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Abstract

Background and Objective: Removing cardiopulmonary resuscitation (CPR)

related artifacts from human ventricular fibrillation (VF) ECG signals provides

the possibility to continuously detect rhythm changes and estimate the prob-

ability of defibrillation success. This could reduce ”hands-off” analysis times

which diminish the cardiac perfusion and deteriorate the chance for successful

defibrillations. Methods and Results: Our approach consists in estimating the

CPR-part of a corrupted signal by adaptive regression on lagged copies of a

reference signal which correlate with the CPR artifact signal. The algorithm
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is based on a state-space model and the corresponding Kalman recursions. It

allows for stochastically changing regression coefficients. The residuals of the

Kalman estimation can be identified with the CPR-filtered ECG signal. In com-

parison with ordinary least-squares regression the proposed algorithm shows, for

low signal-to-noise ratio (SNR) corrupted signals, better SNR improvements

and yields better estimates of the mean frequency and mean amplitude of the

true VF ECG signal. Conclusions: The preliminary results from a small pool of

human VF and animal asystole CPR data are slightly better than the results of

comparable previous studies which, however, not only used different algorithms

but also different data pools. The algorithm carries the possibility of further

optimization.

Keywords: ECG signal, cardiopulmonary resuscitation, ventricular fibrillation, ar-

tifact removal, adaptive regression, state-space model, Kalman filtering

1 Introduction

1.1 Statement of the Problem

At least 225 000 people die in the United States every year from sudden cardiac

arrest before they reach a hospital, and in addition, an estimated 370 000 to 750

000 patients per year have a cardiac arrest and undergo cardiopulmonary resuscita-

tion (CPR) during hospitalization. These statistics were published in [1] in the year

2001. Almost half of all out-of-hospital cardiac arrest patients suffer from ventric-

ular fibrillation (VF). Presently, resuscitation is guided by a standardized protocol

(the international guidelines [2, 3]) which includes only rhythm detection for deci-

sion support. As an alternative to this approach, an extended diagnostics can be

devised, which is primarily based on the VF ECG and provides information on the

physiological status of the individual patient. This alternative approach promotes

the development of ECG-based algorithms, resulting in parameters which reflect the

myocardial metabolism of the heart and its degree of resuscitability.

The international guidelines 2005 emphasize high quality CPR [4]: Rescuers

should push hard, push fast, allow full chest recoil, minimize interruptions in com-
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pressions, and defibrillate promptly when appropriate. Yet, during CPR, chest com-

pressions and ventilations cause artifacts in the ECG [5]. In order that the rhythm

detection algorithms of automatic external defibrillators work properly, a so-called

“hands-off interval” is required, where CPR is stopped and the ECG is artifact-free.

However, as a consequence of this, myocardial blood flow drops and the (probability

for) success of a subsequent defibrillation attempt decreases [6, 7]. Thus, it would

be desirable to remove CPR artifacts from the ECG continuously during CPR ad-

ministration. Thereby, continuous rhythm detection could be performed minimizing

“hands-off” delay times before delivering the electric countershock. Furthermore,

in case of VF, CPR removal algorithms provide the possibility of continuous moni-

toring and determination of ECG-based parameters for estimation of defibrillation

success. Such parameters rely heavily on an artifact-cleaned ECG signal. For a

review of VF scoring algorithms see e.g. [8, 9]. An alternative approach consists in

finding VF parameters and detection algorithms, which are insensible to CPR [10].

The human heart fibrillates at frequencies that overlap with the characteristic

frequencies of CPR artifacts [11], which are determined by the chest compression

rate. This is one of the reasons why CPR artifact removal presents a sophisticated

signal processing problem. Furthermore, some more technical problems have to be

addressed by a CPR artifact removal algorithm:

• In real emergency situations, the rates and amplitudes of chest compressions

and ventilations are not constant over time.

• The CPR ECG artifacts are in general not sinusoidal and can contain high

frequencies.

• The shape of the CPR ECG artifacts can change in the course of time.

• The coupling between chest compressions and the ECG can change in the

course of time leading to a change in amplitude of the CPR-ECG artifacts.

Therefore we suggest that sophisticated adaptive removal algorithms are needed.
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1.2 Previous Work

In contrast to the large amount of literature about algorithms for detection and anal-

ysis of VF signals, there are surprisingly only few and recent publications addressing

the problem of removing CPR artifacts:

• Ruiz et al. [12] use Kalman filters assuming that the CPR artifact as well

as the VF signal can be modelled by sinusoidal functions of known angular

frequencies. After adding human asystole ECGs containing CPR artifacts

to human artifact free VF signals they evaluated the signal-to-noise (SNR)

improvements of their algorithm.

