RELATIVISTIC CORRECTIONS FOR THE SCATTERING MATRIX FOR SPHERICALLY SYMMETRIC POTENTIALS

KARL UNTERKOFLER

Abstract

We use the framework for the nonrelativistic limit of scattering theory for abstract Dirac operators developed in [5] to prove holomorphy of the scattering matrix at fixed energy with respect to c^{-2} for Dirac operators with spherically symmetric potentials. Relativistic corrections of order c^{-2} to the nonrelativistic limit partial wave scattering matrix are explicitly determined.

1. Introduction

Historically (see, e.g., [28]), the first rigorous treatment of the nonrelativistic limit of Dirac Hamiltonians goes back to Titchmarsh [30] who proved holomorphy of the Dirac eigenvalues (rest energy subtracted) with respect to c^{-2} for spherically symmetric potentials and obtained explicit formulas for relativistic bound state corrections of order $\mathrm{O}\left(c^{-2}\right)$, formally derived in [27]. Holomorphy of the Dirac resolvent in three dimensions in c^{-1} for electrostatic interactions were first obtained by Veselic [31] and then extended to electromagnetic interactions by Hunziker [12]. An entirely different approach, based on an abstract set up, has been used in [6] to prove strong convergence of the unitary groups as $c^{-1} \rightarrow 0$. Employing this abstract framework, holomorphy of the Dirac resolvent in c^{-1} under general conditions on the electromagnetic interaction potentials has been obtained in [8], [9]. Moreover, this approach led to the first rigorous derivation of explicit formulas for relativistic corrections of order $\mathrm{O}\left(c^{-2}\right)$ to bound state energies. Relativistic corrections for energy bands and corresponding corrections for impurity bound states for onedimensional periodic systems were treated in [4]. Convergence of solutions of the Dirac equation based on semi group methods have also been obtained in [26].

Much less activity has been devoted to the nonrelativistic limit of the Dirac scattering theory. The proof of strong convergence of wave and scattering operators as $c^{-1} \rightarrow 0$ was given in [32] and [34]. A treatment of the scattering amplitude based on a different approach was given in [10]. The proof of holomorphy of the scattering matrix at fixed energy with respect to c^{-2} for abstract Dirac operators is established in [5] and explicit formulas for the correction term of order c^{-2} of the scattering matrix in terms of nonrelativistic scattering quantities are given.
In Section 2, following the abstract approach of [6] to Dirac operators, we review some of the basic results of [16] on abstract scattering theory. In Section 3 we recall the main results of [5] on the holomorphy of the scattering matrix at fixed energy with respect to c^{-2} for abstract Dirac operators and the explicit formula

[^0]for the correction term of order c^{-2} of the scattering matrix in terms of nonrelativistic scattering quantities. In Section 4 we apply this abstract theory to Dirac operators with spherically symmetric potentials and obtain an explicit formula for the correction term of order c^{-2} of the partial wave scattering matrix. Finally in Appendix A we summarize the main results of [8] concerning the holomorphy of the Dirac resolvent operator with respect to c^{-2} near $c^{-2}=0$.

2. The Abstract Approach

In this section we define the Dirac operator based on the abstract approach of [6]. Then we summarize some of the results on abstract scattering theory obtained by Kuroda [16] which are most relevant to understand the general formula for the scattering matrix in the next sections. For additional material on scattering theory in the present context we refer to [5] and the references therein, e.g., [1], [2], [3], [7], [11], [14], [17], [18], [19], [22], [23], [24], [29], [35].
Let $\mathfrak{H}_{j}, j=1,2$ be separable, complex Hilbert spaces and introduce self-adjoint operators α, β in $\mathfrak{H}=\mathfrak{H}_{1} \oplus \mathfrak{H}_{2}$ of the type

$$
\alpha=\left(\begin{array}{cc}
0 & A^{*} \tag{2.1}\\
A & 0
\end{array}\right), \quad \beta=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

where A is a densely defined, closed operator from \mathfrak{H}_{1} into \mathfrak{H}_{2}. Next, we introduce the abstract free Dirac operator $H^{0}(c)$ by

$$
\begin{equation*}
H^{0}(c)=c \alpha+m c^{2} \beta, \quad \mathcal{D}\left(H^{0}(c)\right)=\mathcal{D}(\alpha), \quad c \in \mathbb{R} \backslash\{0\}, \quad m>0 \tag{2.2}
\end{equation*}
$$

and the interaction V by

$$
V=\left(\begin{array}{cc}
V_{1} & 0 \tag{2.3}\\
0 & V_{2}
\end{array}\right)
$$

where V_{j} denotes self-adjoint operators in $\mathfrak{H}_{j}, j=1,2$. Assuming V_{1} (respectively V_{2}) to be bounded with respect to A (respectively A^{*}), i.e.,

$$
\mathcal{D}(A) \subseteq \mathcal{D}\left(V_{1}\right), \quad \mathcal{D}\left(A^{*}\right) \subseteq \mathcal{D}\left(V_{2}\right)
$$

the abstract Dirac operator $H(c)$ reads

$$
\begin{equation*}
H(c)=H^{0}(c)+V, \quad \mathcal{D}(H(c))=\mathcal{D}(\alpha) \tag{2.4}
\end{equation*}
$$

Obviously $H(c)$ is self-adjoint for $|c|$ large enough. The corresponding self-adjoint (free) Pauli operators in $\mathfrak{H}_{j}, j=1,2$ are then defined by

$$
\begin{array}{lll}
H_{1}^{0}=\frac{1}{2 m} A^{*} A, & H_{1}=H_{1}^{0}+V_{1}, & \mathcal{D}\left(H_{1}\right)=\mathcal{D}\left(A^{*} A\right) \\
H_{2}^{0}=\frac{1}{2 m} A A^{*}, & H_{2}=H_{2}^{0}+V_{2}, & \mathcal{D}\left(H_{2}\right)=\mathcal{D}\left(A A^{*}\right) \tag{2.6}
\end{array}
$$

Following the usual convention we now subtract the rest energy $m c^{2}$ from $H^{0}(c)$ (similarly one could add the rest energy) and define

$$
\begin{equation*}
\hat{H}_{1}=H^{0}(c)-m c^{2}, \quad \hat{H}_{2}=H(c)-m c^{2} . \tag{2.7}
\end{equation*}
$$

We introduce the following factorization of V

$$
\begin{equation*}
V_{j}=v_{j}^{1 / 2}\left|v_{j}\right|^{1 / 2}, \quad j=1,2 \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
v_{j}^{1 / 2}=U_{j}\left|V_{j}\right|^{1 / 2}, \quad\left|v_{j}\right|^{1 / 2}=\left|V_{j}\right|^{1 / 2}, \quad j=1,2 \tag{2.9}
\end{equation*}
$$

with $V_{j}=U_{j}\left|V_{j}\right|$ the polar decomposition of V_{j}. Furthermore,

$$
\begin{align*}
& Y= B(c)^{-1}\left(\begin{array}{cc}
\left|v_{1}\right|^{1 / 2} & 0 \\
0 & \left|v_{2}\right|^{1 / 2}
\end{array}\right)=\left(\begin{array}{cc}
\left|v_{1}\right|^{1 / 2} & 0 \\
0 & \frac{1}{c}\left|v_{2}\right|^{1 / 2}
\end{array}\right), \tag{2.10}\\
& Z=B(c)\left(\begin{array}{cc}
v_{1}^{1 / 2} & 0 \\
0 & v_{2}^{1 / 2}
\end{array}\right)=\left(\begin{array}{cc}
v_{1}^{1 / 2} & 0 \\
0 & c v_{2}^{1 / 2}
\end{array}\right), \quad B(c)=\left(\begin{array}{ll}
1 & 0 \\
0 & c
\end{array}\right), \tag{2.11}\\
& R_{j}(z)=\left(\hat{H}_{j}-z\right)^{-1}, \quad z \in \rho\left(\hat{H}_{j}\right) \quad j=1,2 . \tag{2.12}
\end{align*}
$$

Remark 2.1. The operator $B(c)$ was introduced in [12].
The following assumptions 2.2-2.4 and 2.6-2.9 are basic in the approach of [16].
Assumption 2.2. Y and Z are closed operators from \mathfrak{H} to another Hilbert space $\mathfrak{K}=\mathfrak{K}_{1} \oplus \mathfrak{K}_{2}$ with $\mathcal{D}\left(\hat{H}_{1}\right) \subseteq \mathcal{D}(Y)$ and $\mathcal{D}\left(\hat{H}_{1}\right) \subseteq \mathcal{D}(Z)$.

