
j==oo (4.42)

and ¥y, ¢(0) then replaces ¥, i in the treatment above.
Next set Ln1 = Ln,1 — A = L, — A. Condition (ii) of Hypothesis 4.5 allows one
to calculate a factorization of L, ; as described below.

Lny=An - A4, A = (em€ + 1), 1<k<n, (4.43)
where qzk are defined by

$1 = —(0%n,1) ¢';11, Aypn1 =0, ’ (4.44)
= ((0%¥n1) ¥} — (0%n 2)¥53) ((OUn, )05k — (9n2)¥n3)
+ (5¢n,1)1/),:11 = - (3(A1¢n,2)) (A11/)n,2) l, AAithnz =0,

(4.45)
' - - . - -1
$n-1= (8(An-2"~f11¢n n—l)) (An—z'-'Aubn,n—l) ;
Anc1- Appn-1 =0, (4.46)
n—1
A oF (4.47)
k=1
Note that Z';;:l &k = I‘j,l,]-_ll";_ll,llj_l,l <j<n-1
This determines M,, and I}n,k by
9 0 0 A~n
Ay 0 0 0
.A;(n = 0 A~2 . ) (M")n = dlag (En’l’ e ,En,n) !
Sl .00
0o 0 .- A1 O
(4.48)

and L,y by L,,k = L,,k + A Knk and K, are then determined by L, ; =
KpxLo ,,Knk, L k= K kLg,,K_ . Note that K, and K & have the same

structure. Only the terms which contain qo,k, ok differ since qox = qo,x + A
Introducing

Prx = K Po, ,-I(;k, 1<k<n, Pr=PFa, (4.49)

and

Q, = diag(Pr1 ... Prp), (4.50)
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we can define the corresponding DS system by

d - -
Et"Mn - [(Qr)+;Mn] =0. (451)
We shall abbreviate (4.51) by '
fj—sn,r,k(&l: v :‘;n) = O; 1 S k S n, (452)
where
ﬁgn,r,k,p,v(&l; s ;$n) = at,&k,u,u - aQrﬁgk,p,u = O: 1 < k <n, 1 < v <m.
(4.53)
Since for 1 <k <n
RiiLopRop = em(€ +2),  Por=em€", (4.54)

Poi=KniPos K7} = KaiPor K7L, Por=em(€®+ 27", (4.55)

we see that Q, and M,, commute and therefore the evolution equations (4.51) are
well defined.

Example 4.7. n = 2,m = l,q;/2 = e,¢3 = —¢;. In this case we have
DSs,1(61,62) = mKdV,(¢1).
r=13,5,7:
I;Iza/\ﬁ(q;l) =14, — 01 =0, (4.56)
——— ~ ~ 1 ~ 3 ~ ~ 3 -
mKdVa(¢1) = b1,1, — (7001 — 561061 + 52061) = 0, (4.57)
1

mKdVs(31) = 14, — (30A2ad§1 + M(108%¢; — 604204, + 3044,

16
— 10(88,)® — 40$,08,6°3; — 10§20°3, + 65551) =0,  (4.58)

mKdV+(61) = 14, — 6i4 [140,\3&51 Py (—42043%6&1 + 7063431)
+ A(420$;*3$1 — 140(881)? — 56081061028, — 140$26%¢,
+ 1435@) — 14045061 + 4204%(81)°
+ 5608306, 0%¢, — 18206, (0%¢1)? + 10816°; — 126(04,)%0° 4,
— 140$,0%3,8%%, — 846,808,081 — 143205, + 674"51] =0 s

In order to display the A-dependence of these modified equations we note that ¢o in
P, i is expressed by g0 = A+ F(¢1,¢2,...). This A-dependence comes exclusively
from the term P, in (4.55) since the explicit A-dependence cancels in K, ;. Thus
we get

Pp=Kopem +N"EL =) ("é"> Knpem X&KL . (4.60)
1=0
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Writing }5,_,,1,;c = I~{n,k em.ﬁr‘"ll%;}c, allows us to simplify the differential expres-
sion
ni<r 'r'/n v _
(Pri)+ = Z ( I )’\I(Pr—-nl,k)+ . (4.61)

=0

Example 4.8. n=2,m=1,r=1,3,5,7:

(Pre)+ = (Prp)+, (4.62)
(Poi)s = (Psi)s + SA(Pra)s (4.63)
(Psi)+ = (Psi)+ + g’\(ﬁ3,k)+ + 18—5/\2(131,k)+ , (4.64)

~ 7., = 35 ~ 35 ~
(Pri)+ = (Pri)+ + 5A(Psk)+ + —S—AZ(Pa,kh + E’\a(Pl,k)+ .
| (4.65)

Now we are in a. position to formulate our main new result concerning the

converse of Theorem 4.1.

Theorem 4.9..-Assume Hypotheses 4.8, 4.4, and 4.5, let L, be defined as in
(4.29), Por = emé€”, and P, = KnPo,rK,jl. Suppose that (qo,... ,qn-2) sa‘tisﬁes
the GD system (4.33) .

GDn’,-'j(qo,... ,qn_g) =0, OSjSTl-Q, . (466)

or equivalenily, that
(O, = (P)4) ok = 3 ¥niangs, 1<k<n—1. (4.67)
=1

Define (qgl, ... ,43,,)1 by (4.44)~(4.47). Then ($y,...,é,) satisfy the DS system (4.52)

Bgn,r,k(&ly “ee 1&71) = 0; 1 S k S n (468)

of
anhi =0 for Rh+1<1<n, 1<h<n-1. (4.69)

 Proof. We have (P,; = P,)

J/)n,l
~ Al"/)n,2
[(at, - Qr)+: Mn] .
An—l e A~l¢'n,n
k-1 n

= [/ﬁén,r,k((;la cee :‘gn)&k,(l-{»l)(mod n)( H jm)wn,k] bi=1 )
m=1 rT (470)
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DSnri(f1,-. , $n)tn1 = ((6t,. — (Pr2)+) A1 — A1 (8s, - (P"1)+)) Yna
= —A~1((9:r - (Pr,l)+)¢”,1’

= _/al Z"pn,lan,l,l = "Z/‘il"/)n,lan,l,l .
1=1 1=2 (4.71)

