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Abstract. We use the framework for the nonrelativistic limit of scattering
theory for abstract Dirac operators developed in [5] to prove holomorphy of the
scattering matrix at fixed energy with respect to c−2 for Dirac operators with
spherically symmetric potentials. Relativistic corrections of order c−2 to the
nonrelativistic limit partial wave scattering matrix are explicitly determined.

1. Introduction

Historically (see, e.g., [28]), the first rigorous treatment of the nonrelativistic limit
of Dirac Hamiltonians goes back to Titchmarsh [30] who proved holomorphy of
the Dirac eigenvalues (rest energy subtracted) with respect to c−2 for spherically
symmetric potentials and obtained explicit formulas for relativistic bound state
corrections of order O(c−2), formally derived in [27]. Holomorphy of the Dirac
resolvent in three dimensions in c−1 for electrostatic interactions were first obtained
by Veselic [31] and then extended to electromagnetic interactions by Hunziker [12].
An entirely different approach, based on an abstract set up, has been used in [6] to
prove strong convergence of the unitary groups as c−1 → 0. Employing this abstract
framework, holomorphy of the Dirac resolvent in c−1 under general conditions on
the electromagnetic interaction potentials has been obtained in [8], [9]. Moreover,
this approach led to the first rigorous derivation of explicit formulas for relativistic
corrections of order O(c−2) to bound state energies. Relativistic corrections for
energy bands and corresponding corrections for impurity bound states for one-
dimensional periodic systems were treated in [4]. Convergence of solutions of the
Dirac equation based on semi group methods have also been obtained in [26].

Much less activity has been devoted to the nonrelativistic limit of the Dirac scat-
tering theory. The proof of strong convergence of wave and scattering operators
as c−1 → 0 was given in [32] and [34]. A treatment of the scattering amplitude
based on a different approach was given in [10]. The proof of holomorphy of the
scattering matrix at fixed energy with respect to c−2 for abstract Dirac operators
is established in [5] and explicit formulas for the correction term of order c−2 of the
scattering matrix in terms of nonrelativistic scattering quantities are given.

In Section 2, following the abstract approach of [6] to Dirac operators, we review
some of the basic results of [16] on abstract scattering theory. In Section 3 we
recall the main results of [5] on the holomorphy of the scattering matrix at fixed
energy with respect to c−2 for abstract Dirac operators and the explicit formula
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for the correction term of order c−2 of the scattering matrix in terms of nonrela-
tivistic scattering quantities. In Section 4 we apply this abstract theory to Dirac
operators with spherically symmetric potentials and obtain an explicit formula for
the correction term of order c−2 of the partial wave scattering matrix. Finally in
Appendix A we summarize the main results of [8] concerning the holomorphy of
the Dirac resolvent operator with respect to c−2 near c−2 = 0.

2. The Abstract Approach

In this section we define the Dirac operator based on the abstract approach of [6].
Then we summarize some of the results on abstract scattering theory obtained by
Kuroda [16] which are most relevant to understand the general formula for the
scattering matrix in the next sections. For additional material on scattering theory
in the present context we refer to [5] and the references therein, e.g., [1], [2], [3],
[7], [11], [14], [17], [18], [19], [22], [23], [24], [29], [35].

Let Hj , j = 1, 2 be separable, complex Hilbert spaces and introduce self-adjoint
operators α, β in H = H1 ⊕ H2 of the type

α =
(

0 A∗

A 0

)
, β =

(
1 0
0 −1

)
, (2.1)

where A is a densely defined, closed operator from H1 into H2. Next, we introduce
the abstract free Dirac operator H0(c) by

H0(c) = cα + mc2β, D(H0(c)) = D(α), c ∈ R \ {0}, m > 0 (2.2)

and the interaction V by

V =
(

V1 0
0 V2

)
, (2.3)

where Vj denotes self-adjoint operators in Hj , j = 1, 2. Assuming V1 (respectively
V2) to be bounded with respect to A (respectively A∗), i.e.,

D(A) ⊆ D(V1), D(A∗) ⊆ D(V2),

the abstract Dirac operator H(c) reads

H(c) = H0(c) + V, D(H(c)) = D(α). (2.4)

Obviously H(c) is self-adjoint for |c| large enough. The corresponding self-adjoint
(free) Pauli operators in Hj , j = 1, 2 are then defined by

H0
1 =

1
2m

A∗A, H1 = H0
1 + V1, D(H1) = D(A∗A), (2.5)

H0
2 =

1
2m

AA∗, H2 = H0
2 + V2, D(H2) = D(AA∗). (2.6)

Following the usual convention we now subtract the rest energy mc2 from H0(c)
(similarly one could add the rest energy) and define