• Klotz et al. [13, 14] propose a methodology based on time-frequency methods

and local coherent line removal. They evaluated their algorithms with porcine

animal data by visual inspection of the spectrogram.

• The Norwegian research group of Eftestol, Husoy et al. [5, 15, 16] apply an

adaptive filtering approach using additional reference signals (thoracic impe-

dance, compression depth, etc.), which correlate with the CPR artifact signal.

Besides the analysis of SNR improvement, they evaluated the performance of

a shock advice algorithm before and after artifact removal [15, 16].

• Rheinberger et al. [17] model the CPR-corrupted signal by a seasonal state-

space model. This allows for a stochastically changing shape of the periodic

signal and also copes with time-dependent periods. Preliminary results using

only a small pool of human VF and animal asystole CPR data show that the

seasonal model is not as effective as models using reference signals, but it might

be useful in combination with them.

1.3 Kalman state-space methods

In this article we propose Kalman state-space methods [18, 19, 20] which extend

ordinary least-squares (OLS) regression. We consider Kalman methods to be appro-

priate for CPR artifact removal because:
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• The Kalman recursions provide a numerically fast and adaptive way to com-

pute estimates of the CPR part of the CPR corrupted signal.

• The underlying state space models include all classical time series models, can

be combined in a straightforward way, and allow for integration of reference

signals (thoracic impedance, compression depth, etc.).

• There exist established optimization techniques for the estimation of model

parameters.

The main focus of this study lies in the presentation of the models and techniques

rather than in a full-blown evaluation on an acknowledged database of signals.

2 Materials and Methods

2.1 Data and Cross-Validation

A learning data set and a different test data set of CPR corrupted signals are used,

first to optimize the algorithms and then to evaluate them. Each data set consists

of seven porcine asystole ECG signals during CPR and seven human artifact-free

VF ECG signals which are mixed pairwise to 49 CPR-corrupted signals. Each CPR

artifact recording includes an arterial blood pressure signal, lagged copies of which

are used as reference signals, i.e. regressors in the regression models. All signals

have a length of 10 seconds. The human ECG-data were collected using a Welch

Allyn PIC 50 defibrillator.

2.2 Pre- and Postprocessing

The human artifact free VF signals are originally sampled at 375 Hz, whereas the

porcine asystole CPR artifact signals and their reference signals are originally sam-

pled at 1000 Hz. The reference signal is band-pass filtered between 0.5 and 15

Hz, detrended and normalized before using lagged copies of it as regressors. For

the purpose of CPR artifact removal by means of our models, it suffices to work
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at a sampling frequency of approx. 20-50 Hz, which usually covers the frequen-

cies contained in the CPR artifact signal. This is because our models estimate the

CPR artifact signal and handle the VF part as residuals. Therefore, the following

procedure is applied:

1. Resample the human artifact free VF signals, denoted v, and the porcine

asystole CPR artifact signals, denoted c, to a common sampling frequency

such that no frequency information is lost. We used a sampling frequency of

100 Hz.

2. Normalize v and c to unit variance and scale c by an appropriate factor such

that the sum y = v + c has a desired SNR, where

SNR = 10 · log10

(
Var(v)
Var(c)

)
.

We used SNR values of -10, -5, 0, 5, and 10 dB.

3. Apply the various algorithms according to the following procedure: After de-

trending the mixed signal, down-sample it together with the reference signal to

some sampling frequency f ∈ [20, 50]. Estimate the CPR part of the mixture

by means of the chosen model and the chosen optimization procedure resulting

in the signal ĉf .

4. In order to get an estimate v̂ of the VF part, up-sample ĉf to the common

sampling frequency (100 Hz for our data), and subtract it from the mixed

signal y at this sampling frequency.

2.3 Models

In many cases it is appropriate not only to regress on one reference signal, which was

recorded synchronously with the CPR corrupted ECG signal, but also to regress on

lagged copies of the reference signal. In this case, the OLS regression can be viewed

as finding a minimum least squares filter.
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2.3.1 Ordinary Least-Squares Regression Models

Let y = (y1, . . . , yT )T denote observations of a CPR corrupted ECG signal and

(Rt,k)
k=1,...,M
t=1,...,T

the matrix of M reference signals at T same sampling time points. OLS corresponds

to finding a column vector β̂ ∈ RM , such that the Euclidean norm

‖ y −Rβ̂ ‖

is minimal for all β ∈ RM . The OLS estimate

ŷ := Rβ̂

is an estimate of the CPR part of a corrupted ECG signal, whereas the regression

errors, or residuals

e := y − ŷ

are an estimate of the artifact removed ECG signal.

