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Abstract We give a systematic account of isospectral deformations for Sturm-Liouville and
Dirac-type operators and associated hierarchies of nonlinear evolution equations. In particular,
we study generalized KdV and modified KdV-hierarchies and their reduction to the standard
(m)KdV-hierarchy. As an example we study the Harry Dym equation in some detail and
relate its solutions to KdV-solutions and to Hirota’s 7-functions.

1. Introduction

In this note we attempt to give a systematic treatment of certain isospectral deformations for
Sturm-Liouville and Dirac-type operators and nonlinear evolution equations associated with
them. The differential expressions we are most interested in are of the type

I(t) = —%p(t,x)Q% +q(t, @), (1.1)
and
_ 0 —p(t, x)% —po(t,z) + &(t, )
= ( plt.2)f +o(t,) T ) | (12)

where t € R, x varies on a (finite or infinite) interval (a,b), and p, q, ¢ satisfies appropriate
conditions.
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In Section 2 we recall the Liouville transformation which transforms (1.1) into

d2
Kﬁz—&p+ﬂ&w,(&w€R2 (1.3)

and (1.2) into
(s) = ( 0 s +O¢<S’y> ) , (1.4)

for appropriate coefficients ¥ and ¢. In Section 3 we study the differential expression I(t) in
(1.1) and a hierarchy of Lax differential expressions b, (t),n € Ng. The Lax equations

)l neN (1.5)
then yield a hierarchy of coupled nonlinear evolution equations (3.11), (3.12). In the remain-
der of Section 3 we then show how to reduce these generalized hierarchies to the standard
Korteweg-de Vries (KdV)-hierarchy by means of the Liouville transformation of Section 2. As
special cases of these generalized hierarchies we isolate various examples, most notably the
Harry Dym (HD)-hierarchy. In Section 4 we study the modified versions of the hierarchies
introduced in Section 3 and the analog of Miura-type transformations that link solutions of
the (generalized) KdV and (generalized) modified Korteweg-de Vries (mKdV)-hierarchy. This
modified hierarchy is defined in terms of the Lax equations

C;—m = [dp, m], n € Ny (1.6)
t

where m is the Dirac-type differential expression (1.2) and d,, are appropriate (matrix-valued)
Lax differential expressions. Section 5 finally gives a systematic treatment of the Harry Dym
equation within our approach. In particular, we provide a detailed discussion of how to gen-
erate solutions of the HD-equation with the help of solutions of the KdV-equation extending
various earlier results on this subject [4], [8], [12], [13], [15], [17], [18], [21], [22], [23], [27] (see
also the references therein). As shown by several illustrations involving solitons and quasi-
periodic finite-gap solutions of the KdV-equation, our approach to the HD-equation is most
effectively combined with Hirota’s 7-function methods. We conclude with two appendices
summarizing Hirota’s 7-functions as needed in Section 5 and the construction of a typical
example of a differential operator on a finite interval with a nontrivial absolutely continuous
component in its spectrum. (Such spectral properties, although perhaps unexpected at first
sight, turn out to be quite typical in connection with the HD-equation.)

2. Liouville-type transformations for Schrodinger and Dirac op-
erators

In this section we briefly recall the well known Liouville transformation for one-dimensional
Schrédinger and Dirac operators needed later on.



Assuming hypothesis
(H.2.1). p,r >0,p,r,qg € C*(R x (a,b)), 7 ¢ Ll((yvo,b);alaz:),Zz7 ¢ L'((a,z0); dz) for some

zo € (a,b)
we introduce on (a,b) (a = —oo and/or b = +oo included) the differential expression
I(t) = r(t,z)"? —ip(t 30)2i +q(t, x) teR, z€(a,b) (2.1)
) da: ) dx ) ) ) ) *

and the associated maximal Sturm-Liouville operator in L?((a, b); r(t, z)?dx)

L) f=11)f, (2.2)
f €D(L(t)) = {g € L*((a,b); T(t,x)Qda:)’ 9,9 € ACic((a,b));
I(t)g € L*((a,b);r(t,x)%dx)}, tER.

(Here ACi0c(£2) denotes the set of locally absolutely continuous functions on €2 C R open.)
L(t) is well known to be a densly defined and closed operator. In addition we require

(H.2.2). [(t) is in the limit point case at a and b (i.e., L(t) is self-adjoint) for all ¢ € R.

Next we recall the Liouville transformation from the variables (¢, x) to (s,y), (see e.g. [6] page
1500), where

s=t y=sa) = [(HEBa g0, we ., neC* @, (23)

Since y is strictly monotone in x, the inverse function x = z(s,y) exists and one introduces

7(s,y) =r(t,z(s,9)), D(s,y) =pt,2(s,v)), da(s,y) = q(t,z(s,y)),
5 1 T r r2
o(s,y) = v(t, z(s,y)), olt,z)= 7% +— (pﬁ + 2PPas + 2pPe— + 2p2% — 3p2r"§>

4r r
(2.4)
and the family of unitary operators

U(s) : L*((a,b);r*de) — L*(Rydy),  (U(s)f)(y) = V7 (s,9)p(s,y) f(z(s,9)). (2.5)

A straightforward computation then yields for the differential expression I(s) associated with
L(s) = U(s)L(s)U7(s) in L*(R;dy)

i) =~ 400, 0= S (3 - 169 ). (2.6



Thus the nonlinear evolution equations that leave the spectrum of L(s) (and hence of L(t))
invariant are given by the KdV-hierarchy for ©. Since © = 0(7, p, ) two of the three functions
can be chosen freely.

