Vol. 31 (1992) REPORTS ON MATHEMATICAL PHYSICS No. 2

ISOSPECTRAL DEFORMATIONS FOR STURM-LIOUVILLE
AND DIRAC-TYPE OPERATORS AND ASSOCIATED
NONLINEAR EVOLUTION EQUATIONS

F. GESZTESY
Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
' and
K. UNTERKOFLER*
Institut fiir Theoretische Physik, TU Graz, A-8010 Graz, Austria

(Received June 3, 1991)

We give a systematic account of isospectral deformations for Sturm-Liouville and Dirac-type
operators and associated hierarchies of nonlinear evolution equations. In particular, we study
generalized KAV and modified KdV-hierarchies and their reduction to the standard (m)KdV-
hierarchy. As an example we discuss the Harry Dym equation in some detail and relate its
solutions to KdV-solutions and to Hirota’s T-functions.

1. Introduction
In this note we attempt to give a systematic treatment of certain isospectral defor-

mations for Sturm-Liouville and Dirac-type operators and nonlinear evolution equations
associated with them. The differential expressions we are most interested in are of the

type

1) = o p(t Y + a(t,7), an
and 4
m(t) = ( dO —p(t, w)gi; —pz(t, ) + &(2, x)) (1.2)
p(t,m)% + ¢(tax) 0

where ¢ € R, z varies on a (finite or infinite) interval (a, b), and p, g, ¢ satisfy appropriate
conditions. ‘ '
In Section 2 we recall the Liouville transformation which transforms (1.1) into

2

i) =~ +36,0), () € R (13)
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and (1.2) into

*d;dy +Z)5('Say)) (14)

e (dy +Bsy) 0

for appropriate coefficients ¥ and ». In Section 3 we study the differential expression /(t)
in (1.1) and a hierarchy of Lax differential expressions b, (t), n € Ny. The Lax equations
% = [bn,l], neNy (1.5)
then yield a hierarchy of coupled nonlinear evolution equations (3.11), (3.12). In the
remainder of Section 3 we then show how to reduce these generalized hierarchies to the
standard Korteweg—de Vries (KdV)-hierarchy by means of the Liouville transformation of
Section 2. As special cases of these generalized hierarchies we isolate various examples,
most notably the Harry Dym (HD)-hierarchy. In Section 4 we study the modified versions
of the hierarchies introduced in Section 3 and the andlog of Miura-type transformations
that link solutions of the (generalized) KdV and (generalized) modified Korteweg-de
Vries (mKdV)-hierarchy. This modified hierarchy is defined in terms of the Lax equations
dm _ [dn,m], n € Ny, (1.6)
dt
where m is the Dirac-type differential expression (1.2) and d,, are appropriate (matrix-
valued) Lax differential expressions. Section 5 finally gives a systematic treatment of the
Harry Dym equation within our approach. In particular, we provide a detailed discussion
of how to generate solutions of the HD-equation with the help of solutions of the KdV-
equation extending various earlier results on this subject [4, 8, 12, 13, 15, 16, 17, 20, 21, 22,
25] (see also the references therein). As shown by several illustrations involving solitons
and quasi-periodic finite-gap solutions of the KdV-equation, our approach to the HD-
equation is most effectively combined with Hirota’s 7-function methods. We conclude
with two appendices summarizing Hirota’s 7-functions as needed in Section 5 and the
construction of a typical example of a differential operator on a finite interval with a
nontrivial absolutely continuous component in its spectrum. (Such spectral properties,
although perhaps unexpected at first sight, turn out to be quite typical in connection with
the HD-equation.)

2. Liouville-type transformations for Schrodinger and Dirac operators

In this section we briefly recall the well known Liouville transformation for one-dimen-
sional Schrodinger and Dirac operators needed later on.

Assuming hypothesis

(H.2.1). p,7 > 0,p,7,q € C®(R X (a,b)), 5 ¢ L((zo,b); dz), L 7 ¢ Ll((a xp); dz) for some
To € (a b)
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we introduce on (a,b) (a = —oo and/or b = +oo included) the differential expression
I(t) = r(t,z) 72| — —p(t :1:)2 +q(t,z)|, teR, zc(ab) 2.1

and the associated maximal Sturm-Liouville operator in L*((a, b); (¢, z)*dz)
L@O)f =1t)f,
f € D(L()) = {g € L*((a, b); r(t, 2)’dz)lg, g’ € ACic((a,b)); 22
I(t)g € L*((a,b); 7(t, x)*dz)}, te€ R.

(Here ACjoc(£2) denotes the set of locally absolutely continuous functions on 2 C R,
open.) L(t) is well known to be a densely defined and closed operator. In addition we
require
(H.2.2). I(t) is in the limit point case at a and b (i.e., L(¢) is self-adjoint) for all ¢ € R.

Next we recall the Liouville transformation from the variables (¢, z) to (s, y), (see, e.g.,
[6], page 1500), where :

m7"(1535’)
s =t, =y(t,z) = !
v = f e

Since y is strictly monotone in z, the inverse function z = (s, y) exists and one introduces

W) = rt,2(s,9)),  B(s,y) = plt, 2(s, ),
’6(5 y) - Q(t’x(say))’ ﬁ('say) = ’U(t,.’l:(& y))’

1 r2
/VTt z) y— % ar 2(pm + 2pDse +2ppm—- +2p2 zzT _31727,%)

' +n(t), € (a,b), neC®R). (2.3)

2.4)

and the family of unitary operators

U(s): L¥((a,b);r%de) — LA(Rydy),  (U())(w) = Vs, 9)(s,9)f(x(s,9)).  (25)
A straightforward computation then yields for the differential expression I(s) associated
with L(s) = U(s)L(s)U~!(s) in L*(R;dy)

oA . q 1 /1. 1. ., v
I(s) = s +9(s,y), U= = + e (zrp(rp vy — Z(’rp)y). (2:6)

Thus the nonlinear evolution equations that leave the spectrum of L(s) (and hence of
L(t)) invariant are given by the KdV-hierarchy for v. Since v = (7,5, ), two of the three
functions can be chosen freely.

