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Removal of CPR Artifacts From the Ventricular
Fibrillation ECG by Adaptive Regression on
Lagged Reference Signals

Klaus Rheinberger*, Thomas Steinberger, Karl Unterkofler, Michael Baubin, Andreas Klotz, and Anton Amann

Abstract—Background and objective: Removing cardiopul-
monary resuscitation (CPR)-related artifacts from human
ventricular fibrillation (VF) electrocardiogram (ECG) signals
provides the possibility to continuously detect rhythm changes
and estimate the probability of defibrillation success. This could
reduce ‘“hands-off”’ analysis times which diminish the cardiac
perfusion and deteriorate the chance for successful defibrillations.
Methods and results: Our approach consists in estimating the
CPR part of a corrupted signal by adaptive regression on lagged
copies of a reference signal which correlate with the CPR artifact
signal. The algorithm is based on a state-space model and the
corresponding Kalman recursions. It allows for stochastically
changing regression coefficients. The residuals of the Kalman
estimation can be identified with the CPR-filtered ECG signal. In
comparison with ordinary least-squares regression, the proposed
algorithm shows, for low signal-to-noise ratio (SNR) corrupted
signals, better SNR improvements and yields better estimates of
the mean frequency and mean amplitude of the true VF ECG
signal. Conclusions: The preliminary results from a small pool of
human VF and animal asystole CPR data are slightly better than
the results of comparable previous studies which, however, not
only used different algorithms but also different data pools. The
algorithm carries the possibility of further optimization.

Index Terms—Adaptive regression, artifact removal, cardiopul-
monary resuscitation, electrocardiogram (ECG) signal, Kalman
filtering, state-space model, ventricular fibrillation.

1. INTRODUCTION

A. Statement of the Problem

T least 225 000 people die in the U.S. every year from
sudden cardiac arrest before they reach a hospital and, in
addition, an estimated 370 000 to 750 000 patients per year
have a cardiac arrest and undergo cardiopulmonary resuscitation
(CPR) during hospitalization. These statistics were published in
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[1]1in 2001. Almost half of all out-of-hospital cardiac arrest pa-
tients suffer from ventricular fibrillation (VF). Presently, resus-
citation is guided by a standardized protocol (the international
guidelines [2], [3]) which only includes rhythm detection for de-
cision support. As an alternative to this approach, extended diag-
nostics can be devised, which is primarily based on the VF elec-
trocardiogram (ECG) and provides information on the physio-
logical status of the individual patient. This alternative approach
promotes the development of ECG-based algorithms, resulting
in parameters which reflect the myocardial metabolism of the
heart and its degree of resuscitability.

The international guidelines 2005 emphasize high-quality
CPR [4]: Rescuers should push hard, push fast, allow full chest
recoil, minimize interruptions in compressions, and defibrillate
promptly when appropriate. Yet, during CPR, chest compres-
sions and ventilations cause artifacts in the ECG [5]. In order
for the rhythm detection algorithms of automatic external de-
fibrillators to work properly, a so-called “hands-off interval” is
required, where CPR stops and ECG is artifact free. However,
as a consequence of this, myocardial blood flow drops and the
(probability for) success of a subsequent defibrillation attempt
decreases [6], [7]. Thus, it would be desirable to remove CPR
artifacts from the ECG continuously during CPR administra-
tion. Thereby, continuous rhythm detection could be performed
minimizing “hands-off” delay times before delivering the elec-
tric countershock. Furthermore, in case of VF, CPR removal
algorithms provide the possibility of continuous monitoring
and determination of ECG-based parameters for estimation of
defibrillation success. Such parameters rely heavily on an arti-
fact-cleaned ECG signal. For a review of VF scoring algorithms
see, for example, [8] and [9]. An alternative approach consists
in finding VF parameters and detection algorithms, which are
insensible to CPR [10].

The human heart fibrillates at frequencies that overlap with
the characteristic frequencies of CPR artifacts [11], which are
determined by the chest compression rate. This is one reason
why CPR artifact removal presents a sophisticated signal-pro-
cessing problem. Furthermore, some more technical problems
have to be addressed by a CPR artifact removal algorithm.