This implies that $Y R_{1}(z), Z R_{1}(z) \in \mathrm{B}(\mathfrak{H}, \mathfrak{K})$ (see, e.g., [1], [13]). Here $\mathrm{B}(\mathfrak{H}, \mathfrak{K})$ denotes the set of bounded operators from $\mathfrak{H} \rightarrow \mathfrak{K}$ and $\mathrm{B}_{\infty}(\mathfrak{H}, \mathfrak{K})$ the set of compact operators from $\mathfrak{H} \rightarrow \mathfrak{K}$. The set of bounded (compact) operators on a Hilbert space X we denote by $\mathrm{B}(X)\left(\mathrm{B}_{\infty}(X)\right)$.

Assumption 2.3. $Z R_{1}(z) Y^{*}$ is closable and the closure of $Z R_{1}(z) Y^{*} \in \mathrm{~B}(\mathfrak{K})$ for one (or equivalently for all) $z \in \rho\left(\hat{H}_{1}\right)$

$$
\begin{equation*}
Q_{1}(z, c)=\left[Z R_{1}(z) Y^{*}\right]^{(a)}, \quad G_{1}(z, c)=1+Q_{1}(z, c), \tag{2.13}
\end{equation*}
$$

where ${ }^{(a)}$ denotes the closure.
Assumption 2.4. Let $z \in \rho\left(\hat{H}_{1}\right) \cap \rho\left(\hat{H}_{2}\right)$. Then $G_{1}(z, c)^{-1} \in \mathrm{~B}(\mathfrak{K})$ and

$$
\begin{equation*}
R_{2}(z)=R_{1}(z)-\left[R_{1}(z) Y^{*}\right]^{a} G_{1}(z)^{-1} Z R_{1}(z) \tag{2.14}
\end{equation*}
$$

Thus propositions 2.6 and 2.7 in [16] hold. Define

$$
\begin{equation*}
Q_{2}(z, c)=\left[Z R_{2}(z) Y^{*}\right]^{(a)}, \quad G_{2}(z, c)=1-Q_{2}(z, c), \quad z \in \rho\left(\hat{H}_{2}\right) . \tag{2.15}
\end{equation*}
$$

Then

$$
\begin{equation*}
G_{2}(z, c)=G_{1}(z, c)^{-1}, \quad z \in \rho\left(\hat{H}_{2}\right) \tag{2.16}
\end{equation*}
$$

Remark 2.5. From our assumptions on $H^{0}(c)$ and V we infer that
(i) $V^{1 / 2}$ is $\hat{H}^{0}(c)$ bounded with bound 0 and hence Assumption 2.2 is fulfilled.
(ii) $V^{1 / 2}$ is $\hat{H}^{0}(c)^{1 / 2}$ bounded implying that Assumption 2.3 is fulfilled.
(iii) The second resolvent equation yields

$$
\begin{align*}
& \left(1+\left[Z R_{1}(z) Y^{*}\right]^{(a)}\right)\left(1-\left[Z R_{2}(z) Y^{*}\right]^{(a)}\right)=1, \\
& \left(1-\left[Z R_{2}(z) Y^{*}\right]^{(a)}\right)\left(1+\left[Z R_{1}(z) Y^{*}\right]^{(a)}\right)=1 \tag{2.17}
\end{align*}
$$

(see, e.g., [1]) and thus Assumption 2.4 is fulfilled.

Next let E_{j} denote the spectral measures associated with $\hat{H}_{j}, \quad j=1,2$.
Assumption 2.6. There exists a Hilbert space \mathfrak{C}, a non-empty open set $I \subseteq \mathbb{R}$, and a unitary operator F from $E_{1}(I) \mathfrak{H}$ onto $L^{2}(I ; \mathfrak{C})$ such that for every Borel set $I^{\prime} \subseteq I$ one has $F E_{1}\left(I^{\prime}\right) F^{-1}=\chi_{I^{\prime}}$, where $\chi_{I^{\prime}}$ denotes the operator of multiplication by the characteristic function of I^{\prime}.

Assumption 2.7. There exist $B(\mathfrak{K}, \mathfrak{C})$-valued functions $T(\lambda, c, Y)$ and $T(\lambda, c, Z)$, $\lambda \in I$, such that
(i) $T(\cdot, c, Y)$ and $T(\cdot, c, Z)$ are locally Hölder continuous in I with respect to the operator norm.
(ii) There exist dense subsets $D \subseteq \mathcal{D}\left(Y^{*}\right)$ and $D^{\prime} \subseteq \mathcal{D}\left(Z^{*}\right)$ such that for any $u \in D$ and $v \in D^{\prime}$ one infers for a. e. $\lambda \in I$

$$
\begin{equation*}
T(\lambda, c, Y) u=\left(F E_{1}(I) Y^{*} u\right)(\lambda), \quad T(\lambda, c, Z) v=\left(F E_{1}(I) Z^{*} v\right)(\lambda) \tag{2.18}
\end{equation*}
$$

Assumption 2.8. For one (or equivalently all) $z \in \rho\left(\hat{H}_{1}\right)$ either $Y R_{1}(z) \in B_{\infty}(\mathfrak{H}, \mathfrak{K})$ or $Z R_{1}(z) \in B_{\infty}(\mathfrak{H}, \mathfrak{K})$.
Assumption 2.9. The subspace generated by $\left\{E_{j}\left(I^{\prime}\right) Y^{*} u \mid u \in \mathcal{D}\left(Y^{*}\right), I^{\prime} \subseteq I\right.$ a Borel set $\}$ is dense in $E_{j}(I) \mathfrak{H}, \quad j=1,2$.

Remark 2.10. [16] Since \mathfrak{H} is separable, Assumption 2.6 is equivalent to assuming that \hat{H}_{1} has absolutely continuous spectrum in I with constant multiplicity. Moreover, \mathfrak{C} is determined uniquely up to unitary equivalence and F is uniquely determined up to unitary equivalence with decomposable, unitary operators on $L^{2}(I ; \mathfrak{C})$.

Since these assumptions are identical with the ones in [16] we have all the results of $([16] \S 3, \S 4)$ at our disposal, e.g., the norm limits

$$
\begin{equation*}
G_{1 \pm}(\lambda, c)=\mathrm{n}-\lim _{\epsilon \downarrow 0} G_{1}(\lambda \pm i \epsilon, c), \quad Q_{1 \pm}(\lambda, c)=\mathrm{n}-\lim _{\epsilon \downarrow 0} Q_{1}(\lambda \pm i \epsilon, c) \tag{2.19}
\end{equation*}
$$

exist (see [16] Theorem 3.9) and introducing

$$
\begin{equation*}
e_{ \pm}(c)=\left\{\lambda \in I \mid G_{1 \pm}(\lambda, c) \text { is not one to one }\right\}, \quad e(c)=e_{+}(c) \cup e_{-}(c) \tag{2.20}
\end{equation*}
$$

$\left(e(c)\right.$ is a closed set of Lebesgue measure zero [16]) we get for $\lambda \in I \backslash e_{ \pm}(c)$ the existence of the boundary values

$$
\begin{equation*}
G_{2 \pm}(\lambda, c)=\mathrm{n}-\lim _{\epsilon \downarrow 0} G_{2}(\lambda \pm i \epsilon, c) \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{2 \pm}(\lambda, c)=G_{1 \pm}(\lambda, c)^{-1} \tag{2.22}
\end{equation*}
$$

(see [16] Theorem 3.10).
Also Theorems 3.11-3.13 and 6.3 of [16] are valid. In particular, we obtain for the fibers of the scattering operator
Theorem 2.11. [16] For $\lambda \in I \backslash e(c)$ the scattering matrix $S(\lambda, c)$ in \mathfrak{C} associated with the pair $\left(\hat{H}_{2}, \hat{H}_{1}\right)$ is given by

$$
\begin{equation*}
S(\lambda, c)=1-2 \pi i T(\lambda, c, Y) G_{2+}(\lambda, c) T(\lambda, c, Z)^{*} \tag{2.23}
\end{equation*}
$$

$S(\cdot, c)$ is unitary in \mathfrak{C} and locally Hölder continuous on $I \backslash e(c)$ with respect to the norm in $\mathrm{B}(\mathfrak{C})$.

3. Holomorphy of the scattering matrix in c^{-2} and RELATIVIStic CORRECTIONS

In this section we recall the results obtained in [5] on holomorphy of the abstract scattering matrix with respect to c^{-2}. Moreover, explicitly corrections of the scattering matrix of order c^{-2} in terms of nonrelativistic scattering quantities are given in Theorem 3.3.