EXAMPLE 2.3. (i)If7'=p=\/E,a=—oo,b=oo,a:0=0,n=0,q=?j7"2thenm=y
and

1d d . d? lky, 1k P
-+ +3 I=-2 4% w=p+ w10 5, Pw 2
b=~y @t 7O Y VTt T Tt 2.7)
[ turns out to be the differential expression of the impedance equation [5].
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(i) If r~! = p = vk then

1=k - Lpd 4 Z———i+~ 7=k (2.8)
= da; dz q), = v, vV = gk. .

In particular, if ¢ = 0 then v = 0.
(iii) If r = 1, p = %, ¢ = 0 then

= ——3s"— z=——+T‘ (29)

Next we turn to certain Dirac-type operators. Assuming
(H2.4.). ¢ € C=°((R % (a,b)) real-valued

in addition to (H.2.1) we define the minimal operator

() = 1) I )5+ 6(0) (2.10)
D) = {g € I3((@,0) (¢, 9)%d0)lg € ACeel(@,5)), 5upp(s) C (a, b compact), ¢ € R

and let A(t) be the closure of ;1(75), t € R. Then introducing the self-adjoint Dirac-type
operator in [L*((a, b); 7(t, z)*dx)]?

wor= (0 “0). POt =pUG)eDGAE), @

one infers
Mty = (Llo(t) LZO(t))’ teR, ¥ e
where
Li(t) = A@YA®),  La(t) = AGDAQ)". (2.13)

Here L;(t) and L,(t) are generated by differential expressions of the type
() = r60) 2] - att o 5 - ) Bt )DL + 1t ) 260,07 |, 219

I(t) = r(t, a:)‘Z{ - zi%p(t,:v)z% + r(t,2) 7 Ip(t, ) do (t, ) — r(t, ) g (t, z)P(t, )
= 3r(t, x) " 2ra(t, 2)p(t, 2)P(t, T) — P(t, T)Paalt, T) — 7(t, @) raalt, T)p(E, )

+ 2r(t, ) " 2ro(t, ) p(t, 2)* + (¢, 2) 2o (¢, a:)z} (2.15)

and M (¢) is generated by the matrix differential expression
_( 0 a®)
m(t) = (a(t) 0 ) ; (2.16)

a(t) = r(t,z)~ [T(t, w)p(t,m)% + (1, m)], (2.17)
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a(®)” = r(t,2)72 | — r(t, D)plts )~ — (7l Dplt, e + 6(1,2)
Given (2.3) and (2.4) and
#(s,y) = (¢, 2(s,)),

o(t.0) = S~ 502t ).

B(s,9) = o(t,2(5,)),

we introduce the following family of unitary operators
W(s): L*((a,b);dx)* — LA*(R;dy)’, W(s) =U(s) 1y,
W)W = V(s vp(s, v f((s,9)),  7=12
A computation analogous to (2.6) then yields
~ _ 0  A®s)*
W) = weomew o = (0 40,
A(s) = U(9)AU(s) ™!, A(s)" = U(9)A(s)'U(s) ™,

where ,71(5) and A(s)* are generated by the differential expressions

a(s)' =~ +3(s,p),

d .
a(s) = o+ Bs), -

__ ¢ 1
(p_;;'z Z'Fﬁ(rp)y

and hence A(s)*A(s), A(s)A(s)* and M(s) are generated by

- _ d2
l1(s) = a(s)*a(s) = —-dy—z + 01(s,9),
- d2
l(s) = a(s)a(s)" = —@5 + U2(s,¥),

5]'(3’?/) = &(Say)z + (_1)j¢y(3,y), i=12

ﬁ),(s) — 0 *Edg + @(S;y) .
&+ #s) 0

117

(2.18)

(2.19)

- (2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

EXAMPLE 2.5. () Ifp=1,r=1,a= —00,b=00, 79 = 0,7 =0, then g =v, ¢ = o,

z =y and
g =¢" +(-Wps, =12
is the well known Miura transformation for the KdV-hierarchy.
i) Ifr=1,¢=0we get

5'y'y

- 1
=33

(2.28)

(2.29)
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By the transformation p — %,'ﬁj, ] = 1,2 transform into

Py 159'.‘/ 3% -~ lﬁyy 152
v — 2 ,ﬁ 470,2, ’U2—>2 ,ﬁ —qu (230)

3. A generalized KdV-hierarchy for the case r(¢,z) = 1

In this section we will concentrate on the special case r(t, z) = 1 and study a hierarchy
of nonlinear evolution equations associated with L in (2.2). (The case » # 1, p = 1 is
discussed in detail in [1] using the inverse scattering method (see also [19, 23, 24, 26]).)

At the end of this section we illustrate a reduction of this hierarchy to the KdV-hier-
archy by means of the Liouville transformation of Section 2.

Throughout this section we shall use hypothesis

(H.3.1). Assume Hypotheses (H.2.1) and (H.2.2) with r(¢,z) = 1.
Introducing v by

2
Dy DPDzx
v=g+7 + ) (3.1)
we can rewrite [(¢) in the form
d 2 d pi PPz ;
l__d:cpd +v——4—— T te R,z € (a,b). 3.2)
Then
d d d PxDxt DPtPza PDzat
—I = —2 —_—— — — + vy, .
dt PP ~ 2 2 2 Y (3.3)

For the Lax differential expressions b, (t) we make the usual ansatz

n 21 1 dZZ 1
ba(t) = Z (521 1(t, x)d a1t g ———7Bau-1(t, a:)) bo(t) = Bo(?),
=1 .
te R, zc(ab), Bm € C°(Rx (a,b)), meNy (3.4)

In order to illustrate some of the nonlinear equations covered by this ansatz we present
a few special examples:

EXAMPLE 3.2. (i) 8; = —1p(8 — 2) yields

d d
=_1 — ) 4+ (8 —

b =~} (p(ﬂ 2+ (8 2)p), (35)

d d

= ——2p B, ——

[b1,] dz b dzx

_(zppf-ﬁx + %pzpmzﬁm + %pzpzﬁmz + %p3ﬂmmm + p(8 — 2)vz). (3.6)
The requlrement = [b1,] then gives the evolution equations