* In real emergency situations, the rates and amplitudes of
chest compressions and ventilations are not constant over
time.

* The CPR ECG artifacts are, in general, not sinusoidal and
can contain high frequencies.

* The shape of the CPR ECG artifacts can change over the
course of time.
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* The coupling between chest compressions and the ECG
can change over the course of time, leading to a change
in amplitude of the CPR-ECG artifacts.

Therefore, we suggest that sophisticated adaptive removal algo-
rithms are needed.

B. Previous Work

In contrast to the large amount of literature about algorithms
for the detection and analysis of VF signals, there are surpris-
ingly only few and recent publications addressing the problem
of removing CPR artifacts.

e Ruiz et al. [12], [13] use Kalman filters assuming that the
CPR artifact as well as the VF signal can be modelled by
sinusoidal functions of known angular frequencies. After
adding human asystole ECGs containing CPR artifacts
to human artifact-free VF signals, they evaluated the
signal-to-noise (SNR) improvements of their algorithm.

* Klotz et al. [14], [15] propose a methodology based on
time—frequency methods and local coherent line removal.
They evaluated their algorithms with porcine animal data
by visual inspection of the spectrogram.

* The Norwegian research group of Eftestol, Husoy et al. [5],
[16], [17] applies an adaptive filtering approach using addi-
tional reference signals (thoracic impedance, compression
depth, etc.), which correlate with the CPR artifact signal.
Besides the analysis of an SNR improvement, they evalu-
ated the performance of a shock advice algorithm before
and after artifact removal [16], [17].

* Rheinberger et al. [18] model the CPR-corrupted signal by
a seasonal state-space model. This allows for a stochasti-
cally changing shape of the periodic signal and also copes
with time-dependent periods. Preliminary results using
only a small pool of human VF and animal asystole CPR
data show that the seasonal model is not as effective as
models using reference signals, but it might be useful in
combination with them.

C. Kalman State-Space Methods

In this article, we propose Kalman state-space methods
[19]-[21] which extend ordinary least-squares (OLS) regres-
sion. We consider Kalman methods to be appropriate for CPR
artifact removal because:

¢ the Kalman recursions provide a numerically fast and adap-
tive way to compute estimates of the CPR part of the CPR
corrupted signal;

* the underlying state space models include all classical time
series models, can be combined in a straightforward way,
and allow for integration of reference signals (thoracic
impedance, compression depth, etc.);

* established optimization techniques exist for the estima-
tion of model parameters.

The main focus of this study lies in the presentation of the
models and techniques rather than in a full-blown evaluation on
an acknowledged database of signals.

II. MATERIALS AND METHODS

A. Data and Cross-Validation

A learning data set and a different test data set of CPR cor-
rupted signals are used, first to optimize the algorithms and then
to evaluate them. Each data set consists of seven porcine asys-
tole ECG signals during CPR and seven human artifact-free VF
ECG signals which are mixed pairwise to 49 CPR-corrupted
signals. Each CPR artifact recording includes an arterial blood
pressure signal, lagged copies of which are used as reference
signals (i.e., regressors in the regression models). All signals
have alength of 10 s. The human ECG-data were collected using
a Welch Allyn PIC 50 defibrillator.

B. Pre and Postprocessing

The human artifact-free VF signals are originally sampled at
375 Hz, whereas the porcine asystole CPR artifact signals and
their reference signals are originally sampled at 1000 Hz. The
reference signal is bandpass filtered between 0.5 and 15 Hz,
detrended, and normalized before using lagged copies of it as
regressors. For the purpose of CPR artifact removal by means
of our models, it suffices to work at a sampling frequency of
approximately 20-50 Hz, which usually covers the frequencies
contained in the CPR artifact signal. This is because our models
estimate the CPR artifact signal and handle the VF part as resid-
uals. Therefore, the following procedure is applied.

1) Resample the human artifact-free VF signals, denoted v,

and the porcine asystole CPR artifact signals, denoted c, to
a common sampling frequency such that no frequency in-
formation is lost. We used a sampling frequency of 100 Hz.