Ĥ1 = H0(c) − mc2, Ĥ2 = H(c) − mc2. (2.7)

We introduce the following factorization of V

Vj = v
1/2
j |vj |1/2, j = 1, 2, (2.8)
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where

v
1/2
j = Uj |Vj |1/2, |vj |1/2 = |Vj |1/2, j = 1, 2 (2.9)

with Vj = Uj |Vj | the polar decomposition of Vj . Furthermore,

Y = B(c)−1

(
|v1|1/2 0

0 |v2|1/2

)
=

(
|v1|1/2 0

0 1
c |v2|1/2

)
, (2.10)

Z = B(c)

(
v
1/2
1 0
0 v

1/2
2

)
=

(
v
1/2
1 0
0 cv

1/2
2

)
, B(c) =

(
1 0
0 c

)
, (2.11)

Rj(z) = (Ĥj − z)−1, z ∈ ρ(Ĥj) j = 1, 2. (2.12)

Remark 2.1. The operator B(c) was introduced in [12].

The following assumptions 2.2–2.4 and 2.6–2.9 are basic in the approach of [16].

Assumption 2.2. Y and Z are closed operators from H to another Hilbert space
K = K1 ⊕ K2 with D(Ĥ1) ⊆ D(Y ) and D(Ĥ1) ⊆ D(Z).

This implies that Y R1(z), ZR1(z) ∈ B(H,K) (see, e.g., [1], [13]). Here B(H,K)
denotes the set of bounded operators from H → K and B∞(H,K) the set of compact
operators from H → K. The set of bounded (compact) operators on a Hilbert space
X we denote by B(X) (B∞(X)).

Assumption 2.3. ZR1(z)Y ∗ is closable and the closure of ZR1(z)Y ∗ ∈ B(K) for
one (or equivalently for all) z ∈ ρ(Ĥ1)

Q1(z, c) =
[
ZR1(z)Y ∗](a)

, G1(z, c) = 1 + Q1(z, c), (2.13)

where (a) denotes the closure.

Assumption 2.4. Let z ∈ ρ(Ĥ1) ∩ ρ(Ĥ2). Then G1(z, c)−1 ∈ B(K) and

R2(z) = R1(z) −
[
R1(z)Y ∗]a

G1(z)−1ZR1(z). (2.14)

Thus propositions 2.6 and 2.7 in [16] hold. Define

Q2(z, c) =
[
ZR2(z)Y ∗](a)

, G2(z, c) = 1 − Q2(z, c), z ∈ ρ(Ĥ2). (2.15)

Then

G2(z, c) = G1(z, c)−1, z ∈ ρ(Ĥ2). (2.16)

Remark 2.5. From our assumptions on H0(c) and V we infer that

(i) V 1/2 is Ĥ0(c) bounded with bound 0 and hence Assumption 2.2 is fulfilled.
(ii) V 1/2 is Ĥ0(c)1/2 bounded implying that Assumption 2.3 is fulfilled.
(iii) The second resolvent equation yields

(1 +
[
ZR1(z)Y ∗](a))(1 −

[
ZR2(z)Y ∗](a)) = 1,

(1 −
[
ZR2(z)Y ∗](a))(1 +

[
ZR1(z)Y ∗](a)) = 1 (2.17)

(see, e.g., [1]) and thus Assumption 2.4 is fulfilled.
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Next let Ej denote the spectral measures associated with Ĥj , j = 1, 2.

Assumption 2.6. There exists a Hilbert space C, a non-empty open set I ⊆ R,
and a unitary operator F from E1(I)H onto L2(I;C) such that for every Borel set
I ′ ⊆ I one has FE1(I ′)F−1 = χI′ , where χI′ denotes the operator of multiplication
by the characteristic function of I ′.

Assumption 2.7. There exist B(K,C)-valued functions T (λ, c, Y ) and T (λ, c, Z),
λ ∈ I, such that

(i) T (·, c, Y ) and T (·, c, Z) are locally Hölder continuous in I with respect to the
operator norm.

(ii) There exist dense subsets D ⊆ D(Y ∗) and D′ ⊆ D(Z∗) such that for any u ∈ D
and v ∈ D′ one infers for a. e. λ ∈ I

T (λ, c, Y )u = (FE1(I)Y ∗u)(λ), T (λ, c, Z)v = (FE1(I)Z∗v)(λ). (2.18)

Assumption 2.8. For one (or equivalently all) z ∈ ρ(Ĥ1) either Y R1(z) ∈ B∞(H,K)
or ZR1(z) ∈ B∞(H,K).