Example 2.3. (i). If r=p=+Vk, a = —00,b=00, 20 =0, =0, g = ¢ then z = y and

1d. d - d? 1k 1k2 p
l=———k—+¢ l=—— =¢+--Z I 44+ 2.
ko dz 0 ar T Vet T T4t (27)
[ turns out to be the differential expression of the impedance equation [5].
(ii). If rl=p= Vk then
ok (—Lpd Z——d—2+@ b= gk (2.8)
N de dz " 9)> o dy? ’ - '
In particular, if ¢ = 0 then v = 0.
(iii). If r = 1,p = s%,¢ = 0 then
P Y S (2.9)
- dx da’ o dy? 5 '
Next we turn to certain Dirac-type operators. Assuming
(H.2.4). ¢ € C>*((R x (a, b)) real-valued
in addition to (H.2.1) we define the minimal operator
. s d
At =7t )2 [r(tIp(t, )5 + ()] (2.10)

D(A(t)) = {g € L*((a,b); r(t, x)de)’ g € ACjpe((a,b)),supp(g) C (a,b) compact}, teR

and let A(t) be the closure of /l(t),t € R. Then introducing the self-adjoint Dirac-type
2
operator in [LQ((a, b);r(t, ZC)2dZC):|

M(t) = ( A(()t) Aur > D(M(t)) = D(A(t)) & D(A(t)"), (2.11)
one infers
M(t)? = ( Llo(t) LZO(t) > ,  teR, (2.12)



where
Li(t) = A(t)"A(t), La(t) = A(t)A(t)".

(2.13)
Here Li(t) and Lo(t) are generated by differential expressions of the type

Wty = r(t,z)? {—;;p(t,xﬁcg‘; ~ et ) pt 201, 2)] + r(t,x)_2¢(t,x)2]§2.14)

T

() = r(ta) ™ {= ot ol g+ rlt) (e, 0)0n(t,2) — t,2) pa(r. )6, )

_3T(t’ 'Z)_2Tx(t? :L')p(t, x)¢(t7 ‘/I:) - p(t7 x)pmc(t, x) - T(t7 m)_lrxl'(t’ .'L‘)p(t, 'I)Q
20ty ) et 0)Pp(t, @) + r(t, @) 2o(t @) |

(2.15)
and M (t) is generated by the matrix differential expression
m(t) = ( aot) a(é)* ) : (2.16)
alt) = r(t,2) 2 [r(t,2)plt, ) + 0(1, )], (2.17)
a(t)* =r(t, :U)_2 [ —r(t,z)p(t, x)% — (r(t,x)p(t,x)), + o(t,x)|. (2.18)
Given (2.3) and (2.4) and
5.9) = olt.as.0)), - Plovn) = eltalo), pltoa) = S0 = S0 (talp(t.o),
(2.19)
we introduce the following family of unitary operators
W (s) : L*((a,b);dz)* — L*(R;dy)?, W(s)=U(s) - 15
(W(S)f)(y)] =V F(‘S?y)ﬁ(sa y) f(x(svy))ﬁ J=12 (220)
A computation analogous to (2.6) then yields
Ni(s) = W (s)M(s)W~1(s) = < A(()s) A(OS)* > , (2.21)
A(s) = U(s)A(s)U(s)7Y,  A(s)* = U(s)A(s)*U(s) 1, (2.22)
where A(s) and A(s)* are generated by the differential expressions
a(s) = 4o+ B als) =+ B, (223)
¢ = % - 271:15(7:~)y

(2.24)



and hence A(s)*A(s), A(s)A(s)* and M(s) are generated by

li(s) = a(s)"a(s) = “ar T 01(s,y),  la(s) = a(s)a(s)” = “ar va2(s,y),  (2.25)
5i(s,y) = ¢(5,9)° + (=1 y(s,9), =1,2, (2.26)
oy 0 —% + &(s,y)

m(s) = ( %—i—@(s,y) 0 ) (2.27)

Example 2.5. (i). If p=1,r =1,a = —00,b =00,20 =0, =0, then ¢ =v, ¢ =, z =1y
and

G =¢"+(es, =12 (2.28)

is the well known Miura transformation for the KdV-hierarchy.

(ii). If r =1,¢ = 0 we get

1p, 152 1p, 3P
_1py 1Dy _ by 3Py 2.29
U1 2 13 4]327 V2 9 ﬁ +4ﬁ2 ( )

By the transformation p — %, ¥5, j = 1,2 transform into

~ 1ﬁyy Sﬁg ~ 115yy 1ﬁ§
ey a7y T (2.30)

3. A generalized KdV-hierarchy for the case r(t,z) =1

In this section we will concentrate on the special case r(t,z) = 1 and study a hierarchy of
nonlinear evolution equations associated with L in (2.2). (The case r # 1,p = 1 is discussed
in detail in [1] using the inverse scattering method (see also [20], [24], [26], [28]).)

At the end of the section we illustrate a reduction of this hierarchy to the KdV-hierarchy by
means of the Liouville transformation of Section 2.

Throughout this section we shall use hypothesis

(H.3.1). Assume Hypotheses (H.2.1) and (H.2.2) with r(¢t,z) = 1.

Introducing v by

2
Pz | PPzx
= — 3.1
v=q+ 1 + 5 (3.1)
we can rewrite [(t) in the form
d od Ps® PP
= ——p*— - — = teR b). 2
dxpdzn+v 4 2’ €R, z¢€(a,b) (3:2)



d d d PxPat PtPzx PPzt
= —"9pp,— — _ — . 3.3
it~ dr PPar T 2 2 p U (3:3)

For the Lax differential expressions b, (t) we make the usual Ansatz

n d2l—1 d2l—1
bn(t) - Z(ﬂ?l—l(tyx) dl’mil + del*l BQl—l(tux)>7 bO(t) - ﬁO(t)) te R7 MRS (CL, b)7
=1
B € C®(R x (a,b)), m € Np. (3.4)

In order to illustrate some of the nonlinear equations covered by this ansatz we present a few
special examples:

Example 3.2. (i). 1 = —3p(8 — 2) yields

1 d d
bh=—5 <p(5 =2+ (6 2)p> ; (3-5)
d d
[bla l] = _%QPBB:C% - <2ppsc25a: + %p2pmw/3x + gPQP:cﬁxz + %pgﬁmxw —i—p(,@ - 2)”:5) (3'6)

The requirement % = [b1,1] then gives the evolution equations

pe = B (3.7)
v = 2puy — Bpuy, (3.8)

where the smooth function 8 = 5(p, pz, Pz, - - -) can be chosen freely.

