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Abstract. We continue a recently developed systematic approach to the Bousinesq (Bsq) hi-
erarchy and its algebro-geometric solutions. Our formalism includes a recursive construction
of Lax pairs and establishes associated Burchnall-Chaundy curves, Baker-Akhiezer functions
and Dubrovin-type equations for analogs of Dirichlet and Neumann divisors. The princi-
pal aim of this paper is a detailed theta function representation of all algebro-geometric
quasi-periodic solutions and related quantities of the Bsq hierarchy.

1. Introduction

The Boussinesq (Bsq) equation,

utt = uxx + 3(u2)xx − uxxxx, (1.1)

was originally introduced in 1871 as a model for one-dimensional weakly nonlinear dispersive
water waves propagating in both directions (cf. the recent discussion in [48]). It is customary
to cast the equation in yet another form and instead write it as the system of equations

q0,t +
1

6
q1,xxx +

2

3
q1q1,x = 0, q1,t − 2q0,x = 0. (1.2)

Introducing

q1(x, t) = −(6u(x, 3−1/2t) + 1)/4, (1.3)

equation (1.1) results upon eliminating q0 (cf. also [24]).

The principal subject of this paper concerns algebro-geometric quasi-periodic solutions of
the completely integrable hierarchy of Boussinesq equations, of which (1.2) is just the first
of infinitely many members. In order to be able to give a more precise description of the
concepts involved, we briefly recall some basic notation in connection with the Boussinesq
hierarchy.

The Boussinesq hierarchy is defined in terms of Lax pairs (L3, Pm) of differential expressions,
where L3 is a fixed one-dimensional third-order linear differential expression,

L3 =
d3

dx3
+ q1

d

dx
+

1

2
q1,x + q0, (1.4)

and Pm is a differential expression of order m �= 0(mod 3), such that the commutator of L3

and Pm becomes a differential expression of order one. For the Boussinesq equation (1.2)
itself, we have m = 2, that is,

P2 =
d2

dx2
+

2

3
q1, (1.5)
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and the resulting Lax commutator representation of the Boussinesq equation then reads

Bsq2(q0, q1) =
d

dt
L3 − [P2, L3] = 0, that is,

{
q0,t + 1

6
q1,xxx + 2

3
q1q1,x = 0,

q1,t − 2q0,x = 0.
(1.6)

A systematic, in fact, recursive approach to all differential expressions Pm will be reviewed
in Section 2.

However, before turning to the contents of each section, it seems appropriate to review the
existing literature on the subject and its relation to our approach. Despite a fair number of
papers on the Boussinesq system, the current status of research has not yet reached the high
level of the KdV hierarchy, or more generally, that of the AKNS hierarchy. From the per-
spective of completely integrable systems, the reasons for this discrepancy are easily traced
back to the enormously increased complexity when making the step from the second-order
operator L2 associated with the KdV hierarchy to the third-order operator L3 in connection
with the Bsq hierarchy. On an algebro-geometrical level this difference amounts to hyperel-
liptic curves in the KdV (and AKNS) context as opposed to non-hyperelliptic ones that arise
in the Bsq case.

The classical paper on the Bsq equation, or perhaps more appropriately, the nonlinear string
equation, is due to Zakharov [57]. In particular, he introduced the basic Lax pair (L3, P2)
and discussed the infinite set of polynomial integrals of motion. In many ways closest in
spirit to our approach is the seminal paper by McKean [43] (see also [42]) describing spatially
periodic solutions of the Bsq equation. In contrast to [43] though, we concentrate here on the
algebro-geometric (i.e., finite-genus) case and make no assumptions of periodicity in order to
describe all algebro-geometric quasi-periodic solutions. The application of inverse scattering
techniques for the third-order differential expression L3 to the initial value problem of the
Bsq equation is discussed in great detail by Deift, Tomei, and Trubowitz [13] and Beals,
Deift, and Tomei [4]. General existence theorems (local and global in time) for solutions
of the Bsq equation can also be found, for instance, in Craig [12], Bona and Sachs [6], and
Fang and Grillakis [18], and the references therein. In particular, [4], [6], [12], [13], [37], [43],
and [44] further discuss and contrast the blow-up mechanism for solutions of the nonlinear
string equation obtained by Kalantarov and Ladyzhenskaya [31]. Other special classes of
solutions have been considered by a variety of authors. For instance, certain classes of ratio-
nal Bsq solutions are treated by Airault [2], Airault, McKean, and Moser [3], Chudnovsky
[11], and Latham and Previato [36]. In addition, the classical dressing method of Zhakarov
and Shabat to construct particular classes of solutions for very general systems of integrable
equations, as described, for instance, in [58], [59], [60], and [61], should be mentioned in this
context. Moreover, certain algebro-geometric Bsq solutions, obtained as special solutions of
the Kadomtsev-Petviashvili (KP) equation or by the reduction theory of Riemann theta func-
tions, are briefly discussed by Dubrovin [16], Matveev and Smirnov [38], [39], [40], Previato
[49], [50], Previato and Verdier [52], and Smirnov [54], [55]. The latter solutions appear as
special cases of a general scheme of constructing algebro-geometric solutions of completely
integrable systems developed by Krichever [33], [34], [35] and Dubrovin [15], [17] (see also [5],
[22], [47], [53]).

Our principal contribution to this subject is a unified framework that yields all algebro-
geometric quasi-periodic solutions of the entire Boussines hierarchy at once. In Section 2 we
briefly recall a recursive construction of the stationary Bsq hierarchy following the approach
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first outlined in our paper [14]. The stationary Boussinesq hierarchy is then obtained by
imposing the t-independent Lax commutator relations

[Pm, L3] = 0, m �= 0 (mod 3), (1.7)

assuming q0 and q1 to be t-independent. From the differential expression Pm we construct two
polynomials Sm(z) and Tm(z) in z, which are both x-independent. This leads immediately
to the classical Burchnall-Chaundy polynomial (cf. [9], [10]), and hence to a (generally, non-
hyperelliptic) curve Km−1 of arithmetic genus m − 1, the central object in the analysis to
follow.

In Section 3, the stationary formalism, and in particular, the curve Km−1 are briefly reviewed.
Rather than studying the Baker-Akhiezer function ψ (i.e., the common eigenfunction ψ of the
commuting operators L3 and Pm) directly, our main object is a meromorphic function φ equal
to the logarithmic x-derivative of ψ, such that φ satisfies a nonlinear second-order differential
equation. Moreover, we describe Dubrovin-type equations for the analogs of Dirichlet and
Neumann eigenvalues when compared to the KdV hierarchy.

Section 4 then presents our first set of new results, the explicit theta function representations
of the Baker-Akhiezer function, the meromorphic function φ, and in particular, that of the
potentials q1 and q0 for the entire Boussinesq hierarchy (the latter being the analog of the
celebrated Its-Matveev formula [29] in the KdV context).

Sections 5 and 6 then extend the analyses of Sections 3 and 4, respectively, to the time-
dependent case. Each equation in the hierarchy is permitted to evolve in terms of an inde-
pendent deformation (time) parameter tr. As initial data we use a stationary solution of the
mth equation of the Boussinesq hierarchy and then construct a time-dependent solution of
the rth equation of the Boussinesq hierarchy. The Baker-Akhiezer function, the meromorphic
function φ, the analogs of the Dubrovin equations, and the theta function representations of
Section 4 are all extended to the time-dependent case.

In Appendix A we provide an introduction to the theory of Riemann surfaces and their theta
functions. Appendix B is a collection of results on trigonal Riemann surfaces associated with
Bsq-type curves.

It should perhaps be noted at this point that our elementary algebraic approach to the
Bsq hierarchy and its algebro-geometric solutions is in fact universally applicable to 1 +
1-dimensional hierarchies of soliton equations such as the KdV hierarchy [25], the AKNS
hierarchy [23], the combined sine-Gordon and mKdV hierarchy [21], and the Toda and Kac-
van Moerbeke hierarchies [8] (see also [22]).

2. The Recursive Approach to the Boussinesq Hierarchy

In this section we briefly recall the necessary material from our previous paper [14] without
proofs.

Suppose q0, q1 are meromorphic on C and introduce the third-order differential expression

L3 =
d3

dx3
+ q1

d

dx
+

1

2
q1,x + q0, x ∈ C. (2.1)

For each fixed m ∈ N0 (= N ∪ {0}) with m �= 0(mod 3) we write

m = 3n+ ε, ε ∈ {1, 2}, (2.2)
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and then construct two distinct differential expressions of order 3n+1 and 3n+2, respectively,
denoted by Pm, where m = 3n+ 1 or m = 3n+ 2. In order for these differential expressions
Pm to commute with L3, one proceeds as follows (cf. [14] for more details).

Pick n ∈ N0, ε ∈ {1, 2}, and define the sequences {f (ε)
� (x)}�=0,...,n+1 and {g(ε)

� (x)}�=0,...,n+1

recursively by

(f
(ε)
0 , g

(ε)
0 ) = (c

(ε)
0 , d

(ε)
0 ) =

{
(0, 1) for ε = 1,

(1, d
(2)
0 ) for ε = 2,

d
(2)
0 ∈ C,

3f
(ε)
�,x = 2g

(ε)
�−1,xxx + 2q1g

(ε)
�−1,x + q1,xg

(ε)
�−1 + 3q0f

(ε)
�−1,x + 2q0,xf

(ε)
�−1, (2.3)

3g
(ε)
�,x = 3q0g

(ε)
�−1,x + q0,xg

(ε)
�−1 −

1

6
f

(ε)
�−1,xxxxx −

5

6
q1f

(ε)
�−1,xxx −

5

4
q1,xf

(ε)
�−1,xx

−
(3

4
q1,xx +

2

3
q21

)
f

(ε)
�−1,x −

(1

6
q1,xxx +

2

3
q1q1,x

)
f

(ε)
�−1, � = 1, . . . , n+ 1.

However, as most of the ensuing discussion can be made for both cases simultaneously, we
write

f� = f
(ε)
� , g� = g

(ε)
� , (2.4)

and only make the distinction explicit when necessary.

Explicitly, one computes

(i) Let m = 1 (mod 3) (i.e., ε = 1):

f
(1)
0 = 0, g

(1)
0 = 1,

3f
(1)
1 = q1 + 3c

(1)
1 , 3g

(1)
1 = q0 + 3d

(1)
1 ,

3f
(1)
2 =

2

3
q0,xx +

4

3
q0q1 + c

(1)
1 2q0 + d

(1)
1 q1 + 3c

(1)
2 ,

3g
(1)
2 = − 1

18
q1,xxxx −

1

6
q21,x −

4

27
q31 −

1

3
q1q1,xx +

2

3
q20

+ c
(1)
1

(
− 1

6
q1,xx −

1

3
q21

)
+ d

(1)
1 q0 + 3d

(1)
2 , (2.5)

etc.

(ii) Let m = 2 (mod 3) (i.e., ε = 2):

f
(2)
0 = 1, g

(2)
0 = d

(2)
0 ,

3f
(2)
1 = 2q0 + d

(2)
0 q1 + 3c

(2)
1 , 3g

(2)
1 = −1

6
q1,xx −

1

3
q21 + d

(2)
0 q0 + 3d

(2)
1 ,

3f
(2)
2 =

(
− 1

9
q1,xxxx −

5

9
q1q1,xx −

5

27
q31 −

5

12
q21,x +

5

3
q20

)
+ d

(2)
0

(2

3
q0,xx +

4

3
q0q1

)
+ c

(2)
1 2q0 + d

(2)
1 q1 + 3c

(2)
2 ,

3g
(2)
2 =

(
− 1

9
q0,xxxx −

5

9
q21q0 −

5

18
q0q1,xx −

5

9
q1q0,xx −

5

18
q0,xq1,x

)
+ d

(2)
0

(
− 1

18
q1,xxxx −

1

6
q21,x −

4

27
q31 −

1

3
q1q1,xx +

2

3
q20

)
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+ c
(2)
1

(
− 1

6
q1,xx −

1

3
q21

)
+ d

(2)
1 q0 + 3d

(2)
2 , (2.6)

etc.,

where {c(ε)� }�=1,...,n, {d(ε)
� }�=0,...,n are integration constants, which arise when solving (2.3). It

is convenient to introduce the homogeneous case where all free integration constants vanish.
We introduce

f̂
(ε)
� = f

(ε)
� |c(ε)p =d

(ε)
p =0, p=1,...,�

, ĝ
(ε)
� = g

(ε)
� |c(ε)p =d

(ε)
p =0, p=1,...,�

(2.7)

and use (cf. (2.3))

c
(1)
0 = 0, c

(2)
0 = 1, d

(1)
0 = 1, d

(2)
0 = 0. (2.8)

We do not list these functions explicitly, however, this notation allows us to write

f
(ε)
� =

�∑
p=0

(d(ε)
p f̂

(1)
�−p + c(ε)p f̂

(2)
�−p), g

(ε)
� =

�∑
p=0

(d(ε)
p ĝ

(1)
�−p + c(ε)p ĝ

(2)
�−p). (2.9)

Given (2.3) one defines the differential expression Pm of order m by

Pm =
n∑

�=0

(
f

(ε)
n−�

d2

dx2
+

(
g

(ε)
n−� −

1

2
f

(ε)
n−�,x

) d
dx

+
(1

6
f

(ε)
n−�,xx − g

(ε)
n−�,x +

2

3
q1f

(ε)
n−�

))
L�

3 +
n∑

�=0

km,�L
�
3, (2.10)

km,� ∈ C, � = 0, . . . , n, m = 3n+ ε, ε ∈ {1, 2}, n ∈ N0,

and verifies that

[Pm, L3] = 3 f
(ε)
n+1,x

d

dx
+

3

2
f

(ε)
n+1,xx + 3 g

(ε)
n+1,x,

m = 3n+ ε, ε ∈ {1, 2}, n ∈ N0 (2.11)

(where [ · , · ] denotes the commutator symbol). The pair (L3, Pm) represents the Lax pair
for the Bsq hierarchy. Varying n ∈ N0 and ε ∈ {1, 2}, the stationary Bsq hierarchy is then
defined by the vanishing of the commutator of Pm and L3 in (2.11), that is, by

[Pm, L3] = 0, m = 3n+ ε, ε ∈ {1, 2}, n ∈ N0, (2.12)

or equivalently, by

f
(ε)
n+1,x = 0, g

(ε)
n+1,x = 0, ε ∈ {1, 2}, n ∈ N0. (2.13)

Explicitly, one obtains for the first few equations of the stationary Boussinesq hierarchy,

m = 1 (i.e., n = 0 and ε = 1) :

q0,x = 0, q1,x = 0.

m = 2 (i.e., n = 0 and ε = 2) :

− 1

6
q1,xxx −

2

3
q1q1,x + d

(2)
0 q0,x = 0, 2 q0,x + d

(2)
0 q1,x = 0.

m = 4 (i.e., n = 1 and ε = 1) :

− 1

18
q1,xxxxx −

1

3
q1q1,xxx −

2

3
q1,xq1,xx −

4

9
q21q1,x +

4

3
q0q0,x
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+ c
(1)
1

(
− 1

6
q1,xxx −

2

3
q1q1,x

)
+ d

(1)
1 q0,x = 0,

2

3
q0,xxx +

4

3
q1q0,x +

4

3
q1,xq0 + c

(1)
1 2q0,x + d

(1)
1 q1,x = 0, (2.14)

etc.

By definition, solutions (q0, q1) of any of the stationary Bsq equations (2.14) are called sta-
tionary algebro-geometric Bsq solutions or simply algebro-geometric Bsq poten-
tials.

Next, we introduce two polynomials Fm and Gm, both of degree at most n with respect to
the variable z ∈ C,

Fm(z, x) =
n∑

�=0

f
(ε)
n−�(x)z

�, (2.15)

Gm(z, x) =
n∑

�=0

g
(ε)
n−�(x)z

�, m = 3n+ ε, ε ∈ {1, 2}, n ∈ N0. (2.16)

In terms of homogeneous quantities we define (cf. (2.7) and (2.8))

F̂� = F� |c(ε)p =d
(ε)
p =0, p=1,...,n

, Ĝ� = G� |c(ε)p =d
(ε)
p =0, p=1,...,n

. (2.17)

We may then write

Fm =
n∑

j=0

(c
(ε)
n−jF̂3j+2 + d

(ε)
n−jF̂3j+1), Gm =

n∑
j=0

(c
(ε)
n−jĜ3j+2 + d

(ε)
n−jĜ3j+1). (2.18)

Explicitly, the first few polynomials Fm, Gm read

F1 = 0, G1 = 1,

F2 = 1, G2 = d
(2)
0 ,

F4 =
1

3
q1 + c

(1)
1 , G4 = z +

1

3
q0 + d

(1)
1 , (2.19)

F5 = z +
2

3
q0 + d

(2)
0

1

3
q1 + c

(2)
1 , G5 = d

(2)
0 z −

1

18
q1,xx −

1

9
q21 + d

(2)
0

1

3
q0 + d

(2)
1 ,

etc.