We considered models differing in the sampling frequency

f ∈ {35 Hz, 40 Hz, 45 Hz},

the time interval δ ∈ {1 lag, 2 lags, 3 lags} between two adjacent lagged copies of

the reference signal and the minimal and maximal lag

lmin ∈ {−0.20 sec,−0.15 sec},

lmax ∈ {0.25 sec, 0.30 sec, 0.35 sec}.

Figures 1 and 2 show the result of an OLS regression on various lagged copies of the

arterial blood pressure signal. Negative lags (shift towards the past) and positive

lags (shift towards the future) are used. In both directions the OLS regression coef-
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ficients are non-zero. Thus also future parts of the reference signal can be useful for

estimating the CPR artifact part of a corrupted signal. This fact is not a hindrance

for practical on-line application as it leads only to a short time delay.

2.3.2 State-Space Models and Kalman Recursions

As already pointed out, the coupling between the ECG and chest compressions

as well as the shape of the CPR ECG artifacts can change in the course of time.

An adaptive regression model can handle these features. We propose a state-space

regression model - called ALS (Adaptive Least-Squares) - whose states are time-

varying regression coefficients and whose observations are the CPR corrupted ECG

signal, cf. [20]. This is a generalization of the above OLS model having constant

coefficients. The observation equation of our model reads

Yt = GtXt + Wt, where

Gt = (Rt,1, . . . , Rt,M ), and

Wt is observation white noise, which models the artifact removed ECG signal and

has variance σ2
w. The upper case variables Yt and Xt denote the random variables

modelling the CPR corrupted ECG signal and the stochastic regression coefficients

at time t, respectively. The state equation of our model is given by

Xt+1 = FtXt + Vt,

where the time-independent state transition matrix Ft = F is the M × M identity

matrix. The state white noise vector Vt has covariance matrix Q. The case Q = 0

reproduces the OLS regression model, since the regression coefficients do not change

in the course of time. A state noise covariance matrix Q 6= 0 allows for a dynamic

evolution of the states, or, in other words, for adaptive regression coefficients.

The shortly summarize the formulas for the Kalman fixed-point smoother re-

cursions as derived in [19]. For T ≥ n ≥ t and fixed t, the fixed-point smoothed

estimates Xt|n (i.e. the minimum, mean squared error, linear predictor of Xt in

8



terms of all components of Y0, Y1, . . . , Yn) and error covariance matrices

Ωt|n := E[(Xt −Xt|n)(Xt −Xt|n)T]

are determined by the following recursions for n = t, t + 1, . . .

Xt|n = Xt|n−1 + Ωt,nGT
n∆−1

n (Yn −GnX̂n),

Ωt,n+1 = Ωt,n(Fn −Θn∆−1
n Gn)T,

Ωt|n = Ωt|n−1 − Ωt,nGT
n∆−1

n GnΩT
t,n,

where Ωt,n := E[(Xt − X̂t)(Xn − X̂n)T]. The 1-step predictors X̂t := Xt|t−1, their

error covariance matrices Ωt := Ωt,t = Ωt|t−1, and the matrices Θt and ∆t are

computed in advance for every t by the following Kalman prediction recursions

X̂t+1 = FtX̂t + Θt∆−1
t (Yt −GtX̂t),

Ωt+1 = FtΩtF
T
t + Qt −Θt∆−1

t ΘT
t , where

∆t := GtΩtG
T
t + Rt,

Θt := FtΩtG
T
t ,

and ∆−1
t is any generalized inverse of ∆t.

2.4 Optimization and Evaluation

First, we searched for optimal OLS regression parameters (f, δ, lmin, lmax), which

we then fixed for two different optimization procedures of the ALS models. We

investigated three different objective functions for OLS regression models optimiza-

tion, however, in order not to overcrowd the results, we considered only the optimal

restored SNR parameters for evaluation on the test data set.
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2.4.1 OLS Models

Using the test data set the optimal OLS model was found by a grid search. As

objective functions we used the restored SNR (rSNR), which is defined as

rSNR := 10 · log10

(
Var(v)

Var(v − v̂)

)
,

the difference in mean frequency (MF) of v and its estimate v̂

∆(MF) = MFv −MFv̂

and the percentagewise difference in mean peak-to-trough amplitude (MA) [21] of v

and v̂

∆(MA) =
MAv −MAv̂

MAv
.

More precisely, for every setting of the parameters (f, δ, lmin, lmax) the mean value of

an objective function over all learning data sets and SNR values was computed. The

MF values were computed in the frequency range [0.1 Hz, 50 Hz], and the MA values

were computed after band-pass filtering into the frequency range [0.1 Hz, 25 Hz], cf.

