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1. Examples of nonlinear wave equa-
tions

1. Korteweg-de Vries equation (KdV), the most famous example:

KdV (q) = qt − 6qqx + qxxx = 0

Applications: model for small amplitude, long (water) waves, collision-free hy-
dromagnetic waves, ion-acoustic waves in plasmas.

2. modified Korteweg-de Vries equation (mKdV):

mKdV±(φ) = φt ± 6φ2φx + φxxx = 0

3. Nonlinear Schrödinger equation (NLS):

NLS±(u) = iut + uxx ± u|u|2 = 0

Applications: plasma waves, nonlinear optics.

4. Sine-Gordon equation, Hyperbolic-sine-Gordon equation
(Sinh-Gordon):

φtx = ± sinφ or utt − uxx = ± sinu

φtx = sinhφ or utt − uxx = sinhu

Applications: differential geometry, elementary particle physics.

5. Kadomtsev-Petviashvili equation (KP):

Vt − 6V Vx + Vxxx ± 3∂−1x Vyy = 0 where (∂−1x f)(x, y, t) =

∫ x

−∞
f(x′, y, t)dx′

This is a two-(space-)dimensional generalization of the KdV equation. It has
also a modified version. The KP equation is mathematically very important.
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The linear one-dimensional wave
equation
Let us first consider the linear one-dimensional wave equation

utt − c2uxx = 0,

where x is the space variable, t is the time variable, c is a constant (the velocity of
the wave), and u(x, t) denotes the amplitude.

This equation is solved by a simple transformation:

ξ = x+ ct, η = x− ct.

Define ũ by
ũ(ξ, η) = u(x(ξ, η), t(ξ, η)).

Then

ũξ,η = − 1

4c2
(utt − c2uxx) +

1

4c
(utx − uxt) = 0.

If u ∈ C2 satisfies the wave equation, then ũξ,η = 0. Now integration yields

ũξ = g(ξ) with g ∈ C1,

ũ =

∫ ξ

g(s)ds+ F (η) = G(ξ) + F (η) with F ∈ C2

and hence
u(x, t) = G(x+ ct) + F (x− ct).

F describes a wave moving to the right with velocity c > 0 and G describes a wave
moving to the left with velocity c > 0. (Note that these waves retain their shape.)

Factorization:

(∂t ∓ c ∂x)(∂t ± c ∂x)v = 0,

vt ± c vx = 0,

v(x, t) = H(x∓ c t).
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2. Dispersion versus Nonlinearity
Dispersion of a linear equation

Consider the linearized KdV equation qt + qxxx = 0 and try the ansatz (plane waves)

q(x, t) = ei(kx−ωt). (2.1)

One has qt = −iωq and qxxx = (ik)3q. Therefore q is a solution, iff the “dispersion
relation”

ω + k3 = 0 (2.2)

is fulfilled, yielding q(x, t) = exp(i(kx+ k3t)).

Next superpose solutions of this type

q(x, t) =

∫ ∞
−∞

A(k) exp(ikx+ ik3t)dk

for appropriate A(k) ∈ L1(R). Under reasonable conditions on A we can interchange
differentiation with respect to t and x with integration with respect to k, we have

qt + qxxx =

∫ ∞
−∞

A(k)(∂t + ∂xxx) exp(ikx+ ik3t)dk = 0. (2.3)

In the case of the linearized KdV equation we can determine A(k) using the initial
condition q(x, 0) = q0(x). Since

q0(x) =

∫ ∞
−∞

A(k)eikxdk,

A(k) is the Fourier transform of q0(x), i.e.,

A(k) =
1

2π

∫ ∞
−∞

q0(x)e−ikxdx.

For sufficiently nice q0 the function A will satisfy the above conditions, i.e., (1+k3)A(k)
being in L1.

In much the same way one can obtain the solution of many other initial value problems
for partial differential equations with constant coefficients. In these cases one obtains
global solutions, i.e. solutions which exists for all t ≥ 0 (see John, Section 5.2.b).
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Now we want to study dispersion.

Lemma 1 1. Let ω : R → R be C∞ and let A ∈ C∞0 (R). Let G be an open set
containing the compact set {ω′(k)|k ∈ suppA}. Define

q(x, t) =

∫ ∞
−∞

A(k) exp(ikx− iω(k)t)dk. (2.4)

Then for any m, there is a constant c depending on m, A and G such that |q(x, t)| ≤
c(1 + |x|+ |t|)−m for all (x, t) with x

t
6∈ G.

2. In addition to the above let suppA ∩ {k|ω′′(k) = 0} = ∅. Then |q(x, t)| ≤ c|t|−1/2
for |t| > 1 and all x.

For a proof see Reed and Simon III, Corollary to Theorem XI.15 (so called method of
stationary phase.)