Let $I \subseteq \mathbb{R}^{+}=(0, \infty)$ and define

$$
\begin{equation*}
I_{ \pm 0}=\left\{\lambda \mid \lambda \in I \backslash e_{ \pm}\left(c^{-2}=0\right)\right\}, \quad I_{0}=I_{+0} \cap I_{-0} \tag{3.1}
\end{equation*}
$$

In addition we strengthen Assumptions 2.3 and 2.7 by introducing
Assumption 3.1. (i) For $\lambda \in I, T(\lambda, c, Y)$ and $T(\lambda, c, Z)$ are holomorphic in c^{-2} around $c^{-2}=0$ and
(ii) for $\lambda \in I_{+0}$

$$
\begin{equation*}
Q_{1+}(\lambda, c)=\lim _{\epsilon \downarrow 0} Q_{1+}(\lambda+i \epsilon, c) \tag{3.2}
\end{equation*}
$$

is holomorphic in c^{-2} around $c^{-2}=0$.
Remark 3.2. For later purposes we note that Assumption 3.1 (ii) implies that

$$
\begin{equation*}
v_{1}^{1 / 2}\left(H_{1}^{0}-\lambda-i 0\right)^{-2}\left|v_{1}\right|^{1 / 2}=\frac{d}{d \lambda} v_{1}^{1 / 2}\left(H_{1}^{0}-\lambda-i 0\right)^{-1}\left|v_{1}\right|^{1 / 2} \tag{3.3}
\end{equation*}
$$

We define

$$
\begin{align*}
g_{2}(z) & =\left(1+v_{1}^{1 / 2}\left(H_{1}^{0}-z\right)^{-1}\left|v_{1}\right|^{1 / 2}\right)^{-1}, \quad z=\lambda+i \epsilon, \epsilon>0, \\
g_{2 \pm}(\lambda) & =\lim _{\epsilon \downarrow 0} g_{2}(\lambda \pm i \epsilon) . \tag{3.4}
\end{align*}
$$

By Assumption 2.6, α^{2} and hence $A^{*} A, A A^{*}$ are absolutely continuous in \tilde{I}^{2} with constant multiplicity.
Now we consider the analogs U_{0}, M of F and T when $A^{*} A$ replaces \hat{H}_{1}.
Let U_{0} be the unitary operator that diagonalizes $A^{*} A$ on \tilde{I}^{2}. For $h \in E_{0}\left(\tilde{I}^{2}\right) \mathfrak{H}_{1}$ (where $E_{0}(\cdot)$ denotes the spectral measure for $A^{*} A$) U_{0} yields

$$
\begin{equation*}
U_{0} E_{0}\left(\tilde{I}^{2}\right) \mathfrak{H}_{1} \rightarrow L^{2}\left(\tilde{I}^{2}, d \mu ; \mathfrak{C}\right), \quad\left(U_{0} A^{*} A h\right)(\mu)=\mu\left(U_{0} h\right)(\mu), \quad \mu \in \tilde{I}^{2} \tag{3.5}
\end{equation*}
$$

In addition we need the operator $M(k, D): \mathcal{D}(D) \rightarrow \mathfrak{C}$, where $D: \mathcal{D}(D) \rightarrow$ $\mathfrak{H}_{1}, \mathcal{D}(D) \subseteq \mathfrak{K}_{1}$ or \mathfrak{K}_{2}, D closed

$$
\begin{equation*}
M(k, D) h=\left(U_{0} E_{0}\left(\tilde{I}^{2}\right) D h\right)\left(k^{2}\right), \quad h \in \mathcal{D}(D), \quad k=\sqrt{\mu}, \quad \text { for a. e. } k \in \tilde{I} \tag{3.6}
\end{equation*}
$$

In concrete applications the closure of $M(k, D)$ will be a Hilbert-Schmidt operator. This closure is then denoted by $M(k, D)$, too.

We can now state the following result for the fibers of the scattering operator.
Theorem 3.3. Assume Assumptions 2.2-2.4, 2.6-2.9 and 3.1 to be fulfilled. Then for $\lambda \in I_{0}$, the scattering matrix $S(\lambda, c)$ associated with the pair $\left(H(c)-m c^{2}, H^{0}(c)-\right.$ $m c^{2}$) is holomorphic in c^{-2} around $c^{-2}=0$ and we get the following expansion

$$
\begin{equation*}
S(\lambda, c)=1-2 \pi i T(\lambda, c, Y) G_{2+}(\lambda, c) T(\lambda, c, Z)^{*}=\sum_{j=0}^{\infty} c^{-2 j} S^{(j)}(\lambda) \tag{3.7}
\end{equation*}
$$

with
$S^{(0)}(\lambda)=1-2 \pi i\left(2 m M\left(k^{s},\left|v_{1}\right|^{1 / 2}\right) g_{2+}(\lambda) M\left(k^{s}, v_{1}^{1 / 2}\right)^{*}\right), \quad \lambda \in I_{0}, k^{s}=\sqrt{2 m \lambda}$
the scattering matrix for the associated pair of Pauli operators $\left(H_{1}, H_{1}^{0}\right)$ (illustrating the nonrelativistic limit) and the explicit correction term of order c^{-2}

$$
\begin{align*}
& S^{(1)}(\lambda)=\frac{\left(k^{s}\right)^{2}}{4 m^{2}}\left(S^{(0)}(\lambda)-1\right)-2 \pi i\left\{\frac{\left(k^{s}\right)^{3}}{4 m} M^{\prime}\left(k^{s},\left|v_{1}\right|^{1 / 2}\right) g_{2+}(\lambda) M\left(k^{s}, v_{1}^{1 / 2}\right)^{*}\right. \\
& -\frac{1}{2 m} M\left(k^{s}, A^{*}\left|v_{2}\right|^{1 / 2}\right)\left(v_{2}^{1 / 2} A\left(H_{1}^{0}-\lambda-i 0\right)^{-1}\left|v_{1}\right|^{1 / 2}\right) g_{2+}(\lambda) M\left(k^{s}, v_{1}^{1 / 2}\right)^{*} \\
& +\frac{1}{2 m} M\left(k^{s}, A^{*}\left|v_{2}\right|^{1 / 2}\right) M\left(k^{s}, A^{*} v_{2}^{1 / 2}\right)^{*}+\frac{\left(k^{s}\right)^{3}}{4 m} M\left(k^{s},\left|v_{1}\right|^{1 / 2}\right) g_{2+}(\lambda) M^{\prime}\left(k^{s}, v_{1}^{1 / 2}\right)^{*} \\
& -\frac{\left(k^{s}\right)^{2}}{(2 m)^{2}} M\left(k^{s},\left|v_{1}\right|^{1 / 2}\right) g_{2+}(\lambda)\left(v_{1}^{1 / 2}\left(H_{1}^{0}-\lambda-i 0\right)^{-1} A^{*} A\left(H_{1}^{0}-\lambda-i 0\right)^{-1}\left|v_{1}\right|^{1 / 2}\right) \\
& \times g_{2+}(\lambda) M\left(k^{s}, v_{1}^{1 / 2}\right)^{*}+\frac{1}{2 m} M\left(k^{s},\left|v_{1}\right|^{1 / 2}\right) g_{2+}(\lambda)\left(v_{1}^{1 / 2}\left(H_{1}^{0}-\lambda-i 0\right)^{-1} A^{*}\left|v_{2}\right|^{1 / 2}\right) \\
& \times\left(v_{2}^{1 / 2} A\left(H_{1}^{0}-\lambda-i 0\right)^{-1}\left|v_{1}\right|^{1 / 2}\right) g_{2+}(\lambda) M\left(k^{s}, v_{1}^{1 / 2}\right)^{*} \\
& \left.-\frac{1}{2 m} M\left(k^{s},\left|v_{1}\right|^{1 / 2}\right) g_{2+}(\lambda)\left(v_{1}^{1 / 2}\left(H_{1}^{0}-\lambda-i 0\right)^{-1} A^{*}\left|v_{2}\right|^{1 / 2}\right) M\left(k^{s}, A^{*} v_{2}^{1 / 2}\right)^{*}\right\}, \\
& \quad \lambda \in I_{0}, \tag{3.9}
\end{align*}
$$

where ${ }^{(')}$ denotes the derivative with respect to k^{s}.
4. The Dirac operator in $L^{2}\left(\mathbb{R}^{3}\right)^{4}$ with a Spherically Symmetric POTENTIAL

We apply the abstract theory developed in previous chapters now to concrete Dirac operators in $L^{2}\left(\mathbb{R}^{3}\right)^{4}$ with spherically symmetric potentials. The free Dirac operator $H^{0, D}(c)$ in $L^{2}\left(\mathbb{R}^{3}\right)^{4}$ is defined by

$$
\begin{equation*}
H^{0, D}(c)=c \boldsymbol{\alpha} \boldsymbol{p}+\beta m c^{2}, \quad m, c>0, \quad \mathcal{D}\left(H^{0, D}(c)\right)=H^{2,1}\left(\mathbb{R}^{3}\right)^{4} \tag{4.1}
\end{equation*}
$$

where

$$
\begin{align*}
& \sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right), \\
& \alpha_{\ell}=\left(\begin{array}{cc}
0 & \sigma_{\ell} \\
\sigma_{\ell} & 0
\end{array}\right), \quad \ell=1,2,3, \quad \beta=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \\
& \boldsymbol{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right), \quad \boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right), \quad \boldsymbol{p}=-i \nabla, \quad \mathcal{D}(\boldsymbol{p})=H^{2,1}\left(\mathbb{R}^{3}\right) . \tag{4.2}
\end{align*}
$$

Let V be the maximal operator of multiplication with the real-valued function $v=v(r)$, where $r=|x|=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)^{1 / 2}$.