Given (2.15) and (2.16), (2.12) (or equivalently, (2.13)) becomes

2Gm,xxx + 2 q1Gm,x + q1,xGm − 3 (z − q0)Fm,x + 2 q0,xFm = 0, (2.20)

1

6
Fm,xxxxx +

5

6
q1Fm,xxx +

5

4
q1,xFm,xx +

(3

4
q1,xx +

2

3
q21

)
Fm,x

+
(1

6
q1,xxx +

2

3
q1q1,x

)
Fm + 3(z − q0)Gm,x − q0,xGm = 0. (2.21)

Both equations can be integrated (cf. [14]) to get

Sm(z) = −1

6
Fm,xxxxFm +

1

6
Fm,xxxFm,x −

1

12
F 2
m,xx −

5

6
q1Fm,xxFm

− 5

12
q1,xFm,xFm +

5

12
q1F

2
m,x −

1

3

(1

2
q1,xx + q21

)
F 2
m + 2Gm,xxGm
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−G2
m,x + q1G

2
m − 3(z − q0)FmGm, (2.22)

where the integration constant Sm(z) is a polynomial in z of degree at most 2n− 1 + ε, m =
3n+ ε, ε ∈ {1, 2}, n ∈ N0,

Sm(z) =
2n−1+ε∑

p=0

sm,pz
p, m = 3n+ ε, ε ∈ {1, 2}, n ∈ N0, (2.23)

and

Tm(z) =
1

18
Fm,xxxxFm,xxFm −

1

24
Fm,xxxxF

2
m,x

+
1

36
Fm,xxxFm,xxFm,x −

1

108
F 3
m,xx −

1

36
FmF

2
m,xxx +

1

18
q1Fm,xxxxF

2
m

− 1

18
q1,xFm,xxxF

2
m −

1

9
q1Fm,xxxFm,xFm +

1

18
q1,xxFm,xxF

2
m

+
2

9
q1,xFm,xxFm,xFm −

7

72
q1Fm,xxF

2
m,x +

7

36
q1F

2
m,xxFm

+
5

18
q21Fm,xxF

2
m −

1

24
q1,xxF

2
m,xFm −

7

48
q1,xF

3
m,x +

1

12
q1,xq1Fm,xF

2
m

− 1

6
q21F

2
m,xFm +

( 2

27
q31 −

1

36
q21,x +

1

18
q1,xxq1 + (z − q0)2

)
F 3
m

+ (z − q0)G3
m +

1

6
Fm,xxxxG

2
m −

1

3
Fm,xxxGm,xGm + FmG

2
m,xx

+
1

3
Fm,xx

(
G2

m,x +Gm,xxGm

)
− Fm,xGm,xxGm,x − q1(z − q0)F 2

mGm

+
2

3
q21FmG

2
m +

5

6
q1Fm,xxG

2
m −

4

3
q1Fm,xGm,xGm +

7

12
q1,xFm,xG

2
m

+
1

3
q1FmG

2
m,x +

4

3
q1FmGm,xxGm +

1

6
q1,xxFmG

2
m −

1

3
q1,xFmGm,xGm

+ (z − q0)Fm,xFmGm,x −
1

4
(z − q0)F 2

m,xGm − 2(z − q0)F 2
mGm,xx, (2.24)

where the integration constant Tm(z) is a monic polynomial of degree m,

Tm(z) = zm +
m−1∑
q=0

tm,qz
q, m = 3n+ ε, ε ∈ {1, 2}, n ∈ N0. (2.25)

Next, we consider the algebraic kernel of (L3 − z), z ∈ C (i.e., the formal nullspace in a
purely algebraic sense),

ker(L3 − z) = {ψ : C→ C ∪ {∞} meromorphic | (L3 − z)ψ = 0}, z ∈ C. (2.26)

Taking into account (2.12), that is, [Pm, L3] = 0, computing the restriction of Pm to ker(L3-z),
and using

ψxxx = −q1ψx +
(
z − 2−1q1,x − q0

)
ψ, etc., (2.27)

to eliminate higher-order derivatives of ψ, one obtains from (2.3), (2.10), (2.13), (2.15), (2.16),
(2.20), and (2.21)

Pm

∣∣∣
ker(L3−z)

=
(
Fm

d2

dx2
+

(
Gm −

1

2
Fm,x

) d
dx

+Hm

)∣∣∣
ker(L3−z)

. (2.28)
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Here

Hm(z, x) =
1

6
Fm,xx(z, x) +

2

3
q1(x)Fm(z, x)−Gm,x(z, x) + km(z) (2.29)

and (cf. (2.10))

km(z) =
n∑

�=0

km,�z
� (2.30)

is an integration constant. The presence of this constant km(z) in (2.29), and hence in (2.28),
corresponds to adding an arbitrary polynomial in L3 to the non-trivial part of the differential
expression Pm (cf. (2.10)). This polynomial in L3 obviously commutes with L3, and without
loss of generality we henceforth choose to suppress its presence by setting km(z) = 0.

Still assuming f
(ε)
n+1,x = g

(ε)
n+1,x = 0 as in (2.13), [Pm, L3] = 0 in (2.10) yields an algebraic

relationship between Pm and L3 by appealing to a result of Burchnall and Chaundy [9], [10]
(see also [20], [27], [51], [56]). In fact, one can prove

Theorem 2.1 ([14]). Assume f
(ε)
n+1,x = g

(ε)
n+1,x = 0, that is, [Pm, L3] = 0, m = 3n + ε, ε ∈

{1, 2}, n ∈ N0. Then the Burchnall-Chaundy polynomial Fm−1(L3, Pm) of the pair (L3, Pm)
explicitly reads (cf. (2.23) and (2.25))

Fm−1(L3, Pm) = P 3
m + Pm Sm(L3)− Tm(L3) = 0,

Sm(z) =
2n−1+ε∑

p=0

sm,pz
p, Tm(z) = zm +

m−1∑
q=0

tm,qz
q, (2.31)

m = 3n+ ε, ε ∈ {1, 2}, n ∈ N0.

Remark 2.2. Fm−1(L3, Pm) = 0 naturally leads to the plane algebraic curve Km−1,

Km−1 : Fm−1(z, y) = y3 + y Sm(z)− Tm(z) = 0 (2.32)

of (arithmetic) genus m− 1. For m ≥ 4 these curves are non-hyperelliptic.

Finally, introducing a deformation parameter tm ∈ C into the pair (q0, q1) (i.e., q�(x) →
q�(x, tm), � = 0, 1), the time-dependent Bsq hierarchy is defined as a collection of evolution
equations (varying m = 3n+ ε, ε ∈ {1, 2}, n ∈ N0)

d

d tm
L3(tm)− [Pm(tm), L3(tm)] = 0,

(x, tm) ∈ C2, m = 3n+ ε, ε ∈ {1, 2}, n ∈ N0, (2.33)

or equivalently, by

Bsqm(q0, q1) =


q0,tm − 3 g

(ε)
n+1,x = 0,

q1,tm − 3 f
(ε)
n+1,x = 0,

(x, tm) ∈ C2, m = 3n+ ε, ε ∈ {1, 2}, n ∈ N0, (2.34)
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that is, by

Bsqm(q0, q1) =


q0,tm + 1

6
Fm,xxxxx + 5

6
q1Fm,xxx + 5

4
q1,xFm,xx + (3

4
q1,xx + 2

3
q21)Fm,x

+(1
6
q1,xxx + 2

3
q1q1,x)Fm + 3(z − q0)Gm,x − q0,xGm = 0,

q1,tm − 2Gm,xxx − 2q1Gm,x − q1,xGm + 3(z − q0)Fm,x − 2q0,xFm = 0,

(x, tm) ∈ C2, m = 3n+ ε, ε ∈ {1, 2}, n ∈ N0. (2.35)

Explicitly, one obtains for the first few equations in (2.34),

Bsq1(q0, q1) =

 q0,t1 − q0,x = 0,

q1,t1 − q1,x = 0,

Bsq2(q0, q1) =

 q0,t2 + 1
6
q1,xxx + 2

3
q1q1,x − d(2)

0 q0,x = 0,

q1,t2 − 2 q0,x − d(2)
0 q1,x = 0,

(2.36)

Bsq4(q0, q1) =


q0,t4 + 1

18
q1,xxxxx + 1

3
q1q1,xxx + 2

3
q1,xq1,xx + 4

9
q21q1,x

−4
3
q0q0,x + c

(1)
1

(
1
6
q1,xxx + 2

3
q1q1,x

)
− d(1)

1 q0,x = 0,

q1,t4 − 2
3
q0,xxx − 4

3
q1q0,x − 4

3
q1,xq0 − c(1)1 2q0,x − d(1)

1 q1,x = 0,

etc.

3. The Stationary Boussinesq Formalism

In this section we continue our review of the Bsq hierarchy as discussed in [14] and focus
our attention on the stationary case. Following [25] we outline the connections between
the polynomial approach described in Section 2 and a fundamental meromorphic function
φ(P, x) defined on the Boussinesq curve Km−1 in (2.32). Moreover, we discuss in some detail
the associated stationary Baker-Akhiezer function ψ(P, x, x0), the common eigenfunction of
L3 and Pm, and associated positive divisors of degree m − 1 on Km−1. The latter topic was
originally developed by Jacobi [30] in the case of hyperelliptic curves and applied to the KdV
case by Mumford [46], Section III.a.1 and McKean [45].

Before we enter any further details we should perhaps stress one important point. In spite of
the considerable complexity of the formulas displayed at various places in Sections 2–3, the
basic underlying formalism is a recursive one as described in depth in [14]. Consequently,
the majority of our formalism can be generated using symbolic calculation programs (such
as Mathematica or Maple).

We recall the Bsq curve Km−1 in (2.32)

Km−1 : Fm−1(z, y) = y3 + y Sm(z)− Tm(z) = 0,
9



Sm(z) =
2n−1+ε∑

p=0

sm,pz
p, Tm(z) = zm +

m−1∑
q=0

tm,qz
q, (3.1)

m = 3n+ ε, ε ∈ {1, 2}, n ∈ N0,

(where m = 3n + ε, ε ∈ {1, 2}, n ∈ N0 will be fixed throughout this section) and denote its
compactification (adding the branch point P∞) by the same symbol Km−1. (In the following
Km−1 will always denote the compactified curve.) Thus Km−1 becomes a (possibly singular)
three-sheeted Riemann surface of arithmetic genus m−1 in a standard manner. We will need
a bit more notation in this context. Points P on Km−1 are represented as pairs P = (z, y)
satisfying (3.1) together with P∞, the point at infinity. The complex structure on Km−1 is
defined in the usual way by introducing local coordinates ζP0 : P → (z − z0) near points
P0 ∈ Km−1 which are neither branch nor singular points of Km−1, ζP∞ : P → z−1/3 near
the branch point P∞ ∈ Km−1 (with an appropriate determination of the branch of z1/3) and
similarly at branch and/or singular points of Km−1. The holomorphic map ∗, changing sheets,
is defined by

∗ :

{
Km−1 → Km−1,
P = (z, yj(z))→ P ∗ = (z, yj+1(mod 3))(z)), j = 1, 2, 3,

P ∗∗ := (P ∗)∗, etc., (3.2)

where yj(z), j = 1, 2, 3 denote the three branches of y(P ) satisfying Fm−1(z, y) = 0. Finally,
positive divisors on Km−1 of degree m− 1 are denoted by

DP1,... ,Pm−1 :


Km−1 → N0,

P → DP1,... ,Pm−1(P ) =

 k if P occurs k
times in {P1, . . . , Pm−1},

0 if P �∈ {P1, . . . , Pm−1}.
(3.3)

Specific details on curves of Bsq-type (i.e., trigonal curves with a triple point at P∞) as
defined in (3.1) can be found in Appendix B.

Given these preliminaries, let ψ(P, x, x0) denote the common normalized eigenfunction of L3

and Pm, whose existence is guaranteed by the commutativity of L3 and Pm (cf., e.g., [9], [10]),
that is, by

[Pm, L3] = 0, m = 3n+ ε (3.4)

for a given ε ∈ {1, 2}, and n ∈ N0, or equivalently, by the requirement

f
(ε)
n+1,x = 0, g

(ε)
n+1,x = 0. (3.5)

Explicitly, this yields

L3ψ(P, x, x0) = z(P )ψ(P, x, x0), Pmψ(P, x, x0) = y(P )ψ(P, x, x0), (3.6)

P = (z, y) ∈ Km−1\{P∞}, x ∈ C.
Assuming the normalization,

ψ(P, x0, x0) = 1, P ∈ Km−1\{P∞} (3.7)

for some fixed x0 ∈ C, ψ(P, x, x0) is called the stationary Baker-Akhiezer function for the
Bsq hierarchy. Closely related to ψ(P, x, x0) is the following meromorphic function φ(P, x)
on Km−1 defined by

φ(P, x) =
ψx(P, x, x0)

ψ(P, x, x0)
, P ∈ Km−1, x ∈ C, (3.8)
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such that

ψ(P, x, x0) = exp

( ∫ x

x0

d x′φ(P, x′)

)
, P ∈ Km−1\{P∞}. (3.9)

Since φ(P, x) is a fundamental object for the stationary Bsq hierarchy, we next intend to es-
tablish its connection with the recursion formalism of Section 2. In pursuit of this connection,
it is necessary to define a variety of further polynomials Am, Bm, Cm, Dm−1, Em, Jm, and
Nm with respect to z ∈ C,

Am(z, x) = −Gm(z, x)2 − 1

3
q1(x)Fm(z, x)2 +

1

4
Fm,x(z, x)

2 − 1

3
Fm(z, x)Fm,xx(z, x), (3.10)

Bm(z, x) = (z − q0(x))
(
− 2Fm(z, x)2Gm(z, x) +

1

2
Fm(z, x)2 Fm,x(z, x)

)
−Gm(z, x)2Gm,x(z, x) +

1

4
Fm,x(z, x)

2Gm,x(z, x)

− 1

6
q1,x(x)Fm(z, x)2Gm(z, x)− 1

2
q1,x(x)Fm(z, x)2 Fm,x(z, x)

+
1

6
Gm(z, x)2 Fm,xx(z, x)−

11

18
q1(x)Fm(z, x)2 Fm,xx(z, x)

− 1

24
Fm,x(z, x)

2 Fm,xx(z, x) +
1

36
Fm(z, x)Fm,xx(z, x)

2

+
2

3
q1(x)Fm(z, x)Gm(z, x)2 − 2

9
q1(x)

2 Fm(z, x)3

− 2

3
q1(x)Fm(z, x)Gm(z, x)Fm,x(z, x) +

1

6
q1(x)Fm(z, x)Fm,x(z, x)

2

+ Fm(z, x)Gm(z, x)Gxx(z, x)−
1

2
Fm(z, x)Fm,x(z, x)Gm,xx(z, x)

− 1

6
q1,xx(x)Fm(z, x)3 − 1

6
Fm(z, x)Gm(z, x)Fm,xxx(z, x)

+
1

12
Fm(z, x)Fm,x(z, x)Fm,xxx(z, x)−

1

6
Fm(z, x)2 Fm,xxxx(z, x)

− Fm(z, x)Gm,x(z, x)
2, (3.11)

Cm(z, x) = Fm(z, x) Jm(z, x)− (Gm(z, x) +
1

2
Fm,x(z, x))Hm(z, x), (3.12)

Dm−1(z, x) = (Fm(z, x)Bm(z, x)− A2
m(z, x)− Sm(z)F 2

m(z, x))

× ε(m) (Gm(z, x) +
1

2
Fm,x(z, x))

−1, (3.13)

Em(z, x) = −(Am(z, x)Cm(z, x)−Bm(z, x)(Gm(z, x) +
1

2
Fm,x(z, x))

+ Sm(z)Fm(z, x) (Gm(z, x) +
1

2
Fm,x(z, x)))Fm(z, x)−1, (3.14)

Jm(z, x) = Hm,x(z, x) +
(
z − q0(x)−

1

2
q1,x(x)

)
Fm(z, x), (3.15)

Nm(z, x) = (C2
m(z, x) + Em(z, x) (Gm(z, x) +

1

2
Fm,x(z, x))
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+ Sm(z)(Gm(z, x) +
1

2
Fm,x(z, x))

2)ε(m)Fm(z, x)−1, (3.16)

where

ε(m) =

{
1 for m = 2 (mod 3),

−1 for m = 1 (mod 3).
(3.17)

Explicit (though rather lengthy) formulas for Cm,, Dm−1, Em, and Nm, directly in terms of
Fm and Gm and their x-derivatives, which prove their polynomial character with respect to
z, can be found in [14]. Moreover we recall the relations (cf. [14]),

BmCm + AmEm + Sm
(
Am (Gm +

1

2
Fm,x)− FmCm

)
− Tm Fm (Gm +

1

2
Fm,x) = 0, (3.18)

Bm =
2

3
Sm Fm +

1

3
ε(m)Dm−1,x, (3.19)

ε(m)CmDm−1 = Tm F
2
m − AmBm, (3.20)

Dm−1Nm = BmEm − Tm
(
Am (Gm +

1

2
Fm,x)− FmCm

)
, (3.21)

ε(m)AmNm = Tm (Gm +
1

2
Fm,x)

2 − CmEm, (3.22)

Nm,x

(
Gm +

1

2
Fm,x

)
= Nm

(
q1 Fm + Fm,xx

)
− ε(m) Jm

(
2
(
Gm +

1

2
Fm,x

)
Sm + 3Em

)
. (3.23)

Next we recall explicit expressions for φ(P, x).

Lemma 3.1 ([14]). Let P = (z, y) ∈ Km−1 and (z, x) ∈ C2. Then

φ(P, x) =
(Gm(z, x) + 2−1Fm,x(z, x))y(P ) + Cm(z, x)

Fm(z, x)y(P )− Am(z, x)
(3.24)

=
Fm(z, x)y(P )2 + Am(z, x)y(P ) +Bm(z, x)

ε(m)Dm−1(z, x)
(3.25)

=
−ε(m)Nm(z, x)

(Gm(z, x) + 2−1Fm,x(z, x))y(P )2 − Cm(z, x)y(P )− Em(z, x)
. (3.26)

By inspection of (2.15) and (2.16) one infers that Dm−1 and Nm are monic polynomials with
respect to z of degree m− 1 and m, respectively. Hence we may write

Dm−1(z, x) =
m−1∏
j=1

(z − µj(x)) , Nm(z, x) =
m−1∏
�=0

(z − ν�(x)) . (3.27)

Defining

µ̂j(x) =
(
µj(x),

Am(µj(x), x)

Fm(µj(x), x)

)
∈ Km−1, j = 1, . . . ,m− 1, x ∈ C, (3.28)

ν̂�(x) =
(
ν�(x),−

Cm(ν�(x), x)

Gm(ν�(x), x) + 1
2
Fm,x(ν�(x), x)

)
∈ Km−1,

� = 0, . . . ,m− 1, x ∈ C, (3.29)
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one infers from (3.24) that the divisor
(
φ(P, x)

)
of φ(P, x) is given by (cf. (3.3))(

φ(P, x)
)

= Dν̂0(x),... ,ν̂m−1(x)(P )−DP∞,µ̂1(x),... ,µ̂m−1(x)(P ). (3.30)

That is, ν̂0(x), . . . , ν̂m−1(x) are them zeros of φ(P, x) and P∞, µ̂1(x), . . . , µ̂m−1(x) itsm poles.