(ii). B1 = —3Bp + 6pv + 23pp,> + 8p* Py, B3 = —4p? yields

a3 d? d
_ 3 2 2 2
by = 8" 5 =360 p 5+ (—Bp + 12pv — 26pp,” — 20p°paea) -
1 1
_ipﬁx - iﬁpz + 6vpy — ng + 6pvy — 10ppepes — 4p2pzx:pa (3-9)
d 3 d 2 2 3 2
[an l] = ——20"By— — pBuy — 2pps“Br + 12pvvy — 2ppr Ve — =D PraBe
dx dx 2
5 1
_§p2pzﬁx$ - 2p2pxwvw - 6p2vaxcc - ipgﬁzxx - 2p3U:ca:J:- (310)
4L — [by, ] then yields
pr = DB (3.11)
v = 12povy — (20°050)x — (202” + 2pPus + B)pvs, (3.12)



where again the smooth function 8 = B(p, ps, Pzs, - -.) can be chosen freely.

Consequently we define the generalized Korteweg-de Vries (gKdV)-equation by

gKdV (v) = v — 12pvvg + (2p%002)z + (2p2> + 20pax + B)pvs = 0. (3.13)

Remark 3.3. The freedom in the choice of the function S just expresses the fact that we
have two functions p,v and one can be chosen freely.

Remark 3.4. In the special case where v(t,z) = 0 (and hence o(s,y) = 0 in (2.6)), any
smooth solution p(t,z) of (3.11) leaves the spectrum of L(¢) invariant. Actually, one infers
quite generally that in this case (independently of (3.11))

o(L(1)) = GaclL(£)) = [0,00) (3.14)

since

; x \—1 ’
)_1/2eizﬁfzo p(t,x’) " ldz

fe(\tx) =p(t, @ ., A>0 (3.15)

are the generalized eigenfunctions of L(t). (Here o(-),04c(-) denote the spectrum and the
absolutely continuous spectrum respectively.)

Remark 3.5. Imposing conditions on v (or q) fixes the choice of 5. E.g. ¢ = 0 is equivalent
tov = %pi + %ppm which implies 8 = —2ppse + p> and p must now fulfill the Harry Dym
(HD)-equation

Dt = _2p3pxxoc- (316)

Also mixed types are possible, giving other forms of evolution equations:

Example 3.6. (i). Setting v = p in (3.8) we get (8 —2) = —p~! and hence

Pt = Pa- (3.17)
(ii). Setting v = p in (3.12) we get 8 = 6p — 2ppz — 2p> and hence

Pt = 6p”ps — 69’ pupra — 20" praa- (3.18)

(This equation is called "modified” magma equation in [25], page 219.) By (2.3) and (3.55)
this equation is also transformed into the KdV-equation.

(iii). Setting v = p? in (3.12) yields b = 4p? — 2pp,. — 8p2 + 6p~* f;o PP P dx’ and hence

T

Pt = 8p3pm - 12p2p$pm: - 2p3pzmm - 6]733/ ppx’px’z’dxl- (3-19)

Zo

Next we shall describe a hierarchy of nonlinear evolution equations associated with (3.2) and
(3.4) in two different ways.



The first way is to construct the Lax pairs (I, b,) from the corresponding Lax pairs (l~, l;n) of
the Korteweg-de Vries (KdV)-equation. Consider

dl -
- d?
l=—gs+ 7 (3.21)

where (I,b,,) are the Lax pairs of the KdV-hierarchy, (see e.g. [19])

- " [ F . .
b, = (2 50 18y — Xm_l(@)> 4n™, neN, by(t) = Bo(t), (3.22)
m=1
with the sequence 5(5)” defined by
0F, . . 3. 0F, 1 0 Fy
Byﬁ = (400, + 20y — 0y) 50 55 = 1, (3.23)
- oF, o o .
Xn(v) = ayﬁ = (4’0 + 2vy8y L 8§)Xn,1(’u), (324)
- a 5F,
72— o ) =0, — 9, (3.25)
Hence we get
F: F:
5551 =27, 5552 =607 — 20y, Xo=0, Xi;=20,, Xo=1200, — 20y,
b1 =20y, by =—05+ 1200, + 67,. (3.26)

Considering first the special case where p; = 0, we formally transform by U in (2.5) and get

dl - - dl
-1 _—— = — —
U (dt [bn,l]> U=— by, 1], (3.27)
where
by = U~ 'b,U. (3.28)

The b,, are the transformed Lax differential expressions of the KdV-hierarchy. We have

dl d d DPxPaxt DPtPxx DDzt

_— bn7l = —72 _— — — - bn,l . 3-29

g~ ol = =g 2, 2 2 5 T [bedl (3.29)
Now

dl

o] = :

&~ bn, 11 =0 (3.30)



implies (the commutator is still a multiplication operator!)

pe =0, (3.31)
vy = [bp, 1], n € Np. (3.32)

The second way to obtain the Lax differential expressions b, is essentially due to [2]: According
to our conventions we define

&3 &2 d
A — _ 3 3 2 - _4 12 2 o) — — 2 - 333
<p 23 F 30 Pag + (—Apv + ppe” + Pu) - = 2 ) (3.33)
d
J = p— 3.34
L )
Gy = 1, JGn+1 = AGn, n € Np. (3.35)

Then this sequence is well defined [2] and the evolution equations are given by

p =0, (3.36)
vy = JGy, n € Np. (3.37)

This yields the same b, as in (3.28) by
bn,0] = JGn,  n €N (3.38)

In order to include the time dependence of p, p; # 0, we extend the formalism of [2] by setting

by, = by, + b,

1/ d d
b=—3 (pﬁdz + dmﬁp> , B=BW,pz,pac,---) (3.39)

and therefore get (since [by, ] = [bn,!] + [b,1] = JGy, + [b,1]),

dl 7 d d PzPxt  PtPxx  PPzat
Z B l) = ———2ppy— — Pelot _ PiPoz
g~ o ll= =g == 2 g TV
d, 3, d 2 3 o 5 9 L 3
+—=2p"Br—— + | 20P2"Be + 50 PeaBr + 50 PeBrx + P Buwe + DBV | — JG71(3-40)
dx dx 2 2 2
Requiring % = [bp, (] then yields the pair of equations
pr = DB (3.41)
v = JG, — pPug, n € Ny. (3.42)
Thus we define the generalized KdV-hierarchy by
gKdV,,(v) = v — JGy, + pPus, n € Np. (3.43)