In our situation ω(k) = −k3 and ω′′(k) = −6k. Hence if 0 6∈ suppA, then suppA ∩
{k|ω′′(k) = 0} = ∅ and the Lemma applies yielding q(x, t) = O(|t|−1/2) uniformly in
x as |t| tends to infinity. This describes the spreading of an initial wave packet, a
phenomenon called dispersion.

Nonexistence of Global Solutions in the Nonlinear
Case

Consider the nonlinear equation

qt + F (q)qx = 0.

Formal solution:

q(x, t) = G(x− F (q)t).

The following proposition shows that this equation cannot have global solutions except
for very special initial conditions. The following proposition can be found in Smoller
(p.241-244).

Proposition 2 Assume F ∈ C1(R), F ′ > 0 and consider qt + F (q)qx = 0 for t ≥ 0
and all x. Suppose that initially q(x, 0) = q0(x), where q0 ∈ C1(R). If q′0 ≥ 0 then
q ∈ C1(R2

+), (R2
+ = R× R+). But if q′0(x0) < 0 for some x0 ∈ R, then, in general, a

C1-solution can only exist for t small enough.

Note that the nonexistence of a global solution is a pure nonlinear effect. Also, if
F ′ < 0, the condition in q′0 has to be reversed in order to get a global solution. In any
case one gets in trouble for either t < 0 or t > 0, even if q′0 is of one sign. We conclude
that the equation qt − 6qqx = 0 does not have global solutions.
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Nonlinearity plus dispersion

The linearized KdV equation admits global solutions but shows dispersion. The non-
linear equation qt− 6qqx, on the other hand, does not admit global solutions. Now let
us consider the full KdV equation

qt − 6qqx + qxxx = 0.

This equation has the special solution

q1(x, t) = q∞ −
2κ2

(cosh(κx+ (6q∞ − 4κ2)κt+ b))2

where b, q∞ ∈ R and κ ≥ 0.

q1 is of the type of a traveling wave, i.e., q1(x, t) = f(x− ct) with c = 4κ2−6q∞. Note
that q∞ = limx→±∞ q1 = limt→±∞ q1. q1 is a global solution and non-dispersive, i.e., it
does not spread out as |t| → ∞. In fact as traveling wave it keeps its shape.

Conclusion: A proper combination of nonlinearity and dispersion might produce a
nice surprise, namely a solitary wave that is globally defined and that is non-dispersive.
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3. The Lax Approach for the
KdV Equation

Definition 3 Let A(t), t ∈ R, be a family of self-adjoint operators in some Hilbert
space H with common dense domain D ⊂ H. A two parameter family of operators
U(t, s), t, s ∈ R, is called a unitary propagator for A(t), if

1. U(t, s) is unitary ∀s, t ∈ R,

2. U(t, t) = 1 ∀t ∈ R,

3. U(t, s)U(s, r) = U(t, r) ∀r, s, t ∈ R,

4. (t, s) → U(t, s) is strongly continuous, i.e., (t, s) → U(t, s)ψ is continuous for
all ψ ∈ H,

5. U(t, s)ψ ∈ D for all ψ ∈ D and for fixed s ∈ R. The function t → U(t, s)ψ is
differentiable for all ψ ∈ D and

∂

∂t
U(t, s)ψ = −iA(t)U(t, s)ψ,∀t, s ∈ R,∀ψ ∈ D.

Throughout this chapter the following hypothesis is used.

Hypothesis 4 Let q ∈ C∞(R2) be real valued and let q, qx, qt, qtx be in L∞(R2).

Now we define a family of Schrödinger operators by

L(t) = −∂2x + q(·, t)

in a Hilbert space L2(R).

Also let us define in L2(R)

P (t) = −4∂3x + 6q(·, t)∂x + 3qx(·, t).

Proposition 5 (i) Under Hypothesis 4 each L(t) is a self-adjoint operator in L2(R)
with domain D(L(t)) = H2(R).
(ii) Under Hypothesis 4 each P (t) is skew-adjoint, (i.e., ±iP (t) is self-adjoint), in
L2(R) with domain D(P (t)) = H3(R).

Lemma 6 Suppose q satisfies Hypothesis 4. Then iP (t), t ∈ R has a unitary propa-
gator U(t, s) in L2(R).

If P (t) were actually time-independent (stationary KdV solution) then the problem
of Lemma 6 would be solved by Stone’s theorem, i.e.,

U(t, s) = exp(−i(t− s)iP ) = exp((t− s)P ).

The significance of the Lax approach is given by the following theorem.
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Theorem 7 Suppose q satisfies Hypothesis 4 and the KdV equation. Then there exists
a family of unitary operators U(t, s), t ∈ R, U(t, t) = 1 in L2(R) which is a propagator
for iP (t), such that

U(t, s)L(s)U(t, s)−1 = L(t) ∀t ∈ R,

i.e., L(t) is unitarily equivalent to L(s) for all t in R. In particular all unitary in-
variants of L(t) such as its spectrum, the nature of the spectrum (point spectrum,
absolutely continuous spectrum etc.) and its multiplicity remain independent of t ∈ R.