Further properties of φ(P, x) and ψ(P, x, x0) are summarized in

Theorem 3.2 ([14]). Assume (3.4)–(3.8), P = (z, y) ∈ Km−1\{P∞}, and let (z, x, x0) ∈ C3.
Then

(i) φ(P, x) satisfies the second-order equation

φxx(P, x) + 3φx(P, x)φ(P, x) + φ(P, x)3 + q1(x)φ(P, x) = z − q0(x)−
1

2
q1,x(x). (3.31)

(ii) φ(P, x)φ(P ∗, x)φ(P ∗∗, x) =
Nm(z, x)

Dm−1(z, x)
. (3.32)

(iii) φ(P, x) + φ(P ∗, x) + φ(P ∗∗, x) =
Dm−1,x(z, x)

Dm−1(z, x)
. (3.33)

(iv) y(P )φ(P, x) + y(P ∗)φ(P ∗, x) + y(P ∗∗)φ(P ∗∗, x)

=
3Tm(z)Fm(z, x)− 2Sm(z)Am(z, x)

ε(m)Dm−1(z, x)
. (3.34)

(v) ψ(P, x, x0)ψ(P ∗, x, x0)ψ(P ∗∗, x, x0) =
Dm−1(z, x)

Dm−1(z, x0)
. (3.35)

(vi) ψx(P, x, x0)ψx(P
∗, x, x0)ψx(P

∗∗, x, x0) =
Nm(z, x)

Dm−1(z, x0)
. (3.36)

(vii) ψ(P, x, x0) =

(
Dm−1(z, x)

Dm−1(z, x0)

)1/3

exp

( ∫ x

x0

d x′ε(m)Dm−1(z, x
′)−1

×
(
Fm(z, x′) y(P )2 + Am(z, x′) y(P ) +

2

3
Fm(z, x′)Sm(z)

))
. (3.37)

Thus, up to normalizations, Dm−1 represents the product of the three branches of ψ and Nm

the product of the three branches of ψx, their zeros represent the analogs of Dirichlet and
Neumann eigenvalues of L3 with the corresponding boundary conditions imposed at the point
x ∈ C when compared to the KdV Lax expression L2.

Returning to Dm−1(z, x) and Nm(z, x) for a moment, we note that (2.3), (2.15), (2.16), (3.13),
and (3.16) yield

D0 = 1,

D1 = z − q0(x)− 6−1 q1,x(x)− d(2)
0 q1(x)− (d

(2)
0 )3, (3.38)

etc.,

and

N1 = z − q0(x),
N2 =

(
z − q0(x) + 6−1 q1,x(x)

)2 − d(2)
0

(
(z − q0(x))q1(x)− 6−1 q1(x)q1,x(x)

)
− 6−1 (d

(2)
0 )2q1,xx(x)− (d

(2)
0 )3(z − q0(x)), (3.39)
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etc.

Concerning the dynamics of the zeros µj(x) and ν�(x) of Dm−1(z, x) and Nm(z, x) one obtains
the following Dubrovin-type equations.

Lemma 3.3 ([14]). Suppose the curve Km−1 is nonsingular and assume (3.5) to hold.
(i) Suppose the zeros {µj(x)}j=1,...,m−1 of Dm−1( · , x) remain distinct in Ωµ, where Ωµ ⊆ C is
open and connected. Then {µj(x)}j=1,...,m−1 satisfy the system of differential equations

µj,x(x) =
−ε(m)Fm(µj(x), x)

(
3y(µ̂j(x))

2 + Sm(µj(x))
)

m−1∏
k=1
k �=j

(
µj(x)− µk(x)

) , j = 1, . . . ,m− 1, (3.40)

with initial conditions

{µ̂j(x0)}j=1,...,m−1 ⊂ Km−1, (3.41)

for some fixed x0 ∈ Ωµ. The initial value problem (3.40), (3.41) has a unique solution
{µ̂j(x)}j=1,...,m−1 ⊂ Km−1 satisfying

µ̂j ∈ C∞(Ωµ,Km−1), j = 1, . . . ,m− 1. (3.42)

(ii) Suppose the zeros {ν�(x)}�=0,...,m−1 of Nm( · , x) remain distinct in Ων, where Ων ⊆ C is
open and connected. Then {ν�(x)}�=0,...,m−1 satisfy the system of differential equations

ν�,x(x) =
−ε(m) Jm(ν�(x), x)

(
3y(ν̂�(x))

2 + Sm(ν�(x))
)

m−1∏
k=0
k �=�

(
ν�(x)− νk(x)

) , � = 0, . . . ,m− 1, (3.43)

with initial conditions

{ν̂�(x0)}�=0,...,m−1 ⊂ Km−1, (3.44)

for some fixed x0 ∈ Ων. The initial value problem (3.43), (3.44) has a unique solution
{ν̂�(x)}�=0,...,m−1 ⊂ Km−1 satisfying

ν̂� ∈ C∞(Ων ,Km−1), � = 0, . . . ,m− 1. (3.45)

For trace formulas expressing certain combinations of q0, q1 and their x-derivatives in terms
of µj(x) and ν�(x) we refer to [14].

The following example illustrates our recursion formalism for the simplest genus g = 1 case.
Further examples can be found in [14].

Example 3.4. m = 2 (genus g = 1):

q0(x) = 0, q1(x) = −3℘(x), (3.46)

L3 =
d3

dx3
− 3℘(x)

d

dx
− 3

2
℘′(x), P2 =

d2

d x2
− 2℘(x), (3.47)

F1(z, y) = y3 − g2
4
y − z2 − g3

4
= 0, (3.48)

F2(z, x) = 1, G2(z, x) = 0, (3.49)
14



D1(z, x) = z +
1

2
℘′(x), N2(z, x) =

(
z − 1

2
℘′(x)

)2
, (3.50)

φj(z, x) =
z − 1

2
℘′(x)

yj − ℘(x)
(3.51)

=
y2
j + yj ℘(x) + ℘(x)2 − g2

4

z + 1
2
℘′(x)

(3.52)

=
(z − 1

2
℘′(x))2

(z − 1
2
℘′(x))yj − ℘(x)(z − 1

2
℘′(x))

, 1 ≤ j ≤ 3, (3.53)

where yj, 1 ≤ j ≤ 3 denote the roots of (3.48) and ℘(x) denotes the elliptic Weierstrass
function (cf., e.g., [1], Ch. 18).

4. Stationary Algebro-Geometric Solutions of the Boussinesq Hierarchy

In this section we continue our study of the stationary Bsq hierarchy, but now direct our
efforts towards obtaining explicit Riemann theta function representations for the fundamental
quantities φ and ψ, introduced in Section 3, and especially, for each of the potentials q0 and
q1 associated with the differential expression L3. As a result of our preparatory material
in Sections 2 and 3, we are now able to simultaneously treat the class of algebro-geometric
quasi-periodic solutions of the entire Bsq hierarchy, one of our principal aims in this paper.

In the following we freely employ the notation established in Appendices A and B and refer
to this material whenever appropriate.

Lemma 4.1. Let x ∈ C. Near P∞ ∈ Km−1, in terms of the local coordinate ζ = z−1/3, one
has

φ(P, x) =
ζ→0

1

ζ

∞∑
j=0

βj(x)ζ
j as P → P∞, (4.1)

where

β0 = 1, β1 = 0, β2 = −1

3
q1, β3 = −1

3
q0 +

1

6
q1,x,

βj = −1

3

(
βj−2,xx + q1βj−2 +

j−1∑
k=2

(3βk,xβj−k−1 + βkβj−k) +

j−1∑
�=1

�∑
k=0

βkβ�−kβj−�

)
, j ≥ 4.

(4.2)

Proof. In terms of the local coordinate ζ = z−1/3, (3.31) reads

φxx + 3φφx + φ3 + q1φ = ζ−3 − q0 − 2−1 q1,x. (4.3)

A power series ansatz in (4.3) then yields the indicated Laurent series.

Let θ(z) denote the Riemann theta function (cf. (A.59)) associated with Km−1 and an ap-
propriately fixed homology basis. Next, choosing a convenient base point P0 ∈ Km−1\{P∞},
the vector of Riemann constants ΞP0

is given by (A.66), and the Abel maps AP0
( · ) and
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αP0
( · ) are defined by (A.56) and (A.57), respectively. For brevity, define the function

z : Km−1 × σm−1Km−1 → C
m−1 by

z(P,Q) = ΞP0
− AP0

(P ) + αP0
(Q), P ∈ Km−1, Q = (Q1, . . . , Qm−1) ∈ σm−1Km−1. (4.4)

We note that by (A.81) and (A.82), z( · , Q) is independent of the choice of base point P0.

The normalized differential ω
(3)
P∞,ν̂0(x) of the third kind (dtk) is the unique differential holomor-

phic on Km−1\{P∞, ν0(x)} with simple poles at P∞ and ν̂0(x) with residues ±1, respectively,
that is,

ω
(3)
P∞,ν̂0(x)(P ) =

ζ→0

(
ζ−1 +O(1)

)
dζ as P → P∞. (4.5)

Then ∫ P

P0

ω
(3)
P∞,ν̂0(x) =

ζ→0
ln(ζ) + e(3)(P0) +O(ζ) as P → P∞, (4.6)

where e(3)(P0) is an appropriate constant. Furthermore, let ω
(2)
P∞,2 denote the normalized

differential defined by

ω
(2)
P∞,2(P ) = −

m−1∑
j=1

λjηj(P )− 1

3y(P )2 + Sm(z)

{
z2ndz, m = 3n+ 1,

y(P )zndz, m = 3n+ 2,
(4.7)

where the constants {λj}j=1,...,m−1 are determined by the normalization condition∫
aj

ω
(2)
P∞,2 = 0, j = 1, . . . ,m− 1, (4.8)

and the differentials {ηj(P )}j=1,...,m−1 (defined in (B.7)) form a basis for the space of holo-

morphic differentials. The b-periods of the differential ω
(2)
P∞,2 are denoted by

U
(2)
2 = (U

(2)
2,1 , . . . , U

(2)
2,m−1), U

(2)
2,j =

1

2πi

∫
bj

ω
(2)
P∞,2, j = 1, . . . ,m− 1. (4.9)

A straightforward Laurent expansion of (4.7) near P∞ yields the following result.

Lemma 4.2. Assume the curve Km−1 is nonsingular. Then the differential ω
(2)
P∞,2 defined in

(4.7) is a differential of the second kind (dsk), holomorphic on Km−1\{P∞} with a pole of

order 2 at P∞. In particular, near P∞ in the local coordinate ζ, the differential ω
(2)
P∞,2 has the

Laurent series

ω
(2)
P∞,2(P ) =

ζ→0

(
ζ−2 + u+ wζ +O(ζ2)

)
dζ as P → P∞, (4.10)

where

u =

{
λm−1 − c(1)1 for m = 1 (mod 3),

λm−n−1 − (d
(2)
0 )2 for m = 2 (mod 3),

(4.11)

and

w =

{
λm−n−1 − 2d

(1)
1 for m = 1 (mod 3),

(d
(2)
0 )3 − c(2)1 − d

(2)
0 λm−n−1 + λm−1 for m = 2 (mod 3).

(4.12)
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From Lemma 4.2 one infers∫ P

P0

ω
(2)
P∞,2 =

ζ→0
−ζ−1 + e

(2)
2 (P0) + uζ + 2−1wζ2 +O(ζ3) as P → P∞, (4.13)

where e
(2)
2 (P0) is an appropriate constant.

The theta function representation of φ(P, x) then reads as follows.

Theorem 4.3. Let P = (z, y) ∈ Km−1\{P∞}, (z, x) ∈ C2. Suppose that Dµ̂(x) and Dν̂(x) are
nonspecial. Then

φ(P, x) =
θ(z(P∞, µ̂(x)))

θ(z(P∞, ν̂(x)))

θ(z(P, ν̂(x)))

θ(z(P, µ̂(x)))
exp

(
e(3)(P0)−

∫ P

P0

ω
(3)
P∞,ν̂0(x)

)
. (4.14)

Proof. Let Φ be defined by the right-hand side of (4.14) with the aim to prove that φ = Φ.
From (4.6) it follows that

exp

(
e(3)(P0)−

∫ P

P0

ω
(3)
P∞,ν̂0(x)

)
=
ζ→0

ζ−1 +O(1). (4.15)

Using (3.30) we immediately see that φ has simple poles at µ̂(x) and P∞, and simple zeros
at ν̂0(x) and ν̂(x). By (4.15) and a special case of Riemann’s vanishing theorem (Theorem
A.22), we see that Φ has the same properties. Using the Riemann-Roch theorem (Theorem
A.12), we conclude that the holomorphic function Φ/φ = c, a constant with respect to P .
Using (4.15) and Lemma 4.1, one computes

Φ

φ
=
ζ→0

(1 +O(ζ))(ζ−1 +O(1))

ζ−1 +O(ζ)
=
ζ→0

1 +O(ζ) as P → P∞, (4.16)

from which one concludes c = 1.

Similarly, the theta function representation of the Baker-Akhiezer function ψ(P, x, x0) is
summarized in the following theorem.

Theorem 4.4. Assume that the curve Km−1 is nonsingular. Let P = (z, y) ∈ Km−1\{P∞}
and let x, x0 ∈ Ωµ, where Ωµ ⊆ C is open and connected. Suppose that Dµ̂(x) and Dν̂(x) are
nonspecial, for x ∈ Ωµ. Then

ψ(P, x, x0) =
θ(z(P, µ̂(x))) θ(z(P∞, µ̂(x0)))

θ(z(P∞, µ̂(x))) θ(z(P, µ̂(x0)))
exp

(
(x− x0)

(
e
(2)
2 (P0)−

∫ P

P0

ω
(2)
P∞,2

))
. (4.17)

Proof. Assume temporarily that

µj(x) �= µj′(x) for j �= j′ and x ∈ Ω̃µ ⊆ Ωµ, (4.18)

where Ω̃µ is open and connected. For the Baker-Akhiezer function ψ we will use the same
strategy as was used in the previous proof. However, the situation is slightly more involved
in that ψ has an essential singularity at P∞. Let Ψ denote the right-hand side of (4.17). In
order to prove that ψ = Ψ, one first observes that since

ψ(P, x, x0) = exp

( ∫ x

x0

dx′φ(P, x′)

)
, (4.19)
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the zeros and poles of ψ can come only from simple poles in the integrand (with positive and
negative residues respectively). Using (3.28) and (3.40), one computes

φ =
Fmy

2 + Amy + 2
3
FmSm + 1

3
ε(m)Dm,x

ε(m)Dm

=
1

3

Fm

ε(m)Dm

(
3y2 + Sm

)
+

1

3

3Amy + FmSm
ε(m)Dm

+
1

3

Dm,x

Dm

=
2

3

Fm

ε(m)Dm

(
3y2 + Sm

)
− 1

3

m−1∑
k=1

µk,x
z − µk

+O(1)

= − µj,x
z − µj

+O(1), as P → µ̂j(x).

More concisely,

φ(P, x′) =
∂

∂x′
ln(z − µj(x′)) +O(1) for P near µ̂j(x

′). (4.20)

Hence

exp
( ∫ x

x0

dx′
( ∂
∂x′

ln(z − µj(x′)) +O(1)
))

=


(z − µj(x))O(1) for P near µ̂j(x) �= µ̂j(x0),

O(1) for P near µ̂j(x) = µ̂j(x0),

(z − µj(x0))
−1O(1) for P near µ̂j(x0) �= µ̂j(x),

(4.21)

where O(1) �= 0 in (4.21). Consequently, all zeros of ψ and Ψ on Km−1\{P∞} are simple and
coincide. It remains to identify the essential singularity of ψ and Ψ at P∞. From (4.1), we
infer ∫ x

x0

dx′φ(P, x′) =
ζ→0

(x− x0)(ζ
−1 +O(ζ)) as P → P∞. (4.22)

Looking at (4.13) we see that this coincides with the singularity in the exponent of Ψ near
P∞. The uniqueness result in Lemma A.26 for Baker-Akhiezer functions then completes the
proof that Ψ = ψ as both functions share the same singularities and zeros. The extension

of this result from x ∈ Ω̃µ to x ∈ Ωµ then simply follows from the continuity of αP0
and the

hypothesis of Dµ̂(x) being nonspecial for x ∈ Ωµ.

Next it is necessary to introduce two further polynomials Km and Lm with respect to the
variable z ∈ C,

Km(z, x) = (ε(m)Nm(z, x)− Jm(z, x)Cm(z, x))(Gm(z, x) + 2−1Fm,x(z, x))
−1, (4.23)

Lm(z, x) = (ε(m)Dm−1(z, x)− (Gm(z, x)− 2−1Fm,x(z, x))Am(z, x))Fm(z, x)−1. (4.24)

In analogy to our polynomials Am–Nm introduced in (3.10)–(3.16), it is possible to derive
explicit expressions of Km and Lm directly in terms of Fm and Gm and their x-derivatives.
These expressions then prove, in particular, the polynomial character of Km and Lm with
respect to z, but we here omit the rather lengthy formulas since they can be generated with
the help of symbolic calculation programs such as Maple or Mathematica.
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Lemma 4.5. Let x ∈ C. Then

Lm(µj(x), x) = −
(
Gm(µj(x), x)− 2−1Fm,x(µj(x), x)

)
y(µ̂j(x)), (4.25)

for j = 1, . . . ,m− 1 and

Km(ν�(x), x) = Jm(ν�(x), x)y(ν̂�(x)), (4.26)

for � = 0, . . . ,m− 1.