Assumption 4.1. Assume that V fulfills

$$
\begin{equation*}
\int_{0}^{\infty} d r e^{\alpha r}|v(r)|<\infty, \quad \alpha>0 \tag{4.3}
\end{equation*}
$$

The Dirac operator $H^{D}(c)$ in $L^{2}\left(\mathbb{R}^{3}\right)^{4}$ is now defined as

$$
\begin{equation*}
H^{D}(c)=H^{0, D}(c)+V, \quad \mathcal{D}\left(H^{D}(c)\right)=\mathcal{D}\left(H^{0, D}(c)\right) \tag{4.4}
\end{equation*}
$$

Remark 4.2. Our Assumption 4.1 does not include Coulomb-like singularities since these are strongly singular with respect to the Dirac operator (cf. [15], [21], [25], [33]).

Furthermore we recall the definition of the "angular momentum operators" (cf. [28], p. 8)

$$
\begin{array}{lrl}
\boldsymbol{S}=-\frac{i}{4} \boldsymbol{\alpha} \wedge \boldsymbol{\alpha} & & \text { spin } \text { angular momentum }, \\
\boldsymbol{L}=\boldsymbol{x} \wedge \boldsymbol{p} & & \text { orbital angular momentum }, \\
\boldsymbol{J}=\boldsymbol{L}+\boldsymbol{S} & & \text { total angular momentum } .
\end{array}
$$

Since the potential V is spherically symmetric the symmetry induced by invariance under rotations allows the so called "partial wave" expansion. This expresses the conservation of total angular momentum \boldsymbol{J}. The Hilbert space is decomposed in the following way (cf. [28], p. 122 ff .), where the operators J^{2}, J_{3}, and $K(K=$ $\beta(2 \boldsymbol{S} \boldsymbol{L}+1)$ is the relativistic analog of the spin-orbit coupling) are diagonal with quantum numbers $j(j+1), m_{j}$, and $-\kappa_{j}$. To achieve this goal we first we introduce polar coordinates in $L^{2}\left(\mathbb{R}^{3}\right)^{4}$ and then the unitary transformation U

$$
\begin{align*}
& U:(U f)(r)=r f(r) \\
& L^{2}\left(\mathbb{R}^{3} \backslash\{0\}\right)^{4} \rightarrow L^{2}\left((0, \infty), r^{2} d r ; L^{2}\left(S^{2}\right)^{4}\right) \rightarrow L^{2}\left((0, \infty), d r ; L^{2}\left(S^{2}\right)^{4}\right), \tag{4.5}
\end{align*}
$$

i.e., for every Ψ in $L^{2}\left(\mathbb{R}^{3}\right)$ we write

$$
\begin{equation*}
\psi(r, \vartheta, \varphi)=r \Psi\left(x_{1}(r, \vartheta, \varphi), x_{2}(r, \vartheta, \varphi), x_{3}(r, \vartheta, \varphi)\right) \tag{4.6}
\end{equation*}
$$

Define the vectors $\Psi_{j \pm 1 / 2}^{m_{j}}$ by

$$
\begin{align*}
& \Psi_{j-1 / 2}^{m_{j}}(\vartheta, \varphi)=\frac{1}{\sqrt{2 j}}\binom{\sqrt{j+m_{j}} Y_{j-1 / 2}^{m_{j}-1 / 2}(\vartheta, \varphi)}{\sqrt{j-m_{j}} Y_{j-1 / 2}^{m_{j}+1 / 2}(\vartheta, \varphi)} \tag{4.7}\\
& \Psi_{j+1 / 2}^{m_{j}}(\vartheta, \varphi)=\frac{1}{\sqrt{2 j+2}}\binom{\sqrt{j+1-m_{j}} Y_{j+1 / 2}^{m_{j}-1 / 2}(\vartheta, \varphi)}{-\sqrt{j+1+m_{j}} Y_{j+1 / 2}^{m_{j}+1 / 2}(\vartheta, \varphi)}, \tag{4.8}
\end{align*}
$$

where Y_{l}^{m} are the usual spherical harmonics. Then the vectors $\Phi_{j, m_{j}, \kappa_{j}}$ in $L^{2}\left(S^{2}\right)^{4}$ defined by

$$
\begin{align*}
\Phi_{j, m_{j}, \mp(j+1 / 2)}^{+}(\vartheta, \varphi) & =\binom{i \Psi_{j \mp 1 / 2}^{m_{j}}(\vartheta, \varphi)}{0} \\
\Phi_{j, m_{j}, \mp(j+1 / 2)}^{-}(\vartheta, \varphi) & =\binom{0}{\Psi_{j \pm 1 / 2}^{m_{j}}(\vartheta, \varphi)} \tag{4.9}\\
\Phi_{j, m_{j}, \kappa_{j}}(\vartheta, \varphi) & =c_{+} \Phi_{j, m_{j}, \kappa_{j}}^{+}(\vartheta, \varphi)+c_{-} \Phi_{j, m_{j}, \kappa_{j}}^{-}(\vartheta, \varphi), \quad c_{+}, c_{-} \in \mathbb{C}
\end{align*}
$$

are eigenvectors of J^{2}, J_{3}, K with eigenvalues $j(j+1), m_{j}$, and $-\kappa_{j}$. These vectors form a complete orthonormal set in $L^{2}\left(S^{2}\right)^{4}$.

The Hilbert space $L^{2}\left(S^{2}\right)^{4}$ is the orthogonal direct sum of the two dimensional Hilbert spaces $\mathfrak{N}_{j, m_{j}, \kappa_{j}}$ which are spanned by the vectors $\Phi_{j, m_{j}, \kappa_{j}}^{ \pm}$

$$
\begin{equation*}
L^{2}\left(S^{2}\right)^{4}=\bigoplus_{j=\frac{1}{2}, \frac{3}{2}, \ldots}^{\infty} \bigoplus_{m_{j}=-j}^{j} \bigoplus_{\kappa_{j}=\mp\left(j+\frac{1}{2}\right)} \mathfrak{N}_{j, m_{j}, \kappa_{j}} \tag{4.10}
\end{equation*}
$$

This decomposition of the angular Hilbert space implies a similar decomposition of the Hilbert space $L^{2}\left(\mathbb{R}^{3}\right)^{4}$. Each "partial wave subspace" $L^{2}((0, \infty), d r) \otimes \mathfrak{N}_{j, m_{j}, \kappa_{j}}$ is isomorphic to $L^{2}((0, \infty), d r)^{2}$ if we choose the basis $\left\{\Phi_{j, m_{j}, \kappa_{j}}^{+}, \Phi_{j, m_{j}, \kappa_{j}}^{-}\right\}$in $\mathfrak{N}_{j, m_{j}, \kappa_{j}}$. The full free Dirac operator $H^{0, \mathrm{D}}(c)$ in $L^{2}\left(\mathbb{R}^{3}\right)^{4}$ is unitarily equivalent to the direct sum of the "partial wave" Dirac operators $h_{j, m_{j}, \kappa_{j}}^{0}(c)$

$$
\begin{equation*}
H^{0, \mathrm{D}}(c) \cong \bigoplus_{j=\frac{1}{2}, \frac{3}{2}, \ldots}^{\infty} \bigoplus_{m_{j}=-j}^{j} \bigoplus_{\kappa_{j}=\mp\left(j+\frac{1}{2}\right)} h_{j, m_{j}, \kappa_{j}}^{0}(c) \tag{4.11}
\end{equation*}
$$

where the free "partial wave" Dirac operator $H^{0}(c)$ in $L^{2}((0, \infty), d r)^{2}$ now reads

$$
H^{0}(c)=h_{j, m_{j}, \kappa_{j}}^{0}(c)=\left(\begin{array}{cc}
m c^{2} & c A_{j, m_{j}, \kappa_{j}}^{*} \tag{4.12}\\
c A_{j, m_{j}, \kappa_{j}} & -m c^{2}
\end{array}\right) .
$$

Here $A_{j, m_{j}, \kappa_{j}}$ is the closure of $\dot{A}_{j, m_{j}, \kappa_{j}}$, where

$$
\begin{align*}
\dot{A}_{j, m_{j}, \kappa_{j}} & =\frac{d}{d r}+\frac{\kappa_{j}}{r}, \quad \mathcal{D}\left(\dot{A}_{j, m_{j}, \kappa_{j}}\right)=C_{0}^{\infty}((0, \infty)), \\
\kappa_{j} & =\mp\left(j+\frac{1}{2}\right), \quad 2 j=1,3,5, \ldots, \quad m_{j}=-j,-j+1, \ldots, j \tag{4.13}
\end{align*}
$$