[21].

Only the OLS model with maximum mean rSNR was evaluated subsequently on

the test data set. For each SNR the rSNR, ∆(MF), ∆(MA) values were computed

for all signals in the test data set.

2.4.2 ALS Models with OLS Initialization

Using the OLS-rSNR-optimal (f, δ, lmin, lmax) setting, we considered ALS models

with OLS regression coefficients as initial state and an initial error covariance matrix

Ω0 which was computed using the estimator statistics of the OLS regression coeffi-

cients. Noise covariance matrices Q = σ2
v ·Ω0 with σ2

v ∈ {0.0015, 0.0013, 0.0011} were

considered, while σw was set to one, because the Kalman recursions only depend on

the ratio Q/σ2
w, cf. [19]. The Kalman fixed-point smoother recursions reaching one

second into the future were used. For every Q the mean rSNR over all learning data
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sets and SNR values was computed.

The ALS model with maximum mean rSNR was evaluated in the same way as

above on the test data set.

2.4.3 ALS Models Using Reduced MLE

Using the OLS-rSNR-optimal (f, δ, lmin, lmax) setting, we considered ALS models,

where the optimal initial state and initial error covariance matrix, the optimal Q =

σ2
v · 1M and σw were estimated by reduced maximum likelihood estimation (rMLE),

cf. [19, p.278ff]. We considered the following lower and upper bounds for the ratio

Q∗ := σ2
v/σ2

w

{(1.5 · 10−5, 1.5 · 10−4), (1 · 10−5, 1 · 10−4), (0.5 · 10−5, 0.5 · 10−4)}.

Bounds for Q∗ in this range force the model not to adapt the states too much over

time but rather allow for large observation errors, since these model the VF part of

the mixed signal. The Kalman fixed-point smoother recursions reaching one second

into the future were used for every ALS model with rMLE parameters. For every

Q∗ the mean rSNR over all learning data sets and SNR values was computed.

The ALS model with maximum mean rSNR was evaluated in the same way as

above on the test data set.

3 Results

Figure 3 compares exemplarily the true VF and CPR signals with the corresponding

estimates computed with OLS and ALS methods. The ALS method accomplishes a

better fit which is also reflected in a higher rSNR value.

The OLS-optimal (f, δ, lmin, lmax) parameters for the learning data set are given

in Table 1. The optimal state noise covariance matrix for the ALS models with OLS

initialization was Q = 0.00132 · Ω0, and the optimal lower and upper bound of Q∗

was (1 · 10−5, 1 · 10−4) for the ALS models using rMLE optimization.

The evaluation results for the optimal rSNR parameters are shown in Figures 4,
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5, and 6. Figure 4 also shows the SNR improvement which is defined as the difference

rSNR − SNR. For low SNR corrupted signals, the adaptive ALS model exceeds the

OLS regression model. All models underestimate the VF mean frequency by up to

approx. 1.5 Hz. They overestimate the VF mean amplitude for low SNR values

(approx. -15%) and underestimate it for high SNR values (approx. 5%). For high

SNR corrupted signals, the adaptive ALS model performs comparably or slightly

worse than the OLS regression model.

4 Discussion

Our approach consists in estimating the CPR-part of a corrupted signal by adaptive

regression on lagged copies of a reference signal which correlate with the CPR artifact

signal. The algorithm is based on a state-space model and the corresponding Kalman

recursions. It allows for stochastically changing regression coefficients. The residuals

of the Kalman estimation are identified with the CPR-filtered ECG signal.

In comparison with OLS regression the ALS algorithms show, for low SNR cor-

rupted signals, rSNR improvements and yields better estimates of the mean fre-

quency and mean peak-to-trough amplitude of the true VF ECG signal. Thus, the

ALS model presents an improvement compared to the non-adaptive OLS model for

the purpose of CPR artifact removal from VF ECG signals. This holds, in partic-

ular, because we optimized only one parameter (Q or Q∗) of the ALS model using

the fixed OLS-optimal values for (f, δ, lmin, lmax), which was done for computational

reasons.

The mean rSNR values computed from our small pool of human artifact-free

VF and porcine asystole CPR data are slightly better than the values reported by

[15, 12]. These research groups, however, not only used different algorithms but also

different data pools, such that the results are not truly comparable. We are planning

to collaborate with these research groups using a common data pool for comparison

and development of CPR removal algorithms.