Thus DS, r1(61,- .- ,6n) = 0iff an1y =0,1>2.
Tfsn,r,z(qzl, e )AL s = ((5t, — (Pr3)4)Az — As(8:, - (Pr,2)+)) A1t s
=- (/12(‘9% - (Pr,2)+)) Ay,
= —Ay A\ (8;, - (Pr1)+)¥n,2,
= A4 i Yn 02 = — ijzgll/)n,lanﬂ,l ,
1=1 1=3 (4.72)

where we used (4.71). Therefore ﬁén,r,g((il, oy bn) =0 iff Qn,20=0,1> 3.
Iterating this process we finally get o ' '

ij—én,r,n(&l; ‘e ,$n)jn—l e 'A~1¢n,n
= ((atr - (Pr,1)+)14n - An(atr - (Pr,n)+)) fin—l s Al‘/’n,n
= —jn .. ./11((9” - (P,-)])-{-)',bn,n = —En Z"/)n,lan,k,l =0
=1 (4.73)
and hence (4.68) holds iff (4.69) is valid. ~oa
Clearly the case A = 0 formally recovers the homogeneous GD and DS systems

of Secs. 2 and 3.
The auto-Béacklund transformations of the GD equations are then described*i_"”

Corollary 4.10. In addition to the hypotheses in Theorem 4.9 assume that :7‘3
Otk = (P)4thns, 1<k<n—1 (4.74)

instead of (4.36). Then by (4.1), the solution (b1,...6n) constructed in Theorem 4.9
of the DS, , x equations (4.52) yields (n—1) further solutions (qo k., - . . ,qn_z,k)‘, 2<
k <n of the GD, ,; equations (4.34), i.e., qj r salisfy k

GDp (90,8, -+ sqn=2,k) =0, 0<j<n-2 2<k<n. (4.75)

We might recall at the end that due to Ii}g)othesis 4.3, the first n — 1 T)-én,,,k
equations, 1 < k < n — 1 imply the last DS, ., equation by the argument in
Remark 3.9.

5. Scalar GD and DS Hierarchies

In our final section we provide a detailed analytical treatment of the scalar GD
and DS hierarchies. Factorizations of L, will be used to describe the generalized
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Miura transformations linking the GD hierarchy and its modified analog, the DS
hierarchy. The associated auto-Backlund transformations for the GD hierarchy are
also studied in detail.
In order to fix the notation we now choose FF = C, m = 1 and A to be the
algebra of C"°-functions on R with 0 = 0, the corresponding derivation on A.
Hypothesis 2.1, without loss of generality, is then replaced by

Hypothesis 5.1.
=1 gn-1=0 (51)

and hence the differential expression L,, is now of the type

Lo =07+ gn_2(2)02" 2+ - + q1(2)0s + qo() - (5.2)

The algebra B = C [{qj(l)} €N, ] , the gradings (2.13), (2.14), identifying £ = 0,
0<j<n-2
are then defined as in Sec. 2. Choosing
P, = K,0LK;! = L;/” = 97 + [ lower order terms ], r <N (5.3)
the sequence of nonlinear evolution equations
: aPrLﬂ = [(P")+7L"]7 r EN: (54)

or equivalently, viewing ¢; = ¢;(z,t,) as a function of (z,t,) € R?,

Bz,élj = BPrq]' = fn,r,j(q0>~~- :qn—?)) 0 S .7 .<_ n_2: reN (5 5)

then represents the GD hierarchy [13]. Since P, is homogeneous of degree ‘and

dlg; = qJ M has degree n +1 — j, the f; . in (5.5) are dlfferentlal polynomlals in the

gj, 0 < j' < n — 2 homogeneous of degree n 4 r — ; i
We shall abbreviate the system (5.5) also by

GDyrj(90y--- yqn—2)=0, 0<j<n-2, , . (5.6)
where
GDy rj(q0,--- 19n-2) = 0t,4j — fnrj(q0,--- ,qn-2), 0<i<n—-2. = (5.7)

Turning briefly to the DS hierarchy, we define the matrix differential expression

0 0 0 82 + 6n(2),
8z + ¢1(z) 0 0
Mo=| 0 e | 69
. . . : 0

0 0 0+ dni(z) 0
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where, according to Hypothesis 3.1, we now assume

Hypothesis 5.2. (i)
m=a/r =1, (5.9)
(i)
n
¢ €A, 1<k<n and > ¢ =0. (5.10)
k=1

The algebra D = C [{¢§j)} - ] , the gradings (3.4), (3.8), identifying £ = 85,
1<k<n
are then defined as in Sec. 3. Then

M) = diag(Ln,.-- ,Lnn) (5.11)

Lok = Aktn-1 Akp1Ax = 07 + qno2 k00 2+ + 0160 + qox , (5.12)

Ap =05+ ¢k, Akgn = A, 1<k<n. (5.13)

Since deg(d)g)) = 1+ 1, the ¢ in (5.12) are differential polynomials in the
é1,..., ¢, homogeneous of degree n — j. Introducing

Q, = diag(L/?, ..., L/") = diag(P.1, ... , Pn), TEN,  (5.14)

the sequence of nonlinear evolution equations

d

HMH =[(Q)+, M,], reN, (515)

or equivalently, viewing ¢; = éi(z,t,) as a function of (z,t,) € R?
6tr¢k = 6Q,~¢k’ = gn,k,r(¢1: v ,¢n); 1 S k _<. n, re N (516)

then represents the DS hierarchy [9]. Since Q, is homogeneous of degree zero
(mod n), L;/,? are homogeneous of degree r, and ¢, are homogeneous of degree I+1,
the gi » in (’5.16) are differential polynomials in the ¢/, 1 < k' < n homogeneous
of degree r + 1.

We shall abbreviate the system (5.16) also by

Dsn,r,k(¢1)-'- :¢ﬂ):07 1 Sksny (517)
where
DSn,r,k(fﬁl, ce ,¢n) = at,¢k - gn,r,k(¢1>~~~ ,¢n), I1<k<n. (5-18)

At this point we turn from an algebraic description of the GD and DS hierarchies,
which we used to define (5.6) and (5.17), to an analytic one and replace Hypotheses
5.1 and 5.2 as follows: Throughout this section we denote by €2 a simply connected
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open subset of R? unless specified otherwise and consider arbitrary but fixed integers
n > 2 and r # 0 (mod n). In order to simplify our notation we shall write ¢ instead
of t, in the following. We then assume

Hypothesis 5.3. Let ¢;,0 < j < n — 2 be complex-valued functions on § such
that 5
q](-')=a—3{EC°(Q), 0<I<r+j. (5.19)

Hypothesis 5.4. Let ¢z, 1 < k < n be complex-valued functions on Q such
that

i
M~ _aaff €C’(Q), 0<i<n+r-1 (5.20)
and .
D ék(z,t)=0 on Q. (5.21)
k=1

Our choice of Q instead of R? in particular, enables us to consider singular solutions
(e.g., rational ones) by restricting the attention to those connected components in
the (z,t)-plane where the solutions are finite. It also takes into account that even
for initial data in the Schwartz space one cannot expect global solutions for the GD
and DS equations in general. (For the Boussinesq equation, the case n = 3,r = 2,
blow-up of the solutions in finite time is described, e.g., in [6] and [19]).