The "partial wave" Dirac operator $H(c)$ in $L^{2}((0, \infty), d r)^{2}$ is now defined as

$$
\begin{align*}
& H(c)=H^{0}(c)+V=h_{j, m_{j}, \kappa_{j}}(c)=\left(\begin{array}{cc}
m c^{2}+v(r) & c A_{j, m_{j}, \kappa_{j}}^{*} \\
c A_{j, m_{j}, \kappa_{j}} & -m c^{2}+v(r)
\end{array}\right) \\
& \mathcal{D}(H(c))=\mathcal{D}\left(H^{0}(c)\right) \tag{4.14}
\end{align*}
$$

Subtracting the rest energy according to (2.7) we therefore identify

$$
\begin{align*}
& \mathfrak{H}_{1}=\mathfrak{H}_{2}=\mathfrak{K}_{1}=\mathfrak{K}_{2}=L^{2}((0, \infty), d r), \quad I_{ \pm 0}=\mathbb{R}^{+} \backslash e_{ \pm}\left(c^{-2}=0\right), \quad \mathfrak{C}=\mathbb{C}^{1}, \tag{4.15}\\
& V_{1}=V_{2}=V, \quad V=v^{1 / 2}|v|^{1 / 2}, \quad v^{1 / 2}=|v|^{1 / 2} \operatorname{sgn}(v), \tag{4.16}\\
& Y=Y^{*}=B(c)^{-1}|v|^{1 / 2}, \quad Z=Z^{*}=v^{1 / 2} B(c) . \tag{4.17}
\end{align*}
$$

Clearly Assumptions $2.2-2.4,2.6-2.8$ are satisfied. Assumption 2.9 can be dealt with in exactly the same way as in [5] Section 5.1. It remains to verify Assumption 3.1.
(i) Holomorphy of $Q_{1+}(\lambda, c), \quad \lambda \in I_{+0}$. Let $A_{\ell}=\frac{d}{d r}+\frac{\ell}{r}$. Then the kernel $g_{l, \pm}(\lambda)\left(r, r^{\prime}\right)$ of $\left(A_{l}^{*} A_{l}-\lambda \mp i 0\right)^{-1}$ reads

$$
\begin{equation*}
g_{l, \pm}(\lambda)\left(r, r^{\prime}\right)=\frac{1}{\sqrt{\lambda}} \hat{j}_{l}\left(\sqrt{\lambda} r_{<}\right) \hat{h}_{l}^{ \pm}\left(\sqrt{\lambda} r_{>}\right), \quad l=0,1,2, \ldots \tag{4.18}
\end{equation*}
$$

where $r_{>}=\max \left(r, r^{\prime}\right), r_{<}=\min \left(r, r^{\prime}\right)$ and $\hat{j}_{l}, \hat{h}_{l}^{ \pm}$are the Riccati-Bessel and RiccatiHankel functions (cf. [1], p. 496 ff. and p. 481).
Thus we obtain for the kernel $q\left(r, r^{\prime}, \lambda, c\right)$ of

$$
\begin{align*}
& Q_{1+}(\lambda, c)=v^{1 / 2} B(c)\left(h_{j, m_{j}, \kappa_{j}}^{0}(c)-m c^{2}-\lambda-i 0\right)^{-1} B(c)^{-1}|v|^{1 / 2} \tag{4.19}\\
& q\left(r, r^{\prime}, \lambda, c\right)=v(r)^{1 / 2}\left(\begin{array}{cc}
1+\frac{\lambda}{2 m c^{2}} & \frac{1}{2 m c^{2}}\left(-\frac{d}{d r}+\frac{\kappa_{j}}{r}\right) \\
\frac{1}{2 m}\left(\frac{d}{d r}+\frac{\kappa_{j}}{r}\right) & \frac{\lambda}{2 m c^{2}}
\end{array}\right) \\
& \left(\begin{array}{cc}
\frac{2 m}{k^{d}} \hat{j}_{l\left(\kappa_{j}\right)}\left(k^{d} r_{<}\right) \hat{h}_{l\left(\kappa_{j}\right)}^{+}\left(k^{d} r_{>}\right) & 0 \\
0 & \frac{2 m}{k^{d}} \hat{j}_{l\left(\kappa_{j}-1\right)}\left(k^{d} r_{<}\right) \hat{h}_{l\left(\kappa_{j}-1\right)}^{+}\left(k^{d} r_{>}\right)
\end{array}\right)\left|v\left(r^{\prime}\right)\right|^{1 / 2}, \\
& l\left(\kappa_{j}\right)=\left|\kappa_{j}\right|+\frac{1}{2}\left(\operatorname{sgn}\left(\kappa_{j}\right)-1\right), \tag{4.20}\\
& \lambda \in I_{+0}, \quad k^{d}(\lambda, c)=k^{s}\left(1+\frac{\lambda}{2 m c^{2}}\right)^{1 / 2}, \quad k^{s}=\sqrt{2 m \lambda} .
\end{align*}
$$

Define the compact set $M \subset \mathbb{C}$

$$
\begin{equation*}
M=\left\{\left.c^{-2} \in \mathbb{C}| | c^{-2}\left|\leq\left|c_{0}^{-2}\right|<\frac{2 m}{\lambda} \text { and } 2\right| \operatorname{Im} k^{d}(\lambda, c) \right\rvert\, \leq k^{s} \frac{\lambda}{m\left|c_{0}^{2}\right|} \leq \alpha\right\} . \tag{4.21}
\end{equation*}
$$

Using

$$
\begin{equation*}
\left|k^{d}\right| \leq k^{s}\left(1+\frac{\lambda}{2 m\left|c_{0}^{2}\right|}\right)^{1 / 2} \tag{4.22}
\end{equation*}
$$

and a matrix norm in \mathbb{C}^{2} we get for $c^{-2} \in M$

$$
\begin{equation*}
\int\left\|q\left(r, r^{\prime}, \lambda, c\right)\right\| d r \leq c_{1}<\infty \text { and } \int\left\|q\left(r, r^{\prime}, \lambda, c\right)\right\| d r^{\prime} \leq c_{2}<\infty, \quad c_{1}, c_{2} \in \mathbb{R} \tag{4.23}
\end{equation*}
$$

For $c^{-2} \in M$ and fixed λ we have a family of uniformly bounded operators (using [33], Theorem 6.24 "Folgerung" 4). Since the integral kernel $q\left(r, r^{\prime}, \lambda, c\right)$ is a holomorphic function of c^{-2} around $c^{-2}=0$, we obtain holomorphy of $Q_{1+}(\lambda, c)$.
(ii) Holomorphy of $T(\lambda, c, Y), \lambda>0$.

The integral kernel $t(r, \lambda, c)$ of $T(\lambda, c, Y): L^{2}((0, \infty))^{2} \rightarrow \mathbb{C}^{1}$ is given by

$$
\begin{align*}
t(r, \lambda, c) & =\sqrt{\frac{1}{c k_{0}}} \frac{1}{\sqrt{\pi}}(-i)^{l\left(\kappa_{j}\right)}|v(r)|^{1 / 2} \\
& \times\left(\hat{j}_{l\left(\kappa_{j}\right)}\left(k^{d} r\right) \quad \frac{k_{0}}{c k^{d}} \frac{\kappa_{j}}{r} \hat{j}_{l\left(\kappa_{j}\right)}\left(k^{d} r\right)+\frac{k_{0}}{c} \hat{j}_{l\left(\kappa_{j}\right)}^{\prime}\right. \\
k^{d} & =\sqrt{2 m \lambda\left(1+\frac{\lambda}{2 m c^{2}}\right)}, \quad k_{0}=\sqrt{\frac{\lambda}{\lambda+2 m c^{2}}}, \quad \lambda>0 . \tag{4.24}
\end{align*}
$$

For $\lambda \in I$ we obtain

$$
\begin{equation*}
\|t(r, \lambda, c)\| \leq c_{3}(\lambda, \alpha)|v(r)|^{1 / 2} e^{\frac{\alpha}{2} r}, \quad c_{3} \in \mathbb{R} . \tag{4.25}
\end{equation*}
$$

For $c^{-2} \in M$ this is a family of uniformly bounded Hilbert Schmidt operators (since the right hand side of (4.25) is in $\left.L^{2}((0, \infty), d r)\right)$ with integral kernel holomorphic in c^{-2} and therefore $T(\lambda, c, Y)$ is holomorphic in c^{-2} around $c^{-2}=0$.