P and L are called a Lax pair (Peter Lax). The connection with the KdV equation is
given through

d

dt
L(t) =

d

dt

(
U(t, s)L(s)U(t, s)−1

)
=

d

dt
U(t, s)U(t, s)−1︸ ︷︷ ︸

−i2P (t)

L(t) + L(t)U(t, s)
d

dt
U(t, s)−1︸ ︷︷ ︸

i2P (t)

= P (t)L(t)− L(t)P (t) = [P (t), L(t)].

Hence
d

dt
L(t)− [P (t), L(t)] = 0

is equivalent to the KdV equation since d
dt
L(t) = qt and [P,L] = 6qqx − qxxx.

The result of Theorem 7 is truly spectacular, since q(x, t) will vary substantially in
time in general, while the spectral properties of L are independent of t.
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4. Scattering and Inverse Scattering
Theory for the one-dimensional
Schrödinger Operator

Direct Scattering

We are interested in solving the differential equation

−f ′′ + qf = k2f (4.1)

for a real-valued potential q and a complex parameter k.

For p ≥ 0 let L1
p(R) denote classes of functions on R:

L1
p(R) = {q|q real − valued,

∫ ∞
−∞

(1 + |x|p)q(x)dx <∞}.

Note that L1
p(R) ⊂ L1

r(R), if p ≥ r.

Theorem 8 1. Suppose q ∈ L1
1(R). For each k with =k ≥ 0 the integral equations

f±(k, x) = e±ikx −
∫ ±∞
x

sin(k(x− x′))
k

q(x′)f±(k, x′)dx′ (4.2)

have unique solutions defined everywhere in R, which solve the Schrödinger equation

−f ′′± + q(x)f± = k2f±.

For each x the functions f±(k, x), f ′±(k, x) are analytic in the upper half plane =k > 0
and continuous in =k ≥ 0. They satisfy the following estimates:

|f±(k, x)− e±ikx| ≤ const

|k|
exp(

const

|k|
)e∓(=k)x, k 6= 0 (4.3)

|f±(k, x)| ≤ const(1 + max{x, 0})e∓(=k)x (4.4)

|f ′±(k, x)| ≤ const(
1 + |k|
|k|

)e∓(=k)x, k 6= 0 (4.5)

|f ′±(k, x)| ≤ const(1 + |k|+ |k||x|)e∓(=k)x. (4.6)

2. If q ∈ L1
2(R), then ∂

∂k
f±(k, x) = ḟ±(k, x) exists for =k ≥ 0 and is continuous there

as a function of k. The following estimates hold

| ∂
∂k

(e∓ikxf±(k, x)| ≤ const(1 + x2) (4.7)

| ∂
∂k
f±(k, x)| ≤ const(1 + x2)e∓(=k)x, (4.8)

| ∂
2

∂x∂k
(e∓ikxf±(k, x))| ≤ const(1 + |x|) (4.9)

| ∂
2

∂x∂k
f±(k, x)| ≤ const(1 + |k|)(1 + x2)e∓(=k)x. (4.10)
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In a similar way one can consider functions g±(k, x) defined by

g±(k, x) = e∓ikx −
∫ ±∞
x

sin(k(x− x′))
k

q(x′)g±(k, x′)dx′

for =k ≤ 0. These functions satisfy the relations

g±(k, x) = f±(k∗, x)∗ (4.11)

and for k real
f±(k) = g±(−k) = g∗±(k) = f ∗±(−k). (4.12)

The functions f± and g± are called the Jost solutions of the Schrödinger equation.

If q were continuous standard ode theory would imply that W (g±, f±) were indepen-
dent of x because they are both solutions of the Schrödinger equation with the same
value of k2. Nevertheless this remains to be true even in our case, since ∂

∂x
W (g±, f±)

vanishes almost everywhere, which yields, upon integration from x1 to x2, that the
Wronskians are indeed independent of x. Hence we may evaluate them by calculating
the limit as x→ ±∞ and find

W (g±, f±) = ±2ik, k ∈ R. (4.13)

For =k ≥ 0 we define W (k) = W (f−(k, x), f+(k, x)), which is again independent of x.
Note that W is analytic for =k > 0 and continuous for =k ≥ 0.

For real k we have defined four solutions of a second order differential equation. These
can not be linearly independent. In fact we have

f±(k, x) = c∓(k)f∓(k, x) + d∓(k)g∓(k, x), k ∈ R, k 6= 0 (4.14)

since, by (4.13) the pairs (f+, g+) and (f−, g−) are linearly independent.