We start our analytical treatment by a careful investigation of differentiability
properties of both solutions ¢;, ¢ of the GD,, and DS, , equations as well as
solutions ¢ of L,9 = 0. By solutions of linear or nonlinear (partial) differential
equations we mean classical solutions throughout this section. If 9 is a solution of

1
L. = 0, we define the degree of () = g——l’-/;- as
z

deg(¥P) =1, 1eN,. (5.22)

Lemma 5.5. (i) The highest z-derivative of q;: occurring in f, ,; in (5.5) is of
the order r + j' — ;.

(i) The highest z-derivative of ¢y occurring in g, , 5 in (5.16) is of the order r.

(i) Ezpressing qjx, 0 < j < n— 2 as a differential polynomial in terms of
$1,--+ ,¢n, the highest z-derivative of ¢y in q; 1 is of the ordern — j — 1.

Proof. The highest z-derivative of ¢;» in f, ,;, say qj(f) occurs if qJ(-p is an
isolated summand in f, ,; (possibly multiplied by a constant). Thus

deg(¢\)) = n+1—j' =deg(far;) =n+r—j (5.23)

and hence ! = r+ j’ —j. This proves (i). Items (ii) and (iii) are proved analogously.

O

Lemma 5.6. Let ¢;,0 < j < n — 2 satisfy Hypothesis 5.8 and let vy, 1 <
k < n be a system of solutions of Ly = 0. Iniroduce the Wronskians Wi =
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W(1,...,¥), L <k <n. Then

' Wy

i
W) ===

€C’Q), 0<i<n+r. (5.24)

Proof. Since ¢,(cl,) has degree I, the Wronskian W is homogeneous of degree
k(k—1)/2 and hence W,EI) has degree [k(k—1)/2]+!, 0 <1 < n+r. Any determinant
with rows of the type (wm . (l)) with degree less than k(k—1)/2 vanishes since
then at least two rows are equal Using L,y = 0, 1 < k < n, one can reduce
W(I) to a sum of terms consisting of products of differential polynomials of the g;
and k X k determinants involving only derivatives of the ¥ up to order n — 1.
Suppose q(r+ +m) s among these terms for some m > 1. Then [k(k —1)/2] +1 =
n—j+4(r+j+m)+c+d, where d is the degree of the k x k determinant and ¢ > 0
accounts for the degree of other factors which might occur in the product. Thus, if
I <n+r, then d < k(k —1)/2 (since m + ¢ > 1) and hence this term vanishes by
the previous argument. Hence W'/, 0 <1 < n+ 7 is a sum of products of the ¢;
and their z-derivatives up to the order r+ j and the ¥+ and their z-derivatives up
to order n — 1 all of which are continuous on 2. O

The next two theorems show that under Hypothesis 5.3, the system L, = 0,
¥t = (Pr)+v simultaneously admits solutions.

Theorem 5.7. Let R be an open reclangle in R?, (zo,t0) € R. Suppose g;,
0 < j £ n— 2 satisfy Hypothesis 5.1 and the Gelfand-Dickey equations
GD, w(qo, .y qn—2) =00 < j < n-—2on R Then, for any choice of

(c1,... ,¢n) € (C there ezists in R a unique solution ¢(z,t) of the initial value

problem B

La@®¥(z,t) =0, u(z,t) = (P4 (0)v(z,1), (¥,..., 9" D) (zo,t0) = (c1,--- ,¢n) -
(5.25)

Proof. Suppose R = (z1,22) X (t1,t2) and define in R the n x n-matrix -

0 1 0 e 0
. 0 . .
An(l.‘,t) = . : .. .. 0 (526)
0 0o -- 0 1
~q0 —q1 *° —gn-2 O
Next, assuming that ¢ (z,) satisfies,
La(t)9(z,t) =0, (5.27)
we may use deg(Ln) = n, deg(P;) = r, and deg(¢yM) =1 to write
o ((P)+@iz.1)) = " B D =D (2, ¢ 5.28
5=t (P4@09(2.0) = 37 Brpw @ 3¢ D, (5.28)

k'=1
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The B,y ' are differential polynomials in the ¢; homogeneous of degree r + k — &’
and they define in R the n X n-matrix

B,-(.Z‘, t) = [Br,k,k’(z; t)]z,k’:l . (529)

Note that both B, and B,, are continuous matrices since the highest
z-derivative of g; occurring in B, is of order r + j — 1 which can be proven by
simple grading arguments like those in the proof of Lemma 5.5. Also A, and A, ,
are continuous since according to (5.5) and Lemma 5.5 the g¢;, involve only z-
derivatives of g;; up to the order r+ j' — j. Next we shall construct C1-solutions of

the system
uz(z,t) = An(z, t)u(z,t). (5.30)

According to Theorem 7.5 of Chapter 1 in [5] (for the complex-valued case see the
remarks in Sec. 1.8) there exists a unique C!-solution u,,(z,t) of the system (5.30)
under the initial condition um, 1(20,t) = ém; in a strip (z1,23) X (to — é,bto +¢€)
(here um, denotes the I-th component of u,,). Due to the linearity of (5.30) in u
and the fact that A, and A, ; are bounded in any compact subset of the rectangle
R = (z1,22) X (t1,t2) we may extend this solution to all of R.

Next note that

u(z,t) = E Y () tm (z,1) (5.31)
m=1

also solves the system (5.30) and is in C*(R) if the 7, are continuously differentiable.
We now choose the 7y, such that u satisfies the initial condition given in the 'th’eyor,em,
i.e., such that u(zo,t0) = (c1,... ,¢,)T. Let U be the matrix whose m-th column
i Um, 1.e., U is the fundamental matrix which is initially (i.e., at £ = zg énd'for all
t € (t1,t2)) the identity matrix. Let y(t) = (71(¢), ... , ¥a(t)) be the unique solution
of the linear system of equations S

&y S0
d_?(t) = (B,U = Us)(=o, t)7(t) (5.32)
under the initial condition y(to) = (c1,... ,¢2)¥. Then u € C!(R) is the unique
solution of (5.30) under the initial condition u(zo,t0) = (c1,...,¢n)¥. Moreover,

by construction, the function u(zo,t) satisfies the equation
ui(2o,t) = Br(zo,t)u(zo,t). (5.33)
We now intend to prove that this function u(z,t) also satisfies
us(z,t) = Br(z,t)u(z,t). (5.34)