2) Normalize v and c to unit variance and scale ¢ by an ap-

propriate factor such that the sum y = v + ¢ has a desired
SNR, where

SNR = 10 - log;, <VL(U)> .

Var(c)
We used SNR values of —10, —5, 0, 5, and 10 dB.

3) Apply the various algorithms according to the following
procedure. After detrending the mixed signal, downsample
it together with the reference signal to some sampling fre-
quency f € [20, 50]. Estimate the CPR part of the mixture
by means of the chosen model and the chosen optimization
procedure resulting in the signal ¢y.

4) Inorder to obtain an estimate o of the VF part, upsample ¢ ¢
to the common sampling frequency (100 Hz for our data),
and subtract it from the mixed signal y at this sampling
frequency.

C. Models

In many cases, it is appropriate not only to regress on one
reference signal, which was recorded synchronously with the
CPR-corrupted ECG signal, but also to regress on lagged copies
of the reference signal. In this case, the OLS regression can be
viewed as finding a minimum least-squares filter.
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Fig. 1. Results of OLS regression of a CPR-corrupted VF ECG signal on

lagged copies of the arterial blood pressure signal showing the true and
estimated CPR and VF part. The regression coefficients are plotted in Fig. 2.

1) Ordinary Least-Squares Regression Models: Let
y = (y1,...,yr)T denote observations of a CPR-corrupted
ECG signal and

k=1,...,M
(Rt,k)tzl,...,T

the matrix of M reference signals at 7' same sampling time
points. OLS corresponds to finding a column vector 3 € RM
such that the Euclidean norm

|y —RB ||
is minimal for all # € RM. The OLS estimate
j:=Rp

is an estimate of the CPR part of a corrupted ECG signal,
whereas the regression errors, or residuals

e=y—y

are an estimate of the artifact removed ECG signal.
We considered models differing in the sampling frequency

f € {35 Hz,40 Hz, 45 Hz}

the time interval 6 € {1 lag, 2 lags, 3 lags} between two adja-
cent lagged copies of the reference signal and the minimal and
maximal lag

Imin € {—0.20 sec, —0.15 sec, —0.10 sec},
Imax € {0.25 sec, 0.30 sec, 0.35 sec}.

Figs. 1 and 2 show the result of OLS regression on various
lagged copies of the arterial blood pressure signal. Negative lags
(shift toward the past) and positive lags (shift toward the future)
are used. In both directions, the OLS regression coefficients are
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Fig. 2. CPR-corrupted VF ECG signal is the sum of a CPR and a VF part.
Lagged copies of the reference signal and OLS regression coefficients corre-
spond to Fig. 1: A lag of, for example, —0.15 s means that the original refer-
ence signal is shifted 0.15 s toward the past, in other words, the reference signal
values of 0.15 s ahead are used.

nonzero. Thus, also future parts of the reference signal can be
useful for estimating the CPR artifact part of a corrupted signal.
This fact is not a hindrance for practical online applications as
it leads only to a short time delay.

2) State-Space Models and Kalman Recursions: As already
pointed out, the coupling between the ECG and chest com-
pressions as well as the shape of the CPR ECG artifacts can
change in the course of time. An adaptive regression model
can handle these features. We propose a state-space regression
model—called adaptive least squares (ALS)—whose states are
time-varying regression coefficients and whose observations are
the CPR-corrupted ECG signal, cf. [21]. This is a generalization
of the aformentioned OLS model having constant coefficients.
The observation equation of our model reads

Yt = GtXt + Wt, where Gt = (Rt,17 ey Rt7]\/[), and

W, is observation white noise, which rnodels the artifact-re-
moved ECG signal and has variance o2. The uppercase vari-
ables Y; and X; denote the random varlables modelling the
CPR-corrupted ECG signal and the stochastic regression coef-
ficients at time ¢, respectively. The state equation of our model
is given by

Xy = B X  + W,
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where the time-independent state transition matrix Fy = F'is
the M x M identity matrix. The state white noise vector V; has
covariance matrix (). The case = 0 reproduces the OLS re-
gression model, since the regression coefficients do not change
in the course of time. A state noise covariance matrix ) # 0
allows for dynamic evolution of the states, or, in other words,
for adaptive regression coefficients.