Pt = p*Be, (3.7)
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vy = 2pv, — Bpug, (3.8
where the smooth function 8 = 3(p, ps, Pz, -.-) can be chosen freely.
(il) B1 = —38p + 6pv + 23pp2 + 8p™p,s, B3 = —4p® yields

2

d3 d . d
by = — 8p3— — 36psz + (=Bp + 12pv — 26ppi - 20p2ppm)@

dz3 da?
1 1
- Epﬂx - Eﬁpz + 6up, — pi + 6pvy — 10ppepss — 4P2Pmma (39)
d d 3
[b27 l] = - Ezp3ﬁma ~ pPvg — 2pp:2c,3m + 12pvv, — privz - Epzp.m:ﬁz
5 1
- zpzpzﬁm - zpzpzwvx - 6p2pm'vam: - §p3ﬂmzm - 2p3vacwcc~ (310)

% = [by,!] then yields

pt = p*Ba, (3.11)
v = 12pvvy — (20°Vea)e — (20% + 20Pss + B)pa, (3.12)

where again the smooth function 8 = B(p, ps, Pzs, -..) can be chosen freely.
Consequently, we define the generalized Korteweg~de Vries (gKdV)-equation by

gKAV(v) = v, — 12pvv, + (20%050)s + (202 + 20pes + B)pyg = 0. (3.13)

Remark 3.3: The freedom in the choice of the function J just expresses the fact that
we ‘have two functions p, v and one can be chosen freely.

Remark 3.4: In the special case where v(¢,z) = 0 (and hence %(s,y) = 0 in (2.6)),
any smooth solution p(¢, z) of (3.11) leaves the spectrum of L(¢) invariant. Actually, one
infers quite generally that in this case (independently of (3.11))

o(L(t)) = oac(L(t)) = [0, 00) (3.14)

since ‘
. = y—1 ’

FaOut,0) = plt )12 g ESTE (3.15)

are the generalized eigenfunctions of L(t). (Here o(-), 0,.(-) denote the spectrum and
the absolutely continuous spectrum respectively.)

Remark 3.5: Imposing conditions on v (or ¢) fixes the choice of 3. E.g, ¢ = 0 is
1,2

equivalent to v = 3p; + %ppm which implies 3 = —2pp,.. + p2 and p must now fulfill the
Harry Dym (HD)-equation :
Pt = —2P’Praa- (3.16)
Also mixed types are possible, giving other forms of evolution equations:
EXAMPLE 3.6. (i) Setting v = p in (3.8) we get (3 —2) = —p~! and hence

Pt = Dy (3.17)
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(ii) Setting v = p in (3.12) we get B = 6p — 2pp.. — 2p% and hence

(This equation is sometimes called the “modified” magma equation.) By (2.3) and (3.55)
this equation is also transformed into the KdV-equation.

(iii) Setting v = p? in (3.12) yields b = 4p* — 2pp,. — 8p> + 6p~! f;) PPy Py dz’ and
hence

P = 8p3p:c - 12p2pmp:cm - 2p3pzma: — 6p2 f PP Pt dit’. (3.19)
0
Next we shall describe a hierarchy of nonlinear evolution equations associated with (3.2)
and (3.4) in two different ways.

The first way is to construct the Lax pairs (!, b,) from the corresponding Lax pairs
(1,b,) of the Korteweg-de Vries (KdV)-equation. Consider

d =~ -

4,0, (3.20)
< 2

= —zi—y‘z‘ + v, (321)

where (I,b,) are the Lax pairs of the KdV-hierarchy (see, e.g., [18])

Z( 2t Xm_l(z))(‘ﬂ)”"", neN, h®) =, (2

F,
with the sequence 8Fn defined by

67
6F WO6F1  6Fy
g OFn . ’
Xn(¥) = Oy =" = (40 + 20,0 1 - 8)X,_1(7), (3.24)
d ~ 5 6F,
E - [bn,l] = Vs — 8y—ﬁ (325)
Hence we get
6Py, . B, . SV
= =W == 602 — Wy, Xo=0, X;1=20, Xo=1200, — 20y,
by =28, by=—0;+1200, + 67,. (3.26)

Considering first the special case where p; = 0, we formally transform by U in (2.5) and
get

U“l(%—[ﬁn,il)v &, (3.27)
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where
by = Ub,U. (3.28)
The b,, are the transformed Lax differential expressions of the KdV-hierarchy. We have
dl _d d DPzPaxt ‘ PtPzz PPzt
= [bn, U] = == 2pp - — =5 5 = T v = [bn, 1. (3.29)
Now
dl
5~ [bn, 11 =0 (3:30)
implies (the commutator is still a multiplication operator!)
vy = [bn, 1], m e Ny (3.32)

The second way to obtain the Lax differential expressions b, is essentially due to [2].
According to our conventions we define

A= ( dd33 + 3p’ps dd2 + (=4pv + pp +p pm) 2pvz>, (3-33)
= P%, (3.34)
Go=1, JGp41 = AG,, neN,. (3.35)

Then this sequence is well defined [2] and the evolution equations are given by
pr =0, (3.36)
vy =JG,, n €Ny (3.37)

This yields the same b, as in (3.28) by

[bn,l] = JG,, n € Np. (3.38)

In order to include the time dependence of p, p; # 0, we extend the formalism of [2] by
setting

b, = b, + b,
1 d d
b=-3 <pﬂ;l; %ﬂp) B = B(p, Pz, Paz; ---) (3:39)
and therefore get (since [by, 1] = [bn, ] + [b,1] = JGn + [b,1]),
dl d d PzPxt  PtPza  PPaxt d, 3, d
— [bn, 1] = PPt Ty T s T, Tut 2B

3 5 1
+(2ppzﬂz + zpzpzmﬁm + Epszﬁ'rm + '2‘p3ﬂma::p + pﬂ'l)g;) - JGn (340)