Define
v(z,t) = w(z,t) — Br(z,t)u(z,t). (5.35)

Then v(zo,t) = 0 by (5.33). In addition,

Uz 1(2,t) = An1(z, t)u(z,t) + An(z, t)us(z,t) (5.36)
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proves that u, ; € C°(R) and hence u;,t = Uy ;. Thus
Vg = Uy o — Brou— Brug = (Apy — By o+ An By — B, A, )u+ Av. (5.37)
If we can show that
(Ans = Bro + [An, Bu =0, (5.38)

then v, = Av with v(zo,t) = 0 yields v(z,t) = 0 and hence (5.34). Since u € C*(R)
the equations (5.30) and (5.34) are equivalent to the differential equations in (5.25)
upon identifying

u(z,t) = (¥(z,t),... , " V(z,t)T. (5.39)
Also u satisfies the given initial condition. It remains to prove (5.38). Define the
matrix differential expressions

0 1 0 0
0 :
A= ’ 0 (540)
0 o . o1
o —L, 0 - - 0
and, introducing the abbreviation P = (P,);,
P 0 0 - 0
P’ P 0 - 0
B=| pP" 2P P R (5.41)
: : : o0 :
p(n-1) ("{H P2 3! )P(n 3 ... P

where P/ (P\4)) denotes the differential expression obtained from (P, )4 by differ-
entiating its coefficients once (j times) with respect to . In particular, P\ is a
differential expression of order at most r — 2. Then Ad = A, ® whenever ‘@ =
£, fyo o F™NT and B® = B,® whenever ® = (£, f',...,f" )T and L,.f =
0. But Bu is of the type (f, f,..., f"D)T and u is of the type (W, ', ... (1)
with L,% = 0 since u, = A,u. In order to guarantee these properties we first
solved the problem (5.30) and then the problem (5.34) instead of going the other
way round. We now infer

ABu= A,Bu = A,B,u (5.42)
and

(By + BA)u = Byu+ Bu, = (Bu), = (B,u),
= Byst+ Brup = (Bro + By An)u. (5.43)

Thus (5.38) is equivalent to

(An:— By +[A,B)u=0. (5.44)
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Calculating —-Ew +[4, é] yields that only its last row contains nonzero entries. This
last row is given by

(1P, Lol = [P, 01— PO, —n PO, — ((*7)) + (37])) P9, —nP)
(5.45)
Since (";1) + (;‘:11) = (;‘), the row (5.45) applied to u = (¢,...,p*~NT yields
[(Pr)+,Ln)y. Since the last component of Ay ;u is given by

d
(Ap 1)y = “(aLn)lp, (5.46)
we finally infer

(An,t - Br,x + [Ana Br])u = (An,t - Ew + [J;i; B])U

= (0,. .., 0, (— %Ln + [(Pr)+:L"])¢)T - 0(’5‘47)

thus concluding the proof of the theorem. : O

We now extend the proof of Theorem 5.7 to arbitrary simply connected open
subsets R of R?.

Theorem 5.8. Suppose ¢;, 0 < j < n — 2 satisfy Hypothesis 5.3 and the
Gelfand-Dickey equations GDy r;(q0,... ,qn-2) = 0, 0 < j < n—2o0n Q. Let
(zo,to) € R. Then, for any choice of (¢1,...,¢n) € C", there erists in Q a unique
solution ¥(z,t) of the initial value problem

La(t)¥(2,t) = 0, ¥u(2,t) = (Pr)+(t)¢(r;t), (%, D) (@0, t0) = (61,-2~

Proof. First note that any point (z,t) € Q and the point (zo,to) may be
joined by a compact arc contained in Q. This arc may be covered by a finite
number of open rectangles all of which lie entirely in Q. In particular thereis a
sequence of open rectangles Ry, ... , Ry such that (zo,t0) € Ro, (z,t) € Ry and
Ri_1NR; # 0, j = 1,...,N. This follows since  is open and connected. Now
we define u(z,t) = (¥(z,t),...,%""(z,))T for any (z,t) € Q in the following
way. According to the last theorem we may define uniquely a function ug on Ro by
solving the system of differential equations

us = Apu, u; = Byu (5.49)
under the initial condition ug(xo,t0) = (c1,-.- ,cn)T. Next we define u; on R;
as a solution of (5.49) under the initial condition ui(z1,t1) = uo(z1,t1) where

(z1,t1) € RoNRy. Note that due to uniqueness of solutions of initial value problems
for (5.49) we infer u1|ronRr, = %o|RonR, and that the definition of u; does not depend
on the particular choice of (z1,%1) € RoN R;. Repeating this construction we define
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successively the function u; on R; and finally uy on Ry. Now let u(z,t) = uy(z,t).
We only have to prove that this definition does not actually depend on the choice of
the rectangles joining (z,?o) and (z,t). This can be done by imitating the proof of
the monodromy theorem for the continuation of analytic functions (see, e.g., [26],
Theorem 8.5 in Sec. I11.40). We note the requirement that Q is simply connected
enters here. In the following we give an outline of the procedure. Consider two
distinct points joined by a curve A consisting of line segments parallel to the axes.
Any cover of A with rectangles will give the same value of u at one end of A for
a given value of u at the other end. We therefore may use the term “continuation
of u along A”. Suppose now that (z,t0) and (z,t) are joined by two curves A,
and Aj of the above type. Let u;(z,t) be the continuation of u(z,%o) along A;
and uz(z,t) the continuation of u(zo,o) along Az. In contradiction to our claim
that u(zo, %) defines u(z,t) uniquely, suppose that u1(z,t) # uy(z,t). Continuing,
therefore, u;(z,t) along —Aj (i.e., reversing the direction of A3) we find a value of
u in (zq,t0) which is different from u(z¢,o). Without loss of generality we assume
in the following that the curve A = A; — Ay is not self-intersecting (except that
the initial and the final point coincide). Since Q is simply connected the polygon
described by this curve is a subset of . We now divide the closure of this polygon
into a finite number of closed rectangles which intersect only in their edges. Consider
now two vertices of these rectangles, (z1,t) and (z3,t2), which are joined by a part
of A as well as by some edges lying inside A (call this part A*). Continuing now
u(z1,%1) along A and along A* we obtain two values of u in (z2,?;) which may or
may not coincide. In the former case we replace in the following discussion the part
of A joining (z,t;1) and (z2,%3) by A* thereby obtaining a new smaller polygon
(whose boundary is in the following also denoted by A). In the latter case the
object of our following considerations is the polygon whose boundary is the part of
A joining (z1,t1) and (z3,%2) and the curve —A*. In any case we have obtained a
smaller polygon with the property that continuation of u from a point (z,t) along
the boundary back to (z,t) does not coincide with the initial value. We may rep“;t
this process until we have obtained just a single rectangle as our polygon having
the property that continuing u from one corner to the corner diagonal to it gives
two different results as one goes in positive or negative direction. This, however,
is impossible, since the value of u at one point determines u everywhere in the
rectangle uniquely. Thus our assumption that u is somewhere not uniquely defined
leads to a contradiction and thus the theorem is established. ]