10



The first few equations of the sequence gKdV, (v) = 0 are given by

Go=1, G =2, Gy=60*—2p*vyp — 2PPrvs, (3.44)
n=0 : v =—pvp,
n=1 : v =2pvy — pv.B,
n=2 : v =12pvv; — (20°Vaw)z — (202> + 2pPus + B)PVs. (3.45)

Choosing p in (3.41) which fixes §, the hierarchy for v is then determined by equation (3.42).
On the other hand, choosing a relation between p and v fixes 8 in (3.42) and one gets a
hierarchy for p by (3.41). This is well illustrated e.g. in

Example 3.7. Let ¢ =0, i.e. v = % + P22 and define m = n — 1. Taking 3 = —2H,,, where

2 2
Hm+1,x = _p(pHm)x:m:? Hy = -1, Hy = ppes — %7 G = PDza + %7 (3-46)
(3.41) yields the HD-hierarchy for p
bt = _2p2Hm,a:a (347)
m=0 : p =0, (3.48)
m=1 : p=—2ppegs- (3.49)

In this case (3.42) becomes the identity

P*Hy wwx + 50P2 Hun e + (402 + 3pD2a) Hinow + (202Duze + PPaza) Hm = —Gmi1e  (3.50)

as can be shown by a straightforward induction argument.
Another example illustrating (3.41), (3.42) is given by
Example 3.8. Taking v =p and 8 = p~1G,, we get from (3.41) and (3.42)

pe=p" (p'Gn), = —PeGn + pGne, (3.51)
n=0 : pt= =Pz, (3.52)
n=1 : p =0, (3.53)
n=2 : p=06p°ps — 20’ Para — 6P’ PaPira- (3.54)

Having introduced the hierarchy (3.41), (3.42) with the help of the KdV-hierarchy (3.21),
(3.22) we now briefly consider the converse approach, i.e. given the hierarchy (3.41), (3.42)
we shall reduce it to the KdV-hierarchy. Consider the Liouville transformation (2.3) where n
is defined in terms of 5 by

n(t) = — / dt'B(t', o) (3.55)

11



implying

9 19 9 9 o 9y

or " poy ol os ooy o P (3.56)
by (2.3) and (3.41) where

]3(57y) = p(t,x(s,y)), @(S,y) = v(t,x(s,y)), B(Svy) = B(t,:c(s,y)),

. 3y T . T ]35 + ]3 :&
v=5 sy =italsy), = sy =-———>" (3.57)
Now we get for the transformed gKdV-equation (3.13) the ordinary KdV-equation
KdV(9) = 05 — 1200y + 20y, = 0. (3.58)
To transform the entire hierarchy we describe again two possibilities.
First we observe that
Go = 1, Nn(ﬁ(say)) :Gn(’U(t,SL'(S,y))),
d d ~
J = p—=—=1J
P dy ’
A = — p3d—3+3p2p d—2+ (—4pv + pp.° + p°p )i—va
dz3 Y dx? * T dx v
d? d d ~
= ———+20—+—0)=A. 3.59
Now v = JG,, — pBv, implies 04 + f)y% = jén — Bﬁy which in turn implies
by = JGhp. (3.60)

Thus we have reduced this problem to the KdV-hierarchy, e.g. if o(s,y) is a solution of the
n-th KdV-equation then v(¢,x) = 0(s, y(¢, x)) solves the n-th gKdV-equation.

A second way is to transform the Lax-equation

a - odl s e
U (dt - [M) Ut =L - ) (3.61)
where
1 d d
=5 (04 + ). (362
Py, Lfzd dg
b=U""bU =~ de+dy,8 : (3.63)
~ 1 v d d od

12



Requiring % = [bp, l], which implies p; = p?B;, we infer —3 = 7, —3 =4 and hence b+ & = 0.
We conclude this section with the simple example of a one-soliton solution.

Example 3.9. Suppose p satisfies (3.41) and 7 is defined as in (3.55). Then
gKdV (vser) = 0, (3.65)

>>2, k, D € R(3.66)

Vgl (t, ) = —2K> (COShIi <D +n(t, o) — 8>t +/ da’

0

p(t,z')

Other solutions of the KdV-equation transform in an analogous way.
4. The modified gKdV-hierarchy for r(t,z) =1

In this section we derive the modified version of the generalized KdV-hierarchy of Section 3
by invoking Miura’s transformation. Throughout this section we shall use hypothesis

(H.4.1). Assume Hypotheses (H.2.1), (H.2.2) and (H.2.4) with r(t,z) = 1.

Consider the matrix differential expression

m(t) = ( a?t) “(8)* ) (4.1)

with (see (2.14), (2.15), (2.17), (2.18))

1
50(1;1') = ¢(ta ZE) - ipz(ta ZL‘), (42)
=p—+ = —p——= =pi + 4.3
a=po Tty e a P e @ =piot opat e (4.3)
. d ,d 1 1
h=aa= —%f@ - pr; ~ 5PPax + vy, (4.4)
. d ,d 1 1
ly = aa” = —%ﬁ% - Zpg ~ PPaz + v2. (4.5)

Then Miura’s transformation reads

v =p+ (-1)pp.,  j=1.2 (4.6)
Introducing
d d d3 d3
doj] =0911— 4+ —09;1 —4p° — — ——4p° [=1,2 4.7
21 = 0201 7 + PSR e S b ) (4.7)
1 2 2 2 2
b211 = —50p+6pp” — 6p ps + 23pps” + 8 pua (4.8)
0o21 = 0911+ 12p%0, (4.9)