‘ Requlrlng = [by, ] then yields the pair of equations

Pt = 0*Ba, (3.41)
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vy = JG, — pPug, n &€ Np. (3.42)
Thus we define the generalized KdV-hierarchy by
gKdV, (v) = v — JGp, + pBu,, n € Np. (3.43)
The first few equations of the sequence gKdV, (v) = 0 are given by
Go=1, G1=2, Gy=6v*—2p"v5 — 2pPyva, (3.44)

n=0:v=—pv.g,

n=1:v =2pv, — pv, 0,

n=2:v; = 12pvv; — (20°Vsz)s — (20% + 20pss + B)ps- (3.45)
Choosing p in (3.41) which fixes 3, the hierarchy for v is then determined by equation

(3.42). On the other hand, choosing a relation between p and v fixes 3 in (3.42) and one
gets a hierarchy for p by (3.41). This is well illustrated, e.g., in

2
EXAMPLE 3.7. Letq¢ = 0,1.e.v = 7‘% +1%ﬁ and define m = n—1. Taking § = —2H,,,

where
2

2

Hm+1,a: = _P(pHm)mm:a Hy = -1, Hy = ppez — %?‘, G1 = PPz + 2255’ (346)
(3.41) yields the HD-hierarchy for p

bt = _szHm,.m (3.47)

m=0:p =0, (3.48)

m=1:p; = -2’ proae. (3.49)

In this case (3.42) becomes the identity
P*Hwaw + 5ppaHm as + (405 + 30Pse)Hme + (2pzPss + PPova)Hm = ~Gmirs (3.50)

as can be shown by a straightforward induction argument.
Another example illustrating (3.41), (3.42) is given by

EXAMPLE 3.8. Taking v = p and 3 = p~!G,, we get from (3.41) and (3.42)

Pt = PP(p 7 Gn)e = —paGn + PG s, (3.51)
n=0:p = —pg, (3.52)
n=1:p =0, - (3.53)
n=2:p; = 6p’py — 20" Puzs — 6P PuPus- (3.54)

Having introduced the hierarchy (3.41), (3.42) with the help of the KdV-hierarchy
(3.21), (3.22) we now briefly consider the converse approach, i.e. given the hierarchy
(3.41), (3.42) we shall reduce it to the KdV-hierarchy. Consider the Liouville transforma-
tion (2.3), where 7 is defined in terms of 5 by

n(t) = ~f dt' B(t', zo) (3.55)
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implying
8 18 8 _ 8 dyd oy
Oz poy Ot Os Oty Ot p (3.56)

by (2.3) and (3.41), where
B(s,y) = p(t,2(s,9)),  B(s,y) = v(t,2(s,9)),  B(s,y) = B(t, a(s,p)),

. 81 -~ . - ~s + ~1 U
y= —8—;}’ y(s, y) = y(t,x(s,y)), ?/(S:?J)y = _w (357)
Now we get for the transformed gKdV-equation (3.13) the ordinary KdV-equation
KdV(v) = ¥, — 1207, + 20y, = 0. (3.58)

To transform the entire hierarchy we describe again two possibilities.
First we observe that

Go=1, Gu(@(s,9) = Gal(v(t, z(s,p))),
_,4_ 4 _5
- pdm B dy -

& & |
A=—<p3d3 3ppmd + (- 4pv+ppm+ppm) 2p'vx)

3 ~
-4 Z(Ei + —d—ﬁ) = A (3.59)

Now v; = JG,, — pfv, implies v, + %E = 3én - ,E%'y which in turn implies

Uy = JGh. 3. 60)‘

Thus we have reduced this problem to the KdV-hierarchy: if v(s,y) is a solution of the
n-th KdV-equation then v(¢, x) = v(s, y(t, z)) solves the n-th gKdV-equation.
A second way is to transform the Lax-equation

U(dl [bn,l]>U 1= [‘Z — [bn, 11— [6 +&,1), (3.61)
where
= (oot + L) oo
b=U"U = _%(B% + %B), (3.63)
€= —%@d% + %‘g). | (3.64)

‘Requiring dl/dt = [by, ], which implies p; = p?f,, we infer —8 = ¢, —3 =  and hence
b+ ¢ = 0. We conclude this section with the simple example of a one-soliton solution.



124 F. GESZTESY and K. UNTERKOFLER

EXAMPLE 3.9. Suppose p satisfies (3.41) and 7 is defined as in (3.55). Then
ngV(vsol) = O,

z -2
Vso1(t, ) = —2k? <Cosh n(D + n(t, o) — 8k%t + f dx,p(t{v’))) ,
xq ’

«, D€ R.

Other solutions of the KdV-equation transform in an analogous way.

4. The modified gKdV-hierarchy for r(¢,z) = 1

(3.65)

(3.66)

In. this section we derive the modified version of the generalized KdV-hierarchy of
Section 3 by invoking Miura’s transformation. Throughout this section we shall use hy-

pothesis
(H.4.1). Assume Hypotheses (H.2.1), (H.2.2), and (H.2.4) with r(t,z) = 1.

Consider the matrix differential expression

_( 0 a@®r
m(t) = (a(t) "o )
with (see (2.14), (2.15), (2.17), (2.18))

(P(ta "B) = ¢(t’ :l:) - %pm(t: .73),

——d—+?—£+ a*——ﬂ—-—&-i- a; = i+l +
a = de 2 ©, = sz 2 ®, t = ptdx zpm,t Pty
h=aa=-Spd Lo 1 +o
1= = d:Ep dr 4pa: 2ppw:c 1,
b=gat=_%2d 1, 1
‘ 2 = aa = d.’l:p dz 4pa; pra:m V2.
Then Miura’s transformation reads
v =@+ (—l)jpgom, ji=1,2.
Introducing
d d a3 a3
= — + —81 — AP — — —4p® =
da 52,1,1(Mc + prCENR e e b [=1,2,
6211 = —56p + 6pg® — 6p* 0, + 23pp2 + 8%,
6221 = 6211 + 12070, '
and
_f{da1 O
& = ( 0 du)
we get
_ 0 dz,la* - a*dm
[dZ’m] - <d272a _ ad2,1 0 ) ’

(4.1)

4.2)
4.3)

(4.4)

(4.5)

. (4.6)

(.7
(4.8)
(4.9)

(4.10)