The well-known linearization property of the Abel map for completely integrable systems of
soliton-type, is next verified in the context of the Bsq hierarchy.

Theorem 4.6. Assume that the curve Km−1 is nonsingular and let x, x0 ∈ C. Then

αP0
(Dµ̂(x)) = αP0

(Dµ̂(x0)) + U
(2)
2 (x− x0), (4.27)

AP0
(ν̂0(x)) + αP0

(Dν̂(x)) = AP0
(ν̂0(x0)) + αP0

(Dν̂(x0)) + U
(2)
2 (x− x0). (4.28)

Proof. We prove only (4.27) as (4.28) follows mutatis mutandis (or from (4.27) and Abel’s
theorem, Theorem A.14). Assume temporarily that

µj(x) �= µj′(x) for j �= j′ and x ∈ Ω̃µ ⊆ C, (4.29)

where Ω̃µ is open and connected. Then using (3.40), (B.7), and (B.9), one computes

d

dx
αP0,�(Dµ̂(x)) =

m−1∑
j=1

µj,x(x)ω�(µ̂j(x))

= −ε(m)
m−n−1∑
k=1

e�(k)
m−1∑
j=1

µj(x)
k−1Fm(µj(x), x)

m−1∏
p=1
p�=j

(
µj(x)− µp(x)

)−1

− ε(m)
n∑

k=1

e�(k +m− n− 1)
m−1∑
j=1

µj(x)
k−1Am(µj(x), x)

m−1∏
p=1
p�=j

(
µj(x)− µp(x)

)−1
. (4.30)

Next we consider the two cases m = 3n + 1 and m = 3n + 2 separately and substitute the
polynomials Fm(µj(x), x) and Am(µj(x), x) in the variable µj(x) into (4.30). Using a standard
Lagrange interpolation argument then yields

d

dx
αP0,�(Dµ̂(x)) = −

{
e�(m− 1), m = 3n+ 1,

e�(m− n− 1), m = 3n+ 2.
(4.31)

The result now follows for x ∈ Ω̃µ, using (4.9), (4.31), (B.11), and (B.16). By continuity of

αP0
, this result extends from x ∈ Ω̃µ to x ∈ C.

We conclude this section with the theta function representations for the stationary Bsq solu-
tions q0, q1 (the analog of the Its-Matveev formula in the KdV context).

Theorem 4.7. Assume that the curve Km−1 is nonsingular and let x ∈ Ωµ, where Ωµ ⊆ C
is open and connected. Suppose that Dµ̂(x) and Dν̂(x) are nonspecial for x ∈ Ωµ. Then

q0(x) = 3 ∂
U

(2)
3
∂x ln(θ(z(P∞, µ̂(x)))) + (3/2)w, (4.32)
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q1(x) = 3 ∂2
x ln(θ(z(P∞, µ̂(x)))) + 3u, (4.33)

with u and w defined in (4.11) and (4.12), that is,

u =

{
λm−1 − c(1)1 for m = 1 (mod 3),

λm−n−1 − (d
(2)
0 )2 for m = 2 (mod 3),

(4.34)

and

w =

{
λm−n−1 − 2d

(1)
1 for m = 1 (mod 3),

(d
(2)
0 )3 − c(2)1 − d

(2)
0 λm−n−1 + λm−1 for m = 2 (mod 3).

(4.35)

Proof. Using Lemma 4.2 and Theorem 4.4, one can write ψ near P∞ in the coordinate ζ, as

ψ(P, x, x0) =
ζ→0

(
1 + α1(x)ζ + α2(x)ζ

2 +O(ζ3)
)

× exp
(
(x− x0)(ζ

−1 − uζ − 2−1wζ2 +O(ζ3))
)

as P → P∞, (4.36)

where the terms α1(x) and α2(x) in (4.36) come from the Taylor expansion about P∞ of
the ratios of the theta functions in (4.17), and the exponential term stems from substituting
(4.13) into (4.17). Using (4.36) and its x-derivatives one can show that

ψxxx + 3(u− α1,x)ψx + 3(2−1w − α1,xx + α1α1,x − α2,x)ψ − ζ−3ψ = O(ζ)ψ. (4.37)

Since O(ζ)ψ is another Baker-Akhiezer function with the same essential singularity at P∞
and the same divisor on Km−1\{P∞}, the uniqueness theorem for Baker-Akhiezer functions
(cf. Lemma A.26) then yields O(ζ) = 0. Hence

q0(x) = 3
(
2−1w − 2−1α1,xx(x) + α1(x)α1,x(x)− α2,x(x)

)
, (4.38)

q1(x) = 3(u− α1,x(x)), (4.39)

where

α1,x(x) = −∂2
x ln θ(z(P∞, µ̂(x))), (4.40)

−2−1α1,xx(x) + α1(x)α1,x(x)− α2,x(x) = ∂
U

(2)
3
∂x ln θ(z(P∞, µ̂(x))). (4.41)

Here

∂
U

(2)
3

=
m−1∑
j=1

U
(2)
3,j

∂

∂zj
(4.42)

denotes the directional derivative in the direction of the vector of b-periods U
(2)
3 , defined by

U
(2)
3 = (U

(2)
3,1 , . . . , U

(2)
3,m−1), U

(2)
3,j =

1

2πi

∫
bj

ω
(2)
P∞,3, j = 1, . . . ,m− 1, (4.43)

with ω
(2)
P∞,3 the dsk holomorphic on Km−1\{P∞} with a pole of order 3 at P∞,

ω
(2)
P∞,3(P ) =

ζ→0

(
ζ−3 +O(1)

)
dζ as P → P∞. (4.44)

Combining (4.38)–(4.41) then proves (4.32) and (4.33).

For interesting spectral characterizations of third-order (in fact, odd-order) self-adjoint dif-
ferential operators with quasi-periodic coefficients we refer to [26].
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5. The Time-Dependent Boussinesq Formalism

In this section we return to the recursive approach outlined in Section 2 and briefly recall our
treatment of the time-dependent Bsq hierarchy in [14].

We start with a stationary algebro-geometric solution (q
(0)
0 (x), q

(0)
1 (x)) associated with Km−1

satisfying

Bsqm(q
(0)
0 , q

(0)
1 ) =

−3 f
(ε)
n+1,x = 0,

−3 g
(ε)
n+1,x = 0,

x ∈ C, m = 3n+ ε (5.1)

for some fixed ε ∈ {1, 2}, n ∈ N0, and a given set of integration constants {c(ε)� }�=1,...,n,

{d(ε)
� }�=0,...,n. Our aim is to construct the rth Bsq flow

Bsqr(q0, q1) = 0, (q0(x, t0,r), q1(x, t0,r)) = (q
(0)
0 (x), q

(0)
1 (x)), x ∈ C, r = 3s+ ε′ (5.2)

for some fixed ε′ ∈ {1, 2}, s ∈ N0, and t0,r ∈ C. In terms of Lax pairs this amounts to solving

d

d tr
L3(tr)− [P̃r(tr), L3(tr)] = 0, tr ∈ C, (5.3)

[Pm(t0,r), L3(t0,r)] = 0. (5.4)

As a consequence one obtains

[Pm(tr), L3(tr)] = 0, tr ∈ C, (5.5)

Pm(tr)
3 + Pm(tr)Sm(L3(tr))− Tm(L3(tr)) = 0, tr ∈ C, (5.6)

since the Bsq flows are isospectral deformations of L3(t0,r).

We emphasize that the integration constants {c̃(ε′)� } and {d̃(ε′)
� } in P̃r, and {c(ε)� } and {d(ε)

� }
in Pm, are independent of each other (even for r = m). Hence we shall employ the notation

P̃r, F̃r, G̃r, H̃r, etc., in order to distinguish them from Pm, Fm, Gm, Hm, etc. In addition
we follow a more elaborate approach inspired by Hirota’s τ -function approach and indicate
the individual rth Bsq flow by a separate time variable tr ∈ C. (The latter notation suggests
considering all Bsq flows simultaneously by introducing t = (t1, t2, t4, t5, . . . ).)

Instead of working directly with (5.3) and (5.5) we find it preferable to take the following two
equations as our point of departure (never mind their somewhat intimidating size),

q0,tr = − 1

6
F̃r,xxxxx −

5

6
q1 F̃r,xxx −

5

4
q1,x F̃r,xx − (

3

4
q1,xx +

2

3
q21) F̃r,x

− (
1

6
q1,xxx +

2

3
q1q1,x) F̃r − 3(z − q0) G̃r,x + q0,x G̃r, (5.7)

q1,tr = 2 G̃r,xxx + 2 q1 G̃r,x + q1,x G̃r − 3 (z − q0) F̃r,x + 2 q0,x F̃r, (x, tr) ∈ C2,

−1

6
Fm,xxxxFm +

1

6
Fm,xxxFm,x −

1

12
F 2
m,xx −

5

6
q1Fm,xxFm

− 5

12
q1,xFm,xFm +

5

12
q1F

2
m,x −

1

3

(1

2
q1,xx + q21

)
F 2
m (5.8)

+2Gm,xxGm −G2
m,x + q1G

2
m − 3 (z − q0)FmGm = Sm(z), (x, tr) ∈ C2,
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1

18
Fm,xxxxFm,xxFm −

1

24
Fm,xxxxF

2
m,x +

1

18
q1Fm,xxxxF

2
m +

1

36
Fm,xxxFm,xxFm,x

− 1

36
FmF

2
m,xxx −

1

18
q1,xFm,xxxF

2
m −

1

9
q1Fm,xxxFm,xFm −

1

108
F 3
m,xx

+
2

9
q1,xFm,xxFm,xFm +

1

18
q1,xxFm,xxF

2
m −

7

72
q1Fm,xxF

2
m,x +

5

18
q21Fm,xxF

2
m

+
7

36
q1F

2
m,xxFm −

1

24
q1,xxF

2
m,xFm −

7

48
q1,xF

3
m,x −

1

6
q21F

2
m,xFm +

1

12
q1,xq1Fm,xF

2
m

+
( 2

27
q31 −

1

36
q21,x +

1

18
q1,xxq1 + (z − q0)2

)
F 3
m + (z − q0)G3

m +
1

6
Fm,xxxxG

2
m

− 1

3
Fm,xxxGm,xGm + FmG

2
m,xx +

1

3
Fm,xx

(
G2

m,x +Gm,xxGm

)
− Fm,xGm,xxGm,x

− q1(z − q0)F 2
mGm +

2

3
q21FmG

2
m +

5

6
q1Fm,xxG

2
m −

4

3
q1Fm,xGm,xGm +

1

3
q1FmG

2
m,x

+
7

12
q1,xFm,xG

2
m +

4

3
q1FmGm,xxGm +

1

6
q1,xxFmG

2
m −

1

3
q1,xFmGm,xGm

+ (z − q0)Fm,xFmGm,x −
1

4
(z − q0)F 2

m,xGm − 2 (z − q0)F 2
mGm,xx = Tm(z), (5.9)

(x, tr) ∈ C2,

where (cf. (2.15), (2.16))

Fm(z, x, tr) =
n∑

�=0

f
(ε)
n−�(x, tr)z

�, Fm(z, x, t0,r) =
n∑

�=0

f
(ε),(0)
n−� (x)z�, (5.10)

Gm(z, x, tr) =
n∑

�=0

g
(ε)
n−�(x, tr)z

�, Gm(z, x, t0,r) =
n∑

�=0

g
(ε),(0)
n−� (x)z� (5.11)

for fixed t0,r ∈ C, m = 3n+ ε, r = 3s+ ε′, n, s ∈ N0, ε, ε
′ ∈ {1, 2}. Here f

(ε)
� (x, tr), g

(ε)
� (x, tr)

and f
(ε),(0)
� (x), g

(ε),(0)
� (x) are defined as in (2.3) with (q0(x), q1(x)) replaced by (q0(x, tr),

q1(x, tr)), and (q
(0)
0 (x), q

(0)
1 (x)), respectively.

In analogy to (3.27) one introduces

Dm−1(z, x, tr) =
m−1∏
j=1

(z − µj(x, tr)) , Nm(z, x, tr) =
m−1∏
�=0

(z − ν�(x, tr)) , (5.12)

where Dm−1 and Nm are defined as in (3.13) and (3.16). This implies in particular (cf. (3.21)),

Dm−1(z, x, tr)Nm(z, x, tr) = Bm(z, x, tr)Em(z, x, tr)− Tm(z)
(
Am(z, x, tr)

×
(
Gm(z, x, tr) + 2−1 Fm,x(z, x, tr)

)
− Fm(z, x, tr)Cm(z, x, tr)

)
, (5.13)

and Am, Bm, Cm, Dm−1, Em, Jm, and Nm are defined as in (3.10)–(3.16). Hence (3.18)–(3.23)
also hold in the present context. Moreover, we recall

Lemma 5.1 ([14]). Assume (5.7)–(5.11) and let (z, x, tr) ∈ C3. Then

(i) Dm−1,tr(z, x, tr) = Dm−1,x(z, x, tr)
(
G̃r(z, x, tr)−

1

2
F̃r,x(z, x, tr)
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− F̃r(z, x, tr)

Fm(z, x, tr)

(
Gm(z, x, tr)−

1

2
Fm,x(z, x, tr)

))
+Dm−1(z, x, tr)

× 3
(
H̃r(z, x, tr)−

F̃r(z, x, tr)

Fm(z, x, tr)
Hm(z, x, tr)

)
. (5.14)

(ii) Nm,tr(z, x, tr) = Nm,x(z, x, tr)
(
G̃r(z, x, tr) +

1

2
F̃r,x(z, x, tr)−

J̃r(z, x, tr)

Jm(z, x, tr)

×
(
Gm(z, x, tr) +

1

2
Fm,x(z, x, tr)

))
−Nm(z, x, tr)

(
q1(x, tr) F̃r(z, x, tr)

+ F̃r,xx(z, x, tr)−
J̃r(z, x, tr)

Jm(z, x, tr)

(
q1(x, tr)Fm(z, x, tr) + Fm,xx(z, x, tr)

))
. (5.15)

Similarly, Lemma 3.1 remains valid and one obtains

φ(P, x, tr) =
(Gm(z, x, tr) + 1

2
Fm,x(z, x, tr))y(P ) + Cm(z, x, tr)

Fm(z, x, tr)y(P )− Am(z, x, tr)
(5.16)

=
Fm(z, x, tr)y(P )2 + Am(z, x, tr)y(P ) +Bm(z, x, tr)

ε(m)Dm−1(z, x, tr)
(5.17)

=
−ε(m)Nm(z, x, tr)

(Gm(z, x, tr) + 1
2
Fm,x(z, x, tr))y(P )2 − Cm(z, x, tr)y(P )− Em(z, x, tr)

, (5.18)

P = (z, y) ∈ Km−1.

In analogy to (3.28) and (3.29) one then introduces (the analogs of) Dirichlet and Neumann
data by

µ̂j(x, tr) =
(
µj(x, tr),

Am(µj(x, tr), x, tr)

Fm(µj(x, tr), x, tr)

)
∈ Km−1,

j = 1, . . . ,m− 1, (x, tr) ∈ C2, (5.19)

ν̂�(x, tr) =
(
ν�(x, tr),−

Cm(ν�(x, tr), x, tr)

Gm(ν�(x, tr), x, tr) + 1
2
Fm,x(ν�(x, tr), x, tr)

)
∈ Km−1,

� = 0, . . . ,m− 1, (x, tr) ∈ C2 (5.20)

and hence infers that the divisor
(
φ(P, x, tr)

)
of φ(P, x, tr) is given by(

φ(P, x, tr)
)

= Dν̂0(x,tr),... ,ν̂m−1(x,tr)(P )−DP∞,µ̂1(x,tr),... ,µ̂m−1(x,tr)(P ). (5.21)

Next we define the time-dependent BA-function ψ(P, x, x0, tr, t0,r)

ψ(P, x, x0, tr, t0,r) = exp

( ∫ x

x0

d x′φ(P, x′, tr) +

∫ tr

t0,r

d s
(
F̃r(z, x0, s)

×
(
φx(P, x0, s) + φ(P, x0, s)

2
)

+ (G̃r(z, x0, s)−
1

2
F̃r,x(z, x0, s))φ(P, x0, s)

+
(1

6
F̃r,xx(z, x0, s) +

2

3
q1(x0, s)F̃r(z, x0, s)− G̃r,x(z, x0, s)

)))
, (5.22)

P ∈ Km−1\{P∞}, (x, tr) ∈ C2,
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with fixed (x0, t0,r) ∈ C2. The following theorem recalls the basic properties of φ(P, x, tr) and
ψ(P, x, x0, tr, t0,r).

Theorem 5.2 ([14]). Assume (5.7)–(5.11), P = (z, y) ∈ Km−1\{P∞} and let (z, x, x0, tr, t0,r)
∈ C5. Then

(i) φ(P, x, tr) satisfies

φxx(P, x, tr) + 3φx(P, x, tr)φ(P, x, tr) + φ(P, x, tr)
3 + q1(x, tr)φ(P, x, tr)

= z − q0(x, tr)− 2−1 q1,x(x, tr), (5.23)

φtr(P, x, tr) = ∂x
(
F̃r(z, x, tr)(φ(P, x, tr)

2 + φx(P, x, tr))

+ (G̃r(z, x, tr)− 2−1 F̃r,x(z, x, tr))φ(P, x, tr) + H̃r(z, x, tr)
)
. (5.24)

(ii) ψ(P, x, x0, tr, t0,r) satisfies

ψxxx(P, x, x0, tr, t0,r) + q1(x, tr)ψx(P, x, x0, tr, t0,r)

+ (q0(x, tr) + 2−1 q1,x(x, tr)− z)ψ(P, x, x0, tr, t0,r) = 0, (5.25)

ψtr(P, x, x0, tr, t0,r) =
(
F̃r(z, x, tr)(φ(P, x, tr)

2 + φx(P, x, tr))

+ (G̃r(z, x, tr)− 2−1F̃r,x(z, x, tr))φ(P, x, tr) + H̃r(z, x, tr)
)
ψ(P, x, x0, tr, t0,r) (5.26)

(i.e., (L3 − z)ψ = 0, (Pm − y)ψ = 0, ψtr = P̃rψ).