Remark 5.9. Since 1, and hence u, in (5.47) satisfies arbitrary initial values at
arbitrary (zo,t0) € Q, we actually infer the so called zero-curvature representation
of the GD, , equations in the form

Ani—Brys+[An,B,]=0. (5.50)

Lemma 5.10. Suppose ¢;,0 < j < n — 2 satisfy Hypothesis 5.8 and
GDp s j(90s-+- ,qn=2) =0,0<j<n—2. Let ¢1,... ,1, be a system of solutions
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of Lpnyp = 0 and ¢, = (P.)4+%¥. Then the Wronskian W(%y,... ,4,) is constant
(possibly zero) in Q.

Proof. Denoting W (41, ... ,%,) by W,,, we have

Whe = tr(An)Wn =0 (5.51)
and
Whi= tr(B.)W,. (5.52)
By (5.50),
tr(Brg) =0ptr(B,) =0 (5.53)

and hence tr (B,(z,t)) = f(t), is independent of z. On the other hand, since each
B. k. k(z,t) is homogeneous of degree r > 1, so is

tr(Br(z,1)) = > Brai(z,t) = £(2). ‘ (5.54)

k=1 )
Since f(t), being constant in z, has degree zero, f(t) must vanish implying tr(B,) =
0 and hence W, ; = 0 by (5.52). O
Next let 11, . .., %, be a fundamental system of L,1% = 0. In order to factorize

L, as in (5.12) we define
Wy = 1, Wk:W(wly'“ yd)k)) 1<k<n (555)

and

¢r = (In[Wi—1/Wi])z, 1<k<n

whenever the latter is nonsingular. (5.56) is well known to yield the fact
(see e.g. [29], p. 108) :

Ly = (0 + ¢n) -+ (0= + ¢2)(8z + 1) L (5.57)

and clearly
Yok = (nWo/Wal)e=0. (5.58)
k=1

For factorizations in the special cases n = 2 and n = 3 see, e.g., [16, 28] and [10,
11, 15] and the references therein. The general case n > 2 is discussed e.g. in [2, 4,
10, 18, 23, 29, 33, 36].
We shall prove in Theorem 5.13 that if in addition to L 1 = 0 the ¥y satisfy
= (P,)+% then ¢1,... , ¢, satisfy the DS, , equations (5.17). But first we prove

Lemma 5.11. Suppose ¢;,0 < j < n — 2 salisfy Hypothesis 5.3 and
GDn,rj(g0,--. qn-2) =0, 0 < j < n—2. Assume that ¥1,... ,%n s a system
of solutions of Ly = 0 and ¢, = (P)4+v. Let Qo be any open connected subset



ON GELFAND-DICKEY AND DRINFELD-SOKOLOV SYSTEMS 265

of Q such that the Wronskians W(41,... ,¥;) are different from zero on Qy for
k=1,...,n. Then the ¢, defined in (5.56) salisfy

) € Co(R), 1<k<n, 0<I<n+r—1. (5.59)
Moreover, given the @i, define q; as in (5.12). Then
¢ €C'(), 0<I<r+k, 0<j<n-2 1<k<n. (5.60)

In other words the ¢ salisfy Hypothesis 5.4 and the g; i salisfy Hypothesis 5.3 on
the set (2.

Proof. The ¢, k = 1,... ,n are well defined in Q. Equation (5.59) follows
from Lemma 5.6. The ¢ j involve z-derivatives of ¢1, ... , ¢, up to the order n—j—1
by Lemma 5.5. This proves (5.60). -0

An analytic version of Theorem 4.1 then reads

Theorem 5.12. Suppose ¢, 1 < k < n satisfy Hypothesis 5.4 and
DS, k(@1,..-,0n) =0, 1 < k < n. Define gjp by (5.12). Then the ¢; sal-
1sfy Hypothesis 5.3 and

GDn,r,j (qﬂ,ku v an—Z,k) = 09 0 S j S n-— 2; 1 S k S n. (561)

Proof. Combine Lemma 5.11 and the proof of the Theorem 4.1. O

Next we shall derive our main result which amounts to a converse of Theo-
rem 5.12. Given a solution (go,... ,qn-2) = (91,0, ,¢1,n—2) of the GD,, equa-
tions, we shall construct a solution (¢1,...,¢n) of the DS, , equations (5.17) and
n— 1 further solutions (qok, ... ,qn-2,t) for 2 <k < n of the GD, , equations (5.6)
which are all linked to the ¢; by the generalized Miura transformations contained
in (5.12), (5.13).

Theorem 5.13. Suppose g;, 0 < j < n — 2 satisfy Hypothesis 5.3 and ¢;+ €
C°(),0<j <n-2. Let1(z,1t),... ,1.(z,t) be a fundamental system of solutions
of La(t)(z,t) = 0 in Q considering t as a parameter. Let Qo be any open subset
of Q such that Wy = W(%1,...,¥%) #0 in Qo fork =1,... ,n—1. Define ¢s,
1 <k < n according to (5.56) on Qy. Then

L,= A, ---A3A;, (5.62)
where
Ay =0: +dx, 1<k<n. (5.63)
Moreover, (qo,. .. ,qn-2) salisfies the equations GDn rj(q0,... ,qn-2) =0,0<j <
n—2on Q iff

La(@ — (P)y)r =0, 1<k<n-—1, (5.64)
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on Q or, equivalently, iff

(8 = (Pr)4 ) = Zak,ﬂ/)l; 1<k<n-1, (5.65)
=1

on Q, where ag; are (in general t—dependent) constants. Finally, assuming
GDn,rj(g0,--- yqn=2) = 0,0 < j < n—2, we find that (¢1,...,6n) salisfies the
equations DS, r x(d1,...,6n) =0,1 <k <n on Qo iff

ap; =0, h+1<i<n, 1<h<n-—1. (5.66)

Proof. (5.62) has been discussed in (5.55)—(5.58). Since Lnv; = 0 yields
d ‘
(aLn)djk = ~L,y: Eq. (5.7) implies

d n-2 .