We shortly summarize the formulas for the Kalman fixed-
point smoother recursions as derived in [20]. For 7" > n >t
and fixed ¢, the fixed-point smoothed estimates X;,, (i.e., the
minimum, mean squared error, linear predictor of X in terms of
all components of Yy, Y7, ..., Y, ) and error covariance matrices

Qt\n = E[(Xt - Xt\n)(Xt - Xt|n)T]
are determined by the following recursions forn = ¢,t+1,.. .:

Xt|n :Xt|n71 + Qt,nGzAgl(Yn - Gan)
Qt,n+1 = Qt,n(-Fn - GnAythn)’:R
Q= Qo1 — UnGEA T GLOT,,

where 0, ,, = E[(X, — X;)(X,, — X,,)"]. The 1-step predictors
Xt = Xyj¢—1, their error covariance matrices Q; := Q;; =
Q4)¢—1, and the matrices ©; and A; are computed in advance
for every ¢ by the following Kalman prediction recursions:

Xt+1 :FtXt + GtAt_l(Yt — GtXt)-,

Qir1 = B FT + Q; — 0,A,0F, where
Ay =G G + Sy,
0, := F,Q,GT,

where A, Lis any generalized inverse of A, and Q; and S, are
the noise covariances of V; and W, respectively.

D. Optimization and Evaluation

First, we searched for optimal OLS regression parameters
(f, 6, linin, Imax ), which we then fixed for two different opti-
mization procedures of the ALS models. We investigated three
different objective functions for OLS regression models opti-
mization; however, in order not to overcrowd the results, we
considered only the optimal restored signal-to-noise ratio (SNR)
parameters for evaluation on the test data set.

1) OLS Models: Using the learning data set, the optimal OLS
model was found by a grid search. As objective functions, we
used the restored SNR (rSNR), which is defined as

Var(v) )

rSNR := 10 - IOgIO <m

the difference in mean frequency (MF) of v and its estimate 0
A(MF) = MF, — MF;

and the percentagewise difference in mean peak-to-trough am-
plitude (MA) [22] of v and ©

MA, — MA;
AMA) = —2—",
(MA) MA.
More precisely, for every setting of the parameters

(f, 8, lmin, lmax )» the mean value of an objective function over

all learning data sets and SNR values was computed. The MF
values were computed in the frequency range (0.1 Hz, 50 Hz),
and the MA values were computed after bandpass filtering into
the frequency range (0.1 Hz, 25 Hz), cf. [22].

Only the OLS model with a maximum mean rSNR was evalu-
ated subsequently on the test data set. For each SNR, the rSNR
A(MF), A(MA) values were computed for all signals in the
test data set.

2) ALS Models With OLS Initialization: Using the
OLS-rSNR-optimal ~ (f, 8, lmin, lmax) setting, we consid-
ered ALS models with OLS regression coefficients as an initial
state and an initial error covariance matrix )y which was
computed using the estimator statistics of the OLS regression
coefficients. Noise covariance matrices Q = o2 - )y with
o2 € {0.0015,0.0013,0.0011} were considered, while oy,
was set to one, because the Kalman recursions only depend
on the ratio /02, cf. [20]. The Kalman fixed-point smoother
recursions reaching 1 s into the future were used. For every @,
the mean rSNR over all learning data sets and SNR values was
computed.

The ALS model with maximum mean rSNR was evaluated in
the same way as before on the test data set.

3) ALS Models Using Reduced MLE: Using the OLS-rSNR-
optimal (f,, limin, lmax) setting, we considered ALS models,
where the optimal initial state and initial error covariance ma-
trix, the optimal () = 03 -157, and o, were estimated by reduced
maximum likelihood estimation (rMLE), cf. [20, p. 278ff]. We
considered the following lower and upper bounds for the ratio

Q* = oy/oy,

{(1.5-107°,1.5-107%),(1- 107°,1 - 107 %),
(0.5-107°,0.5-10"4)}.