(iii) φ(P, x, tr)φ(P
∗, x, tr)φ(P

∗∗, x, tr) =
Nm(z, x, tr)

Dm−1(z, x, tr)
. (5.27)

(iv) φ(P, x, tr) + φ(P ∗, x, tr) + φ(P ∗∗, x, tr) =
Dm−1,x(z, x, tr)

Dm−1(z, x, tr)
. (5.28)

(v). y(P )φ(P, x, tr) + y(P ∗)φ(P ∗, x, tr)

+ y(P ∗∗)φ(P ∗∗, x, tr) =
3Tm(z)Fm(z, x, tr)− 2Sm(z)Am(z, x, tr)

ε(m)Dm−1(z, x, tr)
. (5.29)

(vi) ψ(P, x, x0, tr, t0,r)ψ(P ∗, x, x0, tr, t0,r)ψ(P ∗∗, x, x0, tr, t0,r)

=
Dm−1(z, x, tr)

Dm−1(z, x0, t0,r)
. (5.30)

(vii) ψx(P, x, x0, tr, t0,r)ψx(P
∗, x, x0, tr, t0,r)ψx(P

∗∗, x, x0, tr, t0,r)

=
Nm(z, x, tr)

Dm−1(z, x0, t0,r)
. (5.31)

(viii) ψ(P, x, x0, tr, t0,r) =

(
Dm−1(z, x, tr)

Dm−1(z, x0, t0,r)

)1/3

exp

( ∫ x

x0

d x′ε(m)Dm−1(z, x
′, tr)

−1

×
[
Fm(z, x′, tr) y(P )2 + Am(z, x′, tr) y(P ) +

2

3
Fm(z, x′, tr)Sm(z)

]
−

∫ tr

t0,r

d s

(
ε(m)Dm−1(z, x0, s)

−1
[
Fm(z, x0, s)y(P )2 + Am(z, x0, s) y(P )

+
2

3
Fm(z, x0, s)Sm(z)

]
×

[
G̃r(z, x0, s)−

1

2
F̃r,x(z, x0, s)
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−
(
Gm(z, x0, s)−

1

2
Fm,x(z, x0, s)

) F̃r(z, x0, s)

Fm(z, x0, s)

]
+ y(P )

F̃r(z, x0, s)

Fm(z, x0, s)

))
. (5.32)

The dynamics of the zeros µj(x, tr) and ν�(x, tr) of Dm−1(z, x, tr) and Nm(z, x, tr), in analogy
to Lemma 3.3, are then described in terms of Dubrovin-type equations as follows.

Lemma 5.3 ([14]). Suppose (5.7)–(5.11) and assume that the curve Km−1 is nonsingular.
(i) Suppose the zeros {µj(x, tr)}j=1,...,m−1 of Dm−1( · , x, tr) remain distinct for (x, tr) ∈ Ωµ,
where Ωµ ⊆ C2 is open and connected. Then {µj(x, tr)}j=1,...,m−1 satisfy the system of differ-
ential equations,

µj,x(x, tr) = −ε(m)Fm(µj(x, tr), x, tr)

(
3y(µ̂j(x, tr))

2 + Sm(µj(x, tr))
)

m−1∏
k=1
k �=j

(
µj(x, tr)− µk(x, tr)

) ,

j = 1, . . . ,m− 1, (5.33)

µj,tr(x, tr) = −ε(m)
(
Fm(µj(x, tr), x, tr)

(
G̃r(µj(x, tr), x, tr)− 2−1F̃r,x(µj(x, tr), x, tr)

)
− F̃r(µj(x, tr), x, tr)

(
Gm(µj(x, tr), x, tr)− 2−1Fm,x(µj(x, tr), x, tr)

))
×

(
3y(µ̂j(x, tr))

2 + Sm(µj(x, tr))
)

m−1∏
k=1
k �=j

(
µj(x, tr)− µk(x, tr)

) , j = 1, . . . ,m− 1, (5.34)

with initial conditions

{µ̂j(x0, t0,r)}j=1,...,m−1 ∈ Km−1, (5.35)

for some fixed (x0, t0,r) ∈ Ωµ. The initial value problem (5.34), (5.35) has a unique solution
satisfying

µ̂j ∈ C∞(Ωµ,Km−1), j = 1, . . . ,m− 1. (5.36)

(ii) Suppose the zeros {ν�(x, tr)}�=0,...,m−1 of Nm( · , x, tr) remain distinct for (x, tr) ∈ Ων,
where Ων ⊆ C2 is open and connected. Then {ν�(x, tr)}�=0,...,m−1 satisfy the system of differ-
ential equations,

ν�,x(x, tr) = −ε(m) Jm(ν�(x), x, tr)

(
3y(ν̂�(x, tr))

2 + Sm(ν�(x, tr))
)

m−1∏
k=0
k �=�

(
ν�(x, tr)− νk(x, tr)

) ,

� = 0, . . . ,m− 1, (5.37)

ν�,tr(x, tr) = −ε(m)
(
Jm(ν�(x, tr), x, tr)

(
G̃r(ν�(x, tr), x, tr) + 2−1F̃r,x(ν�(x, tr), x, tr)

)
− J̃r(ν�(x, tr), x, tr)

(
Gm(ν�(x, tr), x, tr) + 2−1 Fm,x(ν�(x, tr), x, tr)

))
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×
(
3y(ν̂�(x, tr))

2 + Sm(ν�(x, tr))
)

m−1∏
k=0
k �=�

(
ν�(x, tr)− νk(x, tr)

) , � = 0, . . . ,m− 1, (5.38)

with initial conditions

{ν̂�(x0, t0,r)}�=0,...,m−1 ∈ Km−1, (5.39)

for some fixed (x0, t0,r) ∈ Ων. The initial value problem (5.38), (5.39) has a unique solution
satisfying

ν̂� ∈ C∞(Ων ,Km−1), � = 0, . . . ,m− 1. (5.40)

(iii) The initial condition

(q0(x, t0,r), q1(x, t0,r)) = (q
(0)
0 (x), q

(0)
1 (x)), x ∈ C (5.41)

effects

µ̂j(x, t0,r) = µ̂
(0)
j (x), j = 1, . . . ,m− 1, x ∈ C, (5.42)

ν̂�(x, t0,r) = ν̂
(0)
� (x), � = 0, . . . ,m− 1, x ∈ C (5.43)

(cf. (5.10)–(5.12)).

6. Time-Dependent Algebro-Geometric Solutions
of the Boussinesq Hierarchy

In our final and principal section we extend the results of Section 4 from the stationary
Bsq hierarchy, to the time-dependent case. In particular, we obtain Riemann theta func-
tion representations for the time-dependent Baker-Akhiezer function and the time-dependent
meromorphic function φ. We finish this section with the corresponding theta function repre-
sentation for general time-dependent algebro-geometric quasi-periodic Bsq solutions q0, q1.

We start with the theta function representation of our fundamental object φ(P, x, tr).

Theorem 6.1. Let P = (z, y) ∈ Km−1\{P∞}, (z, x, tr) ∈ C3. Suppose that Dµ̂(x,tr) and
Dν̂(x,tr) are nonspecial. Then

φ(P, x, tr) =
θ(z(P∞, µ̂(x, tr)))

θ(z(P∞, ν̂(x, tr)))

θ(z(P, ν̂(x, tr)))

θ(z(P, µ̂(x, tr)))
exp

(
e(3)(P0)−

∫ P

P0

ω
(3)
P∞,ν̂0(x,tr)

)
. (6.1)

Proof. The proof carries over ad verbatim from the stationary case, Theorem 4.3.

Let ω
(2)
P∞,r, r = 3s+ε′, ε′ ∈ {1, 2}, s ∈ N0, be the normalized dsk holomorphic on Km−1\{P∞},

with a pole of order r at P∞,

ω
(2)
P∞,r(P ) =

ζ→0
(ζ−r +O(1))dζ as P → P∞, r = 3s+ ε′, ε′ ∈ {1, 2}, s ∈ N0. (6.2)

Furthermore, define the normalized dsk

Ω̃
(2)
P∞,r+1 =

s∑
�=0

c̃
(ε′)
s−� (3�+ 2)ω

(2)
P∞,3�+3 +

s∑
�=0

d̃
(ε′)
s−� (3�+ 1)ω

(2)
P∞,3�+2,

r = 3s+ ε′, ε′ ∈ {1, 2}, s ∈ N0, (6.3)
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where (cf. (2.3))

(c̃
(ε′)
0 , d̃

(ε′)
0 ) =

{
(0, 1) for ε′ = 1,

(1, d̃
(2)
0 ) for ε′ = 2,

d̃
(2)
0 ∈ C. (6.4)

In addition, we define the vector of b-periods of the dsk Ω̃
(2)
P∞,r+1

Ũ
(2)

r+1 = (Ũ
(2)
r+1,1, . . . , Ũ

(2)
r+1,m−1), Ũ

(2)
r+1,j =

1

2πi

∫
bj

Ω̃
(2)
P∞,r+1, j = 1, . . . ,m− 1

r = 3s+ ε′, ε′ ∈ {1, 2}, s ∈ N0. (6.5)

Motivated by the second integrand in (5.22) one defines the function Ir(P, x, tr), meromorphic
on Km−1 × C2 by

Ir(P, x, tr) = F̃r(z, x, tr)(φx(P, x, tr) + φ(P, x, tr)
2)

+ (G̃r(z, x, tr)− 2−1F̃r,x(z, x, tr))φ(P, x, tr) + H̃r(z, x, tr), (6.6)

for r = 3s + ε′, ε′ ∈ {1, 2}, s ∈ N0. Denote by Îr(P, x, tr) the associated homogeneous

quantity replacing F̃r, G̃r, H̃r by the corresponding homogeneous polynomials
̂̃
F r,

̂̃
Gr,

̂̃
Hr.

Theorem 6.2. Let r = 3s + ε′, ε′ ∈ {1, 2}, s ∈ N0, (x, tr) ∈ C2, and ζ = z−1/3 be the local
coordinate near P∞. Then

Îr(P, x, tr) =
ζ→0

ζ−r +O(ζ) as P → P∞. (6.7)

Proof. One easily verifies (6.7) by direct computation for r = 1 and r = 2. Assume (6.7) is
true with r = 3s+ ε′, ε′ ∈ {1, 2}, s ∈ N0. Then one may rewrite (6.7) as

Îr(P, x, tr) =
ζ→0

ζ−r +
∞∑
j=1

δj(x, tr) ζ
j as P → P∞, (6.8)

for some coefficients {δj(x, tr)}j∈N. Compare coefficients of ζ in (4.1) and (6.8) by means of
(5.24) and (6.6) to obtain

δ1,x(x, tr) = −1

3
q1,tr(x, tr), (6.9)

δ2,x(x, tr) =
1

6
q1,trx(x, tr)−

1

3
q0,tr(x, tr), (6.10)

δ3,x(x, tr) =
1

3
q0,trx(x, tr)−

1

18
q1,trxx(x, tr). (6.11)

From (2.34) one infers

δ1(x, tr) = γ1(tr)− f̂ (ε′)
s+1(x, tr), (6.12)

δ2(x, tr) = γ2(tr) + 2−1f̂
(ε′)
s+1,x(x, tr)− ĝ

(ε′)
s+1(x, tr), (6.13)

δ3(x, tr) = γ3(tr)− 6−1f̂
(ε′)
s+1,xx(x, tr) + ĝ

(ε′)
s+1,x(x, tr), (6.14)

where γ1(tr), γ2(tr), and γ3(tr) are integration constants. Next we note that the coefficients
of the power series for φ(P, x, tr) in the coordinate ζ near P∞ (cf. Lemma 4.1), and the

coefficients of the homogeneous polynomials
̂̃
F r(ζ, x, tr) and

̂̃
Gr(ζ, x, tr), (and hence those of

27



̂̃
Hr(ζ, x, tr)) are differential polynomials in q0 and q1, with no arbitrary integration constants

in their construction. From the definition of Îr in (6.6) it follows that it also can have no
arbitrary integration constants, and must consist purely of differential polynomials in q0 and
q1. From these considerations it follows that γ1(tr) = γ2(tr) = γ3(tr) = 0. Hence one
concludes

Îr(P, x, tr) =
ζ→0

ζ−r − f̂ (ε′)
s+1ζ +

(
2−1f̂

(ε′)
s+1,x(x, tr)− ĝ

(ε′)
s+1(x, tr)

)
ζ2

+
(
ĝ

(ε′)
s+1,x(x, tr)− 6−1f̂

(ε′)
s+1,xx(x, tr)

)
ζ3 +O(ζ4) as P → P∞, (6.15)

where the functions f
(ε′)
s (x, tr) and g

(ε′)
s (x, tr) are defined as in (2.3) with (q0(x), q1(x)) re-

placed by (q0(x, tr), q1(x, tr)). We note that one may writễ
F r+3(ζ, x, tr) = ζ−3 ̂̃

F r(ζ, x, tr) + f̂
(ε′)
s+1(x, tr), (6.16)

with analogous expressions for
̂̃
Gr and

̂̃
Hr. It follows that

Îr+3(P, x, tr) = ζ−3Îr(P, x, tr) + f̂
(ε′)
s+1(x, tr)

(
φx(P, x, tr) + φ(P, x, tr)

2
)

+
(
ĝ

(ε′)
s+1(x, tr)−

1

2
f̂

(ε′)
s+1,x(x, tr)

)
φ(P, x, tr)

+
1

6
f̂

(ε′)
s+1,xx(x, tr) +

2

3
q1(x, tr)f̂

(ε′)
s+1(x, tr)− ĝ

(ε′)
s+1,x(x, tr). (6.17)

Using Lemma 4.1 and (6.15), (6.17) yields

Îr+3(P, x, tr) =
ζ→0

ζ−r−3 +O(ζ) as P → P∞, (6.18)

and the result follows by induction.

By (2.18) one infers

Ir =
s∑

�=0

c̃
(ε′)
s−� Î3�+2 +

s∑
�=0

d̃
(ε′)
s−� Î3�+1, r = 3s+ ε′, ε′ ∈ {1, 2}, s ∈ N0. (6.19)

Thus,∫ tr

t0,r

Ir(P, x, τ)dτ =
ζ→0

(tr − t0,r)
s∑

�=0

(
c̃
(ε′)
s−�

1

ζ3�+2
+ d̃

(ε′)
s−�

1

ζ3�+1

)
+O(ζ) as P → P∞. (6.20)

Furthermore, integrating (6.3) yields∫ P

P0

Ω̃
(2)
P∞,r+1 =

ζ→0

s∑
�=0

c̃
(ε′)
s−� (3�+ 2)

∫ ζ

ζ0

dξ

ξ3�+3
+

s∑
�=0

d̃
(ε′)
s−� (3�+ 1)

∫ ζ

ζ0

dξ

ξ3�+2

= −
s∑

�=0

c̃
(ε′)
s−�

1

ζ3�+2
−

s∑
�=0

d̃
(ε′)
s−�

1

ζ3�+1
+ e

(2)
r+1(P0) +O(ζ) as P → P∞,

(6.21)

where e
(2)
r+1(P0) is a constant that arises from evaluating all the integrals at their lowers limits

P0, and summing accordingly. Combining (6.20) and (6.21) yields∫ tr

t0,r

Ir(P, x, s)ds =
ζ→0

(tr − t0,r)
(
e
(2)
r+1(P0)−

∫ P

P0

Ω̃
(2)
P∞,r+1

)
+O(ζ) as P → P∞. (6.22)
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Given these preparations, the theta function representation of ψ(P, x, x0, tr, t0,r) reads as
follows.

Theorem 6.3. Assume that the curve Km−1 is nonsingular. Furthermore, let P = (z, y) ∈
Km−1\{P∞}, and let (x, tr), (x0, t0,r) ∈ Ωµ, where Ωµ ⊆ C2 is open and connected. Suppose
also that Dµ̂(x,tr) and Dν̂(x,tr) are nonspecial for (x, tr) ∈ Ωµ. Then

ψ(P,x, x0, tr, t0,r) =
θ(z(P, µ̂(x, tr)))

θ(z(P∞, µ̂(x, tr)))

θ(z(P∞, µ̂(x0, t0,r)))

θ(z(P, µ̂(x0, t0,r)))

× exp
(
(x− x0)

(
e
(2)
2 (P0)−

∫ P

P0

ω
(2)
P∞,2

)
+ (tr − tr,0)

(
e
(2)
r+1(P0)−

∫ P

P0

Ω̃
(2)
P∞,r+1

))
.