The coefficients c∓ and d∓ may be expressed in terms of Wronskians:

c± = ∓W (f∓, g±)

2ik
(4.15)

d(k) = d+(k) = d−(k) =
W (k)

2ik
. (4.16)

While d± is only defined for real k 6= 0 by (4.14), (4.16) may be used as definition for
=k ≥ 0, k 6= 0. Note that for real k by (4.12)

d(k)∗ = d(−k), c±(k)∗ = c±(−k) and c+(−k) = −c−(k). (4.17)

Proposition 9 Under the condition q ∈ L1
2(R) the following holds:

1. W (k) 6= 0 for =k ≥ 0 unless k is pure imaginary.

2. Suppose W (k0) = 0 for some k0 with k0
i
> 0. Then

Ẇ (k0) = 2k0

∫ ∞
−∞

f−(k0, x)f+(k0, x)dx 6= 0,

i.e., all zeros of W (k) are simple.
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3. d(k) = 1 +O(|k|−1) as |k| → ∞

4. c±(k) = O(|k|−1) as k → ±∞

5. The following alternative holds:

– Either d(k) is continuous at k = 0 with d(0) 6= 0 and c±(k) are continuous at
k = 0,

– or kd(k) is continuous at k = 0 with limk→0 kd(k) = α 6= 0 and kc±(k) are
continuous at k = 0 with limk→0 kc±(k) = β± 6= 0.

We are now turning to the Schrödinger operator associated to q.
Let q ∈ L1

2(R). Then define H = − d2

dx2
+ q in

D(H) = {g ∈ L2(R)|g, g′ ∈ ACloc(R),−g′′ + qg ∈ L2(R)}.

Lemma 10 The operator H defined above is self-adjoint in L2(R). Its spectrum has
the following properties

1. σess(H) = σac(H) = [0,∞),

2. σsing(H) = ∅,

3. σpp(H) ⊂ (−∞, 0),

4. all eigenvalues are simple.

Theorem 11 The eigenvalues of H are given through the zeros of the function d(k).
In particular there are only finitely many eigenvalues and inf σ(H) > −∞.

σpp(H) = {−κ2j |κj > 0, j = 1, ...N} is the set of eigenvalues of H. To each eigenvalue
−κ2j there corresponds an eigenfunction

f+(iκj, x) = µjf−(iκj, x) (4.18)

for some non-zero µj. We define norming constants γ±,j, j = 1, ...N , by

γ±,j = ‖f±(iκj, ·)‖−12 , j = 1, ..., N. (4.19)

We now turn to the continuous spectrum and introduce the scattering matrix.

Definition 12 For real k let

S(k) =

(
T−(k) R+(k)
R−(k) T+(k)

)
where T−(k) = T+(k) = T (k) = 1/d(k) denote the transmission coefficients (with
respect to left and right incidence) and

R±(k) = c±(k)/d(k)

denote the reflection coefficients with respect to left and right incidence.
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Note that T (k), R±, (k) are well defined. This is true even if k → 0 because of
statement 5 in Proposition 9. The relations (4.16) imply

T (k)∗ = T (−k), R±(k)∗ = R±(−k) (4.20)

Theorem 13 Assume q ∈ L1
2(R) and k ∈ R. Then S(k) is a continuous, unitary

operator. In particular,

|R−(k)|2 = |R+(k)|2 (4.21)

|T (k)|2 + |R±(k)|2 = 1. (4.22)

In order to extract the physical meaning of the scattering matrix we define now the
wave functions of H by

ψ±(k) = d(k)−1f±(k, x), k ∈ R, x ∈ R.

Of course Hψ± = k2ψ± in the distributional sense. The expansion of f± in terms of
f−, g− and f+, g+, respectively, and the asymptotic behavior of these translates into

ψ+(k, x) =

{
d−1(k)eikx as x→∞
c−(k)
d(k)

e−ikx + eikx as x→ −∞

=

{
T (k)eikx as x→∞
eikx +R−(k)e−ikx as x→ −∞.

Similarly

ψ−(k, x) =

{
T (k)e−ikx as x→ −∞
e−ikx +R+(k)eikx as x→∞.

Now the interpretation is as follows: Consider a plane wave ei(kx−ωt) of frequency ω
and wave number k. For a given ω > 0 the sign of k gives the direction in which the
wave travels, namely for k > 0 the wave is traveling to the right for k < 0 the wave is
traveling to the left. Therefore at a fixed instant of time and positive k eikx and e−ikx

are supposed to indicate waves travelling to the right and left respectively.

Now note that the condition q ∈ L1
2 requires a certain decay of q at ±∞. Therefore

near ±∞ the solutions are close to plane waves. Then ψ+ describes a wave incidenting
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from −∞, a part of it – T (k)e+ikx – being transmitted to +∞ and another part of it
– R−(k)e−ikx – being reflected back to −∞.
Similarly ψ− describes a wave incidenting from +∞ a part of it being transmitted and
a part of it being reflected. Our analysis has shown that the transmission coefficient
is independent from whether the wave comes from +∞ or −∞. This is not true for
the reflection coefficient but at least we have |R+| = |R−|. So the scattering matrix
contains the asymptotic information describing the scattering process.