(552n) 96 =[P4, Lulge = —La(@=(P)4)bs = 3 GDarilgo, - ,gn-2)¥f -
i=0

(5.67)

Thus GDp s j(0,--- ,4n-2) = 0, 0 < j < n — 2 implies L,(0; — (Pr)4)¥x = 0,

1 < k < n. Conversely, if L,(8; — (P-)+)¢¥%x = 0,1 < k < n —1 then (5.67) for

k=1,...,n—1 represents a homogeneous system of equations for GDy, ;. The

determinant of the matrix associated with this system is W,_(z,1). Hence
GD":"J(qO"H :Qn—2) = 0’ 0 S] < n—2 (568)

on the set where W,_1(z,t) # 0. Next we show that 1#,_; has only simple zeros
as a function of z (if any). Suppose that

OW,,_
Wa—1(zo,t0) = ( 9z “)(zo,t0) = 0.
By hypothesis we have
0# Wan(¥1,...,¥n)(zo,t0)
Y1 Y1
n-1 o ¢§5’—1) (:’—11)
= Z(—-l)n+l+]¢£z])(30’t0) 1/)(J"H) . ,(,[;(‘J'_'f'l)
=0 I n-1 (5.70)
L ST ar
Since
Y1 o o
8Wn_1 . :
20,t0) = | (n- a3 | =0, 5.71
Oz (20,%o 1/)§ 3 L. g__13) (5.71)

wgn—l) ¢(n~—1)

n—1
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we may replace the last line in (5.70) by

n—-3 n—3
(Zc,. o ,ch¢5,131) | (5:72)
j=0

j=0
Inserting (5.72) into (5.70) yields

1/)1 '¢'n—1

':-1 1

I
0# 3 (=14 gD (wg, 1) 97 ooy
j=0 : :
(n=2) .. yin?

¢,§J') (.721

OW,_
Oz

— 9 (20, t0)( =)(20,t0) + ¥~ (@0, to) W1 (2o, t0)

n—-3
= - Z ¢,(1j)($0, to)Wn-1(zo,t0)

3=0
W n-
= U (o, to)(—5= ) (@0, to) + ¥ (20, to) W1 (0, to) -

e (5.73)
Since the right-hand side of (5.73) equals zero by assumption (5.69), this contra-
diction proves that W,_1(z,t) has only simple zeros for fixed ¢ € R. Thus (5.68)
extends to all of Q by continuity of the functions GDy, » j(qo, ... ,gn—2)(z,t) viewed
as functions of z. We also remark that therefore

n—2
Ln(at - (Pr)+)1/)n = - Z GDn,r,j(QOy e 1‘111—2)1/)9) =0 (574)
i=0
on Q,1e.,
L@~ (P)y )t =0, 1<k<n on 9. (5.75)

In order to prove (5.66) we consider
d
{ZMa = 1), Mal} (91, Az, ., Ancy s AsArha)T

= (Dsn,r,n(¢1; cee ,¢n)An—1 ce ‘AZAllbm Dsn,r,l((bla e ;¢n)¢1:
DSn,r,2(¢1: R ;¢ﬂ)A11/)25 ot aDSn,r,n—1(¢1; s ;¢n)An—2 ot 'AZAlwn—l)T )

(5.76)
where we used
d
&;Mn - I:(Qr)-{-yMn}
0 0 0 DSn,r,n(¢1)--- :¢n)
Dsn,r,l(¢1|--~ , $n) 0 [¢]
= 0 DSn,r,2(¢1v-~- y $n) -
: 0 " - :
0 0 Dsn,r,n—1(¢l:~~~ »¢n) 0

(5.77)
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with M,, and Q, defined in (5.8) and (5.14). (Here we are using the notation
employed in (5.12) and (5.14) with L, = L, ;, P, = P,;.) Using

DSprk(P1,...,0n) = ¢t — (Prr+1)+Ar + Ae(Prx)+
= (3t - (Pr,k+1)+)Ak — A (3t - (Pr,k)+) , 1<k<n

(5.78)
(we recall Agyn = Ag, 1 <k < n) and
Ay = 0 (5.79)
(cf. (5.55), (5.56), and (5.65)), one computes
DS, r1(P1, ..., 8n)¥1 = (Ot — (Pr2)4)A1%1 — A1(0¢ — (Pr1)+ )%
—_4 i o1 k¥ (5.80)
k=2
and hence
DSnr1(¢1,...,¢n)=0iff a1 =0, 2<k<n (5.81)

since A1, 2 < k < n, are linearly independent by construction. Next, assuming
ay; =0, 2 <k < n, which implies (see (5.78))

(t'% - (Pr,2)+)A1 =A (3t - (P,,1)+), (5.82)
one computes from (5.65), (5.78), (5.79), and

AzA1Yr =0 . (583)

(cf. (5.55), (5.56)) that

DSpr2(b1,. ., 6n)Arthy = (at - (P,,3)+)A2A1wz — Ay (at - (Pr,z)+)' AJ;
=—A, (Bt - (Pr,2)+)A11/)2

=—AA (3t - (Pr,1)+) e = —ArA; 2 a2 kY 65 "
k=3 .

Thus
DSpr2(61,---,0n) =0iff app =0, 3<k<n (5.85)

since A3 A19¥;, 3 < k < n are linearly independent. An iteration of this argument,
assuming ap; =0 for h+1<I<nand 1<h<n—1, which implies

DSnr k(@1 6n) = (= (Prjsr)s ) A=Ak (8= (Prp)s) =0, 1<k <n—1,
(5.86)
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finally yields

DSpnrn(@1,--- s ¢n)An—1---AsA1pn = —Ln; (at - (Pr,1)+)¢n =0 (5.87)

d
since aLn,l = |Ln,1,(Pr,1)4+| implies Ly 1 (ﬁt - (Pr,1)+)¢ = 0 for any solution
of Ln 1% = 0. 0

The following result details the auto-Backlund transformations for the GD,
equations in terms of factorizations of L.