(6.23)

Proof. We present only a proof of the time variation here, and refer the reader to Theorem
4.4 for the argument concerning the space variation. Let ψ(P, x, x0, tr, t0,r) be defined as in
(5.22) and denote the right-hand side of (6.23) by Ψ(P, x, x0, tr, t0,r). Temporarily assume
that

µj(x, tr) �= µ′j(x, tr) for j �= j′ and (x, tr) ∈ Ω̃µ ⊆ Ωµ, (6.24)

where Ω̃µ is open and connected. In order to prove that ψ = Ψ one uses (5.17), (5.14), the
time-dependent analog of (3.19), and

Fm(φx + φ2) + (Gm − 2−1Fm,x)φ+Hm = y, (6.25)

to compute

Ir = F̃r(φx + φ2) + (G̃r −
1

2
F̃r,x)φ+ H̃r

=
1

Fm

(
yF̃r + (FmH̃r − F̃rHm) +

(
Fm(G̃r −

1

2
F̃r,x)− F̃r(Gm −

1

2
Fm,x)

)
φ
)

=
1

3

Dm,tr

Dm

+
1

Fm

(
yF̃r +

(
Fm(G̃r −

1

2
F̃r,x)− Fr(Gm −

1

2
Fm,x)

)
×

(
Fmy

2 + Amy +
2

3
FmSm

)
ε(m)D−1

m

)
=

2

3

Fm(G̃r − 1
2
F̃r,x)− F̃r(Gm − 1

2
Fm,x)

ε(m)Dm

(
3y2 + Sm

)
− 1

3

m−1∑
k=1

µj,tr
z − µk

+
yF̃r

Fm

= − µj,tr
z − µj

+
yF̃r

Fm

+O(1) = − µj,tr
z − µj

+O(1) (6.26)

as P → µ̂j(x, tr). More concisely,

Ir(P, x0, s) =
∂

∂s
ln(z − µj(x0, s)) for P near µ̂j(x0, tr). (6.27)

Hence

exp
( ∫ tr

t0,r

ds
( ∂
∂s

ln(z − µj(x0, s)) +O(1)
))

=


(z − µj(x0, tr))O(1) for P near µ̂j(x0, tr) �= µ̂j(x0, t0,r),

O(1) for P near µ̂j(x0, tr) = µ̂j(x0, t0,r),

(z − µj(x0, t0,r))
−1O(1) for P near µ̂j(x0, t0,r) �= µ̂j(x0, tr),

(6.28)
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where O(1) �= 0 in (6.28). Consequently, all zeros and poles of ψ and Ψ on Km−1\{P∞}
are simple and coincide. It remains to identify the essential singularity of ψ and Ψ at P∞.
By (6.22) we see that the singularities in the exponential terms of ψ and Ψ coincide. The
uniqueness result in Lemma A.26 for Baker-Akhiezer functions completes the proof that

ψ = Ψ on Ω̃µ. The extension of the result from (x, tr) ∈ Ω̃µ to (x, tr) ∈ Ωµ follows from the
continuity of αP0

and the hypothesis that Dµ̂(x,tr) is nonspecial for (x, tr) ∈ Ωµ.

The straightening out of the Bsq flows by the Abel map is contained in our next result.

Theorem 6.4. Assume that the curve Km−1 is nonsingular, and let (x, tr), (x0, t0,r) ∈ C2.
Then

αP0
(Dµ̂(x,tr)) = αP0

(Dµ̂(x0,t0,r)) + U
(2)
2 (x− x0) + Ũ

(2)

r+1(tr − t0,r), (6.29)

and

AP0
(ν̂0(x, tr)) + αP0

(Dν̂(x,tr))

= AP0
(ν̂0(x0, t0,r)) + αP0

(Dν̂(x0,t0,r)) + U
(2)
2 (x− x0) + Ũ

(2)

r+1(tr − t0,r). (6.30)

Proof. As in the context of Theorem 4.6, it suffices to prove (6.29). Temporarily assume that
Dµ̂(x,tr) is nonspecial for (x, tr) ∈ Ωµ ⊆ C2, where Ωµ is open and connected. Introduce the
meromorphic differential

Ω(x, x0, tr, t0,r) =
∂

∂z
ln(ψ( · , x, x0, tr, t0,r))dz. (6.31)

From the representation (6.23) one infers

Ω(x, x0, tr, t0,r) = −(x− x0)ω
(2)
P∞,2 − (tr − t0,r)Ω̃(2)

P∞,r+1 −
m−1∑
j=1

ω
(3)
µ̂j(x0,t0,r),µ̂j(x,tr)

+ ω, (6.32)

where ω denotes a holomorphic differential on Km−1, that is, ω =
∑m−1

j=1 ejωj for some ej ∈
C, j = 1, . . . ,m− 1. Since ψ( · , x, x0, tr, t0,r) is single-valued on Km−1, all a and b-periods of
Ω are integer multiples of 2πi and hence

2πimk =

∫
ak

Ω(x, x0, tr, t0,r) =

∫
ak

ω = ek, j = 1, . . . ,m− 1 (6.33)

for some mk ∈ Z. Similarly, for some nk ∈ Z,

2πink =

∫
bk

Ω(x, x0, tr, t0,r) = −(x− x0)

∫
bk

ω
(2)
P∞,2 − (tr − t0,r)

∫
bk

Ω̃
(2)
P∞,r+1

−
m−1∑
j=1

∫
bk

ω
(3)
µ̂j(x0,t0,r),µ̂j(x,tr)

+ 2πi
m−1∑
j=1

mj

∫
bk

ωj

= −(x− x0)

∫
bk

ω
(2)
P∞,2 − (tr − t0,r)

∫
bk

Ω̃
(2)
P∞,r+1 − 2πi

m−1∑
j=1

∫ µ̂j(x0,t0,r)

µ̂j(x,tr)

ωk

+ 2πi
m−1∑
j=1

mj

∫
bk

ωj = −2πi(x− x0)U
(2)
2,k − 2πi(tr − t0,r) Ũ (2)

r+1,k
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+ 2πiαP0,k(Dµ̂(x,tr))− 2πiαP0,k(Dµ̂(x0,t0,r)) + 2πi
m−1∑
j=1

mjτj,k, (6.34)

where we used (A.36). By symmetry of τ (see Theorem A.4) this is equivalent to

αP0
(Dµ̂(x,tr)) = αP0

(Dµ̂(x0,t0,r)) + U
(2)
2 (x− x0) + Ũ

(2)

r+1(tr − t0,r), (6.35)

for (x, tr) ∈ Ωµ. This result extends from (x, tr) ∈ Ωµ to (x, tr) ∈ C2 using the continuity of
αP0

and the fact that positive nonspecial divisors are dense in the space of positive divisors
(cf. [19], p. 95).

Our principal result, the theta function representation of the class of time-dependent algebro-
geometric quasi-periodic Bsq solutions now quickly follows from the material prepared thus
far.

Theorem 6.5. Assume that the curve Km−1 is nonsingular and let (x, tr) ∈ Ωµ, where Ωµ ⊆
C

2 is open and connected. Suppose also that Dµ̂(x,tr) and Dν̂(x,tr) are nonspecial. Then

q0(x, tr) = 3 ∂
U

(2)
3
∂x ln(θ(z(P∞, µ̂(x, tr)))) + (3/2)w, (6.36)

q1(x, tr) = 3 ∂2
x ln(θ(z(P∞, µ̂(x, tr)))) + 3u, (6.37)

where u and w are defined by (4.34) and (4.35), respectively, and ∂
U

(2)
3

denotes the directional

derivative introduced in (4.42).

Proof. The proof carries over ad verbatim from the stationary case, Theorem 4.7.

Acknowledgments. K. U. would like to thank G. Teschl for numerous helpful discussions.
Moreover, he is indebted to the Department of Mathematics at the University of Missouri,
Columbia for the extraordinary hospitality extended to him during a stay in the Spring of
1998.

Appendix A. Algebraic Curves and their Theta Functions in a Nutshell

This appendix treats some of the basic aspects of complex algebraic curves and their theta
functions as used at numerous places in this paper. The material below is standard (see, e.g.,
[7], [19], [28], [32], and [41]), and we include it for two major reasons: On the one hand it
allows us to introduce a large part of the notation used in Sections 4 and 6 (which otherwise
would take up considerable space and disrupt the flow of arguments in these sections) and
on the other hand, it permits a fairly self-contained presentation of the Bsq hierarchy and its
algebro-geometric solutions in this paper.

Definition A.1. An affine plane (complex) algebraic curve K is the locus of zeros in C2 of
a (nonconstant) polynomial F(z, y) in two variables. The polynomial F is called nonsingular
at a root (z0, y0) if

∇F(z0, y0) = (Fz(z0, y0),Fy(z0, y0)) �= 0. (A.1)

The affine plane curve K of roots of F is called nonsingular at P0 = (z0, y0) if F is nonsingular
at P0. The curve K is called nonsingular, or smooth, if it is nonsingular at each of its points.
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The Implicit Function Theorem allows one to conclude that a smooth affine curve K is locally
a graph and to introduce complex charts on K as follows. If F(P0) = 0 with Fy(P0) �= 0,
there is a holomorphic function gP0(z) such that in a neighborhood UP0 of P0, the curve K is
characterized by the graph y = gP0(z). Hence the projection

π̃z : UP0 → π̃z(UP0) ⊂ C, (z, y) �→ z, (A.2)

yields a complex chart on K. If, on the other hand, F(P0) = 0 with Fz(P0) �= 0, then the
projection

π̃y : UP0 → π̃y(UP0) ⊂ C, (z, y) �→ y, (A.3)

defines a chart on K. In this way, as long as K is nonsingular, one arrives at a complex
atlas on K. The space K ⊂ C2 is second countable and Hausdorff. In order to obtain a
Riemann surface one needs connectedness of K which is implied by adding the assumption
of irreducibility of the polynomial F . Thus, K equipped with charts (A.2) and (A.3) is a
Riemann surface if F is nonsingular and irreducible. Affine plane curves K are unbounded as
subsets of C2, and hence noncompact. The compactification of K is conveniently described
in terms of the projective plane CP2, the set of all one-dimensional (complex) subspaces of
C

3.

In order to simplify notations, we temporarily abbreviate x0 = x, x1 = y, and x2 = z.
Moreover, we denote the linear span of (x2, x1, x0) ∈ C3\{0} by [x2 : x1 : x0]. In particular,
[x2 : x1 : x0] ∈ CP2 with L∞ = {[x2 : x1 : x0] ∈ CP2 | x0 = 0} representing the line at infinity.
Since the homogeneous coordinates [x2 : x1 : x0] satisfy

[x2 : x1 : x0] = [cx2 : cx1 : cx0], c ∈ C\{0}, (A.4)

the space CP2 can be viewed as the quotient space of C3\{0} by the multiplicative action
of C\{0}, that is, CP2 = (C3\{0})/(C\{0}), and hence CP2 inherits a Hausdorff topology
which is the quotient topology induced by the natural map

ι : C3\{0} → CP
2, (x2, x1, x0) �→ [x2 : x1 : x0]. (A.5)

Next, define the open sets

Um = {[x2 : x1 : x0] ∈ CP2 | xm �= 0}, m = 0, 1, 2. (A.6)

Then

f 0 : U0 → C
2, [x2 : x1 : x0] �→

(
x2

x0

,
x1

x0

)
(A.7)

with inverse

(f 0)−1 : C2 → U0, (x2, x1) �→ [x2 : x1 : 1], (A.8)

and analogously for functions f 1 and f 2 (relative to sets U1 and U2, respectively), are home-
omorphisms. In particular, U0, U1, and U2 together cover CP2. Moreover, CP2 is compact
since it is covered by the closed unit (poly)disks in U0, U1, and U2.

Let P be a (nonconstant) homogeneous polynomial of degree d in (x2, x1, x0), that is,

P(cx2, cx1, cx0) = cdP(x2, x1, x0), (A.9)

and introduce

K = {[x2 : x1 : x0] ∈ CP2 | P(x2, x1, x0) = 0}. (A.10)
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The set K is well-defined (even though P(u, v, w) is not for [u : v : w] ∈ CP2) and closed in
CP

2. The intersections,

Km = K ∩ Um, m = 0, 1, 2 (A.11)

are affine plane curves when transported to C2, that is,

K0 ∼= {(x2, x1) ∈ C2 | P(x2, x1, 1) = 0} (A.12)

represents the affine curve F(z, y) = 0, where F(x2, x1) = P(x2, x1, 1), and analogously for
K1 and K2. We recall that F(x2, x1) is irreducible if and only if P(x2, x1, x0) is irreducible.

Given the affine curve defined by F(x2, x1) = 0, the associated homogeneous polynomial
P(x2, x1, x0) can be obtained from

P(x2, x1, x0) = xd0F
(
x2

x0

,
x1

x0

)
, (A.13)

where d denotes the degree of F (and P).

The element [x2 : x1 : 0] ∈ CP2 represents the point at infinity along the direction x2 : x1

in C2 (identifying [x2 : x1 : 0] ∈ CP2 and [x2 : x1] ∈ CP1). The set of all such elements
then represents the line at infinity, L∞, and yields the compactification CP2 of C2. In other
words, CP2 ∼= C2 ∪L∞, CP1 ∼= C∪ {∞}, and L∞ ∼= CP1. The projective plane curve K then
intersects L∞ in a finite number of points (the points at infinity).

Definition A.2. A projective plane (complex) algebraic curve K is the locus of zeros in CP2

of a homogeneous polynomial P in three variables.

A homogeneous (nonconstant) polynomial P(x2, x1, x0) is called nonsingular if there are no
common solutions (x2,0, x1,0, x0,0) ∈ C3\{0} of

P(x2,0, x1,0, x0,0) = 0, (A.14)

∇P(x2,0, x1,0, x0,0) = (Px2 ,Px1 ,Px0)(x2,0, x1,0, x0,0) = 0. (A.15)

The set K is called a smooth projective plane curve (of degree d ∈ N) if P is nonsingular (and
of degree d ∈ N).

One verifies that the homogeneous polynomial P(x2, x1, x0) is nonsingular if and only if each
Km is a smooth affine plane curve in C2. Moreover, any nonsingular homogeneous polynomial
P(x2, x1, x0) is irreducible and consequently each Km is a Riemann surface for m = 0, 1, and
2. The coordinate charts on each Km are simply the projections, that is, x2/x0 and x1/x0

for K0, x2/x1 and x0/x1 for K1, and finally, x1/x2 and x0/x2 for K2. These separate complex
structures on Km are compatible on K and hence induce a complex structure on K.

The zero locus in CP2 of a nonsingular homogeneous polynomial P(x2, x1, x0) defines a smooth
projective plane curve K which is a compact Riemann surface. Topologically, this Riemann
surface is a sphere with g handles where

g = (d− 1)(d− 2)/2, (A.16)

with d the degree of P(x2, x1, x0). In particular, K has topological genus g and we indicate
this by writing Kg in our main text, or simply Kg if no confusion can arise. In general, the
projective curve Kg can be singular even though the associated affine curve K0

g is nonsingular.
33



In this case one has to account for the singularities at infinity and properly amend the genus
formula (A.16) according to results of Clebsch, Noether, and Plücker.

If Kg is a nonsingular projective curve, associated with the homogeneous polynomial P(z, y, x)
of degree d, the set of finite branch points of Kg is given by

{[z : y : 1] ∈ CP2 | P(z, y, 1) = Py(z, y, 1) = 0}. (A.17)

Similarly, branch points at infinity are defined by

{[z : y : 0] ∈ CP2 | P(z, y, 0) = Py(z, y, 0) = 0}. (A.18)

The set of branch points B of Kg then being the union of points in (A.17) and (A.18). Given
B = {P1, . . . , Pr} one can cut the complex plane along smooth nonintersecting curves Cq (e.g.,
straight lines if P1, . . . , Pr are arranged suitably) connecting Pq and Pq+1 for q = 1, . . . , r− 1,
and defines holomorphic functions f1, . . . , fd on the cut plane Π = C\ ∪r−1

q=1 Cq such that

P(z, y, 1) = 0 for y ∈ Π if and only if y = fj(z) for some j ∈ {1, . . . , d}. (A.19)

This yields a topological construction of Kg by appropriately gluing together d copies of the
cut plane Π, the result being a sphere with g handles (g depending on the order of the branch
points in B). If Kg is singular, this procedure requires appropriate modifications.

Next, choose a homology basis {aj, bj}gj=1 on Kg for some g ∈ N in such a way that the
intersection matrix of the cycles satisfies

aj ◦ bk = δj,k, j, k = 1, . . . , g (A.20)

(with aj and bk intersecting to form a right-handed coordinate system).

Turning briefly to meromorphic differentials (1-forms) on Kg, we state the following result.

Theorem A.3 (Riemann’s period relations). Let g ∈ N and suppose ω and ν to be closed
differentials ( 1-forms) on Kg. Then
(i) ∫∫

Kg

ω ∧ ν =

g∑
j=1

(( ∫
aj

ω
)( ∫

bj

ν
)
−

( ∫
bj

ω
)( ∫

aj

ν
))
. (A.21)

If, in addition ω and ν are holomorphic 1-forms on Kg, then

g∑
j=1

(( ∫
aj

ω
)( ∫

bj

ν
)
−

( ∫
bj

ω
)( ∫

aj

ν
))

= 0. (A.22)

(ii) If ω is a nonzero holomorphic 1-form on Kg, then

Im

(
g∑

j=1

( ∫
aj

ω
)( ∫

bj

ω
))

> 0. (A.23)

The proof of Theorem A.3 is usually based on Stokes’ theorem and a canonical dissection of

Kg along its cycles yielding the simply connected interior K̂g of the fundamental polygon ∂K̂g

given by

∂K̂g = a1b1a
−1
1 b
−1
1 a2b2a

−1
2 b
−1
2 . . . a−1

g b
−1
g . (A.24)
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Given the cycles {aj, bj}gj=1, we denote by {ωj}gj=1 a normalized basis of the space of holo-
morphic differentials (also called Abelian differentials of the first kind, denoted dfk) on Kg,
that is, ∫

aj

ωk = δj,k, j, k = 1, . . . , g. (A.25)

The b-periods of ωk are then defined by

τj,k =

∫
bj

ωk, j, k = 1, . . . , g. (A.26)

Theorem A.3 then implies the following result.

