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Detecting Ventricular Fibrillation by Time-Delay Methods

Anton Amann, Robert Tratnig, and Karl Unterkofler*

Abstract—A pivotal component in automated external defibrillators
(AEDs) is the detection of ventricular fibrillation (VF) by means of ap-
propriate detection algorithms. In scientific literature there exists a wide
variety of methods and ideas for handling this task. These algorithms
should have a high detection quality, be easily implementable, and work in
realtime in an AED. Testing of these algorithms should be done by using a
large amount of annotated data under equal conditions. For our investi-
gation we simulated a continuous analysis by selecting the data in steps of
1 s without any preselection. We used the complete BIH-MIT arrhythmia
database, the CU database, and files 7001–8210 of the AHA database. For
a new VF detection algorithm we calculated the sensitivity, specificity, and
the area under its receiver operating characteristic curve and compared
these values with the results from an earlier investigation of several VF
detection algorithms. This new algorithm is based on time-delay methods
and outperforms all other investigated algorithms.

Index Terms—Automated external defibrillator (AED), ECG analysis,
sinus rhythm (SR), ventricular fibrillation (VF), ventricular fibrillation
detection.

I. INTRODUCTION

Sudden cardiac arrest is a major public health problem and one of
the leading causes of mortality in the western world. In most cases, the
mechanism of onset is a ventricular tachycardia that rapidly progresses
to ventricular fibrillation (VF) [1]. Approximately one-third of these
patients could survive with the timely employment of a defibrillator.

Besides manual defibrillation by an emergency paramedic, bystander
defibrillation with automatic external defibrillators has also been rec-
ommended for resuscitation [2]. These devices analyze the electrocar-
diogram (ECG) of the patient and recognize whether a shock should be
delivered or not. The quality of the mathematical algorithms for detec-
tion of VF used by these devices is of vital importance.

To gain insight into the quality of an algorithm for ECG analysis, it
is essential to test the algorithms under equal conditions with a large
amount of data, which has already been annotated by qualified cardi-
ologists. Commonly used annotated databases are Boston’s Beth Israel
Hospital and MIT arrhythmia database (BIH-MIT), the Creighton Uni-
versity ventricular tachyarrhythmia database (CU), and the American
Heart Association database (AHA)1.
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1ANSI/AAMI EC38:1998 Ambulatory electrocardiographs: “The incidence
and variety of VF in the AHA and MIT databases are not sufficient to allow those
databases to serve as substitutes for the CU database (DB) for the purposes of
5.2.14.5. An evaluation of VF detection using the 80 records of the AHA DB
and the 48 records of the MIT DB should supplement the required CU DB eval-
uation, however, as the CU DB does not contain a sufficient sample of signals
likely to provoke false VF detections.”

We used the complete BIH-MIT and CU database, and the files
7001–8210 of the AHA database [3]–[5]. For each algorithm ap-
proximately 330 000 decisions had been calculated. No preselection
of certain ECG episodes was made to simulate the situation of a
bystander more accurately.

In this paper we present a new VF detection algorithm. Besides the
quality parameters Sensitivity and Specificity, we calculated the Positive
Predictivity and Accuracy of the new algorithm.

The quality parameters were obtained by comparing the VF/no VF
decisions suggested by the algorithm with the annotated decisions sug-
gested by cardiologists. The cardiologists’ decisions are considered to
be correct. We distinguished only between VF and no VF, since the an-
notations do not include a differentiation between VF and ventricular
tachycardia. The closer the quality parameters are to 100%, the better
the algorithm works.

To represent the quality of an algorithm by its sensitivity and speci-
ficity bears some problems. A special algorithm can have a high sen-
sitivity, but a low specificity, or conversely. Which one is better? To
come to a common and single quality parameter, we use the receiver
operating characteristic (ROC) curve. The sensitivity is plotted in de-
pendence of (1–specificity), where different points in the plot are ob-
tained by varying the critical threshold parameter in the decision stage
of the algorithm. By calculating the area under the ROC curve (we call
this value “integrated receiver operating characteristic” (IROC), it is
possible to compare different algorithms by one single value. We com-
pare the ROC curve of our new algorithm with the ROC curves of the
best four standard algorithms investigated in [6].