(4.11)
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dypa = adz) = pzémd% — 6pps + 12pp° 0y + 62PPs
—2pp2s + 3p*620 — 607 D2 0ra — 20MPus e — 20°Pues,  (4.12)
dy1a* —a*dyp = —p25z% — bpps + 12p90290x — 62PPa
— 2pp2 s — 1080z — 6P*Patpra — 20%Puas — 20°Paa- (4.13)

The modified nonlinear evolution equations determined by Em = [dy,

Dt = p26!c7
01 = 12p0* 05 — (20°Pua)s —

m] then read

Introducing the generalized modified Korteweg—de Vries functional by

gmKdV(p) =

@i — 1200% 05 + (20 Pua)e + (202 + 2DPrs + 6)ps

we obtain Miura’s identity in the special case where § = § in (3.11) and (4.14)

- gKAV(9? + (~1)ppa) = [2p + (—1)7pd,] gmKdV(p),

(4.14)

(29% + 2PPaz + 6)DPs- (4.15)
(4.16)

j=L12, pg=6 (417

In order to derive the hierarchy we proceed as before. Let d,, be the Lax differential
expressions for the mKdV-hierarchy (in the variables (s, y))

dm -~
o [dy, ] = mKdV, () (1 O) n € Ny. (4.18)
Formally define d,, by W~1d, W (see (2.20) for the definition of W) then
d
d’;’ [dn,m], ne€ Ny (4.19)

yields p; = 0 and the generalized mKdV-hierarchy ¢; = [d,,m]. To include the time

dependence of p we recall (3.39) and compute with

10
0 )0 8= Epapen), (420

] 1[ . d  d
n = dy + d, = —Zlpf— + —§
4y = dy + [da& a K

dm dm
dn 9 =
T —[dn,m] = —

_ ( 0 s
pf% + %px,t * o

—[d,m]

2
B ( 0 —P 5:10 diE
Pi d(fl? + zpzémm + pp:cé:c - 5P‘Pm
Requiring dm/dt = [d,, m] then yields
Pt = p26z7
<Pt = [dnam] - 617(.03::

1
— 5Pz +
02p * %) (4.21)
T I
2p t)w PPz0¢ Ps%) —[dn,m].
(4.22)
n e Np. (4.23)
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Introducing
gmKdV, () = ¢ — [dn, m] + 6pp,, n € Ny. (4.24)
Miura’s identity then reads in the special case where § = § in (3.41) and (4.22)
gKdV,, (¢* + (=1)'ppa) = [2¢ + (~1Y'pd,] gmKdV,, (),
J=L12, mneNyg, p=6 (425

and we emphasize that for S(t,z) = 6(¢,z) the “modified” equation for p in (4.22) is
identical to its “unmodified” version (3.41).

5. The HD-equation

Due to its importance we now isolate the Harry Dym (HD)-equation as a special case
of Sections 3 and 4. In accordance with our earlier comments on the HD-equation, we
shall use Hypothesis (H.5.1) throughout this section:

(H.5.1). Assume Hypotheses (H.2.1), (H.2.2), and (H.2.4) with r(¢,z) = 1,

Q(t,x) =0, So(ta I) = 7%pm(taw) (i'e-a ¢(t) m) = 0)

Introducing m(t), a(t), a(t)*, 1;(t),j = 1,2 in (4.1), (4.3)~(4.5) with @(t,z) = —Lp.(t,z)
yields the HD-Lax pairs ({;,b,;),j = 1,2, where

dzd

I = = 5.1
1 =a"a = P dz’ (5.1)
d? d2 d
— o3 a2 _ 2 2, &
bry = =8p o5 = 360" pa g — (2App; + 12p°pas) o, (5:2)
d2
lh=aa" = P33P (5.3)
s & ) & 2 2 d 2
boo = =8p" 5 =360 pe 77 — (24PP% + 249" poa) -~ 12PPePoz — 6P Praa  (5.4)
Since :
d d
b h]=— 4 TxxT = d.
[b2,1, 4] 7 P Pava o (5.5)
and
[b22, 1] = 4p* i2—+(163 T 4p*panes) -
2,25 2] = ap Paac ) D" PxPrra D Drzaax dz

+129"P3Pssa + 89’ PasPrae + 129’ Pabaras + 20 Pavaas,  (5.6)
dlj/dt = [by;,1;], 7 = 1,2 are both equivalent to the HD-equation
Pt = —2PPase- (5.7)
Similarly (see (4.7)—(4.13))

d d & &P ,
dZ,j = 62,.7',1% + 562,]‘, 4p3d 3 dz34p ) ] = 1725

621,10 = 24ppa + 120%pys, 8221 = 24pp% + 6p*paa, (5.8)
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_ d2,1 0 . 0 dzyla,* — a*dzsz
d2 - ( 0 dZ,Z) 3 [dz;m] = (dz,za _ ad2’1 0 (59)

yield
0 - +23mmmi“x*23mmmm
d£m~[d2,m] _ : ; (P + 2p°Poas) gz — Pat — 2(0°Pasa) . (5.10)
¢ (pt + 2]9 sz)% 0

Thus %m = [dy,m] is also equivalent to the HD-equation (5.7) in agreement with our
comment following (4.25).

An auto-Bicklund transformation for the HD-equation (5.7) can be obtained by the
following sequence of transformations [21]:

bt = _2p3p:za::c (511)

is transformed by

T

t
1
p=o 8=t €= [ oteyde +¢t), <) =4[ dt'pan(t',x0),
)
. _ 0 _,0
p(S, ’5) - p(t>w(sa£))7 03: =p 857
) 6 o
(,75 = 4pra(t, 1) — 4poa(t, xo) + G(F) = 4pea (¢, 7), -6—§ = —4p2p§§ (5.12)
into
S
s + p58_§ = —2p("Pee)e (5.13)
and finally into
Ps = =20 Pece- (5.14)

(This transformation corresponds to the transformation $ — —@, resp. p — 5! in (5.21),
(5.23).)

The following example shows that this transformation also generates singular HD-solu-
tions where p violates (H.5.1).