Bounds for Q* in this range force the model not to adapt the
states too much over time but rather allow for large observation
errors, since these model the VF part of the mixed signal. The
Kalman fixed-point smoother recursions reaching 1 s into the
future were used for every ALS model with rMLE parameters.
For every Q*, the mean rSNR over all learning data sets and
SNR values was computed.

The ALS model with maximum mean rSNR was evaluated in
the same way as before on the test data set.

III. RESULTS

Fig. 3 compares exemplarily the true VF and CPR signals
with the corresponding estimates computed with OLS and ALS
methods. The ALS method accomplishes a better fit which is
also reflected in a higher rSNR value.

The OLS-optimal (f,8,lmin,lmax) parameters for the
learning data set are given in Table I. The optimal state noise
covariance matrix for the ALS models with OLS initialization
was Q = 0.00132 - 0y, and the optimal lower and upper bound
of Q* was (1-107°,1-10~%) for the ALS models using rMLE
optimization.

The evaluation results for the optimal rSNR parameters are
shown in Figs. 4-6. Fig. 4 also shows the SNR improvement
which is defined as the difference rSNR — SNR. For low SNR-
corrupted signals, the adaptive ALS model exceeds the OLS
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Fig. 3. Comparison of true VF and CPR signals with the corresponding esti-
mates computed with OLS and ALS methods. The ALS method accomplishes
a better fit which is also reflected in a higher rfSNR value.

TABLE I
OPTIMAL OLS MODEL PARAMETERS FOR THE LEARNING DATA SET WITH
RESPECT TO THE OBJECTIVE FUNCTIONS RSNR, A(MF), AND A(MA)

£ [Hz] | 0 [lags] | lmin [seC] | lmaa [seC]
rSNR 40 2 -.15 .30
AMF) | 35 3 -20 30
A(MA) 35 3 -.15 .25

regression model. All models underestimate the VF mean fre-
quency by up to approximately 1.5 Hz. They overestimate the
VF mean amplitude for low SNR values (approximately —15%)
and underestimate it for high SNR values (approximately 5%).
For high SNR-corrupted signals, the adaptive ALS model per-
forms comparably or slightly worse than the OLS regression
model.

IV. DISCUSSION

Our approach consists in estimating the CPR part of a cor-
rupted signal by adaptive regression on lagged copies of a refer-
ence signal which correlate it with the CPR artifact signal. The
algorithm is based on a state-space model and the corresponding
Kalman recursions. It allows for stochastically changing regres-
sion coefficients. The residuals of the Kalman estimation are
identified with the CPR-filtered ECG signal.

Fig. 4. Evaluation results: rSNR and SNR improvement values (mnean =+ std)
for the three models depending on the SNR of the signal mixture.

2.5
T —+— OLS test
: —+— ALS test
ol e ... . [ ALSIMLE test],

1.5F

A(MF) [Hz]

0.5F

-0.5 I I I I !
-10 -5 0 5 10

Fig. 5. Evaluation results: A(MF') values (mean =+ std) for the three models
depending on the SNR of the signal mixture. The MF values were computed in
the frequency range (0.1 Hz, 50 Hz), cf. [22].

In comparison with OLS regression, the ALS algorithms
show, for low SNR-corrupted signals, rfSNR improvements
and yield better estimates of the mean frequency and mean
peak-to-trough amplitude of the true VF ECG signal. Thus,
the ALS model presents an improvement compared to the non-
adaptive OLS model for the purpose of CPR artifact removal
from VF ECG signals. This holds, in particular, because we
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Fig. 6. Evaluation results A(MA) values (mean =+ std) for the three models
depending on the SNR of the signal mixture. The MA values were computed
after bandpass filtering into the frequency range (0.1 Hz, 25 Hz), cf. [22].

optimized only one parameter (QQ or Q*) of the ALS model
using the fixed OLS-optimal values for ( f, 8, liin, lmax ), Which
was done for computational reasons.