Corollary 5.14. In addition to the hypotheses in Theorem 5.13 assume that
Vet = (Pr)+¥r for 1 <k <n—1 (instead of (5.64)). Then, by (5.12) and (5.13),
the solution (¢1,... ,én) of the DS, , equations (5.17) constructed in Theorem 5.13
yields (n — 1) further solutions (qok, ... ,qn—2,k), 2 < k <n of the GDn ; equations
(5.6), i.e., g;x satisfy Hypothesis 5.3 and

GDn,T,j(qO,k) ‘e 1‘1n—2,k) = Oa 0 S J S n— 2: 2 S k .<_ n. (588)

Remark 5.15. As shown in Remark 3.9, the DS, ,; equations for k =
1,...,n— 1imply the DS, ., equation,i.e.,

DSnrk(é1,-..,¢n)=0, 1<k<n—1 (5.89)

implies
DSn,r,n(¢1: BRI ¢n) =0. (590)

Remark 5.16. To know n—1 linearly independent solutions of L, (t)y = 0is, in
fact, sufficient in the Hypothesis of Theorem 5.13 according to the well-known fact
that another one may always be obtained by a quadrature (see e.g. [18], p. 122-123).
In fact, integrating W,, = W(%1,...,%,) = C one obtains o

n—1

¥n =Y (& + Beyv (5:91)

k=1
where
q)k = (_1)n+k+lc/ dm’Wﬂ—1($1)~2W(¢17 LR ,¢k—1:¢k+l; L a’f’n——l)(x’) ]

(5.92)
C, ci are (in general t-dependent) constants, and W,_1 = W(%1,... ,%n-1).

Remark 5.17. The final part of the proof of Theorem 5.13 following identity
(5.78) can be slightly modified. Let ¥y be the solutions of

Ap¥, =0, 1<k<n-1, (5.93)
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ie.,
Wi .
U, = W o equivalently, ¥, = A;_; - - A;9y, 1<k<n-1.(594)
k-1
Then (see (5.56))
$r = =0, In ¥y (5.95)
and
n-1
DSk | =0eIn Wi, ... =8, InWn 1,0, Y lny | = -5, (‘I""" - (P"")*‘I'k) ,
1=1 Y
1<k<n-1, (5.96)

where the coefficients of (P, ;)4 are expressed in terms of ¥z, 1 < k <n-1. Id‘eﬁtity
(5.95), which is of interest of its own, follows by multiplying (5.78) from the right
with ¥ and from the left with \Il;l. This immediately yields

_ 9 (‘I’k,t, - (Pr,k)+‘1’k> — 9 ((C%, —(Pri)+) Ar—1 '-'AN/Jk)
A L ‘ Ago1-- A1y
-9 (Ak—l A (O, — (Pr,1)+)1/)k>
¢ A1+ A1ty

=0, ((Ak—l s Arpe) T A1 - Ay Zakﬂ/)l)
=1

= -0y (ak,k + (Ap—1--- Arhg)~! Z ag1(Ar-1 '-'A1)¢1) =0,

I=k+1 /
I<k<n—1. %5

We emphasize that despite the simplicity of the proofs in Theorem 5.13 (aiid Remark
5.17), the results obtained are valid under extremely general conditions on the
coeflicients ¢;. In particular, in contrast to other possible approaches based on bi-
Hamiltonian structures or inverse scattering techniques [4, 7, 31], we do not require
(almost) periodicity or decay conditions on the coefficients ¢; as |z| — oco.

Finally, we further clarify the relation between solutions (¢i,...,¢,) of the
DS,, » equations and factorizations of L,,. Clearly a fundamental system of solutions
of

Loy =0, (Pr)+d =1 (5.98)

uniquely defines a factorization of the differential expressions L, (t) for any value
of t (provided [Ly, P;] = 0). In our final theorem we show that the knowledge of
a factorization of L,(t) also uniquely defines an equivalence class of fundamental
systems of solutions of (5.98) corresponding to a given factorization. The signifi-
cance of this statement is that it shows that one only needs to consider solutions
of the system (5.98) in order to get all possible auto-Backlund transformations for
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the Lax pair (P, L,) our approach might produce, since one obtains all possible
factorizations of L, associated with the given P,.

Definition 5.18. Two fundamental systems of solutions of L,¥ = 0 and v; =
(Pr)4+% are called equivalent if and only if they define the same set of functions

(#1,...,¢n) in (5.56).

It is easily seen that this notion of equivalence defines an equivalence relation
on the set of fundamental systems of solutions of L, = 0 and t; = (P,)4+%. The
system of solutions obtained by replacing any 1 by the sum of linear combinations
of the ¥1,... ,%,—1 (with t-independent coefficients) and a nonzero (t-independent)
multiple of 1, represents the same equivalence class as ¥1,... ,%,-1. Because of
Remark 5.16 a choice of 91,... ,¥,_1 already characterizes an equivalence class.

Theorem 5.19. Suppose q;, 0 < j < n — 2 satisfy Hypothesis 5.3 and the
GD,, , equations. Consider solutions ty,... ,%n_1 of Lytp = 0 and ¢, = (P)4 9
and factorizations of L, of the form

Ln = (05 + ¢n) -+ (0z + $2)(0z + 61) (5.99)
with n
> g=0 (5.100)
k=1

as consiructed in (5.55)—(5.58). Then, on any open set o C Q where Wy =
W(1,...,¥x) # 0,1 <k <n-—1 the functions ¢y in (5.99) are well defined, satisfy
Hypothesis 5.4 and the DS,, , equations. Conversely, on any open set Qo C Q where
a factorization of Ly, is given by (5.99) with functions ¢r satisfying Hypothesis 5.4
and the DS, , equations on Qg there is an equivalence class of fundamental systems
of solutions of Ln = 0 and vy = (Pr)4+1 associated with the given factorizalion: .

In other words, on Qg there is a one-lo-one correspondence between equivalence
classes of solutions of Ly, = 0 and vy = (Pr)4+% and factorizations of L, of the
form (5.99) such that (¢1,... ,¢n) satisfies Hypothesis 5.4 and the DS, . equations.

Proof. By definition, the mapping from the equivalence classes of fundamen-
tal systems of solutions of L,¥ = 0 and ¢; = (P,)+¥ to factorizations (5.99) of
L, given by (5.55)—(5.58) is injective. The functions ¢ defined this way satisfy
Hypothesis 5.4 according to Lemma 5.11 and the DS, , equations according to
Theorem 5.13. We shall prove that this mapping is also surjective. Specifically,
suppose a given solution (¢1,...,¢,) of the DS, , equations satisfies Hypothesis
5.4 on a set Qg. Then there exists an equivalence class of linearly independent func-
tions v¥1,... ,%n_1 which solve L% = 0 and ¥, = (P )+% on £y. Moreover, using
(5.55)—(5.58), they yield the factorization (5.99) with te ¢; being the given solution
of the DS, , equations. Choose (zo,%0) € Q0. Let Wy = 1 and define recursively
on any open rectangle R = (z1,23) X (t1,t2) C Qo containing (zo,%0)