Definition 14 The sets

S± = {R±(k), k ∈ R;κj, γ±,j, j = 1, ..., N}

are called the scattering data S± for H.

The direct scattering step consists in obtaining the scattering data for q, to determine
the map

q 7−→ S±.

Note that all the information in S± actually sits in f± and g± and its x-derivatives,
which can be obtained (theoretically) by solving the respective Volterra integral equa-
tions.

Remarks: Remember part 2 of Proposition 9 where

Ẇ (iκj) = 2iκj

∫ ∞
−∞

f−(iκj, x)f+(iκj, x)dx,

if −κ2j is an eigenvalue of H. But then W (iκj) = 0 and f+(iκj, x) = µjf−(iκj, x).
Hence [

d

dk

1

T (k)

]
k=iκj

=

[
d

dk

W (k)

2ik

]
k=iκj

= −i
∫ ∞
−∞

f−(iκj, x)f+(iκj, x)dx

= −iµj‖f−‖22 =
−i
µj
‖f+‖22 = −iµjγ−2−2 = −iµ−1j γ−2+,j.

Therefore, from T (k) and γ+,j, one can calculate µj and also γ−,j.

Investigating

h(k) = T (k)
N∏
i=1

k − iκj
k + iκj

one can show for =k > 0

T (k) =
N∏
j=1

k + iκj
k − iκj

exp

{
1

2πi

∫ ∞
−∞

ln(1− |R+(ξ)|2)
ξ − k

dξ

}
, (4.23)

and for real k

T (k) = lim
ε→0

T (k + iε)

=
N∏
j=1

k + iκj
k − iκj

exp

{
1

2πi

∫ ∞
−∞

ln(1− |R+(ξ)|2)
ξ − k

+
1

2
ln(1− |R+(k)|2)

}
where the last integral is a principal value integral.
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Inverse Scattering

Definition 15 A function h which is analytic in the upper half plane and satisfies

sup
b>0

∫ ∞
−∞
|h(a+ ib)|2da <∞

is called an Hardy function. Let H2+ denote the space of all Hardy functions.

Lemma 16 A function h is of class H2+ if and only if for all =ω > 0 and for some
f ∈ L2(R) vanishing on the negative real axis

h(ω) =

∫ ∞
0

f(x)eiωxdx.

Remark: Levin representation of Jost solutions:

f±(k, x) = e±ikx ±
∫ ±∞
x

dyK±(x, y)e±iky.

Definition:

K±(x, y) =
1

2
B±(x,

y − x
2

).

For =k ≥ 0 and x ∈ R we introduce the functions

m±(k, x) = e∓ikxf±(k, x),

n±(k, x) = T (k)e±ikxf∓(k, x) = T (k)m∓(k, x),

N±(k, x) = n±(k, x)− 1−
N∑
j=1

A±,j(x)

k − iκj

where
A±,j(x) = iµ±1j γ2±jm∓(iκj, x) = iγ2±,je

∓2κjxm±(iκj, x).

Proposition 17 The functions (m±(k, x)− 1) and N±(k, x) are Hardy functions for
each x ∈ R.

Corollary 18 There exist functions B±(x, ·) and B̃±(x, ·) ∈ L2(R), x ∈ R such that
B±(x, y) = 0, B̃±(x, y) = 0 for y < 0 and all x ∈ R and

m±(k, x) = 1 +

∫ ∞
−∞

B±(x, y)eikydy, =k ≥ 0, x ∈ R

n±(k, x) = 1 +
N∑
j=1

A±j(x)

k − iκj
+

∫ ∞
−∞

B̃±(x, y)eikydy, =k ≥ 0, x ∈ R.

Furthermore for each x and real argument the function (m±(·, x) − 1) is the Fourier
transform of a certain function B±(x, ·) ∈ L2(R) vanishing on the negative real axis.
Similary N±(·, x) is the Fourier transform of a certain function B̃(x, ·) ∈ L2(R) van-
ishing on the negative real axis.
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B− satisfies the integral equation

2B(x, y) =

∫ x−y/2

−∞
q(x′)dx′ +

∫ y

0

∫ x+(z−y)/2

−∞
q(x′)B(x′, z)dx′dz (4.24)

for y > 0 while B−(x, y) = 0 would be a solution for y < 0 because of the missing
nonhomogeneous term.

Theorem 19 Let q ∈ L1
2(R). Then the integral equation (4.24) has a (unique) solu-

tion B(x, ·) : R+ → R satisfying

1. ‖B(x, ·)‖∞ ≤ 1
2
η(x)eγ(x) <∞,

2. ‖B(x, ·)‖1 ≤ γ(x)eγ(x) <∞,

3. ∂
∂x

(
∂
∂x
B−(x, y) + 2 ∂

∂y
B−(x, y)

)
= q(x)B(x, y),

4. d
dx
B(x, 0) = 1

2
q(x) almost everywhere,

5. the function e−ikx
(
1 +

∫∞
0
B(x, y)eikydy

)
is the Jost solution f−(k, x).