Assumption 2.9. The subspace generated by {Ej(I ′)Y ∗u | u ∈ D(Y ∗), I ′ ⊆ I a
Borel set } is dense in Ej(I)H, j = 1, 2.

Remark 2.10. [16] Since H is separable, Assumption 2.6 is equivalent to assuming
that Ĥ1 has absolutely continuous spectrum in I with constant multiplicity. More-
over, C is determined uniquely up to unitary equivalence and F is uniquely deter-
mined up to unitary equivalence with decomposable, unitary operators on L2(I;C).

Since these assumptions are identical with the ones in [16] we have all the results
of ([16] §3, §4) at our disposal, e.g., the norm limits

G1±(λ, c) = n − lim
ε↓0

G1(λ ± iε, c), Q1±(λ, c) = n − lim
ε↓0

Q1(λ ± iε, c) (2.19)

exist (see [16] Theorem 3.9) and introducing

e±(c) = {λ ∈ I | G1±(λ, c) is not one to one }, e(c) = e+(c) ∪ e−(c) (2.20)

(e(c) is a closed set of Lebesgue measure zero [16]) we get for λ ∈ I \ e±(c) the
existence of the boundary values

G2±(λ, c) = n − lim
ε↓0

G2(λ ± iε, c) (2.21)

and

G2±(λ, c) = G1±(λ, c)−1 (2.22)

(see [16] Theorem 3.10).

Also Theorems 3.11–3.13 and 6.3 of [16] are valid. In particular, we obtain for the
fibers of the scattering operator

Theorem 2.11. [16] For λ ∈ I \ e(c) the scattering matrix S(λ, c) in C associated
with the pair (Ĥ2, Ĥ1) is given by

S(λ, c) = 1 − 2πiT (λ, c, Y )G2+(λ, c)T (λ, c, Z)∗. (2.23)

S(·, c) is unitary in C and locally Hölder continuous on I \ e(c) with respect to the
norm in B(C).
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3. Holomorphy of the scattering matrix in c−2 and relativistic
corrections

In this section we recall the results obtained in [5] on holomorphy of the abstract
scattering matrix with respect to c−2. Moreover, explicitly corrections of the scat-
tering matrix of order c−2 in terms of nonrelativistic scattering quantities are given
in Theorem 3.3.

Let I ⊆ R
+ = (0,∞) and define

I±0 = {λ | λ ∈ I \ e±(c−2 = 0)}, I0 = I+0 ∩ I−0. (3.1)

In addition we strengthen Assumptions 2.3 and 2.7 by introducing

Assumption 3.1. (i) For λ ∈ I, T (λ, c, Y ) and T (λ, c, Z) are holomorphic in c−2

around c−2 = 0 and

(ii) for λ ∈ I+0

Q1+(λ, c) = lim
ε↓0

Q1+(λ + iε, c) (3.2)

is holomorphic in c−2 around c−2 = 0.

Remark 3.2. For later purposes we note that Assumption 3.1 (ii) implies that

v
1/2
1 (H0

1 − λ − i0)−2|v1|1/2 =
d

dλ
v
1/2
1 (H0

1 − λ − i0)−1|v1|1/2. (3.3)

We define

g2(z) = (1 + v
1/2
1 (H0

1 − z)−1|v1|1/2)−1, z = λ + iε, ε > 0,

g2±(λ) = lim
ε↓0

g2(λ ± iε). (3.4)

By Assumption 2.6 , α2 and hence A∗A,AA∗ are absolutely continuous in Ĩ2 with
constant multiplicity.

Now we consider the analogs U0,M of F and T when A∗A replaces Ĥ1.

Let U0 be the unitary operator that diagonalizes A∗A on Ĩ2. For h ∈ E0(Ĩ2)H1

(where E0(·) denotes the spectral measure for A∗A) U0 yields

U0E0(Ĩ2)H1 → L2(Ĩ2, dµ;C), (U0A
∗Ah)(µ) = µ(U0h)(µ), µ ∈ Ĩ2. (3.5)

In addition we need the operator M(k,D) : D(D) → C, where D : D(D) →
H1, D(D) ⊆ K1 or K2, D closed

M(k,D)h = (U0E0(Ĩ2)Dh)(k2), h ∈ D(D), k =
√

µ, for a. e. k ∈ Ĩ . (3.6)

In concrete applications the closure of M(k,D) will be a Hilbert-Schmidt operator.
This closure is then denoted by M(k,D), too.

We can now state the following result for the fibers of the scattering operator.