EXAMPLE 5.2. Let p(t,z) = o?z?%, o € R which fulfills the HD-equation. Then
1 1

; implies a*¢ = —1z73 + Lo + o*¢(2). (5.15)

3

Since p,.(t, To) = 20 we choose zy = —oo and by ((t) = 8a?t get

z = (24a8s — 3a*e)1/? (5.16)
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and
P(s,8) = (24a’s — 3a£)3 (5.17)
which fulfills the HD-equation too.

In the following we reconsider the construction of solutions of the HD-equation from
solutions of the KdV and mKdV-equation. The link between the HD-equation and
(m)KdV-equation has been discussed by a variety of authors [4, 8, 12, 13, 15, 16, 17,
20, 21, 22, 25]. Here we shall recover these results very naturally within our approach.

As is well-known [9, 10], solutions of the KdV-equation

Vs — 1200y + 2Uyyy = 0 (5.18)
yield solutions of the mKdV-equation
s — 12529511 + 204y =0 (5.19)
satisfying
U=+ ()5, =12, ' (5.20)
where @ is given by
?(s,y) = 9, In(s,y), (5.21)
and 9 is assumed to satisfy
I(sy(s) =0, (35 — ba())(s) = 0 (522)
with [, b, defined in (3.21), (3.26). The ansatz
'ﬁi(s,y) = [¥(s, ), (5:23)
as suggested by the relation p = — = (See (5.32)) and the invariance of the mKdV-equa-

tion with respect to p — —¢, then ylelds solutions of the transformed Harry Dym (tHD)-
equation

6”1’;’” + 3py + Wy = 0. (5.24)

Note that if p solves the tHD-equation, then ! and const -p solve the tHD-equation too.
A further transformation of the variables
Yy

t=s, o= [ Bils,y)dy +nx(t), pilt;2) = Pals,y(t,2)), (5.25)
yo(s)
with the condition
p:i:,y(s yO)) 0 (526)

7 (5) = U ()P (5, 0(5)) + (5 0(s) =35 s =

then yields solutions of the HD-equation
Pt + 2P’ Pogz = 0. ' (5.27)
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The simplest way to satisfy (5.26) is to choose y;(s) = 0 and take

: . Py(s',0)°
ne(s) = [ ds’ (_ZPj:,yy(slayO) + 3%) : (5.28)

Conversely, in order to transform the HD-equation (5.27) back to the tHD-equation (5.24)
we use the transformation (see (2.3)) of the variables

xz

s=t, y= [ pt,a) e +n(s),  B(s,y) =pta(s,y)  (5:29)

zo()
with
1'{t) — 2 (O)p(t, 20() ™! — 2p(t, 70(t))Paa(t, To (1)) + pu(t, zo(t))? = 0. (5.30)
E.g., if z{(t) = 0 then

n(t) = f dt'(2p(t', 20)paa(t', o) — pu(t', 20)?). (5.31)

Remark 5.3: The conclusion following (5.10) and the results in [16] as presented above
clearly point out that the Dirac-type differential expression

d S -

_ 0 —Pgs — 3Pa _ 0 ay TP B

A P A 0 " ey 0 ) T
Py T 3Pz : dy ¥

is the natural choice in a Lax pair for the HD-equation.

This approach can most. effectively be combined with Hirota’s r-function founahsm
[14] (see Appendix A) as will be shown below.

Assume that 1/)2 is-a solution of

L(syn(s) =0, ie,a*(s)n(s)=0, s€cR (5.33)
and
(Bs — ba(s))ha(s) = 0 (5.34)
of the type
Pa(s, y) = eDy+Es%’—z—;, (s,9)€ R’, D,E€R, 1, € C°(RY), j =1,2. (5.35)
203,
Making the ansatz
U(s,y) = C—20.Inmy(s,y), CeER (5.36)

one infers
Ui(s,y) = C = 202 In7(s,y), (5.37)
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C-p*=2p2% _opTy _,NwTy | Tlwy | Tluy (5.38)
! T2 TIT2 1 72
% =08,In9n(s,y) = D+ v _ v, (5.39)
T1 2
By the ansatz (5.23) we get
= (S ) — [7 (S )]:1:2 = |Py+Es Tl(s:y) =2 (5 40)
P8, Y) = [¥215,Y —_Tz(s,y) .

for solutions of the tHD-equation (5.24).

A further variable transformation then yields solutions p of the HD-equation as de-
scribed in (5.25)—(5.28).

We illustrate formula (5.40) with the help of soliton and quasi-periodic finite-gap
solutions.

EXAMPLE 5.4. (N-soliton solutions). Let

5 (s,y) = det[l + CI¥(s,9)], N € N, (5.41)

N
N _ | L20C2m (ki ) (y+12Vieo 5)+8(sF +3,)s 0. 1<1<N. (542
C2'(s,9) Ko T o Lm=1 2 >0 1=t N, (542)
0< kN <KN_1<... <K <VY? (5.43)

describe the N-soliton KdV-solutions 75’ (s,y),
T (s,9) = Voo — 28; In7Y (s, ). (5.44)
We distinguish two cases [10].

(i) Voo = 2 (the critical case in the terminology of [10]). This yields a unique (N —1)-

soliton KdV-solution %{1N—1) given by

TNV (s,) = Vao — 282 In 7V (s, ), - (5.45)

TN (s, ) = det[l + ¢V (s, )], (5.46)

o D(s,5) = | ({2 2egtm ”m))m )| . N2 G
L Y (k1 — K1)(K1 — Km) 24mi5 Y lm=2, -7 .

cOGs,y) =0, N=1, (5.48)

C=x} D=—r, E=-4x. (5.49)

(ii) Vo > &2 (the subcritical case in the terminology of [10]). This yields KdV-solutions

Ty (s,y) = Vio — 203 In 7\, (s, 9), (5.50)
iV (s,y) = det[1 + CN.(s,9)], (5.51)
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N

1/2
(avolo/2 + /-cl)(c:ﬂ/'olo/2 + Km) N
cl (s,y) = Cym(s,y , 5.52
1, ( (O'Volo/z _ :‘il)(O'Volo/z _ h',m) 2,1, ( ) - ( )
C=Ve, D=-gVY? E=-40V3? o=+l (5.53)

In both cases one reads off the corresponding mKdV-solutions @y, resp. @+ from (5.39)
and obtains the associated solution pg 4+ resp. p4 , of the tHD-equation from (5.40) as
follows: «

(i) Voo = &2 (critical)

%mw=—m—%m(d““”$“”)). (5.54)

det(1 + CV (s, y))
Then we get from (5.40)

Bo(s,y) = [BNy(s, y)]E2 = |erav—tnis det(1 + C{" D(5,9)) B (5-55)
D+olS,Y 2,005, Y det(l + CZN(57 y)) . .