The functions η and γ were defined by

γ(x) =

∫ x

−∞
(x− t)|q(t)|dt and η(x) =

∫ x

−∞
|q(t)|dt. (4.25)

Note that B(x, ·) ∈ L∞(R+) ∩ L1(R+) implies B(x, ·) ∈ L2(R+), so its Fourier trans-
form exists in L2. Since the Jost solution f−(k, x) = e−ikx(1 +

∫∞
0
B(x, y)eikydy), we

conclude that the function B, defined by the integral equation (4.24) is actually the
B− that was defined in Corollary 18, thus justifying the formal reasoning that led to
(4.24) in the first place. Furthermore property 4 of the theorem shows that one can
obtainin q, if one knows B−.

Remark: q(x) = ∓ d
dx
K±(x, x).

Using (4.12) we obtain from the fundamental relation

f±(k, x) = c∓(k)f∓(k, x) + d(k)g∓(k, x)

the equation
n±(k, x) = R±(k)e±2ikxm±(k, x) +m±(−k, x) (4.26)

or

N±(k, x) = −
N∑
j=1

A±,j(x)

k − iκj
+ (m±(−k, x)− 1) +R±(k)e±2ikx

+ R±(k)e±2ikx(m±(k, x)− 1).
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Now we take inverse Fourier transforms on both sides and evaluate at ∓2y. We get
for ±y > 0

0 = ω±(x+ y) +B±(x,±2y) + 2

∫ ∞
−∞

B±(x,±2z)ω±(x+ y + z)dz. (4.27)

Note that for a given set of scattering data both ω+ and ω− are given functions, since
the other set may be calculated from either set. Hence (4.27) is an integral equation,
which can be used to obtain B±(x, y) from a given set of scattering data. It is called
the Marchenko equation.

Theorem 20 The function B±(x, y) defined in Corollary 18 satisfies the Marchenko
equation

B±(x,±2y) + ω±(x+ y) + 2

∫ ∞
−∞

B±(x,±2z)ω±(x+ y + z)dz = 0, ±y > 0

where

ω±(z) =
N∑
j=1

γ2±je
∓2κjz +

1

2π

∫ ∞
−∞

R±(k)e±2ikzdk.

Remark: Marchenko equation for K±(x, y):

K±(x, y) + Ω±(x+ y)±
∫ ±∞
x

K±(x, z)Ω±(x+ y + z)dz = 0, x ≷ y

where

Ω±(s) =
N∑
j=1

γ2±je
∓κjs +

1

2π

∫ ∞
−∞

R±(k)e±iksdk.

Now suppose the set of scattering data S− is given. This defines the function ω−(z)
using (4.27) and hence the nonhomogeneous term and the kernel of the Marchenko
equation, which is a Fredholm integral equation. Under certain conditions on S− the
Marchenko equation has a unique solution B−(x, y). Compute 2 d

dx
B−(x, 0) to obtain

q(x). This solves the inverse problem. The next step to do is therefore to describe
conditions under which the Marchenko equation has a unique solution.

We summarize the results on inverse scattering in the following theorem:

Theorem 21 Suppose the set S− = {R−(k), k ∈ R;κ1, ..., κN ; γ−,1, ..., γ−,N} satisfies
the following conditions:

1. The numbers κ1, ..., κN and γ−,1, ..., γ−N are positive. The numbers κj are dis-
tinct.

2. The function R−(k) is continuous and satisfies

(a) R−(k) = R−(−k)∗

15



(b) |R−(k)| ≤ 1, |R−(k)| = 1 =⇒ k = 0

(c) If |R−(0)| = 1, then limk→0
1+R−(k)

k
= ρ 6= 0

(d) |R−(k)| = 0( 1
|k|)as|k| → ∞

(e) R∨−(·), the inverse Fourier transform of R−, is absolutely continuous and∫∞
−∞(1 + |x|)| d

dx
R∨−(x)|dx <∞.

Then S− determines a unique potential q. This potential is given through

q(x) = 2
d

dx
B(x, 0),

where B(x, y) is the unique solution of the Marchenko equation

B(x, 2y) + ω(x− y) + 2

∫ ∞
0

B(x, 2z)ω(x− y − z)dz = 0, y ≥ 0

and where ω(z) =
∑N

j=1 γ
2
−,je

2κjz +R∨−(2z).

16



5. The initial value problem for the
KdV equation
The basic idea to solve the initial value problem for the KdV equation goes back to
Gardner, Greene, Kruskal and Miura. It is given by the following diagram:

Here it should be remarked that this procedure resembles the strategy of solving a
linear equation by using Fourier transforms and inverse Fourier transforms instead of
scattering and inverse scattering methods. Consider for example the linearized KdV
equation qt + qxxx = 0. Fourier transformation of the initial condition q0(x) yields

A(k) =

∫ ∞
−∞

q0(x)eikxdx.