Theorem 3.3. Assume Assumptions 2.2–2.4, 2.6–2.9 and 3.1 to be fulfilled. Then
for λ ∈ I0, the scattering matrix S(λ, c) associated with the pair (H(c)−mc2, H0(c)−
mc2) is holomorphic in c−2 around c−2 = 0 and we get the following expansion

S(λ, c) = 1 − 2πiT (λ, c, Y )G2+(λ, c)T (λ, c, Z)∗ =
∞∑

j=0

c−2jS(j)(λ). (3.7)
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with

S(0)(λ) = 1 − 2πi
(

2mM(ks, |v1|1/2)g2+(λ)M(ks, v
1/2
1 )∗

)
, λ ∈ I0, ks =

√
2mλ

(3.8)

the scattering matrix for the associated pair of Pauli operators (H1, H
0
1 ) (illustrating

the nonrelativistic limit) and the explicit correction term of order c−2

S(1)(λ) =
(ks)2

4m2
(S(0)(λ) − 1) − 2πi

{
(ks)3

4m
M ′(ks, |v1|1/2)g2+(λ)M(ks, v

1/2
1 )∗

− 1
2m

M(ks, A∗|v2|1/2)
(
v
1/2
2 A(H0

1 − λ − i0)−1|v1|1/2
)
g2+(λ)M(ks, v

1/2
1 )∗

+
1

2m
M(ks, A∗|v2|1/2)M(ks, A∗v1/2

2 )∗ +
(ks)3

4m
M(ks, |v1|1/2)g2+(λ)M ′(ks, v

1/2
1 )∗

− (ks)2

(2m)2
M(ks, |v1|1/2)g2+(λ)

(
v
1/2
1 (H0

1 − λ − i0)−1A∗A(H0
1 − λ − i0)−1|v1|1/2

)

× g2+(λ)M(ks, v
1/2
1 )∗ +

1
2m

M(ks, |v1|1/2)g2+(λ)
(
v
1/2
1 (H0

1 − λ − i0)−1A∗|v2|1/2
)

×
(
v
1/2
2 A(H0

1 − λ − i0)−1|v1|1/2
)
g2+(λ)M(ks, v

1/2
1 )∗

− 1
2m

M(ks, |v1|1/2)g2+(λ)
(
v
1/2
1 (H0

1 − λ − i0)−1A∗|v2|1/2
)
M(ks, A∗v1/2

2 )∗
}

,

λ ∈ I0, (3.9)

where (′) denotes the derivative with respect to ks.

4. The Dirac operator in L2(R3)4 with a spherically symmetric
potential

We apply the abstract theory developed in previous chapters now to concrete Dirac
operators in L2(R3)4 with spherically symmetric potentials. The free Dirac operator
H0,D(c) in L2(R3)4 is defined by

H0,D(c) = cα p + β mc2, m, c > 0, D(H0,D(c)) = H2,1(R3)4, (4.1)

where

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

α
 =
(

0 σ


σ
 0

)
, , = 1, 2, 3, β =

(
1 0
0 −1

)
,

σ = (σ1, σ2, σ3), α = (α1, α2, α3), p = −i∇, D(p) = H2,1(R3). (4.2)

Let V be the maximal operator of multiplication with the real-valued function
v = v(r), where r = |x| = (x2

1 + x2
2 + x2

3)
1/2.

Assumption 4.1. Assume that V fulfills∫ ∞

0

dreαr|v(r)| < ∞, α > 0. (4.3)
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The Dirac operator HD(c) in L2(R3)4 is now defined as

HD(c) = H0,D(c) + V, D(HD(c)) = D(H0,D(c)). (4.4)

Remark 4.2. Our Assumption 4.1 does not include Coulomb-like singularities since
these are strongly singular with respect to the Dirac operator (cf. [15], [21], [25],
[33]).

Furthermore we recall the definition of the “angular momentum operators” (cf. [28],
p. 8)

S = − i

4
α ∧ α spin angular momentum,

L = x ∧ p orbital angular momentum,

J = L + S total angular momentum.

Since the potential V is spherically symmetric the symmetry induced by invariance
under rotations allows the so called “partial wave” expansion. This expresses the
conservation of total angular momentum J . The Hilbert space is decomposed in
the following way (cf. [28], p. 122 ff.), where the operators J2, J3, and K (K =
β(2SL + 1) is the relativistic analog of the spin-orbit coupling) are diagonal with
quantum numbers j(j +1),mj , and −κj . To achieve this goal we first we introduce
polar coordinates in L2(R3)4 and then the unitary transformation U

U : (Uf)(r) = rf(r),

L2(R3 \ {0})4 → L2
(
(0,∞), r2dr;L2(S2)4

)
→ L2

(
(0,∞), dr;L2(S2)4

)
, (4.5)

i.e., for every Ψ in L2(R3) we write

ψ(r, ϑ, ϕ) = r Ψ(x1(r, ϑ, ϕ), x2(r, ϑ, ϕ), x3(r, ϑ, ϕ)). (4.6)