Theorem A.4. The matrix τ is symmetric, that is,

τj,k = τk,j, j, k = 1, . . . , g, (A.27)

with a positive definite imaginary part,

Im(τ) = (τ − τ ∗)/(2i) > 0. (A.28)

Abelian differentials of the second kind (abbreviated dsk), say ω(2), are characterized by the
property that all their residues vanish. They are normalized by the vanishing of all their
a-periods (achieved by adding a suitable linear combination of dfk ’s)∫

aj

ω(2) = 0, j = 1, . . . , g, (A.29)

which determines them uniquely. (We will always assume that the poles of dsk ’s on Kg lie

in K̂g, that is, do not lie on ∂K̂g. This can always be achieved by an appropriate choice
of the cycles aj and bj.) We may add in this context that the sum of the residues of any
meromorphic differential ν on Kg vanishes, the residue at a pole Q0 ∈ Kg of ν being defined
by

resQ0(ν) =
1

2πi

∫
γQ0

ν, (A.30)

where γQ0 is a smooth, simple, closed contour, oriented counter-clockwise, encircling Q0, but
no other pole of ν.

Theorem A.5. Let g ∈ N. Assume ω
(2)
Q1,n

to be a dsk on Kg, whose only pole is Q1 ∈
K̂g with principal part ζ−nQ1

dζQ1 for some n ∈ N0 and ω(1) a dfk on Kg of the type ω(1) =∑∞
m=0 cm(Q1)ζ

m
Q1
dζQ1 near Q1. Then

g∑
j=1

(( ∫
aj

ω(1)
)( ∫

bj

ω
(2)
Q1,n

)
−

( ∫
bj

ω(1)
)( ∫

aj

ω
(2)
Q1,n

))
=

2πi

(n− 1)
cn−2(Q1), n ≥ 2. (A.31)

In particular, if ω
(2)
Q1,n

is normalized and ω(1) = ωj =
∑∞

m=0 cj,m(Q1)ζ
m
Q1
dζQ1, then∫

bj

ω
(2)
Q1,n

=
2πi

(n− 1)
cj,n−2(Q1), n ≥ 2, j = 1, . . . , g. (A.32)
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Any meromorphic differential ω(3) on Kg not of the first or second kind is said to be of the
third kind, written dtk. It is common to normalize a dtk ω(3), by the vanishing of its a-periods,
that is, by ∫

aj

ω(3) = 0, j = 1, . . . , g. (A.33)

A normal dtk, denoted ω
(3)
Q1,Q2

, associated with two distinct points Q1, Q2 ∈ K̂g by definition

has simple poles at Q� with residues (−1)�+1 for � = 1 and 2, vanishing a-periods, and is
holomorphic anywhere else.

Theorem A.6. Let g ∈ N. Suppose ω(3) to be a dtk on Kg whose only singularities are simple

poles at Qn ∈ K̂g with residues cn for n = 1, . . . , N . Denote by ω(1) a dfk on Kg. Then

g∑
j=1

(( ∫
aj

ω(1)
)( ∫

bj

ω(3)
)
−

( ∫
bj

ω(1)
)( ∫

aj

ω(3)
))

= 2πi
N∑

n=1

cn

∫ Qn

Q0

ω(1), (A.34)

where Q0 ∈ K̂g is any fixed base point. In particular, if ω(3) is normalized and ω(1) = ωj, then∫
bj

ω(3) = 2πi
N∑

n=1

cn

∫ Qn

Q0

ωj, j = 1, . . . , g. (A.35)

Moreover, if ω
(3)
Q1,Q2

is a normal dtk on Kg holomorphic on Kg\{Q1, Q2}, then∫
bj

ω
(3)
Q1,Q2

= 2πi

∫ Q1

Q2

ωj, j = 1, . . . , g. (A.36)

We shall always assume (without loss of generality) that all poles of dsk ’s and dtk ’s on Kg lie

on K̂g (i.e., not on ∂K̂g) and that integration paths on the right hand side of (A.34)–(A.36)
do not touch any cycles aj or bk.

Next, we turn to divisors on Kg and the Jacobi variety J(Kg) of Kg. Let H(Kg) (M(Kg))
and H1(Kg) (M1(Kg)) denote the set of holomorphic (meromorphic) functions (i.e., 0-forms)
and holomorphic (meromorphic) 1-forms on Kg for some g ∈ N0.

Definition A.7. Let g ∈ N0. Suppose f ∈ M(Kg), ω = h(ζQ0)dζQ0 ∈ M1(Kg), and
(UQ0 , ζQ0) a chart near Q0 ∈ Kg.
(i) If (f ◦ ζ−1

Q0
)(ζ) =

∑∞
n=m0

cn(Q0)ζ
n for some m0 ∈ Z (which turns out to be independent of

the chosen chart), the order νf (Q0) of f at Q0 is defined by

νf (Q0) = m0. (A.37)

One defines νf (P ) =∞ for all P ∈ Kg if f is identically zero on Kg.
(ii) If hQ0(ζQ0) =

∑∞
n=m0

dn(Q0)ζ
n
Q0

for some m0 ∈ Z (which again is independent of the
chart chosen), the order νω(Q0) of ω at Q0 is defined by

νω(Q0) = m0. (A.38)

Definition A.8. Let g ∈ N0.
(i) A divisor D on Kg is a map D : Kg → Z, where D(P ) �= 0 for only finitely many P ∈ Kg.
On the set of all divisors Div(Kg) on Kg one introduces the partial ordering

D ≥ E if D(P ) ≥ E(P ), P ∈ Kg. (A.39)
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(ii) The degree deg(D) of D ∈ Div(Kg) is defined by

deg(D) =
∑
P∈Kg

D(P ). (A.40)

(iii) D ∈ Div(Kg) is called nonnegative (or effective) if

D ≥ 0, (A.41)

where 0 denotes the zero divisor 0(P ) = 0 for all P ∈ Kg.
(iv) Let D, E ∈ Div(Kg). Then D is called a multiple of E if

D ≥ E . (A.42)

D and E are called relatively prime if

D(P )E(P ) = 0, P ∈ Kg. (A.43)

(v) If f ∈M(Kg)\{0} and ω ∈M1(Kg)\{0}, then the divisor (f) of f is defined by

(f) : Kg → Z, P �→ νf (P ) (A.44)

(thus f is holomorphic, f ∈ H(Kg), if and only if (f) ≥ 0), and the divisor of ω is defined by

(ω) : Kg → Z, P �→ νω(P ) (A.45)

(thus ω is a dfk, ω ∈ H1(Kg), if and only if (ω) ≥ 0). The divisor (f) is called a principal
divisor, and (ω) a canonical divisor.
(vi) The divisors D, E ∈ Div(Kg) are called equivalent, written D ∼ E, if

D − E = (f) (A.46)

for some f ∈M(Kg)\{0}. The divisor class [D] of D is defined by

[D] = {E ∈ Div(Kg) | E ∼ D}. (A.47)

Clearly, Div(Kg) forms an Abelian group with respect to addition of divisors. The principal
divisors form a subgroup DivP(Kg) of Div(Kg). The quotient group Div(Kg)/DivP(Kg) con-
sists of the cosets of divisors, the divisor classes defined in (A.47). Also the set of divisors of
degree zero, Div0(Kg), forms a subgroup of Div(Kg). Since DivP(Kg) ⊂ Div0(Kg), one can
introduce the quotient group Pic(Kg) = Div0(Kg)/DivP(Kg) called the Picard group of Kg.

Theorem A.9. Let g ∈ N0. Suppose f ∈M(Kg) and ω ∈M1(Kg). Then

deg((f)) = 0 and deg((w)) = 2(g − 1). (A.48)

Definition A.10. Let g ∈ N0, and define

L(D) = {f ∈M(Kg) | (f) ≥ D}, L1(D) = {ω ∈M1(Kg) | (ω) ≥ D}. (A.49)

Both L(D) and L1(D) are linear spaces over C. We denote their (complex) dimensions by

r(D) = dimL(D), i(D) = dimL1(D). (A.50)

i(D) is also called the index of specialty of D.

Lemma A.11. Let g ∈ N0 and D ∈ Div(Kg). Then deg(D), r(D), and i(D) only depend
on the divisor class [D] of D (and not on the particular representative D). Moreover, for
ω ∈M1(Kg)\{0} one infers

i(D) = r(D − (ω)), D ∈ Div(Kg). (A.51)
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Theorem A.12 (Riemann-Roch). Let g ∈ N0 and D ∈ Div(Kg). Then r(−D) and i(D) are
finite and

r(−D) = deg(D) + i(D)− g + 1. (A.52)

In particular, Riemann’s inequality

r(−D) ≥ deg(D)− g + 1 (A.53)

holds.

Next we turn to the Jacobi variety and the Abel map.

Definition A.13. Let g ∈ N and define the period lattice Lg in Cg by

Lg = {z ∈ Cg | z = N + τM, N,M ∈ Zg}. (A.54)

Then the Jacobi variety J(Kg) of Kg is defined by

J(Kg) = Cg/Lg, (A.55)

and the Abel maps are defined by

AP0
: Kg → J(Kg), P �→ AP0

(P ) = (AP0,1(P ), . . . , AP0,g(P ))

= (

∫ P

P0

ω1, . . . ,

∫ P

P0

ωg) (mod Lg), (A.56)

and

αP0
: Div(Kg)→ J(Kg), D �→ αP0

(D) =
∑
P∈Kg

D(P )AP0
(P ), (A.57)

where P0 ∈ Kg is a fixed base point and (for convenience only) the same path is chosen from
P0 to P for all j = 1, . . . , g in (A.56) and (A.57)1.

Clearly, AP0
is well-defined since changing the path from P0 to P amounts to adding a closed

cycle whose contribution in the integral (A.56) consists in adding a vector in Lg. Moreover,
αP0

is a group homomorphism and J(Kg) is a complex torus of (complex) dimension g that
depends on the choice of the homology basis {aj, bj}gj=1. However, different homology bases
yield isomorphic Jacobians, see [19], p. 137, and [28], Section 8(b).

Theorem A.14 (Abel’s theorem). Let g ∈ N. Then D ∈ Div(Kg) is principal if and only if

deg(D) = 0 and αP0
(D) = 0. (A.58)

Next, we turn to Riemann theta functions and a constructive approach to the Jacobi inversion
problem. We assume g ∈ N for the remainder of this appendix.

Given the curve Kg, the homology basis {aj, bj}gj=1, and the matrix τ of b-periods of the dfk ’s
{ωj}gj=1, the Riemann theta function associated with Kg and the homology basis is defined
as

θ(z) =
∑
n∈Zg

exp
(
2πi(n, z) + πi(n, τn)

)
, z ∈ Cg, (A.59)

1This convention allows one to avoid the multiplicative version of the Riemann-Roch Theorem at various
places in this paper.
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where (u, v) =
∑g

j=1 ujvj denotes the scalar product in Cg. Because of (A.28), θ is well-
defined and represents an entire function on Cg. Elementary properties of θ are, for instance,

θ(z1, . . . , zj−1,−zj, zj+1, . . . , zn) = θ(z), z = (z1, . . . , zg) ∈ Cg, (A.60)

θ(z +m+ τn) = θ(z) exp
(
− 2πi(n, z)− πi(n, τn)

)
, m, n ∈ Zn, z ∈ Cg. (A.61)

Lemma A.15. Let ξ ∈ Cg and define

F : K̂g → C, P �→ θ(ÂP0
(P )− ξ), (A.62)

where

ÂP0
: K̂g → C

g, P �→ ÂP0
(P ) =

(
ÂP0,1(P ), . . . , ÂP0,g(P )

)
=

( ∫ P

P0

ω1, . . . ,

∫ P

P0

ωg

)
. (A.63)

Suppose F is not identically zero on K̂g, that is, F �≡ 0. Then F has precisely g zeros on K̂g

counting multiplicities.

Lemma A.15 is traditionally proven by integrating d ln(F ) along ∂K̂g.

Theorem A.16. Let ξ ∈ Cg and define F as in (A.62). Assume that F is not identically

zero on K̂g, and let Q1, . . . , Qg ∈ Kg be the zeros of F (multiplicities included) given by
Lemma A.15. Define the corresponding positive divisor DQ of degree g on Kg by

DQ : Kg → N0,

P �→ DQ(P ) =

{
m if P occurs m times in {Q1, . . . , Qg},
0 if P �∈ {Q1, . . . , Qg},

Q = (Q1, . . . , Qg), (A.64)

and recall the Abel map αP0
in (A.57). Then there exists a vector ΞP0

∈ Cg, the vector of
Riemann constants, such that

αP0
(DQ) = (ξ − ΞP0

)(mod Lg). (A.65)

The vector ΞP0
= (ΞP0,1 , . . . ,ΞP0,g) is given by

ΞP0,j
=

1

2
(1 + τj,j)−

g∑
�=1
��=j

∫
a�

ω�(P )

∫ P

P0

ωj, j = 1, . . . , g. (A.66)

For the proof of Theorem A.16 one integrates ÂP0,j
(P )d ln(F (P )) along ∂K̂g. Clearly, ΞP0

depends on the base point P0 and on the choice of the homology basis {aj, bj}gj=1.

Remark A.17. Theorem A.16 yields a partial solution of Jacobi’s inversion problem which
can be stated as follows: Given ξ ∈ Cg, find a divisor DQ ∈ Div(Kg) such that

αP0
(DQ) = ξ(mod Lg). (A.67)

Indeed, if F̃ (P ) = θ(ΞP0
−ÂP0

(P )+ξ) �≡ 0 on K̂g, the zeros Q1, . . . , Qg ∈ K̂g of F̃ (guaranteed
by Lemma A.15) satisfy Jacobi’s inversion problem by (A.65). Thus it remains to specify

conditions such that F̃ �≡ 0 on K̂g.
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Remark A.18. While θ(z) is well-defined (in fact, entire) for z ∈ Cg, it is not well-defined
on J(Kg) = C

g/Lg because of (A.61). Nevertheless, θ is a “multiplicative function” on
J(Kg) since the multipliers in (A.61) cannot vanish. In particular, if z1 = z2(mod Lg), then
θ(z1) = 0 if and only if θ(z2) = 0. Hence it is meaningful to state that θ vanishes at points of
J(Kg). Since the Abel map AP0

maps Kg into J(Kg), the function θ(AP0
(P )− ξ) for ξ ∈ Cg,

becomes a multiplicative function on Kg. Again it makes sense to say that θ(AP0
( · ) − ξ)

vanishes at points of Kg.

In the following we use the obvious notation

X + Y = {(x+ y) ∈ J(Kg) | x ∈ X, y ∈ Y },
−X = {−x ∈ J(Kg) | x ∈ X}, (A.68)

X + z = {(x+ z) ∈ J(Kg) | x ∈ X},

for X, Y ⊂ J(Kg) and z ∈ J(Kg). Furthermore, we may identify the nth symmetric power of
Kg, denoted σnKg, with the set of nonnegative divisors of degree n ∈ N on Kg. Moreover, we
introduce the convenient notation (N ∈ N)

DP0Q = DP0 +DQ, DQ = DQ1 + · · ·+DQN , Q = (Q1, . . . , QN) ∈ σNKg, (A.69)

where for any Q ∈ Kg,

DQ : Kg → N0, P �→ DQ(P ) =

{
1 for P = Q,

0 for P ∈ Kg\{Q}.
(A.70)

Definition A.19. (i) Define

W 0 = {0} ⊂ J(Kg), W n = αP0
(σnKg), n ∈ N. (A.71)

(ii) A positive divisor D ∈ Div(Kg) is called special if i(D) ≥ 1, otherwise D is called
nonspecial.
(iii) Q ∈ Kg is called a Weierstrass point of Kg if i(gDQ) ≥ 1, where gDQ =

∑g
j=1DQ.

Remark A.20. (i) Since i(DP ) = 0 for all P ∈ K1, the curve K1 has no Weierstrass points.
For g ≥ 2, and Kg hyperelliptic, the Weierstrass points of Kg are given precisely by the 2g+2
branch points of Kg.
(ii) The special divisors of the type DQ with Q = (Q1, . . . , QN) ∈ σNKg and deg(Q) = N ≥ g
are precisely the critical points of the Abel map αP0

: σNKg → J(Kg), that is, the set of points
D at which the rank of the differential dαP0

is less than g.
(iii) While σmKg �⊂ σnKg for m < n, one has Wm ⊆ W n for m < n. Thus W n = J(Kg) for
n ≥ g by Theorem A.23 below.

Theorem A.21. The set W g−1 + ΞP0
⊂ J(Kg) is the complete set of zeros of θ on J(Kg),

that is,

θ(X) = 0 if and only if X ∈ W g−1 + ΞP0
(A.72)

(i.e., if and only if X =
(
αP0

(D)+ΞP0

)
(mod Lg) for some D ∈ σg−1Kg). The set W g−1 +ΞP0

has complex dimension g − 1.
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Theorem A.22 (Riemann’s vanishing theorem). Let ξ ∈ Cg.
(i) If θ(ξ) �= 0, then there exists a unique D ∈ σgKg such that

ξ =
(
αP0

(D) + ΞP0

)
(mod Lg) (A.73)

and

i(D) = 0. (A.74)

(ii) If θ(ξ) = 0 and g = 1, then

ξ = ΞP0
(mod L1) = 2−1(1 + τ)(mod L1), L1 = Z+ τZ, −iτ > 0. (A.75)

(iii) Assume θ(ξ) = 0 and g ≥ 2. Let s ∈ N with s ≤ g − 1 be the smallest integer such that
θ(W s−W s− ξ) �= 0 (i.e., there exist E ,F ∈ σsKg with E �= F such that θ(αP0

(E)−αP0
(F)−

ξ) �= 0). Then there exists a D ∈ σg−1Kg such that

ξ =
(
αP0

(D) + ΞP0

)
(mod Lg) (A.76)

and

i(D) = s. (A.77)

All partial derivatives of θ with respect to AP0,j for j = 1, . . . , g of order strictly less than s
vanish at ξ, whereas at least one partial derivative of θ of order s is nonzero at ξ. Moreover,
s ≤ (g + 1)/2 and the integer s is the same for ξ and −ξ.