Wk('r’t) = Wi-1(z,t)ax(t) exp {_-/

z

) d'ga(s,1)| (5.101)
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where a; is the unique solution of the first order linear ordinary differential equation
d r
Eak(t) = ak(t){/ da' ¢ (2, 1)
Zo

v [ [ a0 (P o[- [ aeonian0])}
' (5.102)

under the initial condition a;(tg) = 1. Equation (5.102) is well defined since the
bracket {---} does not depend on z. In fact, computing 8,{- - }, one infers

O0c{...} = dr(z,t) +exp [/ dz'¢k(:c',t)] (Ak(Pr,k),,_ exp [—/ dz"¢k(z",t)]) .
’ ’ (5.103)
Since by the DS, . equations (see (5.78)) ¢i: = (Pr,k+1)+Ax — Ax(Pr i)+ a,n‘d’since

Akexp(-—/

T

d:c"(bk(:c”,t)) =0, (5.104)

we find that (5.103) indeed equals zero. Thus we have defined functions W} which
do not vanish in R. Moreover, we note that W,EI) € C°(R),0 <1< n+rand

W,S?) € C°(R),0 < m < n. Next we put
Y =91 =W (5.105)
and remark that 1Z1 is an element of the set
S={y| vV eC(R), 0<i<n+r, ™ eC’R), 0<m<n}. (5106)
Next, suppose that we have defined 9, ... ,%s_1 € S. Then ' , |
W1, .., fr_1,%) = Wy (5107)

is a linear inhomogeneous ordinary differential equation for 1 of order k£ — 1 with
t as a parameter. By Theorem 7.5 in Sec. 1.7 of [5] (and its generalization in
Sec. 1.8) there exists for the associated first order system a unique Cl-solution
(z/;k, - ,12),(5”—2)) under the initial condition (J(mo,t), ... ,tz(k‘z)(:cd,t)) f =
(1,0,...,0) on astrip (z1,z2) X (to — 8,9 + ) for some § > 0. Due to the linearity
of the equation in ¥ and to the fact that the coefficients of the equation and their
t-derivatives are bounded on any compact subset of the rectangle R, we can in fact
continue the solution into all of R. Using the differentiability properties of W} and
of the functions J)j one actually infers that 1/:k € S. We remark that this choice of
the initial condition is for convenience only since the general solution of Eq. (5.107)
is given by the sum of ¥; and a linear combination (with t-dependent coefficients) of
1;1, ... ,¥r_1. This process determines a linearly independent system of functions
¥1,... ,%n_1 on R. From (5.105) one gets

A = W (1, ¥)/W (1) (5.108)
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for all sufficiently smooth 1. We prove by induction on & that for k =1,... ,n

Ag - AsAy = W, ... %k, )W (W1, ..., P). (5.109)

Both differential expressions are of the same order with leading coefficients 1. Sup-
pose (5.109) holds for £ — 1. Then both differential expressions have ¥1,. .. Pkt
in their kernels. v is of course in the kernel of the expression on the mght hand
side of (5.109). Since also

Ag - AgA10 = Ay(Wi/Wi1) = 0 (5.110)

by (5.101) and (5.104) the kernels of the differential expressions and therefore the
differential exEressions in (5.109) themselves are identical. From L, = A, --- A24,
one infers LYy = 0,1 <k <n—1in R. Since (5.102) is equivalent to

(Wi /Wi-1)t = (Pre)+ (Wi /Wi-1) (5.111).
one gets
0= (0 — (Pri)+)(We/Wi_1)
= —(Pop) 4 Aror - A Ay O + (%Ak_l),«x,c_2 e Ay Ay
+ Apo1(Apos - AgArde): (5.112)

dAk 1) = ¢r—1,4 we then

From (Prk)+Ak-1 = Ar—1(Pri-1)+ + ¢k-1,: and (dt

obtain
0= (a, _ (P,,k)+) (Wi /Wi_1) = Ap_ (6t(Pk_1)+)Ak_2 o AgAyde . (5.113)
Iterating this procedure k — 1 times yields o
Aper- A Ay (90— (Po)s )P =0, 1<k<n-1. (5.114)
Thus |

k—1
(0= (P4 ) = cnsti, (5.115)
i=1

where the ay ; are (in general t-dependent) constants. Differentiating (5.115) k—2
times with respect to z yields

Qk,1 T N N (at_(Pr)+)"Zk
S ; : . (5.116)

w05 (o))

Here the inverse matrix on the right exists since Wx_1 # 0. The fact that the IZJ'
are elements of the set S shows that the ag;,i=1,... ,k—1, k=1,... ,n—1are
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continuous in ¢. Finally, we define the functions vy, i.e., the solutions of L,,¢ = 0
and ¥; = (P.)1v¥, as a linear combination of the functions %; with ¢-dependent
coefficients. Any such linear combination will satisfy L,y = 0. Let

k-1

Ye(2,1) = brathe(e,t) + D b (e (2, ). (5.117)

k=1

Then the equation 0 = (0; — (P,)4 )¢ is equivalent to

k k-1 k-1 k
0= E e,k 1tk + b i E ap jP; | = E be kit + E bejog k| Ve
ki=1 Jj=1 k'=1 j=ki+1

(5.118)

where by, i is a constant different from zero. From this equation we may obtain recur-
sively (going backwards) the functions by x:(t) for ' = k — 1,... 1 by quadratures
using the linear independence of the 1;,-. Therefore, by construction, the functions
¥; will satisfy ¥; = (P;)4+% in R. Any choice of the integration constants and of the
constant b ; yields a representative of the equivalence class of solutions of L% = 0
and ¥; = (P,)4+% which reconstructs the original DS, r-solution (41,...,¢,) in R.
Note that starting from a different point (zo,%p) in the same rectangle yields the
same class of solutions (%1,...,%n_1). The construction may now be performed
in any open rectangle contained in Q. If two of those rectangles have a nonempty
intersection then the last argument shows that the classes coincide on this inter-
section. Therefore these equivalence classes of solutions are well defined in all of
Q.

Remark 5.20. With some extra effort one can show that for.a fundamnien-
tal system of solutions ¥1,... ,¥, of L, = 0 and ¢4 = (Pr)+v the Wronskian
W(i1,... ,9), viewed as a function of z, has, at most, zeros of order n <k for
k=1,...,n. In particular these zeros are isolated. This implies that the solutions
of the DS, ; equations constructed in Theorem 5.13 have at most simple poles.
One may therefore extend the definition of the class of solutions of L,y = 0 and
Y1 = (Pr)4+% in the last theorem to sets Q on which there exist solutions ¢, of the
DS,, » equations which have, as functions of z, only simple poles.
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