Define the vectors Ψmj

j±1/2 by

Ψmj

j−1/2(ϑ, ϕ) =
1√
2j

( √
j + mj Y

mj−1/2

j−1/2 (ϑ, ϕ)√
j − mj Y

mj+1/2

j−1/2 (ϑ, ϕ)

)
, (4.7)

Ψmj

j+1/2(ϑ, ϕ) =
1√

2j + 2

( √
j + 1 − mj Y

mj−1/2

j+1/2 (ϑ, ϕ)

−
√

j + 1 + mj Y
mj+1/2

j+1/2 (ϑ, ϕ)

)
, (4.8)

where Y m
l are the usual spherical harmonics. Then the vectors Φj,mj ,κj in L2(S2)4

defined by

Φ+
j,mj ,∓(j+1/2)(ϑ, ϕ) =

(
iΨmj

j∓1/2(ϑ, ϕ)
0

)
,

Φ−
j,mj ,∓(j+1/2)(ϑ, ϕ) =

(
0

Ψmj

j±1/2(ϑ, ϕ)

)
, (4.9)

Φj,mj ,κj
(ϑ, ϕ) = c+Φ+

j,mj ,κj
(ϑ, ϕ) + c−Φ−

j,mj ,κj
(ϑ, ϕ), c+, c− ∈ C

are eigenvectors of J2, J3, K with eigenvalues j(j +1),mj , and −κj . These vectors
form a complete orthonormal set in L2(S2)4.



8 K. UNTERKOFLER

The Hilbert space L2(S2)4 is the orthogonal direct sum of the two dimensional
Hilbert spaces Nj,mj ,κj

which are spanned by the vectors Φ±
j,mj ,κj

L2(S2)4 =
∞⊕

j= 1
2 , 3

2 ,...

j⊕
mj=−j

⊕
κj=∓(j+ 1

2 )

Nj,mj ,κj . (4.10)

This decomposition of the angular Hilbert space implies a similar decomposition of
the Hilbert space L2(R3)4. Each “partial wave subspace” L2((0,∞), dr)⊗Nj,mj ,κj

is
isomorphic to L2((0,∞), dr)2 if we choose the basis {Φ+

j,mj ,κj
,Φ−

j,mj ,κj
} in Nj,mj ,κj

.

The full free Dirac operator H0,D(c) in L2(R3)4 is unitarily equivalent to the direct
sum of the “partial wave” Dirac operators h0

j,mj ,κj
(c)

H0,D(c) ∼=
∞⊕

j= 1
2 , 3

2 ,...

j⊕
mj=−j

⊕
κj=∓(j+ 1

2 )

h0
j,mj ,κj

(c), (4.11)

where the free “partial wave” Dirac operator H0(c) in L2((0,∞), dr)2 now reads

H0(c) = h0
j,mj ,κj

(c) =


 mc2 cA∗

j,mj ,κj

cAj,mj ,κj −mc2


 . (4.12)

Here Aj,mj ,κj
is the closure of Ȧj,mj ,κj

, where

Ȧj,mj ,κj
=

d

dr
+

κj

r
, D(Ȧj,mj ,κj

) = C∞
0 ((0,∞)),

κj = ∓(j +
1
2
), 2j = 1, 3, 5, . . . , mj = −j,−j + 1, . . . , j. (4.13)

The “partial wave” Dirac operator H(c) in L2((0,∞), dr)2 is now defined as

H(c) = H0(c) + V = hj,mj ,κj (c) =


 mc2 + v(r) cA∗

j,mj ,κj

cAj,mj ,κj
−mc2 + v(r)


 ,

D(H(c)) = D(H0(c)). (4.14)

Subtracting the rest energy according to (2.7) we therefore identify

H1 = H2 = K1 = K2 = L2((0,∞), dr), I±0 = R
+ \ e±(c−2 = 0), C = C

1, (4.15)

V1 = V2 = V, V = v1/2|v|1/2, v1/2 = |v|1/2 sgn(v), (4.16)

Y = Y ∗ = B(c)−1|v|1/2, Z = Z∗ = v1/2B(c). (4.17)

Clearly Assumptions 2.2–2.4, 2.6–2.8 are satisfied. Assumption 2.9 can be dealt
with in exactly the same way as in [5] Section 5.1. It remains to verify Assumption
3.1.