13



and

[ do1 O
e (B 0) o

we get

o 0 dz’la* — a*d272
[d2,m] = ( dyoa — adss 0 ) , (4.11)

d
daoa — adyy = P*0p— — 0 + 12p02 0y 4 Suppe

dx
1
_2pp932§0$ + §p25zm - 6p2pa:§0$x - 2p2p3393§0$ - 2p3§0x$x7 (4'12)
* * 2 d 2
dyia™ —a*deg = —p 51-% — 0ppe + 12pp°0p — duPP2
1
=2pp’ Py — 5P 00 — 69" PatPue — 20" Panpr — 29" Punar (4.13)

The modified nonlinear evolution equations determined by %m = [d2, m] then read

pe = PO, (4.14)
Yt = 12p902§0l3 - (QPBSOJ:m):c - (2px2 + 2ppac13 + 5)p()0:c (415)

Introducing the generalized modified Korteweg-de Vries functional by
gmKdV (o) = ¢ — 12pp° 0 + (20° 0ua)a + (202° + 2pPas + O)pos (4.16)
we obtain Miura’s identity in the special case where 8 = § in (3.11) and (4.14)

gKAV(? + (~1Ypps) = [20 + (=1)/pds] gmKdV(p), j=1,2, B=4. (4.17)

In order to derive the hierarchy we proceed as before. Let d,, be the Lax differential expressions
for the mKdV-hierarchy ( in the variables (s,y))

dm

ds

01

[dn, 7] = MKV, () ( 10

> ; n € No. (4.18)

Formally define d,, by W~1d,, W (see (2.20) for the definition of 1) then

dm

— =ldnm],  neN (4.19)

yields p; = 0 and the generalized mKdV-hierarchy ¢; = [d,,,m]. To include the time depen-
dence of p we recall (3.39) and compute with

dy = dy +d,
1 d d 10
d= _§ |:p6dl' + d$5p] < 0 1 > ) 5 - 5(p’px7pmc’ . ')7 (420)
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dm - dm

7_[ nvm] :7_[dmm}_[d7m]

ds ds
d 1
_ ( u 10 Pty — 3Pzt + ¥t > (4.21)
Dty + 5Pt + Pt 0
0 —p20, L — 1p26,, — Ppuds — Spos g
o 2.d 1 26 0. — & - [ n,m]'
Pyge T 3P 0zz + PP20z — OPPy 0

Requiring ‘% = [d,,, m] then yields

Pt = p’0a, (4.22)

¢t = [dn,m] — Oppz,  n € No. (4.23)
Introducing

gmKdV, (¢) = ¢t — [dn,m] + dppa, 1 € No (4.24)

Miura’s identity then reads in the special case where 8 = § in (3.41) and (4.22)
gKdV,,(¢® + (=1)pps) = [2¢ + (~1)'pds] gmKdV, (), j=1,2, n €Ny, =4 (4.25)

and we emphasize that for B(t,z) = (¢, z) the "modified” equation for p in ( 4.22) is identical
to its "unmodified” version (3.41).

5. The HD-equation

Due to its importance we now isolate the Harry Dym (HD)-equation? as a special case of
Sections 3 and 4. In accordance with our earlier comments on the HD-equation, we shall use
Hypothesis (H.5.1) throughout this section:

(H.5.1). Assume Hypotheses (H.2.1), (H.2.2), and (H.2.4) with r(¢,z) = 1,
q(t,x) =0, p(t,x) = —%px(t,x) (i.e.,p(t,z) = 0).

Introducing m(t), a(t), a(t)*,1;(t),j = 1,2 in (4.1), (4.3)-(4.5) with ¢(t,z) = —3p,(t, ) yields
the HD-Lax pairs (lj,b2;),7 = 1,2, where

d d
I =a*a = ——p2— 5.1
1 a a dr d(E’ ( )
a3 d? d
b2,1 = —8p3$ - 36p2pxﬁ - (24ppx2 + 12p2pxoc) Az’ (5'2)
d2
lo =aa" = ~P P (5.3)
d3 d? d
boo = =8p" 5 = 36p° D5 — (24ppa” + 24p°Paa) —— — 12PDuPas — 6P Paza- (5.4)

2See the recently discovered close connection [16] between the HD-equation and the Saffman-Taylor Problem.
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Since

d d
bo1,l1] = —4p prge — 5.5
[ 2,1 1] dx 14 px:m:daj ( )
and
d2
[b2,27 ZQ] = 4p4p:mvx@ + (16p3psz:p:v + 4p4pmmmx) %
+129° Do Paze + 89 PawPaze + 120°PaDawae + 20 Pavava (5.6)
% = [ba,j,1;], 7 = 1,2 are both equivalent to the HD-equation

Pt = _2p3pmcz- (5.7)

Similarly (see (4.7)-(4.13))

d d a3 a3
doi =80 iq1— 4 — 80 i1 — A —— — — A3 1 =1,2
27.7 27]71 d‘/L, + d‘,L, 27]71 p dxg dxg p ) j )~
02,11 = 24ppe” + 12p°pae, 221 = 24ppa” + 6p°pra (5.8)
_ d2,1 0 o 0 d271a* — (I*d272
d2 - < 0 d272 ) ’ [dQ’m] o ( d272a — ad271 0 (5.9)
yield
3 d 3
im _ [dg,m] _ < 2 p _(pt +2p pzmm)ﬂ — Pt — 2 (p p:}c:m)m ) ' (5'10)
dt (pt +2p px:px)@ 0

Thus %m = [d2,m] is also equivalent to the HD-equation (5.7) in agreement with our com-
ment following (4.25).

An auto-Bécklund transformation for the HD-equation (5.7) can be obtained by the following
sequence of transformations [22]:

Dt = _2p3pxzz (5.11)

is transformed by

x t
p= ]13, s=t, {= /xo p(t,x’)2dx’ + C(t), ((t) = 4/ dt'paz (', o),
0 0
ﬁ(sag) :p(t7$(87§))7 % :16287&-7
0 ¢
875 = 4pmc(t’ 37) - 4pxx (t7 $0) + Ct(t) = 4p:c:(:(ta .CU), 875 = _4ﬁ2ﬁ5£ (512)
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into

L. 08 A
B = —_9 , 5.13
and finally into

ps = —2° pege. (5.14)

(This transformation corresponds to the transformation ¢ — —@, resp. p — 5! in (5.21),
(5.23).)