The holomorphy of $T(\lambda, c, Z)^{*}$ follows similarly.
Thus we have shown that all assumptions are fulfilled which guaranty the holomorphy of the scattering matrix in c^{-2}. It remains to calculate the relativistic correction terms.

The operator $U_{j, m_{j}, \kappa_{j}}$ that diagonalizes the radial Pauli operator

$$
\begin{equation*}
A_{j, m_{j}, \kappa_{j}}^{*} A_{j, m_{j}, \kappa_{j}}=-\frac{d^{2}}{d r^{2}}+\frac{\kappa_{j}\left(\kappa_{j}+1\right)}{r^{2}} \tag{4.26}
\end{equation*}
$$

is given by $U_{j, m_{j}, \kappa_{j}}: L^{2}((0, \infty), d r) \rightarrow L^{2}((0, \infty), d \mu)$

$$
\begin{equation*}
\left(U_{j, m_{j}, \kappa_{j}} f\right)(\mu)=\frac{\mu^{-1 / 4}}{\sqrt{\pi}}(-i)^{l\left(\kappa_{j}\right)} \int_{0}^{\infty} d r \hat{j}_{l\left(\kappa_{j}\right)}(\sqrt{\mu} r) f(r), \tag{4.27}
\end{equation*}
$$

where $\hat{j}_{l}(x)$ denote the Riccati-Bessel functions and the integral is to be taken in the sense

$$
\begin{equation*}
\int_{0}^{\infty} d r \hat{j}_{l\left(\kappa_{j}\right)}(\sqrt{\mu} r) f(r)=s-\lim _{R \rightarrow \infty} \int_{0}^{R} d r \hat{j}_{l\left(\kappa_{j}\right)}(\sqrt{\mu} r) f(r) \tag{4.28}
\end{equation*}
$$

Thus we get

$$
\begin{align*}
& M\left(k^{d},|v|^{1 / 2}\right): L^{2}((0, \infty), d r) \rightarrow \mathbb{C}^{1}, \\
& M\left(k^{d},|v|^{1 / 2}\right) f=\frac{1}{\sqrt{\pi}}\left(k^{d}\right)^{-1 / 2}(-i)^{l\left(\kappa_{j}\right)} \int_{0}^{\infty} d r \hat{j}_{l\left(\kappa_{j}\right)}\left(k^{d} r\right)|v(r)|^{1 / 2} f(r) \\
& =\frac{1}{\sqrt{\pi}}\left(k^{d}\right)^{-1 / 2}(-i)^{l\left(\kappa_{j}\right)}<|v|^{1 / 2} \hat{j}_{l\left(\kappa_{j}\right)}\left(k^{d}\right), f>, \quad f \in L^{2}((0, \infty), d r), \tag{4.29}
\end{align*}
$$

where $<\cdot, \cdot\rangle$ denotes the scalar product in $L^{2}((0, \infty))$. Similarly we have

$$
\begin{align*}
& M\left(k^{d}, A^{*}|v|^{1 / 2}\right): L^{2}((0, \infty), d r) \rightarrow \mathbb{C}^{1}, \\
& M\left(k^{d}, A^{*}|v|^{1 / 2}\right) f \\
& =\frac{1}{\sqrt{\pi}}\left(k^{d}\right)^{-1 / 2}(-i)^{l\left(\kappa_{j}\right)}<|v|^{1 / 2}\left(\frac{\kappa_{j}}{r} \hat{j}_{l\left(\kappa_{j}\right)}\left(k^{d}\right)+k^{d} \hat{j}_{l\left(\kappa_{j}\right)}^{\prime}\left(k^{d}\right)\right), f>, \\
& \quad f \in L^{2}((0, \infty), d r) . \tag{4.30}
\end{align*}
$$

For the corresponding adjoint operators we obtain

$$
\begin{align*}
& M\left(k^{d}, v^{1 / 2}\right)^{*}: \mathbb{C}^{1} \rightarrow L^{2}((0, \infty), d r) \\
& \left(M\left(k^{d}, v^{1 / 2}\right)^{*} h\right)(r)=\frac{1}{\sqrt{\pi}}\left(k^{d}\right)^{-1 / 2}(i)^{l\left(\kappa_{j}\right)} v^{1 / 2}(r) \hat{j}_{l\left(\kappa_{j}\right)}\left(k^{d} r\right) h, \quad h \in \mathbb{C}^{1}, \tag{4.31}
\end{align*}
$$

and

$$
\begin{align*}
& M\left(k^{d}, A^{*} v^{1 / 2}\right)^{*}: \mathbb{C}^{1} \rightarrow L^{2}((0, \infty), d r), \\
& \left(M\left(k^{d}, A^{*} v^{1 / 2}\right)^{*} h\right)(r) \\
& =\frac{1}{\sqrt{\pi}}\left(k^{d}\right)^{-1 / 2}(i)^{l\left(\kappa_{j}\right)} v^{1 / 2}(r)\left(\frac{\kappa_{j}}{r} \hat{j}_{l\left(\kappa_{j}\right)}\left(k^{d} r\right)+k^{d} \hat{j}_{l\left(\kappa_{j}\right)}^{\prime}\left(k^{d} r\right)\right) h, \quad h \in \mathbb{C}^{1} . \tag{4.32}
\end{align*}
$$

The physical solutions $\psi_{\kappa_{j}, \pm}^{s}$ of the radial Schrödinger (Pauli) equation are defined by the Fredholm (resp. Lippmann-Schwinger) equation

$$
\begin{equation*}
v^{1 / 2} \psi_{\kappa_{j}, \pm}^{s}\left(k^{s}\right)=g_{2 \pm}(\lambda) v^{1 / 2} \hat{j}_{l\left(\kappa_{j}\right)}\left(k^{s}\right), \quad k^{s}=\sqrt{2 m \lambda}, \quad \lambda \in I_{ \pm 0} \tag{4.33}
\end{equation*}
$$

For the nonrelativistic limit $S_{\kappa_{j}}^{(0)}(\lambda)$ we obtain from (3.8)

$$
\begin{align*}
S_{\kappa_{j}}^{(0)}(\lambda) & =1-2 \pi i 2 m M\left(k^{s},|v|^{1 / 2}\right) g_{2+}(\lambda) M\left(k^{s}, v^{1 / 2}\right)^{*} \\
& =1-\frac{4 i m}{k^{s}}<|v|^{1 / 2} \hat{j}_{l\left(\kappa_{j}\right)}\left(k^{s}\right), v^{1 / 2} \psi_{\kappa_{j},+}^{s}\left(k^{s}\right)>, \quad \lambda \in I_{+0} . \tag{4.34}
\end{align*}
$$

Calculating the remaining terms on the right hand side of (3.9) yields

$$
\begin{align*}
& 2^{\text {nd }} \text { term } \\
& \frac{\left(k^{s}\right)^{2}}{2 i m}<|v|^{1 / 2} r \hat{j}_{l\left(\kappa_{j}\right)}\left(k^{s}\right), v^{1 / 2} \psi_{\kappa_{j},+}^{s}\left(k^{s}\right)>-\frac{k^{s}}{4 i m}<|v|^{1 / 2} \hat{j}_{l\left(\kappa_{j}\right)}\left(k^{s}\right), v^{1 / 2} \psi_{\kappa_{j},+}^{s}\left(k^{s}\right)>, \tag{4.35}\\
& 3^{r d} \operatorname{term} \\
& \quad-\frac{1}{i m k^{s}} \\
& \quad \times<|v|^{1 / 2}\left(\frac{\kappa_{j}}{r} \hat{j}_{l\left(\kappa_{j}\right)}\left(k^{s}\right)-k^{s} \hat{j}_{l\left(\kappa_{j}\right)}^{\prime}\left(k^{s}\right)\right), v^{1 / 2} A_{j, m_{j}, \kappa_{j}}\left(\hat{j}_{l\left(\kappa_{j}\right)}\left(k^{s}\right)-\psi_{\kappa_{j},+}^{s}\left(k^{s}\right)\right)>, \tag{4.36}\\
& (4.36) \\
& 4^{\text {th }} \text { term } \tag{4.37}\\
& \frac{1}{i m k^{s}}<|v|^{1 / 2}\left(\frac{\kappa_{j}}{r} \hat{j}_{l\left(\kappa_{j}\right)}\left(k^{s}\right)+k^{s} \hat{j}_{l\left(\kappa_{j}\right)}^{\prime}\left(k^{s}\right)\right), v^{1 / 2}\left(\frac{\kappa_{j}}{r} \hat{j}_{l\left(\kappa_{j}\right)}\left(k^{s}\right)+k^{s} \hat{j}_{l\left(\kappa_{j}\right)}^{\prime}\left(k^{s}\right)\right)>,
\end{align*}
$$