(i) Holomorphy of Q1+(λ, c), λ ∈ I+0. Let A
 = d
dr + 


r . Then the kernel
gl,±(λ)(r, r′) of (A∗

l Al − λ ∓ i0)−1 reads

gl,±(λ)(r, r′) =
1√
λ

ĵl(
√

λr<)ĥ±
l (

√
λr>), l = 0, 1, 2, ..., (4.18)
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where r> = max(r, r′), r< = min(r, r′) and ĵl, ĥ
±
l are the Riccati-Bessel and Riccati-

Hankel functions (cf. [1], p. 496 ff. and p. 481).

Thus we obtain for the kernel q(r, r′, λ, c) of

Q1+(λ, c) = v1/2B(c)(h0
j,mj ,κj

(c) − mc2 − λ − i0)−1B(c)−1|v|1/2 (4.19)

q(r, r′, λ, c) = v(r)1/2




1 + λ
2mc2

1
2mc2

(
− d

dr + κj

r

)
1

2m

(
d
dr + κj

r

)
λ

2mc2







2m
kd ĵl(κj)(k

dr<)ĥ+
l(κj)

(kdr>) 0

0 2m
kd ĵl(κj−1)(kdr<)ĥ+

l(κj−1)(k
dr>)


 |v(r′)|1/2,

l(κj) = |κj | +
1
2
(sgn(κj) − 1), (4.20)

λ ∈ I+0, kd(λ, c) = ks(1 +
λ

2mc2
)1/2, ks =

√
2mλ.

Define the compact set M ⊂ C

M =
{
c−2 ∈ C

∣∣∣ |c−2| ≤ |c−2
0 | < 2m

λ
and 2|Imkd(λ, c)| ≤ ks λ

m|c2
0|

≤ α
}
. (4.21)

Using

|kd| ≤ ks(1 +
λ

2m|c2
0|

)1/2 (4.22)

and a matrix norm in C
2 we get for c−2 ∈ M∫

||q(r, r′, λ, c)||dr ≤ c1 < ∞ and
∫

||q(r, r′, λ, c)||dr′ ≤ c2 < ∞, c1, c2 ∈ R.

(4.23)

For c−2 ∈ M and fixed λ we have a family of uniformly bounded operators (us-
ing [33], Theorem 6.24 “Folgerung” 4). Since the integral kernel q(r, r′, λ, c) is a
holomorphic function of c−2 around c−2 = 0, we obtain holomorphy of Q1+(λ, c).

(ii) Holomorphy of T (λ, c, Y ), λ > 0.

The integral kernel t(r, λ, c) of T (λ, c, Y ) : L2((0,∞))2 → C
1 is given by

t(r, λ, c) =
√

1
ck0

1√
π

(−i)l(κj)|v(r)|1/2

×
(

ĵl(κj)(k
dr) k0

ckd

κj

r ĵl(κj)(k
dr) + k0

c ĵ′l(κj)
(kdr)

)
,

kd =

√
2mλ(1 +

λ

2mc2
), k0 =

√
λ

λ + 2mc2
, λ > 0. (4.24)

For λ ∈ I we obtain

||t(r, λ, c)|| ≤ c3(λ, α)|v(r)|1/2e
α
2 r, c3 ∈ R. (4.25)

For c−2 ∈ M this is a family of uniformly bounded Hilbert Schmidt operators (since
the right hand side of (4.25) is in L2((0,∞), dr)) with integral kernel holomorphic
in c−2 and therefore T (λ, c, Y ) is holomorphic in c−2 around c−2 = 0.
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The holomorphy of T (λ, c, Z)∗ follows similarly.

Thus we have shown that all assumptions are fulfilled which guaranty the holo-
morphy of the scattering matrix in c−2. It remains to calculate the relativistic
correction terms.

The operator Uj,mj ,κj that diagonalizes the radial Pauli operator

A∗
j,mj ,κj

Aj,mj ,κj
= − d2

dr2
+

κj(κj + 1)
r2

(4.26)

is given by Uj,mj ,κj
: L2((0,∞), dr) → L2((0,∞), dµ)

(Uj,mj ,κj f)(µ) =
µ−1/4

√
π

(−i)l(κj)

∫ ∞

0

drĵl(κj)(
√

µr)f(r), (4.27)

where ĵl(x) denote the Riccati-Bessel functions and the integral is to be taken in
the sense ∫ ∞

0

drĵl(κj)(
√

µr)f(r) = s − lim
R→∞

∫ R

0

drĵl(κj)(
√

µr)f(r). (4.28)

Thus we get

M(kd, |v|1/2) : L2((0,∞), dr) → C
1,

M(kd, |v|1/2)f =
1√
π

(kd)−1/2(−i)l(κj)