The following example shows that this transformation also generates singular HD-solutions
where p violates (H.5.1).

Example 5.2. Let p(t,2) = o?2?, o € R which fulfills the HD-equation. Then

1 1 1 1
p= > o implies  a’¢ = —gﬂs_?’ + gxag + a*((t). (5.15)

Since pu.(t,10) = 202 we choose 79 = —oc and by ((t) = 8a’t get

z = (24085 — 30t€)71/3 (5.16)
and

p(s,6) = (2403s — 306)¥/? (5.17)

which fulfills the HD-equation too.

In the following we reconsider the construction of solutions of the HD-equation from solutions
of the KdV and mKdV-equation. The link between the HD-equation and (m)KdV-equation
has been discussed by a variety of authors [4], [8], [12], [13], [15], [17], [18], [21], [22], [23], [27].
Here we shall recover these results very naturally within our approach.

As is well known [9], [10], solutions of the KdV-equation
By — 1200, + 20y, = 0 (5.18)

yield solutions of the mKdV-equation

Ps — 126° 3y + 2Pyyy = 0 (5.19)
satisfying

where ¢ is given by
B(s,y) = Oylngd(s,y), (5.21)
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and 1& is assumed to satisfy

U)0(s) =0, (9s = ba(s))i(s) =0 (5.22)
with [, by defined in (3.21), (3.26). The ansatz

-

pe(s,y) = [1[;(5, DI (5.23)

as suggested by the relation ¢ = —% (see (5.32)) and the invariance of the mKdV-equation

with respect to ¢ — —@, then yields solutions of the transformed Harry Dym (tHD)-equation
Bybyy , By

Note that if  solves the tHD-equation, then p~! and const - § solve the tHD-equation too.

A further transformation of the variables
Y
t=s, x= /( p+(s,9)dy +ne(t),  px(t,z) =p(s,y(t, x)), (5.25)
Yyo(s

with the condition

/ / ~ ~ ﬁzt,y(sv yO(S))2
N1 (8) — yo(8)P+(8,90(8)) + 2D+ yy(S,90(8)) — 3———7=— =0, 5.26
i( ) O( ) ( ( )) yy( ( )) p:l:(57y0(5)) ( )
then yields solutions of the HD-equation
P+ 2p3pm$x =0. (527)

The simplest way to satisfy (5.26) is to choose y;(s) = 0 and take

s = / 2
_ ds' | -2 / P+y(s',%0) . 9
12(6) = [ (<2 )+ 37EL O (529

Conversly, in order to transform the HD-equation (5.27) back to the tHD-equation (5.24) we
use the transformation (see (2.3)) of the variables

s=t, = / p(t, )N £ n(s),  (sy) = plt, 2(s.1)) (5.29)
zo(t)

with
' () — 26(O)p(t, 20(t) ™ — 2p(t, 20(4))Paa (t, 20(1)) + Pa(t, z0(t))* = 0. (5.30)
E.g., if 2{(t) = 0 then

n(t) = / dt’ (2p(t', 20)pea(t', 20) — Pe(t', 20)?) - (5.31)
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Remark 5.3. The conclusion following (5.10) and the results in [17] as presented above
clearly point out that the Dirac-type differential expression

_pd 1 0 —d 4 5 5
mz( T 2”), = 4, . @TT) s=-2 3y
p@—l-gpm 0 @4‘30 0 2p

is the natural choice in a Lax pair for the HD-equation.

This approach can most effectively be combined with Hirota’s 7-function formalism [14] (see
Appendix A) as will be shown below.

Assume that ¢ is a solution of

lh(s)a(s) =0, i e., a*(s)da(s) =0, seR (5.33)
and

(05 = ba(s))dba(s) = 0 (5.34)
of the type

Balo) =P B Y ) R DECR, e CTEY), j-L2 (3
2\,

Making the ansatz

Ba(s,y) = C —202In7a(s,y), CE€ER (5.36)
one infers
01(s,y) =C — 285 In7i(s,y), (5.37)
C-D2=2plw _opTwv _oTuTy | Ty | Ry (5.38)
1 T T1T2 i 2
& =0,Iny(s,y) =D+ 2 _ 28 (5.39)
i P

By the ansatz (5.23) we get
pa(s.9) = [as.m)] = [eDyms <m )]ﬂ (5.40)

for solutions of the tHD-equation (5.24).

A further variable transformation then yields solutions p of the HD-equation as described in
(5.25)-(5.28).
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We illustrate formula (5.40) with the help of soliton and quasi-periodic finite-gap solutions.

Example 5.4. (N-soliton solutions)

Let
73 (s,y) = det [1+C (s,y)], N €N, (5.41)
N
O (s,y) = | 2L (b rm) (yH12Vecs) +8 (] 41513 , >0, 1<I<N,
Ky + Km I,m=1
5.42)
0<hy <KN_1 < ..<hr <VL? (5.43)
describe the N-soliton KdV-solutions @ (s, y),
Y (s,9) = Vao — 28§lnTQN(s, Y). (5.44)

We distinguish two cases [10].