Note that there is no explicit reference to the base point P0 in the formulation of Theorem
A.22 since the set W s−W s ⊂ J(Kg) is independent of the base point while W s alone is not.

Theorem A.23 (Jacobi’s inversion theorem). The map αP0
is surjective. More precisely,

given ξ̃ = (ξ+ΞP0
) ∈ Cg, the divisors D in (A.73) and (A.76) (resp. D = DP0 if g = 1) solve

the Jacobi inversion problem for ξ ∈ Cg.

We summarize some of this analysis in the following remark.

Remark A.24. Consider the function

G(P ) = θ
(
ΞP0
− ÂP0

(P ) +

g∑
j=1

ÂP0
(Qj)

)
, P,Qj ∈ Kg, j = 1, . . . , g (A.78)

on Kg. Then

G(Qk) = θ(ΞP0
+

g∑
j=1
j �=k

ÂP0
(Qj)) = θ

(
ΞP0

+ αP0
(D(Q1,...,Qk−1,Qk+1,...,Qg))

)
= 0, (A.79)

k = 1, . . . , g

by Theorem A.21. Moreover, by Lemma A.15 and Theorem A.22, the points Q1, . . . , Qg are
the only zeros of G on Kg if and only if DQ is nonspecial, that is, if and only if

i(DQ) = 0, Q = (Q1, . . . , Qg) ∈ σgKg. (A.80)

Conversely, G ≡ 0 on Kg if and only if DQ is special, that is, if and only if i(DQ) ≥ 1.
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We also mention the elementary change in the Abel map and in Riemann’s vector if one
changes the base point,

AP1
=

(
AP0
− AP0

(P1)
)
(mod Lg), (A.81)

ΞP1
=

(
ΞP0

+ (g − 1)AP0
(P1)

)
(mod Lg), P0, P1 ∈ Kg. (A.82)

Remark A.25. Let ξ ∈ J(Kg) be given, assume that θ(ΞP0
− AP0

( · ) + ξ) �≡ 0 on Kg and

suppose that A−1
P0

(ξ) = (Q1, . . . , Qg) ∈ σgKg is the unique solution of Jacobi’s inversion
problem. Let f ∈ M(Kg)\{0} and suppose f(Qj) �= ∞ for j = 1, . . . , g. Then ξ uniquely
determines the values f(Q1), . . . , f(Qg). Moreover, any symmetric function of these values
is a single-valued meromorphic function of ξ ∈ J(Kg), that is, an Abelian function on J(Kg).
Any such meromorphic function on J(Kg) can be expressed in terms of the Riemann theta
function on Kg. For instance, for the elementary symmetric functions of the second kind
(Newton polynomials) one obtains from the residue theorem in analogy to the proof of Lemma
A.15 that

g∑
j=1

f(Qj)
n =

g∑
j=1

∫
aj

f(P )nωj(P )−
∑

Pr∈Kg
f(Pr)=∞

resP=Pr

(
f(P )nd ln(θ(ΞP0

− AP0
+ ξ))

)
, (A.83)

where an appropriate homology basis {aj, bj}gj=1 with ∂K̂g = a1b1a
−1
1 b
−1
1 . . . a−1

g b
−1
g avoiding

{Q1, . . . , Qg} and the poles {Pr} of f has been chosen. (We also note that Lemma A.15 just
corresponds to the case n = 0 in (A.83).)

Finally, we formulate the following auxiliary result (cf., e.g., Lemma 3.4 in [23]).

Lemma A.26. Let ψ( · , x), x ∈ U , U ⊆ R open, be meromorphic on Kg\{P∞} with an

essential singularity at P∞ (and Ω̃
(2)
P∞,r+1 defined as in (6.3)) such that ψ̃( · , x) defined by

ψ̃( · , x) = ψ( · , x) exp

(
− i(x− x0)

∫ P

P0

Ω̃
(2)
P∞,r+1

)
(A.84)

is multi-valued meromorphic on Kn and its divisor satisfies

(ψ̃( · , x)) ≥ −Dµ̂(x). (A.85)

Define a divisor D0(x) by

(ψ̃( · , x)) = D0(x)−Dµ̂(x). (A.86)

Then

D0(x) ∈ σgKg, D0(x) ≥ 0, deg(D0(x)) = g. (A.87)

Moreover, if D0(x) is nonspecial for all x ∈ U , that is, if i(D0(x)) = 0, then ψ( · , x) is unique
up to a constant multiple (which may depend on x ∈ U).

Appendix B. Trigonal Curves of Boussinesq-Type

We give a brief summary of some of the fundamental properties and notations needed from
the theory of trigonal curves of Boussinesq-type (i.e., those with a triple point at infinity).
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First we investigate what happens at the point (or possibly points) at infinity on our Bsq-type
curves. Fix g ∈ N. The Bsq-type curve Kg of arithmetic genus g = m− 1 is defined by

Fm−1(z, y) = y3 + y Sm(z)− Tm(z) = 0,

Sm(z) =
2n−1+ε∑

p=0

sm,pz
p, Tm(z) = zm +

m−1∑
q=0

tm,qz
q, (B.1)

m = 3n+ ε, ε ∈ {1, 2}, n ∈ N0.

Following the treatment in [46] one substitutes the variable u = z−1 into (B.1) to obtain

u3n+εy3 +
(
sm,0u

2n−1+ε + · · ·+ sm,2n−1+ε

)
un+1y −

(
tm,0u

3n+ε + · · ·+ tm,m−1u+ 1
)

= 0.
(B.2)

Let v = un+1y in (B.2) to obtain

v3 + (sm,0u
2n−1+ε + · · ·+ sm,2n−1+ε)u

3−εv − (tm,0u
3n+ε + · · ·+ tm,3n−1+εu+ 1)u3−ε = 0.

(B.3)

Let u → 0 (corresponding to z → ∞) in (B.3) to obtain v3 = 0. This corresponds to one
point of multiplicity three at infinity (in both cases ε = 1 and ε = 2), given by (u, v) = (0, 0).
We therefore use the coordinate ζ = z−1/3 at the branch point at infinity, denoted by P∞.

The curve (B.1) is compactified by adding the point P∞ at infinity. In homogeneous coordi-
nates, the point at infinity we add is [1 : 0 : 0] ∈ CP2 if g = 0 or g = 1, otherwise the point at
infinity we add is [0 : 1 : 0] ∈ CP2. The point P∞ is singular in all cases except when g = 1,
or when g = 2 and sm,0 = −1/3.

Although not directly associated with the Bsq hierarchy, we note that the case ε = 0 in (B.1)
is analogous to AKNS, Toda, and Thirring-type hyperelliptic curves, which are not branched
at infinity. In fact, a similar argument to that above, with the coordinate v = uny in (B.2),
yields the equation v3 = 1 as u→ 0. This corresponds to three distinct points P∞,j, j = 1, 2, 3
at infinity (each with multiplicity one), given by the three points (u, v) = (0, ωj) for j = 1, 2, 3,
where the ω1, ω2, and ω3 are the third roots of unity. As each point at infinity has multiplicity
one, none are branch points, and consequently each admits the local coordinate u = 1/z for
|z| sufficiently large.

In [10], p. 561, Burchnall and Chaundy define the g-number of an algebraic curve as the
maximum number of double points possible in the finite plane. For Bsq-type curves the g-
number is g = m− 1. For a curve that is smooth in the finite plane, the g-number coincides
with the arithmetic genus of the curve, but in the presence of double points, the g-number
remains the same, while the genus is diminished (according to results of Clebsch, Noether,
and Plücker, see, e.g., [7] and [41]). We now prove that the g-number of Kg, and hence the
arithmetic genus of Kg if Kg is smooth in the finite plane, is m− 1 using a special case of the
Riemann-Hurwitz theorem.

Theorem B.1. Let π̃z : Kg → CP
1 be the projection map with respect to the z coordinate.

Then ∑
P∈Kg

[
νP (π̃z)− 1

]
= 2g + 4, (B.4)
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where νP (π̃z) denotes the multiplicity of π̃z at P ∈ Kg, and g is the arithmetic genus of the
curve Kg.

If equation (B.1) has only double points, this implies that the discriminant ∆(z) of the curve
(B.1), defined by

∆(z) = 27Tm(z)2 + 4Sm(z)3 (B.5)

(modulo constants), is non-zero. ∆(z) is easily seen to be a polynomial of degree 2m. Hence
in the finite complex plane, the Riemann surface defined by the compactification of (B.1) can
have at most 2m double points, corresponding to the possible 2m zeros of ∆(z). If all finite
branch points are distinct double points (taking into account the triple point at infinity) one
obtains

∑
P∈Kg

[
νP (π̃z)− 1

]
= 2m+ 2, and so by (B.4), one infers g = m− 1.

Let B denote the set of branch points and let |B| denote the number of branch points counted
according to multiplicity. In the case of Bsq-type curves, deg(π̃z) = 3, and νP (π̃z) = 1 for all
P ∈ Kg\B. Moreover, νP (π̃z) ∈ {2, 3} for all P ∈ B. Hence |B| ≤

∑
P∈Kg

[
νP (π̃z)−1

]
≤ 2|B|,

and (B.4) reduces to

g + 2 ≤ |B| ≤ 2g + 4. (B.6)

Thus one arrives at an upper and lower bound on the number of branch points on Kg.

When m = 1, corresponding to g = 0, there are no non-zero holomorphic differentials on Kg.
Whenm = 2, corresponding to g = 1, the only holomorphic differential on Kg is dz/(3y(P )2+
Sm(z)). Recall also that m �= 0(mod 3), so we need not consider holomorphic differentials
for the case m = 3. One verifies that dz/(3y(P )2 + Sm(z)) and y(P )dz/(3y(P )2 + Sm(z)) are
holomorphic differentials Kg with zeros at P∞ of order 2(m − 2) and (m − 4), respectively,
for m ≥ 4. It follows that the differentials (m = 3n+ ε, ε ∈ {1, 2})

η�(P ) =
1

3y(P )2 + Sm(z)

{
z�−1dz for 1 ≤ � ≤ g − n,
y(P )z�+n−g−1dz for g − n+ 1 ≤ � ≤ g, (B.7)

form a basis in the space of holomorphic differentials H1(Kg). Introducing the invertible
matrix Υ ∈ GL(g,C),

Υ = (Υj,k)j,k=1,...,g, Υj,k =

∫
ak

ηj,

e(k) = (e1(k), . . . , eg(k)), ej(k) =
(
Υ−1

)
j,k
,

(B.8)

the normalized differentials ωj for j = 1, . . . , g,

ωj =

g∑
�=1

ej(�)η�,

∫
ak

ωj = δj,k, j, k = 1, . . . , g (B.9)

form a canonical basis for H1(Kg). Near P∞ one infers

ω = (ω1, . . . , ωg) =
ζ→0

(
α

(ε)
0 + α

(ε)
1 ζ + α

(ε)
3 ζ

3 +O(ζ4)
)
dζ, (B.10)

where

α
(ε)
0 = −

{
e(g), ε = 1,

e(g − n), ε = 2,
(B.11)
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α
(ε)
1 =

{
−e(g − n), ε = 1,(
d

(2)
0 e(g − n)− e(g)

)
, ε = 2,

(B.12)

α
(ε)
3 =

{(
d

(1)
1 e(g) + c

(1)
1 e(g − n)− e(g − 1)

)
, ε = 1,(

(2c
(2)
1 − (d

(2)
0 )3)e(g − n)− e(g − n− 1) + (d

(2)
0 )2e(g)

)
, ε = 2,

(B.13)

etc.,

and

y(P ) =
ζ→0

(
c
(ε)
0 + d

(ε)
0 ζ + c

(ε)
1 ζ

3 + d
(ε)
1 ζ

4 +O(ζ6)
)
ζ−3n−2 as P → P∞, (B.14)

with

(c
(ε)
0 , d

(ε)
0 ) =

{
(0, 1), ε = 1,

(1, d
(2)
0 ), ε = 2,

d
(2)
0 ∈ C. (B.15)

In particular, using (A.32), (B.10), and (B.11), one obtains

1

2πi

∫
bj

ω
(2)
P∞,2 = α

(ε)
0,j and

1

2πi

∫
bj

ω
(2)
P∞,3 =

1

2
α

(ε)
1,j . (B.16)

Finally, we turn our attention to special divisors.

From the theory of elementary symmetric polynomials one infers the following lemma.

Lemma B.2. Pick z ∈ C, and denote by y1(z), y2(z), and y3(z), the three solutions of (B.1).
These solutions are distinct if and only if the discriminant ∆(z) �= 0. Moreover, introduce
Qj = (z, yj) ∈ Kg for j = 1, 2, 3. Then

(i)
∑3

j=1 yj(z) = 0.

(ii)
∑3

j<k yj(z)yk(z) = Sm(z).

(iii)
∏3

j=1 yj(z) = Tm(z).

(iv)
∑3

j=1 yj(z)
2 = −2Sm(z).

(v)
∑3

j=1 yj(z)
3 = 3Tm(z).

(vi)
∑3

j �=k yj(z)
2yk(z) = −3Tm(z).

(vii)
∑3

j<k yj(z)
2yk(z)

2 = Sm(z)2.

(viii)
∏3

j=1

(
3yj(z)

2 + Sm(z)
)

= ∆(z).

Lemma B.3. Let m1, . . . ,mr ∈ N with
∑r

j=1mj = g and Qj = (z, yj), j = 1, 2, 3 as in
Lemma B.2. Suppose P1, . . . , Pr ∈ Kg. If

{Q1, Q2, Q3} ⊆ {P1, . . . , Pr}, (B.17)

then the divisor Dm1P1+···+mrPr ∈ σgKg is special. In particular, if one of the points Pj ∈
{P1, . . . , Pr} is a triple point, then the divisor Dm1P1+···+mrPr ∈ σgKg is special.

Proof. Using the identities in Lemma B.2, one readily computes

3∑
j=1

1

3yj(z)2 + Sm(z)
= 0,

3∑
j=1

yj(z)

3yj(z)2 + Sm(z)
= 0. (B.18)

45



Thus, choosing for simplicity the base point P0 = P∞, a comparison of (A.56), (B.7), and
(B.18) yields

3∑
j=1

AP∞(Qj) = 0 (mod Lg). (B.19)

Thus Dm1P1+···+mrPr ∈ σgKg is special by Theorem A.21.
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[8] W. Bulla, F. Gesztesy, H. Holden, and G. Teschl, Algebro-geometric quasi-periodic finite-gap solutions

of the Toda and Kac-van-Moerbeke hierarchies, Memoirs Amer. Math. Soc., Providence, R.I., to
appear.

[9] J. L. Burchnall and T. W. Chaundy, Commutative ordinary differential operators, Proc. London Math.
Soc. (2) 21, 420–440 (1923).

[10] J. L. Burchnall and T. W. Chaundy, Commutative ordinary differential operators, Proc. Roy. Soc.
London A118, 557–583 (1928).

[11] D. V. Chudnovsky, Meromorphic solutions of nonlinear partial differential equations and many-particle
completely integrable systems, J. Math. Phys. 20, 2416–2422 (1979).

[12] W. Craig, An existence theory for water waves and the Boussinesq and Korteweg-deVries scaling
limits, Commun. Part. Diff. Eqs. 10, 787–1003 (1985).

[13] P. Deift, C. Tomei, and E. Trubowitz, Inverse scattering and the Boussinesq equation, Commun. Pure
Appl. Math. 35, 567–628 (1982).

[14] R. Dickson, F. Gesztesy, and K. Unterkofler, A new approach to the Boussinesq hierarchy , Mathema-
tische Nachrichten, to appear.

[15] B. A. Dubrovin, Completely integrable Hamiltonian systems associated with matrix operators and
Abelian varieties, Funct. Anal. Appl. 11, 265–277 (1977).

[16] B. A. Dubrovin, Theta functions and nonlinear equations, Russ. Math. Surv. 36:2, 11–92 (1981).
[17] B. A. Dubrovin, Matrix finite-zone operators, Revs. Sci. Tech. 23, 20–50 (1983).
[18] Y.-F. Fang and M. G. Grillakis, Existence and uniqueness for Boussinesq type equations on a circle,

Commun. Part. Diff. Eqs. 21, 1253–1277 (1996).
[19] H. M. Farkas and I. Kra, Riemann Surfaces, 2nd ed., Springer, New York, 1992.
[20] L. Gatto and S. Greco, Algebraic curves and differential equations: an introduction, The Curves

Seminar at Queen’s, Vol. VIII (ed. by A. V. Geramita), Queen’s Papers Pure Appl. Math. 88, Queen’s
Univ., Kingston, Ontario, Canada, 1991, B1–B69.

[21] F. Gesztesy and H. Holden, A combined sine-Gordon and modified Korteweg-de Vries hierarchy and
its algebro-geometric solutions, preprint, 1997.

[22] F. Gesztesy and H. Holden, Hierarchies of Soliton Equations and their Algebro-Geometric Solutions,
monograph in preparation.

[23] F. Gesztesy and R. Ratneseelan, An alternative approach to algebro-geometric solutions of the AKNS
hierarchy, Rev. Math. Phys. 10, 345–391 (1998).

[24] F. Gesztesy, D. Race, and R. Weikard, On (modified) Boussinesq-type systems and factorizations of
associated linear differential expressions, J. London Math. Soc. (2) 47, 321–340 (1993).

46



[25] F. Gesztesy, R. Ratnaseelan, and G. Teschl, The KdV hierarchy and associated trace formulas, in Pro-
ceedings of the International Conference on Applications of Operator Theory, I. Gohberg, P. Lancaster,
and P. N. Shivakumar (eds.), Operator Theory: Advances and Applications, Vol. 87, Birkhäuser, Basel,
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[30] C. G. T. Jacobi, Über eine neue Methode zur Integration der hyperelliptischen Differentialgleichungen
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