In the special case where N = 1, ¢ ; = 2x; one obtains

Cl(s,y) = e~21v=8rie, (5.56)
(s, y) = &2 — 2k3[cosh(ky + 4x3s)] 72, (5.57)
Po(s,y) = —k; tanh(kyy + 4k3s), (5.58)
P+,0(s,y) = [2cosh(kiy + 4k3s] T2 (5.59)
For p,  we take y9 = —o0, 74 = 0 and get
1 f 1 1
== [ ay = —(tanh(k1y + 4k3s) + 1 ¢
a: 4_;/0\ 4 (cosh(k1y’ + 4&%3))2 4k (tanh(xy K1) ), G 60)
y= % arctanh(4k1z — 1) — 4x3s. , (5.61)
1
Hence
1
p+0(t, z) = K12(2 — 4r1z), =z € (0, E) (5.62)
1
(ii) Voo > &7 (subcritical)
. det(1 + CN (s, 1))
- = —oV* - 9,1 2 2% =41 :
Bo(s,0) = ~oVk y“@mucww»’ 7= 69

+2
~ det(1 + CN (s, v))

= — [N +2 _ | —oVi2y—40v/%s Lo\

Pro(59) = [¥20(50)] [e (det(l +CN(s,)) ’

o=+1. (5.64)
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Remark 5.5: The critical and subcritical cases in Example 5.4 exhibit a very different
qualitative behavior if p(s,y) is further transformed into HD-solutions p(¢,z). In fact,
since

Jm Bo(s,y) = FVol? = (5.65)
im_Bo(s,9) = oV, (5.66)
one infers from (5.54) resp. (5.55) and (5.63) resp. (5.64) that
Bao(s,9) ' 27 0(721Y), (5.67)
Poo(s,m) = 0@, (5.68)
Bro(s,y) 27 027V, (5.69)
Boo(s,y) 2T OtV Yy (5.70)

and hence
(i) p+,0(¢, x) is defined for  on a finite interval I. E.g. if yp = —oo, n4 = 0 in (5.25)
then I = (0,c; %) since one can show that

[ Brols)dy = [ [5G, v)Pdy = 51 (5.71)

(This case is further illustrated in Appendix B:)
(ii) p— o(t, =) is defined for z € R.
(iii) p+ o(t, ) with yp = oo, n+ = 0 is defined for z € (0, —o00), 0 = £1.
(iv) p— o+ (¢, z) with yo = —o00, n— = 0 is defined for z € (0,000), 0 = £1.

Finally we turn to quasi-periodic finite-gap solutions.

EXAMPLE 5.6. Let

' 12s -
m(s,9) = O(Cp — Ap(Poc) + an (u0,0) + Uy + 203),  (5.72)
where © denotes Riemann’s theta function associated with the hyperelliptic curve
2 1/2
Ro(2)Y? = H(E" — z)] y, USEy<E;<...<Ey geN (5.73)
n=0

and an appropriate homology basis {a;, b; } '_, with intersection matrix a;ob; = 6;;. Here
¢ Cp, is Riemann’s vector with base point P() = (Eo,0), Px the point at infinity, Ap (P)
denotes the correspondmg Abel map, p(0,0) = (11(0,0),..., ,ug(0,0)) is the Dirichlet
divisor at ¢t = =0, ap (P, ... Fy) = 23 1AP0(P) and U,, U, are b-periods of
normalized dlﬁerentlals of the second kind w(Z) wé with a prescribed pole of order two
respectively four at P,,. The corresponding quas1—per10dlc finite-gap KdV-solutions are
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then given by
Ua(s,y) = A =202 Inm(s, ), (5.74)

where A is a constant only depending on the underlying hyperelliptic curve. (See e.g. [11]
for a complete discussion of such quasi-periodic finite-gap solutions.) Next we introduce

na(h5,9) = 0C, F A (P) +an 0,00 + LU + 20y, (575)
P= (A,leiﬁ} Ro(A +1i)/?), AeR,

m,41(5,9) = 11,210, 5, 1), (5.76)

Dosi(sy) = o r e e g man (o) (5.77)

7-2(31 y)
and the quasi-periodic finite-gap KdV solutions
Elyil(s,y) =A- 26; In Tl,:!:l(sﬁy)' (578)
Again we distinguish two cases [11].
(i) Ep = 0 (the critical case). Then
Vo,01(5,9) = Y21(5,9) =do0(s,y),  Ti(5,9) = Tima(s,y) = To(s,y),  (5.79)
and therefore
P,0(s,9) = [¥20(s,»)I* . v (5-80)
satisfies the tHD-equation (5.24). Since in this case 17)2,0 is periodic in y, a further trans-
formation to p4 (¢, z) as in (5.25) shows that in the critical case, z varies on the whole
real line R.
(ii) Ep > 0 (the subcritical case). Then again

Pro(s,9) = [Woo(s, )2, o==+1 ' (5.81)

satisfy the tHD-equation (5.24). Since in this case ’lz?_’il(s) € L*((R, £00); dy),[1s +1(s)]7
€ L*((R, Fo0); dy) for all R € R, a further transformation to py (¢, ) as in (5.25) shows
that in the subcritical case, x varies on half-lines. '

Remark 5.7. What we called the transformed Harry Dym (tHD)-equation in (5.24) is
the special case A = 0 of the following equation 4

~ ~ ~3
Ps — 61)3”—?”1”— + 3%—;’- + 2, +305, =0, MeR (5.82)

studied in [7, 8, 13, 25] and called the “interacting soliton equation” in [3]. Equation
(5.82) (like (5.24)) has the property that if 7 is a solution, so is 7! and const -p. Applying
the variable transformation (5.25), (5.26) yields

P + 2p3p:m:z + 3Xpp, =0 ‘ (583)
generalizing the HD-equation (5.27). However, a simple Galilei transformation

(5,9) = (8,2 =y —3Xs)
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reduces equation (5.82) to the case A = 0 due to the identity

PZPZZ P3 —~
iz + 3?% +2P,.., D(s,y) = P(s, 2).