∫ ∞

0

drĵl(κj)(k
dr)|v(r)|1/2f(r)

=
1√
π

(kd)−1/2(−i)l(κj) < |v|1/2ĵl(κj)(k
d), f >, f ∈ L2((0,∞), dr), (4.29)

where < ·, · > denotes the scalar product in L2((0,∞)). Similarly we have

M(kd, A∗|v|1/2) : L2((0,∞), dr) → C
1,

M(kd, A∗|v|1/2)f

=
1√
π

(kd)−1/2(−i)l(κj) < |v|1/2
(κj

r
ĵl(κj)(k

d) + kdĵ′l(κj)
(kd)

)
, f >,

f ∈ L2((0,∞), dr). (4.30)

For the corresponding adjoint operators we obtain

M(kd, v1/2)∗ : C
1 → L2((0,∞), dr),(

M(kd, v1/2)∗h
)
(r) =

1√
π

(kd)−1/2(i)l(κj)v1/2(r)ĵl(κj)(k
dr)h, h ∈ C

1, (4.31)

and

M(kd, A∗v1/2)∗ : C
1 → L2((0,∞), dr),(

M(kd, A∗v1/2)∗h
)
(r)

=
1√
π

(kd)−1/2(i)l(κj)v1/2(r)
(κj

r
ĵl(κj)(k

dr) + kdĵ′l(κj)
(kdr)

)
h, h ∈ C

1. (4.32)

The physical solutions ψs
κj ,± of the radial Schrödinger (Pauli) equation are defined

by the Fredholm (resp. Lippmann-Schwinger) equation

v1/2ψs
κj ,±(ks) = g2±(λ)v1/2ĵl(κj)(k

s), ks =
√

2mλ, λ ∈ I±0. (4.33)
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For the nonrelativistic limit S
(0)
κj (λ) we obtain from (3.8)

S(0)
κj

(λ) = 1 − 2πi2mM(ks, |v|1/2)g2+(λ)M(ks, v1/2)∗

= 1 − 4im
ks

< |v|1/2ĵl(κj)(k
s), v1/2ψs

κj ,+(ks) >, λ ∈ I+0. (4.34)

Calculating the remaining terms on the right hand side of (3.9) yields

2nd term
(ks)2

2im
< |v|1/2rĵl(κj)(k

s), v1/2ψs
κj ,+(ks) > − ks

4im
< |v|1/2ĵl(κj)(k

s), v1/2ψs
κj ,+(ks) >,

(4.35)

3rd term

− 1
imks

× < |v|1/2
(κj

r
ĵl(κj)(k

s) − ksĵ′l(κj)
(ks)

)
, v1/2Aj,mj ,κj

(
ĵl(κj)(k

s) − ψs
κj ,+(ks)

)
>,

(4.36)

4th term
1

imks
< |v|1/2

(κj

r
ĵl(κj)(k

s) + ksĵ′l(κj)
(ks)

)
, v1/2

(κj

r
ĵl(κj)(k

s) + ksĵ′l(κj)
(ks)

)
>,

(4.37)

5th term
(ks)2

2im
< |v|1/2ψs

κj ,−(ks), v1/2rĵl(κj)(k
s) > − ks

4im
< |v|1/2ĵl(κj)(k

s), v1/2ψs
κj ,+(ks) >,

(4.38)

6th term

− ks

im
< |v|1/2

(
ĵl(κj)(k

s) − ψs
κj ,−(ks)

)
, v1/2ψs

κj ,+(ks) >

− (ks)3

2im2
< |v|1/2ψs

κj ,−(ks), (v1/2(H0
1 − λ − i0)−2|v|1/2)v1/2ψs

κj ,+(ks) >, (4.39)

7th term
1

imks

× < |v|1/2Aj,mj ,κj

(
ĵl(κj)(k

s) − ψs
κj ,−(ks)

)
, v1/2Aj,mj ,κj

(
ĵl(κj)(k

s) − ψs
κj ,+(ks)

)
>,

(4.40)

8th term

− 1
imks

< |v|1/2Aj,mj ,κj

(
ĵl(κj)(k

s) − ψs
κj ,−(ks)

)
, v1/2Aj,mj ,κj ĵl(κj)(k

s) > . (4.41)

Summing up yields for the first order correction term in c−2 of the scattering matrix

S(1)
κj

(λ) =
(ks)4

8m3

dS
(0)
κj (λ)
dλ

+
ks

im
< |v|1/2ψs

κj ,−(ks), v1/2ψs
κj ,+(ks) >

+
1

imks
< |v|1/2Aj,mj ,κj

ψs
κj ,−(ks), v1/2Aj,mj ,κj

ψs
κj ,+(ks) >, λ ∈ I0.