Inserting q(x, t) = 1
2π

∫∞
−∞A(k) exp(−i(kx−ω(k)t))dk into the equation yields ω(k) =

−k3. Therefore

q(x, t) =
1

2π

∫ ∞
−∞

A(k) exp(−ik3t)e−ikxdk,

i.e. q(x, t) is the inverse Fourier transform of A(k) exp(−ik3t).

The only missing step in the above diagram is now the time evolution of the scattering
data. We start with some preparation.

Proposition 22 Suppose q is a real valued solution of the KdV equation such that
q and its x-derivatives up to order three are continuous in R2. Furthermore assume
that ψ0(k, x), k2 ∈ R, x ∈ R satisfies the differential equation

L(0)ψ0 = −ψ′′0 + q(·, 0)ψ0 = k2ψ0, k2 ∈ R. (5.1)

Then there exists a unique real valued solution ψ(k, x, t) of the initial value problem

L(t)ψ = −ψxx + q(·, t)ψ = k2ψ, k2 ∈ R, (5.2)

P (t)ψ = −4ψxxx + 6qψx + 3qxψ = ψt, (5.3)

ψ(k, x, 0) = ψ0(k, x), k2 ∈ R. (5.4)

17



Remark: (5.3) is equivalent to

ψt = 2(q + 2k2)ψx − qxψ. (5.5)

In the following we require that q satisfies the assumptions of chapter 3 as well as of
chapter 4.

Hypothesis 23 Let q ∈ C∞(R) be real valued and such that q, qx, qt and qxt ∈
L∞(R2). Also require that q(·, t) ∈ L1

2(R) and qt(·, t) ∈ L1(R).

Remember that under this condition L(t) is a self-adjoint operator with domain
D(L(t)) = H2(R) for all t (see Proposition 5).

Proposition 24 If q satisfies Hypothesis 23 and the KdV equation then q, qx, qxx tend
to zero as |x| tends to infinity.

Proposition 25 If q satisfies Hypothesis 23, then the Jost solutions f± of L(t)f =
k2f have the following properties

e∓ikx
∂

∂x
f±(k, x, t) = ±ik +O(1),

e∓ikx
∂

∂t
f±(k, x, t) = O(1)

as x tends to ±∞.

Theorem 26 If q satisfies Hypothesis 23 and the KdV equation, then the scattering
data S±(t) associated with q(·, t) evolve according to

S±(t) = {exp(±8ik3t)R±(k, t = 0); k ∈ R;

κj(t = 0), exp(±4κ3j t)γ±,j(t = 0), j = 1, ..., N}

Moreover the transmission coefficient T is independent of time, i.e., T (k, t) = T (k, 0).

Remarks: (i) In Theorem 7 it was proved that the operators L(t) and L(0) are uni-
tarily equivalent. In particular their eigenvalues which are given through the numbers
κj, j = 1, ..., N do not depend on t.

(ii) Next define ψj,0(x) to be the solution of L(0)ψ = −κ2jψ with L2-norm one and
ψj(x, t) to be the solution of L(t)ψ = 0 and ψt = P (t)ψ having initial values ψj,0(x).
ψj exists uniquely according to Proposition 22. Therefore

ψj(x, t) = γ+,j(t)f+(iκj, x, t) (5.6)

where f+ is a Jost solution of L(t)ψ = −κ2jψ and γ+,j is the norming constant defined
in (4.19). Differentiating (5.6) with respect to t and using (5.5) once more one gets

γ̇+,jf+ + γ+,jf+,t = 2(q − 2κ2j)γ+,jf+,x − qxγ+,jf+.

18



Multiplying by eκjx and using Propositions 24 and 25 yields

γ̇+,j = 4κ3jγ+,j, i.e., γ+,j(t) = exp(4κ3j t)γ+,j(0).

(iii) Finally consider for real k solutions ψ± of (5.2) and (5.3) with initial conditions
ψ+(k, x, 0) = f+(k, x, 0) and ψ−(k, x, 0) = f−(k, x, 0). Compute, using (5.5)

d

dt
W (ψ−, ψ+) = 0,

d

dt
W (ψ−(k), ψ+(−k)) = 0.

Since f+ and f− are linearly independent for k 6= 0 we have

ψ+(k, x, t) = a(k, t)f+(k, x, t) + b(k, t)f−(k, x, t)

and hence by differentiating with respect to t and using (5.5)

ȧe−ikxf+ + ae−ikxf+,t + ḃe−2ikxeikxf− + be−2ikxeikxf−,t

= 2(q + 2k2)(ae−ikxf+,x + be−2ikxeikxf−,x

−qx(ae−ikxf+ + be−2ikxeikxf−)

As x tends to infinity one gets using Propositions 24 and 25

ȧ− 4ik3a+ e−2ikx(ḃ+ 4ik3b) + o(1) = 0.