(i). Voo = K7 (the critical case in the terminology of [10]). This yields a unique (N-1)-soliton
KdV-solution ﬁgN_l) given by

17£N71)(3, Y) = Voo — 28511171(]\[71)(3, Y), (5.45)

TI(N_I)(s,y) = det [1 + C£N_1)(s,y)] , (5.46)
(N-1) (11 + #) (51 + ) \ /2 "

Cy T (s, y) = m cN o (s, , N > 2, 5.47
(N (s,g) [(( ) y>]lm2 2, (547

C£O)(Svy) = 07 N = 17 (548)

C==r? D=—k, E=—4x}. (5.49)

(ii). Voo > w7 (the subcritical case in the terminology of [10]). This yields KdV-solutions E{Yg,

o= =1
ﬁf\fa(s,y) = Vo — 2651I17’1]YU(5, Y), (5.50)
T (s,y) = det [1+ C1,(s,9)] , (5.51)
1/2 N
Vol Vol + Kim
O (s,y) = | [T FrloVo Hhm) ) on | (5.52)
7 (UV1/2 - Rl)(0V1/2 — Km,) o
oo 00 m Lm=1
C=Ve, D=—-0VY2 E=—40V3? o=+l (5.53)

In both cases one reads off the corresponding mKdV-solutions g, resp. ¢4+ from (5.39) and
obtains the associated solution po + resp. p+ , of the tHD-equation from (5.40) as follows:
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(i). Voo = K2 (critical)

det(1 + CY(s,y)) ) . (5.54)

Qo(s,y) = —k1 — Oyln —
T \det(1 + WY (s, 1))

Then we get from (5.40)

det(1+ NV (s, y))>] - _ (5.55)

~ +2 3
peols.y) =[] = [emy%s < det(1 + CJ (s, y))

In the special case where N =1, 0371 = 2K1 one obtains

C3(s,y) = e~ 2mv=sris, (5.56)
¥3(s,y) = K3 — 23 [cosh(k1y + 4&?3)]_2, (5.57)
$o(s,y) = —k1 tanh(k1y + 4k35s), (5.58)
P+o(s,y) = [2 cosh(k1y + 4&“;’5)] 2 (5.59)
For py o we take yg = —oo, 4 = 0 and get
1/yd’ ! ! (tanh(k1y + 4rks) + 1) (5.60)
T == = — (tanh(x k1S .
4/ o Y (cosh(k1y' + 4K35))2  4ky 1y ! ’
1
y = —arctanh(4k1z — 1) — 4k?s. (5.61)
K1
Hence
1
pyo(t,z) = k1z(2 — 4K ), x € <0, —) (5.62)
2/4:1
(ii). Voo > K7 (subcritical)
- det(1 + C{ (s,y))
J(s,y) = —oVY2 _ g1 2 1% , =41, 5.63
2 (S y) 0V Y n det(l JrCi]\i,(S,y)) o ( )

+2
- +2 1/2 3/2 det(l + C{V (8, y))
~ _ N _ —o Vo “y—4oVid “s T _
Pio(s,y) = [wz,o(s, y)} = [e ( 3ot (11 O (s.9) , 0= =+15.64)

Remark 5.5. The critical and subcritical cases in Example 5.4 exhibit a very different
qualitative behavior if p(s,y) is further transformed into HD-solutions p(t, x). In fact, since

m Gols,y) = FVA? = Fra, (5.65)
Jim gy (s,) = —oV2L, (5.66)
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one infers from (5.54) resp. (5.55) and (5.63) resp. (5.64) that

Brols,y) "ET O(eT2mw) (5.67)

Pools,y) T ET O(eF) (5.68)

Prols,y) =" 0(6*2”V°1°/2y), (5.69)

Boo(s,y) UET OtV ) (5.70)
and hence

(i). p+o(t,x) is defined for = on a finite interval I. E. g. if yo = —o0,n4+ = 0 in (5.25) then
I=(0, ci%) since one can show that

/Zﬁ+,o(8,y)dy = /OO [%YO(S,y)rdy =1 (5.71)

—00

(This case is further illustrated in Appendix B.)

(ii). p—o(t, x) is defined for x € R.

(iii). pyo(t, z) with yo = ooo, Ny = 0 is defined for x € (0, —o00), o = +1.
(iv). p— »(t, ) with yo = —oo0, n— = 0 is defined for z € (0,000), 0 = £1.

Finally we turn to quasi-periodic finite-gap solutions.

Example 5.6. Let

12
m2(s,y) = © <5P0 — Ap,(Px) +ap,(1(0,0)) + %Qo + 7TSU2> ; (5.72)

where © denotes Riemann’s theta function associated with the hyperelliptic curve

2 1/2
Ro(2)'? = | [](En - z)] , 0SEy<E; <..<Ey, geN (5.73)
n=0
and an appropriate homology basis {a;, b; }?Zl with intersection matrix a;ob; = ¢;;. Here § P

is Riemann’s vector with base point Py = (£p,0), P = (00, 00) the point at infinity, Ap (P)
denotes the corresponding Abel map, 1(0,0) = (11(0,0),...,1y(0,0)) is the Dirichlet divisor
at t = 0,z = 0,ap (P1,...,Py) = 2?21 Ap (P;) and Uy, U, are b-periods of normalized

differentials of the second kind w[()z) , wéQ) with a prescribed pole of order two respectively four

at Ps,. The corresponding quasi-periodic finite-gap KdV-solutions are then given by

Oa(s,y) = A — 265 In7o(s,y), (5.74)
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where A is a constant only depending on the underlying hyperelliptic curve. (See e.g. [11] for
a complete discussion of such quasi-periodic finite-gap solutions.) Next we introduce

Y 12s
T,41(A, 8,y) = © <§P0 F Ap,(P) + ap,(1(0,0)) + %Qo + 7rU2> ,
P= ()\, 11%1 Ro(\ + ie)1/2) , AeR, (5.75)
Tl,il(svy) = Tl,il(OaS,?/)a (576)
~ . rPo(2) P (2)
7/}2,:5:1(57 y) _ e:FZy fpo wy  F24s fPo Wy 7'17:}:17(8,” (577)
7—2(57y)

and the quasi-periodic finite-gap KdV solutions
O141(s,y) =A— 28,3 In7 +1(s,y). (5.78)

Again we distinguish two cases [11].

(i). Eo =0 (the critical case). Then

o 11(5,9) = Po—1(5,9) = Pa0(s,y),  D141(5,y) = 01.-1(5,9) = 91,0(5,9), (5.79)

and therefore
~ . +2
Be0(sy) = [20(s,)] (5.80)
satisfies the tHD-equation (5.24). Since in this case 1;270 is periodic in y, a further transfor-
mation to p4 o(t,x) as in (5.25) shows that in the critical case, x varies on the whole real line
R.