II. TIME-DELAY ALGORITHM

The time-delay algorithm [phase space reconstruction (PSR)] is
based on a method which is used to reconstruct the so-called phase
space. It analyzes signals in order to identify a dynamic law or random
behavior. The signal x(t) is plotted in a diagram in the following way:
on the x-axis we plot x(t), on the y-axis x(t + � ), � being a proper
time constant. Such a plot is called a two dimensional phase space
diagram.

We observe that a typical VF signal2 produces a curve in the diagram,
that fills the area in an irregular way. The curve is almost uniformly
distributed over the entire diagram. However, for a normal sinus rhythm
(SR) the curve in the phase space diagram shows a regular structure,
only small parts of the area are filled, and the curve is concentrated to
a restricted region of the plot. In the special case of a periodic signal
for example, where � is a multiple of the period all points lie on a line
of 45 degrees.

Based on phase space plots (x(t); x(t+�))we differentiate SR from
VF. We determine the area of the plot filled by the curve. To achieve
this, we produce a 40� 40 grid and count the boxes visited by the ECG
signal. The 40� 40 grid stretches from the minimum to the maximum
of the investigated raw ECG signal. We then calculate a measure d

defined by

d =
number of visited boxes

number of all boxes
: (1)

If d is higher than a certain threshold d0, we classify the corresponding
ECG episode as VF. We chose � = 0:5 s and for the threshold d0 =
0:15.3 The number of boxes is 1600. The critical threshold parameter
which is varied to obtain the ROC curve is d0.

2VF signals are supposed to be of irregular nature.
3The number of boxes, i.e., 40 40, the value for , and were selected

and fixed after some tests. Note: the size of the boxes varies with the chosen
ECG episode.
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Fig. 1. SR episodes in the ECG signal cu01 from the CU database. a.u.: arbi-
trary units.

Fig. 2. Data points of SR episodes in the ECG signal cu01 from the CU data-
base; visited boxes visualized in a phase space diagram, = 74 1600 =

0 05.

For the implementation of our algorithm, we first down-sample the
ECG data to a frequency of 50 Hz, since we do not expect much infor-
mation in the frequency region above this value. In addition a reduced
data set speeds up the calculation. Furthermore, in the phase space plot,
we only consider the positions of the discrete ECG data points to calcu-
late the measure d and do not connect the data points by straight lines or
any other curves, which would indicate the underlying dynamics. The
reason is, that connected data in the phase space plot do not improve
the quality of the algorithm, but rather decrease it.

Fig. 1 shows a typical SR signal from the CU database and the cor-
responding phase space plot is illustrated in Fig. 2.

Fig. 3 shows a VF signal from the CU database and the corre-
sponding phase space plot is illustrated in Fig. 4.

III. EVALUATION AND RESULTS

For the new algorithm tested in this paper we used the same pre-
filtering process as in [6]. The filtering process is carried out in a
MATLAB routine, called filtering.m.4

The filtering algorithm works in four successive steps. First, the
mean value of the signal is subtracted from the signal. Second, a
moving averaging filter is applied in order to remove high-frequency
noise. Then, a drift suppression is carried out. This removes slow

4The function filtering.m for preprocessing can be found on the website http://
www2.staff.fh-vorarlberg.ac.at/~ku/VF/.

Fig. 3. VF episode in the ECG signal cu01 from the CU database.

Fig. 4. Data points of a VF episode in the ECG signal cu01 from the CU data-
base; visited boxes visualized in a phase space diagram, = 295 1600 =

0 18.

signal changes, which originate from external sources and are not pro-
duced by the heart. In a last step a Butterworth filter with a cutoff
frequency of 30 Hz eliminates frequencies higher than 30 Hz, which
seem to be of no relevance in our simulations. By applying this filtering
process also the behavior of the signal acquisition by a defibrillator is
simulated in a reasonable way.