The presented algorithms do not all allow for real-time CPR-filtering as for
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example the efficient matching pursuit-like algorithm of Husoy et al. [15]. The

simple OLS algorithm needs the complete 10 seconds signals in order to estimate

the regression coefficients and subsequently compute the VF part. Likewise, the

ALS models estimate the optimal initialization parameters by means of the complete

signal. This, however, is not an obstruction for a possible real-time application of

the proposed algorithms because they would serve as a preprocessing for rhythm

detection algorithms and VF scoring algorithms. These algorithms typically also

need complete segments for their analysis, e.g. Fourier transformation. Thus, the

proposed CPR artifact removal methods lead to a low computational time delay.

Our optimization computes the optimal (f, δ, lmin, lmax), σv, and Q∗ values for

all SNR values of the learning data set, because the SNR value is not known a

priori. Yet, a closer inspection shows that the optimal (f, δ, lmin, lmax), σv, and Q∗

values depend on the SNR of the mixed signal. For the ALS models, the optimal

state noise variance decreases with increasing SNR such that the states do not adapt

too much over time but rather allow for large observation errors, which model the

VF part of the mixed signal. Using a common state noise variance for all SNR

values, thus, could be the reason for the lower performance of the ALS models at

high SNR values compared to the OLS regression model. A possible improvement

of the presented algorithms could therefore consist in estimating the SNR of the

CPR-corrupted signal and then estimate the VF and CPR-parts by means of the

SNR-optimal parameters.

In this study, we computed MF and MA values in the frequency range of [0.1 Hz,

50 Hz] and [0.1 Hz, 25 Hz], respectively. Narrower frequency ranges could possible

reduce the ∆(MF) and ∆(MA) values. However, this procedure can be carried out

after any CPR removal algorithm. Our intent was to reveal the estimation quality

of the presented algorithms in a broad frequency range.

There are several limitations of this study. Besides the limited optimization pro-

cedures applied, the results are mainly limited by the small data sets. Furthermore,

only VF signals and no other shockable signals were used. To investigate the feasi-

bility of rhythm detection algorithms during CPR also non-shockable signals should
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be included, cf. [16]. An international database of human and animal ECG signals

would be useful in order to evaluate the different algorithms for CPR artifact removal

on a common basis. The ALS state-space model assumes that the observation noise

Wt, which models the VF ECG signal, is white noise and thus uncorrelated. Figure

7 shows that a typical VF ECG signal is evidently not white noise. Thus, in a more

appropriate state-space model the VF signal should be modelled more realistically,

e.g. by an autoregressive process. Different objective functions can be considered.

The rSNR is a common parameter to quantify the performance of a signal separation

algorithm. For the practical application of CPR removal algorithms in defibrillators,

however, other objective functions such as the performance of a rhythm detection

algorithm or ∆(MF) and ∆(MA) could be more reasonable.
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Tables

f [Hz] δ [lags] lmin [sec] lmax [sec]
rSNR 40 2 -.15 .30

∆(MF) 35 3 -.20 .30
∆(MA) 35 3 -.15 .25

Table 1: OLS-optimal parameters for the learning data set with respect to the
objective functions rSNR, ∆(MF), and ∆(MA).
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Figure 1: Results of an OLS regression of a CPR corrupted VF ECG signal on
lagged copies of the arterial blood pressure signal showing the true and estimated
CPR and VF part. The regression coefficients are plotted in Figure 2.
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Figure 2: The CPR corrupted VF ECG signal is the sum of a CPR and a VF part.
Lagged copies of the reference signal and OLS regression coefficients corresponding
to Figure 1: A lag of, for example, -0.15 seconds means that the original reference
signal is shifted 0.15 seconds towards the past, in other words, the reference signal
values of 0.15 seconds ahead are used.
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Figure 3: Comparison of true VF and CPR signals with the corresponding estimates
computed with OLS and ALS methods. The ALS method accomplishes a better fit
which is also reflected in a higher rSNR value.
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Figure 4: Evaluation results: rSNR and SNR improvement values (mean ± std) for
the three models depending on the SNR of the signal mixture.
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Figure 5: Evaluation results: ∆(MF) values (mean ± std) for the three models
depending on the SNR of the signal mixture. The MF values were computed in the
frequency range [0.1 Hz, 50 Hz], cf. [21].
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Figure 6: Evaluation results: ∆(MA) values (mean ± std) for the three models
depending on the SNR of the signal mixture. The MA values were computed after
band-pass filtering into the frequency range [0.1 Hz, 25 Hz], cf. [21].
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Figure 7: VF ECG signal at 40 Hz sampling frequency and corresponding autocor-
relation function (ACF) including 95% confidence interval bounds for white noise
(WN). The VF ECG signal is evidently not WN, cf. [19].
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