(5.84)

o ~
5. — 62Puy | 3% + 2yyy + 3N, = Ps — 6

p

Consequently, our methods immediately extend to equation (5.83).
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Appendix A: 7-functions and commutation methods

Since the explicit change of the variables in (2.3), (5.25) is possible only in special cases
we found it useful to develop the r-function method for the gKdV-equation directly.
Suppose that

0<p,7 € C°(RY, j=1,2 (A.1)
and introduce
d? 1 1 5 2
L(t) = —p(t, w)wp(t, z)+u(t,z)+ Ep(t, )Py (t, ) — me(t, z), (t,z)e R°, (A2)

where v is of the type

v(t,z) = C — 2p(t, x)0[p(t, £)0; In (¢, z)], CeC. (A3)
Moreover, assume ¥, to be a solution of L
LEa(t) =0, (3 — ba(®))ha(t) = 0 (A9
of the type
D [® dz'pt,z'y '+ E
ol ) = p(t, )~ /2e " P EGD) o (AS)
TZ(ta x) )
Define
1 T,z T2,z
¢(t,2) = p(t, )0z Ina(t, @) + 2pa(t, @) = D + p—= —p—=, (A.6)
T T
and
d 1
a(t) = plt, 2) 3= + @(t,2) + 5pa(t,), (A7)

a®)t = —p(t,a:)gd; + o(t,z) — %px(t,x). (A.8)
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Then
L(t) = a(t)a(t)”. (A9)
Next consider
l1(t) = a(t)*a(t), (A.10)
then
() = —Lp(t, 0L 4 oi(t,5) — Sp(t, w)pan(tiE) — Lpa(t, ) Al
18) = ——p(t,2)" — + 01t 2) = 520t 2)psa ,w—4pm(,w), (A11)
where
v; = o* + (=1)pp,, =12 (A.12)
Moreover,
v, = ¢* +pdyp = D? +ppx(ﬁ” - Tz—”) + 2Dp(Tl—’x - Tz—x)
1 T2 1 T2
+ pZ( _ 271,z72,z + 27—222,::: + Tizz TZ,mm)
Ti1T2 T2 1 T
2
= C — 2p8,[pb,Inm] = C — zppr‘E + 2p? (2—; - Tz‘ﬂ), (A.13)
™ 73 ™
v = @* — pOsp =D2+ppac(—ﬁ—’z + ) +2Dp (T“” —22)
T1 2 T1 2
272 2
+p2< 12,::: _ T,zT2,x _ Nyzz + 7'2,.75:3), (A14)
Tl 1T T1 p)
-2 2
2—1)1—2ppz(7-1x—7—2m)+2 (_Lza:_l_izz_‘-Tl,mz_TZ,mm)
1 ™ TI 7'2 T1 kpl
= 2p0;[p0; In 1] — 2pd,[pd, In ). (A.15)
Thus G
vi(z,t) = C — 2pd,[pd, In 7] , (A.16)
and
C-D*=pp z(” 2y B ) +2Dp (T“” —@) +p2(“'””c + e —2“’”2"”). (A.17)
T1 ) 71 2 T ™ TIT)

Appendix B: A self-adjoint operator on a finite interval having non trivial absolutely
continuous spectrum

In this appendix we further illustrate Remark 5.5 and generate a simple nontrivial ex-
ample of a self-adjoint operator on a finite interval with a nonempty absolutely continuous
component in its spectrum as follows: Consider the one-soliton operator L in L2(R; dy)

Lf=1if, feD()=HY(R), (B.1)
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where )
- d -
I = a2t k2 — 2k3[cosh(k19)]7%, vy € R. (B.2)
(This corresponds to (5.57) at s = 0.) Then the spectrum of L is given by
o(L) = {0} U[x?,00), (B.3)
Tess(L) = 0ac(L) = [K2, 00). (B4)
The (generalized) eigenfunctions of L are given by
K1 1 2
=,/ H = .
?Z)o(y) . 2 cosh my’ 'lpO € (R)7 ”¢0”2 1, (B 5)

valy) = clei V ’\_'“%y(nl tanh k1Y — @4/ A — n%)
+epe”tV )‘*"‘%y(nl tanh kiy + i1/ X — k2),  (B.6)
(I=Mvr =0, on¢LA(Rydy), € L®(R), I>«l (B.7)

Transforming with U~L, p(z) = 2k12(1 — 2K, 2)

U=t LX(R;dy) — LZ((O, J—);dw),
2K)1

-1 _ 1 2)) = 1 Ln 2K1T
6 = 20 = i (2 (D)) ®

we get the Sturm Liouville operator in LZ((O, 2%1), dx)

Lf=1f, feDl)= {g € L2(<0, i);dm) 19,9' € ACin ((0 2%))
lg € L2<<0, i);dx) } (B.9)
2/‘51 ) 3

where
__ 4,0 2 d 1
l= dw4n1x (1 -2k17) g TE 0, ) (B.lO)
The transformed eigenvector wy = U !4}y then becomes ‘
wo(z) = v/2K1, T€ (O, %) (B.11)
1

and the continuum solutions wy = U~14y turn into

i /i? lei. /5 3
wx(z) = ¢1(1 — 2k11) 2V "°1+1)(2n1w)2(“1 Ay 1)(4/<g%x—mfi A= K2)
i /y_pe2_ _li /2
+ (1 — 2K1 2Gy VAR~ 2K1T 2Gr VAR 4k — K1 + B4/ N — K2),
1 1

' 1
A > K,%, S (0, 2—/{‘1> (B12)
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