$5^{\text {th }}$ term
$\frac{\left(k^{s}\right)^{2}}{2 i m}<|v|^{1 / 2} \psi_{\kappa_{j},-}^{s}\left(k^{s}\right), v^{1 / 2} r \hat{j}_{l\left(\kappa_{j}\right)}\left(k^{s}\right)>-\frac{k^{s}}{4 i m}<|v|^{1 / 2} \hat{j}_{l\left(\kappa_{j}\right)}\left(k^{s}\right), v^{1 / 2} \psi_{\kappa_{j},+}^{s}\left(k^{s}\right)>$,
$6^{\text {th }}$ term
$-\frac{k^{s}}{i m}<|v|^{1 / 2}\left(\hat{j}_{l\left(\kappa_{j}\right)}\left(k^{s}\right)-\psi_{\kappa_{j},-}^{s}\left(k^{s}\right)\right), v^{1 / 2} \psi_{\kappa_{j},+}^{s}\left(k^{s}\right)>$ $-\frac{\left(k^{s}\right)^{3}}{2 i m^{2}}<|v|^{1 / 2} \psi_{\kappa_{j},-}^{s}\left(k^{s}\right),\left(v^{1 / 2}\left(H_{1}^{0}-\lambda-i 0\right)^{-2}|v|^{1 / 2}\right) v^{1 / 2} \psi_{\kappa_{j},+}^{s}\left(k^{s}\right)>$,
$7^{\text {th }}$ term
$\frac{1}{i m k^{s}}$
$\times<|v|^{1 / 2} A_{j, m_{j}, \kappa_{j}}\left(\hat{j}_{l\left(\kappa_{j}\right)}\left(k^{s}\right)-\psi_{\kappa_{j},-}^{s}\left(k^{s}\right)\right), v^{1 / 2} A_{j, m_{j}, \kappa_{j}}\left(\hat{j}_{l\left(\kappa_{j}\right)}\left(k^{s}\right)-\psi_{\kappa_{j},+}^{s}\left(k^{s}\right)\right)>$,
$8^{\text {th }}$ term

$$
\begin{equation*}
-\frac{1}{i m k^{s}}<|v|^{1 / 2} A_{j, m_{j}, \kappa_{j}}\left(\hat{j}_{l\left(\kappa_{j}\right)}\left(k^{s}\right)-\psi_{\kappa_{j},-}^{s}\left(k^{s}\right)\right), v^{1 / 2} A_{j, m_{j}, \kappa_{j}} \hat{j}_{l\left(\kappa_{j}\right)}\left(k^{s}\right)>. \tag{4.41}
\end{equation*}
$$

Summing up yields for the first order correction term in c^{-2} of the scattering matrix

$$
\begin{align*}
S_{\kappa_{j}}^{(1)}(\lambda) & =\frac{\left(k^{s}\right)^{4}}{8 m^{3}} \frac{d S_{\kappa_{j}}^{(0)}(\lambda)}{d \lambda}+\frac{k^{s}}{i m}<|v|^{1 / 2} \psi_{\kappa_{j},-}^{s}\left(k^{s}\right), v^{1 / 2} \psi_{\kappa_{j},+}^{s}\left(k^{s}\right)> \\
& +\frac{1}{i m k^{s}}<|v|^{1 / 2} A_{j, m_{j}, \kappa_{j}} \psi_{\kappa_{j},-}^{s}\left(k^{s}\right), v^{1 / 2} A_{j, m_{j}, \kappa_{j}} \psi_{\kappa_{j},+}^{s}\left(k^{s}\right)>, \quad \lambda \in I_{0} . \tag{4.42}
\end{align*}
$$

We summarize our results in
Theorem 4.3. Assume Assumptions 4.1 to be fulfilled. Then the partial wave scattering matrix $S_{\kappa_{j}}(\lambda, c)$ is holomorphic in c^{-2} and

$$
\begin{equation*}
S_{\kappa_{j}}(\lambda, c)=1-2 \pi i T(\lambda, c, Y) G_{2+}(\lambda, c) T(\lambda, c, Z)^{*}=\sum_{\ell=0}^{\infty} c^{-2 \ell} S_{\kappa_{j}}^{(\ell)}(\lambda) \tag{4.43}
\end{equation*}
$$

with

$$
\begin{equation*}
S_{\kappa_{j}}^{(0)}(\lambda)=1-\frac{4 i m}{k^{s}} \int_{0}^{\infty} d r \hat{j}_{l\left(\kappa_{j}\right)}\left(k^{s} r\right) v(r) \psi_{\kappa_{j},+}^{s}\left(k^{s} r\right), \quad \lambda \in I_{+0} \tag{4.44}
\end{equation*}
$$

the partial wave scattering matrix for the associated pair of Pauli operators $\left(H_{1}, H_{1}^{0}\right)$ (illustrating the nonrelativistic limit) and the explicit correction term of order c^{-2}

$$
\begin{align*}
S_{\kappa_{j}}^{(1)}(\lambda) & =\frac{\left(k^{s}\right)^{4}}{8 m^{3}} \frac{d S_{\kappa_{j}}^{(0)}(\lambda)}{d \lambda}+\frac{k^{s}}{i m} \int_{0}^{\infty} d r \psi_{\kappa_{j},-}^{s}\left(k^{s} r\right) v(r) \psi_{\kappa_{j},+}^{s}\left(k^{s} r\right) \\
& +\frac{1}{i m k^{s}} \int_{0}^{\infty} d r\left(A_{j, m_{j}, \kappa_{j}} \psi_{\kappa_{j},-}^{s}\right)\left(k^{s} r\right) v(r)\left(A_{j, m_{j}, \kappa_{j}} \psi_{\kappa_{j},+}^{s}\right)\left(k^{s} r\right), \quad \lambda \in I_{0} \tag{4.45}
\end{align*}
$$

Acknowledgements. We would like to thank F. Gesztesy and B. Thaller for numerous helpful discussions.

Appendix A. Holomorphy in c^{-2} of the Dirac resolvent operator

In this Appendix we recall the main theorem from [8] concerning the holomorphy of the Dirac resolvent operator with respect to c^{-2} near $c^{-2}=0$.

Theorem A.1. Let $H(c)$ be defined as in Section 2 and fix $z \in \mathbb{C} \backslash \mathbb{R}$. Then
(i) $\left(H(c)-m c^{2}-z\right)^{-1}$ is holomorphic with respect to c^{-1} around $c^{-1}=0$
$\left(H(c)-m c^{2}-z\right)^{-1}$

$$
\begin{align*}
= & \left(1+\left(\begin{array}{cc}
0 & (2 m c)^{-1}\left(H_{1}-z\right)^{-1} A^{*}\left(V_{2}-z\right) \\
(2 m c)^{-1} A\left(H_{1}^{0}-z\right)^{-1} V_{1} & \left(2 m c^{2}\right)^{-1} z\left(H_{2}^{0}-z\right)^{-1}\left(V_{2}-z\right)
\end{array}\right)\right)^{-1} \\
& \times\left(\begin{array}{cc}
\left(H_{1}-z\right)^{-1} & (2 m c)^{-1}\left(H_{1}-z\right)^{-1} A^{*} \\
(2 m c)^{-1} A\left(H_{1}^{0}-z\right)^{-1} & \left(2 m c^{2}\right)^{-1} z\left(H_{2}^{0}-z\right)^{-1}
\end{array}\right) . \tag{A.1}
\end{align*}
$$

(ii) $B(c)\left(H(c)-m c^{2}-z\right)^{-1} B(c)^{-1}$ is holomorphic with respect to c^{-2} around $c^{-2}=$ 0 and

$$
\begin{align*}
& B(c)\left(H(c)-m c^{2}-z\right)^{-1} B(c)^{-1} \\
& =\left(1+\left(\begin{array}{cc}
0 & \left(2 m c^{2}\right)^{-1}\left(H_{1}-z\right)^{-1} A^{*}\left(V_{2}-z\right) \\
0 & \left(2 m c^{2}\right)^{-1}\left((2 m)^{-1} A\left(H_{1}-z\right)^{-1} A^{*}-1\right)\left(V_{2}-z\right)
\end{array}\right)\right)^{-1} \\
& \times\left(\begin{array}{cc}
\left(H_{1}-z\right)^{-1} & \left(2 m c^{2}\right)^{-1}\left(H_{1}-z\right)^{-1} A^{*} \\
(2 m)^{-1} A\left(H_{1}-z\right)^{-1} & \left(2 m c^{2}\right)^{-1}\left((2 m)^{-1} A\left(H_{1}-z\right)^{-1} A^{*}-1\right)
\end{array}\right) . \tag{A.2}
\end{align*}
$$