In this paper we chose ECG episodes of window length of 8 s. 8-s
intervals have shown to give the best performance for every algorithm
investigated in [6]. For the investigation we tried to simulate a contin-
uous analysis by selecting the data in steps of 1 s without any preselec-
tion. The decision of an algorithm analyzing an episode of 8-s window
length is assigned to the endpoint of that interval. This is the point of
view when one proceeds in realtime. However, when recorded ECG
sequences are annotated the annotator always can look ahead.

The quality parameters are presented in the following tables and
figure. The perfect algorithm would have values for sensitivity, speci-
ficity, positive predictivity, accuracy, and IROC of 100%, assuming that
the annotations are 100% correct.

The data sets were taken from the BIH-MIT database (48 files,
2 channels per file, each channel 1805 s long), the CU database
(35 files, 1 channel per file, each channel 508 s long), and the AHA
database (files 7001–8210, 40 files, 2 channels per file, each channel
1800 s long). Thus, the total number of decisions per algorithm
(window length = 8 s) is 2 � 48 � (1805 � 7) + 35 � (508 � 7)+2 �
40 � (1800� 7) = 333 583.
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TABLE I
QUALITY OF VF DETECTION ALGORITHMS: SENSITIVITY (SE), SPECIFICITY (SP), AND INTEGRATED RECEIVER

OPERATING CHARACTERISTIC CURVE (IROC) IN PERCENT, DATABASE (DB), THRESHOLD = 0 15

TABLE II
POSITIVE PREDICTIVITY (PP), ACCURACY (AC), AND CALCULATION TIME (CT) IN PER CENT, CALCULATION TIME IN

PERCENT OF THE REALTIME OF THE DATA, DATABASE (DB), THRESHOLD = 0 15

Fig. 5. ROC curves for investigated algorithms.

TABLE III
SENSITIVITY OF VF DETECTION ALGORITHMS

IN PERCENT FOR A WINDOW LENGTH OF 8 S

Table I shows the values for the sensitivity, the specificity, and the
IROC of the new algorithm and the corresponding values for other al-
gorithms investigated in [6].5 A short description of all these algorithms
can be found there, too. The overall results are directly calculated from
all 333 583 decisions.

Table II shows the values for the positive predictivity, the accuracy,
and the calculation time of the new algorithm and the corresponding
values for the other algorithms.

5Threshold crossing intervals algorithm (TCI) [7], VF filter algorithm (VF)
[8], spectral algorithm (SPEC) [9], and complexity measure algorithm (CPLX)
[10].

Fig. 5 compares the ROC curve of the new algorithm with the cor-
responding ROC curves of some other algorithms investigated in [6].

Table III finally shows the values for the sensitivity of the investi-
gated algorithms, if, due to an appropriate adaption of the threshold
parameters, the specificity is 95% or 99%, respectively.

IV. DISCUSSION AND CONCLUSION

In real applications of AEDs, the specificity is more important than
the sensitivity, since no patient should be defibrillated due to an error
of analysis which might cause cardiac arrest. Therefore, a low number
of false positive decisions should be achieved, even if this increases the
number of false negative decisions.

The different performances of an algorithm on the different
databases reflect the different nature of these databases as described
earlier.1

Fig. 5 lets us compare different algorithms at a fixed specificity. In
practice one fixes a minimal value s0 for the specificity which should
be above, e.g., 80%. An even more appropriate quality measure for VF
detection algorithms would be a “partial area index”, i.e., the area under
the ROC curve for specificity greater than a minimal value s0.

From that point of view the two algorithms SPEC and VF are clearly
better than the newer algorithms CPLX and TCI, though VF and CPLX
have the same IROC value. In the region where the specificity is greater
than 90% the older algorithm VF performs even better than the algo-
rithm SPEC. These two algorithms operate in the frequency domain,
which makes them more likely sensible for electronic interferences.

The algorithm CPLX utilizes methods from chaos theory. Our ap-
proach was inspired by phase space reconstruction methods. We de-
cided to define our own measure, which is simple, can be computed
fast, and is justified by excellent results.

Our new algorithm PSR clearly yields the best values for the inte-
grated receiver operating characteristic. In addition, at any given spec-
ified specificity the algorithm PSR yields far the best sensitivity. It is
even the fastest of all algorithms.

A different new algorithm based on the Hilbert transform which uses
the same new simple measure is presented in [11].
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