The mean rSNR values computed from our small pool of
human artifact-free VF and porcine asystole CPR data are
slightly better than the values reported by [16], [12]. These
research groups, however, not only used different algorithms
but also different data pools, such that the results are not
truly comparable. We are planning to collaborate with these
research groups using a common data pool for comparison and
development of CPR removal algorithms.

Ruiz et al. [12], [13] also use adaptive Kalman filtering
methods. They model the CPR artifact with a sinusoidal signal
of known frequency and variable phase and amplitude, whereas
our CPR signal model might be less restrictive. However,
their VF signal model is more realistic than our white noise
assumption. The research group of Eftestol, Husoy et al. [5],
[16], [17] applies an adaptive matching pursuit-like algorithm
using multiple reference signals. Their CPR estimates are
given by adaptively optimized linear combinations of past and
current reference signal values, whereas our CPR estimates
also include future values. Their objective function, however,
includes future values. This corresponds to using the Kalman
fixed-point smoother recursions in our approach.

The presented algorithms do not all allow for real-time CPR
filtering. The simple OLS algorithm needs the complete 10-s
signals in order to estimate the regression coefficients and sub-
sequently compute the VF part. Likewise, the ALS models esti-
mate the optimal initialization parameters by means of the com-
plete signal. This, however, is not an obstruction for a possible
real-time application of the proposed algorithms because they
would serve as preprocessing for rhythm detection algorithms
and VF scoring algorithms. These algorithms typically also need
complete segments for their analysis (e.g., Fourier transforma-
tion). Thus, the proposed CPR artifact removal methods lead to
a low computational time delay.

VF signal sampled at 40Hz

ot | B

_4 ! 1 I ! I I I | |

time [sec.]
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Fig. 7. VFECG signal at a 40-Hz sampling frequency and corresponding auto-
correlation function (ACF) including 95% confidence interval bounds for white
noise (WN). The VF ECG signal is evidently not WN, cf. [20].

Our optimization computes the optimal (f, 6, lmin, lmax ) Tu»
and Q™ values for all SNR values of the learning data set, be-
cause the SNR value is not known a priori. Yet, a closer inspec-
tion shows that the optimal ( f, 6, lmin, lmax ), 0v, and Q* values
depend on the SNR of the mixed signal. For the ALS models,
the optimal state noise variance decreases with increasing SNR
such that the states do not adapt too much over time but rather
allow for large observation errors, which model the VF part of
the mixed signal. Using a common state noise variance for all
SNR values, thus, could be the reason for the lower performance
of the ALS models at high SNR values compared to the OLS
regression model. A possible improvement of the presented al-
gorithms could therefore consist in estimating the SNR of the
CPR-corrupted signal and then estimate the VF and CPR parts
by means of the SNR-optimal parameters.

In this study, we computed MF and MA values in the fre-
quency range of (0.1 Hz, 50 Hz) and (0.1 Hz, 25 Hz), respec-
tively. Narrower frequency ranges could possibly reduce the
A(MF) and A(MA) values. However, this procedure can be
carried out after any CPR removal algorithm. Our intent was
to reveal the estimation quality of the presented algorithms in a
broad frequency range.

There are several limitations of this study. Besides the lim-
ited optimization procedures applied, the results are mainly lim-
ited by the small data sets. Furthermore, only VF signals and no
other shockable signals were used. To investigate the feasibility
of rthythm detection algorithms during CPR, nonshockable sig-
nals should also be included, cf. [17]. An international database
of human and animal ECG signals would be useful in order to
evaluate the different algorithms for CPR artifact removal on a
common basis. The ALS state-space model assumes that the ob-
servation noise Wy, which models the VF ECG signal, is white
noise and, thus, uncorrelated. Fig. 7 shows that a typical VF
ECG signal is evidently not white noise. Thus, in a more ap-
propriate state-space model, the VF signal should be modelled
more realistically (e.g., by an autoregressive process). Different
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objective functions can be considered. The rSNR is a common
parameter to quantify the performance of a signal separation
algorithm. For the practical application of CPR removal algo-
rithms in defibrillators, however, other objective functions, such
as the performance of a rhythm detection algorithm or A(MF)
and A(MA), could be more reasonable.
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