First order expansions in (A.1) and (A.2) yield

$$
\left(H(c)-m c^{2}-z\right)^{-1}=\left(\begin{array}{cc}
\left(H_{1}-z\right)^{-1} & 0 \\
0 & 0
\end{array}\right)
$$

$$
+c^{-1}\left(\begin{array}{cc}
0 & (2 m)^{-1}\left(H_{1}-z\right)^{-1} A^{*} \tag{A.3}\\
(2 m)^{-1} A\left(H_{1}-z\right)^{-1} & 0
\end{array}\right)+O\left(c^{-2}\right)
$$

(clearly illustrating the nonrelativistic limit $|c| \rightarrow \infty$) and

$$
\begin{align*}
& B(c) \\
& \quad=\left(H(c)-m c^{2}-z\right)^{-1} B(c)^{-1} \tag{A.4}\\
& \quad=\left(\begin{array}{cc}
\left(H_{1}-z\right)^{-1} & 0 \\
(2 m)^{-1} A\left(H_{1}-z\right)^{-1} & 0
\end{array}\right)+c^{-2}\left(\begin{array}{ll}
R_{11}(z) & R_{12}(z) \\
R_{21}(z) & R_{22}(z)
\end{array}\right)+O\left(c^{-4}\right)
\end{align*}
$$

where

$$
\begin{align*}
& R_{11}(z)=(2 m)^{-2}\left(H_{1}-z\right)^{-1} A^{*}\left(z-V_{2}\right) A\left(H_{1}-z\right)^{-1}, \\
& R_{12}(z)=(2 m)^{-1}\left(H_{1}-z\right)^{-1} A^{*}, \\
& R_{21}(z)=(2 m)^{-2}\left((2 m)^{-1} A\left(H_{1}-z\right)^{-1} A^{*}-1\right)\left(z-V_{2}\right) A\left(H_{1}-z\right)^{-1}, \\
& R_{22}(z)=(2 m)^{-1}\left((2 m)^{-1} A\left(H_{1}-z\right)^{-1} A^{*}-1\right) . \tag{A.5}
\end{align*}
$$

Remark A.2. The holomorphy of the free Dirac resolvent can be easily derived from

$$
\begin{align*}
H^{0}(c) & =\left(\begin{array}{cc}
m c^{2} & c A^{*} \\
c A & -m c^{2}
\end{array}\right), \\
\left(H^{0}(c)\right)^{2} & =\left(\begin{array}{cc}
c^{2} A^{*} A+m^{2} c^{4} & 0 \\
0 & c^{2} A A^{*}+m^{2} c^{4}
\end{array}\right), \tag{A.6}
\end{align*}
$$

and

$$
\begin{aligned}
\left(H^{0}(c)-z\right)^{-1} & =\left(H^{0}(c)+z\right)\left(H^{0}(c)+z\right)^{-1}\left(H^{0}(c)-z\right)^{-1} \\
& =\left(H^{0}(c)+z\right)\left(\left(H^{0}(c)\right)^{2}-z^{2}\right)^{-1}
\end{aligned}
$$

References

[1] W. O. Amrein, J. M. Jauch, K. B. Sinha, "Scattering theory in quantum mechanics", W. A. Benjamin, Inc., Massachusetts (1977).
[2] H. Baumgärtel, M. Wollenberg, "Mathematical Scattering Theory", Birkhäuser, Basel (1984).
[3] A. M. Berthier, "Spectral theory and wave operators for the Schrödinger equation", Pitman, Boston (1982).
[4] W. Bulla, F. Gesztesy, K. Unterkofler, On relativistic energy band corrections in the presence of periodic potentials, Lett. Math. Phys., 15 (1988), 313-324.
[5] W. Bulla, F. Gesztesy, K. Unterkofler, Holomorphy of the Scattering Matrix with Respect to c^{-2} for Dirac Operators and an Explicit Treatment of Relativistic Corrections, Commun. Math. Phys. 144 (1992), 391-416.
[6] R. J. Cirincione, P. R. Chernoff, Dirac and Klein-Gordon Equations Convergence of solutions in the nonrelativistic limit, Commun. Math. Phys., 79 (1981), 33-46.
[7] K. J. Eckardt, Scattering Theory for Dirac Operators, Math. Z., 139 (1974), 105-131.
[8] F. Gesztesy, H. Grosse, B. Thaller, A rigorous approach to relativistic corrections of bound state energies for spin-1/2 particles, Ann. Inst. Henri Poincare, A 40 (1984), 159-174.
[9] F. Gesztesy, H. Grosse, B. Thaller, An efficient method for calculating relativistic corrections for spin-1/2 particles, Phys. Rev. Lett., 50 (1983), 625-628.
[10] D. R. Grigore, G. Nenciu, R. Purice, On the nonrelativistic limit of the Dirac Hamiltonian, Ann. Inst. Henri Poincare, A 51 (1989), 231-263.
[11] J. C. Guillot, G. Schmidt, Spectral and Scattering Theory for Dirac Operators, Arch. Rational Mech. Anal., 55 (1974), 193-206.
[12] W. Hunziker, On the nonrelativistic limit of the Dirac theory, Commun. Math. Phys., 40 (1975), 215-222.
[13] T. Kato, "Perturbation Theory for Linear Operators", 2nd ed., Springer-Verlag, New York, Berlin (1980).
[14] T. Kato, Holomorphic families of Dirac operators, Math. Z., 183 (1983), 399-406.
[15] M. Klaus, R. Wüst, Spectral Properties of Dirac Operators with Singular Potentials, J. Math. Anal. Appl., 72 (1979), 206-214.
[16] S. T. Kuroda, Scattering theory for differential operators I, J. Math. Soc. Japan, 25 (1973), 75-104.
[17] S. T. Kuroda, Scattering theory for differential operators II, J. Math. Soc. Japan, 25 (1973), 222-234.
[18] S. T. Kuroda, An Introduction to Scattering Theory, Lecture Notes Series No. 51, Aarhus University, Denmark (1978).
[19] B. Najman, Scattering for the Dirac Operator, Glasnik Matematički, 11 (1976), 63-80.
[20] G. Nenciu, Eigenfunction Expansion for Schrödinger and Dirac Operators with singular Potentials, Commun. Math. Phys., 42 (1975), 221-229.
[21] K. R. Parthasaraty, On the exact bound of the Coulomb potential with respect to the Dirac operator, Lett. Math. Phys., 2 (1978), 413-415.
[22] R. T. Prosser, Relativistic Potential Scattering, J. Math. Phys., 4 (1963), 1048-1054.
[23] M. Reed, B. Simon, "Methods of modern mathematical physics", Vol. III Scattering theory, Academic Press, New York (1979).
[24] S. N. M. Ruijsenaars, P. J. M. Bongaarts, Scattering theory for one-dimensional step potentials, Ann. Inst. H. Poincare, A 26 (1977), 1-17.
[25] U. W. Schmincke, Distinguished self adjoint extensions of Dirac operators. Math. Z., 129 (1972), 335-349.
[26] A. Y. Schoene, On the nonrelativistic limits of the Klein-Gordon and Dirac Equations. J. Math. Anal. Appl., 71 (1979), 36-47.
[27] G. L. Sewell, An appropriate relation between the energy levels of a particle in a field of given potential energy, calculated in the relativistic and non-relativistic theories, Proc. Cambridge Phil. Soc., 45 (1949), 631-637.
[28] B. Thaller, "The Dirac equation", Texts and Monographs in Physics, Springer 1992.
[29] M. Thompson, Eigenfunction Expansion and the Associated Scattering Theory for Potential Perturbations of the Dirac Equation, Quart. J. Math. Oxford (2), 23 (1972), 17-55.
[30] E. C. Titchmarsh, On the relation between the eigenvalues in relativistic and non-relativistic quantum mechanics, Proc. Roy. Soc., A 266 (1962), 33-46.
[31] K. Veselić, Perturbation of pseudoresolvents and analyticity in $1 / c$ of relativistic quantum mechanics, Commun. Math. Phys., 22 (1971), 27-43.
[32] K. Veselić, J. Weidmann, Existenz der Wellenoperatoren für eine allgemeine Klasse von Operatoren, Math. Z., 134 (1973), 255-274.
[33] J. Weidmann, "Linear Operators in Hilbert Spaces", Springer-Verlag, New York/Berlin (1980).
[34] K. Yajima, Nonrelativistic limit of the Dirac theory, scattering theory, J. Fac. Sci. Univ. Tokyo IA, 23 (1976), 517-523.
[35] O. Yamada, Eigenfunction Expansion and Scattering Theory for Dirac Operators, Publ. Res. Inst. Math. Sci., 11 (1976), 651-689.

Institute for Theoretical Physics, Technical University of Graz, A-8010 Graz, Austria
E-mail address: karl@itp.tu-graz.ac.at
URL: http://fampm201.tu-graz.ac.at

[^0]: 1991 Mathematics Subject Classification. Primary 47A40, 34L25; Secondary 81U20 .