(ii). Eo > 0 (the subcritical case). Then again

+2
} . o=+l (5.81)

Pto(s,y) = [&2,0(8711)
satisfy the tHD-equation (5.24). Since in this case ¥ +1(s) € L*((R, £00); dy), [@22711(8)} e
L*((R,Fo0); dy) for all R € R, a further transformation to py ,(t, 7)) as in (5.25) shows that
in the subcritical case, x varies on half-lines.

Remark 5.7. What we called the transformed Harry Dym (tHD)-equation in (5.24) is the
special case A = 0 of the following equation

~ o~ ~3
_ p _ _
B — 61% + 3]?5 + 2Dyyy + 3APy = 0, AER (5.82)

studied in [7], [8], [13], [27] and called the ”interacting soliton equation” in [3]. Equation
(5.82) (like (5.24)) has the property that if 5 is a solution, so is p~* and const - p. Applying
the variable transformation (5.25), (5.26) yields

Pt + 20°pras + 3\ppy = 0 (5.83)
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generalizing the HD-equation (5.27). However, a simple Galilei transformation
(S7y) - (S,Z =Y - 3AS)

reduces equation (5.82) to the case A = 0 due to the identity

~ ~ ~3 3
- p _ - P.P P -
ps_6p7y§yy +3]?g+2pyyy+3)\py :Ps—6 szz +3P7Z2+2PZZZ7 p(s,y) :P(S,Z).

(5.84)

Consequently, our methods immediately extend to equation (5.83).
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Appendix A: 7-functions and commutation methods

Since the explicit change of the variables in (2.3), (5.25) is possible only in special cases we
found it useful to develop the 7-function method for the gKdV-equation directly.

Suppose that
0<p,7j € CCMR?Y, j=1,2 (A1)

and introduce

2

1(t) = —plt, ) 3o5p(t,2) + valt,2) + Jp(t e (1,2) — (pe(t,2)7 (60) €R, (A2)

where vy is of the type

va(t,x) = C —2p(t, )0z |p(t, x)0z InTa(t, )|, Ce C (A.3)

Moreover, assume %9 to be a solution of

La(t)¥a(t) =0, (9 — ba(t))1h2(t) =0 (A.4)
of the type
B —1/2,D [Z da’ plt.a!) 1+ Bt T (t,)
pa(t,x) = p(t,x) " /“e nta) D,E e C. (A.5)
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Define

Pltz) = plt.)0sInva(ta) + opa(tia) = D+ — pT.
and
alt) = plt,2)-= + plt,2) + Spu(t,a),
dx 2
a(t)t = p(t,a:)% +p(t,r) — %pz(t,m)
Then
lo(t) = a(t)a(t)™
Next consider
L(t) = a(t)*a(t),
then
L) = —%p(t, x)Q% Foi(t,z) — %p(t,x)pm(t,x) - %px(t,x)z,
where

v =¢>+ (—1)Ypps, j=12.

Moreover,

T T T T
v = @ +pdp =D’ +pp, ( — “) +2Dp (1’1 - “)
1 T2 1 72

2T 4T 2T 2 T T
2 1,x12,x 2,x 1,xx 2,xx
+p* | - + =+ -

T17T2 T2 T1 72

Tow oo (T2’ Toas
:c_Qpax[paxlnTQ} =C = 2pp,—= + 2p? [ 2% — 22 ),
T T2 T2

T T T T
v = ¢* = pdp =D+ ppa <— St j_;) +2Dp <;x - i;)
+pz 27—1,:1:2 B 27—1,17—2,1 M + T2,xx
712 TITy | T

2 2
T,z T2,z 2 Tl,x T2,z Tl,zx T2, xx
vz—v1—2ppz< —>+2p (— 5+ —5 + -

1 T2 1 T2 1 T2

= 2pd, {p@z In ’7’1] — 2p0, [p@w In TQ} .

25

)

(A7)

(A.8)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)



Thus

vi(x,t) = C—2p8x{p8xln7'1} (A.16)

and

T T T T T T T1.2T:
C—Dszpx< 1,w+ 2,x>+2Dp< 1,1_2,I>+p2< 1,x:1:+ 2,:vx_2 1,z 2,z>'
T1 T2 T1 T2 T1 T2 T1T2
(A.17)

Appendix B: A self-adjoint operator on a finite interval having nontrivial
absolutely continuous spectrum

In this appendix we further illustrate Remark 5.5 and generate a simple nontrivial example of
a self-adjoint operator on a finite interval with a nonempty absolutely continuous component
in its spectrum as follows: Consider the one-soliton operator L in L?(R;dy)

Lf=1f, feD(L)=HR), (B.1)
where

[ = @’ 2 _ 9x?[cosh —2 R B.2

__d7y2+,i1_ kilcosh(k1y)] ™", yeR. (B.2)

(This corresponds to (5.57) at s = 0.) Then the spectrum of L is given by

o(E) = {0} U . o0). ©3)
Oess(L) = 0ae(L) = [k, 00). (B.4)

The (generalized) eigenfunctions of L are given by

1
wl) =2l wemm, ok =1, (85)

Ualy) = cretV A=rly (/11 tanh k1y — iy /A — n%) + coe TV A=rly (m tanh k1y + iy /A — K%) ,

(= Na=0, ¥x#LA(Rydy), ¥ € L®(R), > ri. (B.7)
Transforming with U}, p(z) = 2rk12(1 — 2K17)
- . . 1 .
U™ s LRy dy) = L2((0, 5 -); da),
1 1 _ 1 1 2r12
U = T = T (e (T5e) ) B9
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we get the Sturm Liouville operator in L?((0, ﬁ), dx)

Lf =1f. £ € D(L) = {9 € L2((0. 5, )ido) | 9.9’ € ACUe((0, 5 )ity € LA((0, 5

2/@1

where

1
’ 2/€1

).

d d
_ 42201 9 2 @
l Tn riz=( K1) I z € (0

The transformed eigenvector wg = U !4y then becomes

1
wo(z) = V2k1, z€(0,—)
2/431

and the continuum solutions wy = U~y turn into

(B.10)

(B.11)

104 _ 1o 4 <2
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