(4.42)
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We summarize our results in

Theorem 4.3. Assume Assumptions 4.1 to be fulfilled. Then the partial wave
scattering matrix Sκj (λ, c) is holomorphic in c−2 and

Sκj
(λ, c) = 1 − 2πiT (λ, c, Y )G2+(λ, c)T (λ, c, Z)∗ =

∞∑

=0

c−2
S(
)
κj

(λ) (4.43)

with

S(0)
κj

(λ) = 1 − 4im
ks

∫ ∞

0

drĵl(κj)(k
sr)v(r)ψs

κj ,+(ksr), λ ∈ I+0 (4.44)

the partial wave scattering matrix for the associated pair of Pauli operators (H1, H
0
1 )

(illustrating the nonrelativistic limit) and the explicit correction term of order c−2

S(1)
κj

(λ) =
(ks)4

8m3

dS
(0)
κj (λ)
dλ

+
ks

im

∫ ∞

0

dr ψs
κj ,−(ksr)v(r)ψs

κj ,+(ksr)

+
1

imks

∫ ∞

0

dr
(
Aj,mj ,κj ψ

s
κj ,−

)
(ksr)v(r)

(
Aj,mj ,κj ψ

s
κj ,+

)
(ksr), λ ∈ I0.

(4.45)

Acknowledgements. We would like to thank F. Gesztesy and B. Thaller for
numerous helpful discussions.

Appendix A. Holomorphy in c−2 of the Dirac resolvent operator

In this Appendix we recall the main theorem from [8] concerning the holomorphy
of the Dirac resolvent operator with respect to c−2 near c−2 = 0.

Theorem A.1. Let H(c) be defined as in Section 2 and fix z ∈ C \ R. Then
(i) (H(c) − mc2 − z)−1 is holomorphic with respect to c−1 around c−1 = 0

(H(c) − mc2 − z)−1

=
(

1 +
(

0 (2mc)−1(H1 − z)−1A∗(V2 − z)
(2mc)−1A(H0

1 − z)−1V1 (2mc2)−1z(H0
2 − z)−1(V2 − z)

))−1

×
(

(H1 − z)−1 (2mc)−1(H1 − z)−1A∗

(2mc)−1A(H0
1 − z)−1 (2mc2)−1z(H0

2 − z)−1

)
. (A.1)

(ii) B(c)(H(c)−mc2−z)−1B(c)−1 is holomorphic with respect to c−2 around c−2 =
0 and

B(c)(H(c) − mc2 − z)−1B(c)−1

=
(

1 +
(

0 (2mc2)−1(H1 − z)−1A∗(V2 − z)
0 (2mc2)−1

(
(2m)−1A(H1 − z)−1A∗ − 1

)
(V2 − z)

))−1

×
(

(H1 − z)−1 (2mc2)−1(H1 − z)−1A∗

(2m)−1A(H1 − z)−1 (2mc2)−1
(
(2m)−1A(H1 − z)−1A∗ − 1

) )
. (A.2)

First order expansions in (A.1) and (A.2) yield

(H(c) − mc2 − z)−1 =
(

(H1 − z)−1 0
0 0

)
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+ c−1

(
0 (2m)−1(H1 − z)−1A∗

(2m)−1A(H1 − z)−1 0

)
+ O(c−2) (A.3)

(clearly illustrating the nonrelativistic limit |c| → ∞) and

B(c)(H(c) − mc2 − z)−1B(c)−1

=
(

(H1 − z)−1 0
(2m)−1A(H1 − z)−1 0

)
+ c−2

(
R11(z) R12(z)
R21(z) R22(z)

)
+ O(c−4), (A.4)

where

R11(z) = (2m)−2(H1 − z)−1A∗(z − V2)A(H1 − z)−1,

R12(z) = (2m)−1(H1 − z)−1A∗,

R21(z) = (2m)−2
(
(2m)−1A(H1 − z)−1A∗ − 1

)
(z − V2)A(H1 − z)−1,

R22(z) = (2m)−1
(
(2m)−1A(H1 − z)−1A∗ − 1

)
. (A.5)

Remark A.2. The holomorphy of the free Dirac resolvent can be easily derived
from

H0(c) =
(

mc2 cA∗

cA −mc2

)
,

(H0(c))2 =
(

c2A∗A + m2c4 0
0 c2AA∗ + m2c4

)
, (A.6)

and

(H0(c) − z)−1 = (H0(c) + z)(H0(c) + z)−1(H0(c) − z)−1

= (H0(c) + z)((H0(c))2 − z2)−1.
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