This implies ȧ = 4ik3a and ḃ = −4ik3b with initial conditions a(0) = 1 and b(0) = 0
and therefore

ψ+(k, x, t) = exp(4ik3t)f+(k, x, t)

and similarly
ψ−(k, x, t) = exp(−4ik3t)f−(k, x, t).

Now

1

T (k, t)
= d(k, t) =

W (f−(k, x, t), f+(k, x, t))

2ik
=
W (ψ−(k, x, t), ψ+(k, x, t))

2ik

does not depent on t. Also

R±(k, t) =
c±(k)

d(k)
= ∓W (f∓(k, x, t), g±(k, x, t))

2ik d(k)

= ∓e±8ik3tW (ψ∓(k, x, t), ψ±(k, x, t))

2ik d(k)
= e±8ik

3tR±(k, 0).

The result of Theorem 26 is of course only a necessary condition for solutions of the
KdV equation since the proof assumed already the existence of solutions. Therefore
the follwing steps remain to be done.

– Check that S±(t) forms a set of scattering data, i.e., check that S±(t) satisfies the
conditions of Theorem 21 for each fixed t.

– Show that starting from q0(x) the constructed q(x, t) does indeed satisfy the KdV
equation. (This can be done in principle while the necessary calculations are
rather horrible.)
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6. Solitons and soliton-like solutions

Definition 27 An N-soliton solution qN(x, t) of the KdV-equation is defined by either
of the sets of scattering data

S±(t) = {κj, exp(±4κ3j t)γ±,j(0), j = 1, ...N}

via the inverse scattering method, i.e., an N-soliton solution qN is a potential for the
Schrödinger equation which is reflectionless and has N bound states.

Lemma 28 All reflectionless potentials q satisfying q ∈ L1
2(R) are of the type

qN(x) = −2
d2

dx2
ln (det(1 + ΛN(x))) , (6.1)

where ΛN(x) is an N ×N matrix with element

Λj,` = γ+,jγ+,`(κj + κ`)
−1 exp(−(κj + κ`)x) (6.2)

in row j and column `.

Remark: Use Ω±(s) =
∑N

j=1 c
2
±,je

∓κjs and the Ansatz

K(x, y) =
N∑
j=1

k̃±,j(x)e∓κjy

in the Marchenko equation.

Combining the lemma with the result of the previous chapter one obtains

Theorem 29 The N-soliton solutions of the KdV equation are of the form (6.1),
where ΛN depends now also on t and (6.2) is replaced by

Λj,l = γ+,j(0)γ+,l(0) exp(4(κ3j + κ3`)t)(κj + κ`)
−1 exp(−(κj + κ`)x).

In order to study these solutions for t→ ±∞ we introduce

s(x, v) = −v
2
{cosh(

1

2
xv1/2)}−2 for v > 0, x ∈ R.

Then

q1(x, t) = s(x− 4κ21t− δ1, 4κ21) with δ1 =
1

2κ1
ln

(
γ+,1(0)2

2κ1

)
.

Remark: Note that v = 4κ21 is the velocity of the solution and that −v
2

is the
amplitude, i.e., taller solutions travel faster.
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Theorem 30 Let N ∈ N and assume κN > ... > κ1. Then

lim
t→±∞

{
sup
x∈R

∣∣∣∣∣qN(x, t)−
N∑
j=1

s(x− 4κ2j t− δ±j , 4κ2j)

∣∣∣∣∣
}

= 0,

where

exp(2κjδ
±
j ) =

γ2+,j
2κj

{∏N
`=j+1 (κj − κ`)2(κj + κ`)

−2∏j−1
`=1 (κj − κ`)2(κj + κ`)

−2.

Theorem 30 shows that any N -soliton solution is asymptotically a superposition of N
solitary waves of different speed and amplitude as t→ ±∞. These are well separated
from one another because of their different speed and the exponential decay of the
1/ cosh2-function. In a very distant past the tallest and fastest soliton is to the left
of all others. But it catches up interacts - non linearly - with all other solitons and
passes them finally. In a very distant future the tallest soliton will be to the right of
all others. It does not change its speed, height or form once it has emerged from the
interaction process but it has not come as far as it would have if no interaction had
occured. Meeting all the other guys cost some time. On the other hand the slowest
one is further ahead than it would be without interaction. It seems to have tried to
keep the pace of the faster one for some time during the interaction.

For the general case, where R±(k) 6= 0, the situation is more complicated. The
following result is only stated.

Theorem 31 Let q ∈ C∞(R2) satisfy the KdV equation and suppose q(x, 0) ∈ S(R).
Let S+(t) be the set of scattering data of q and define the set S+,N(t) by putting the
reflection coefficient equal to zero but keeping the other data from S+(t). This defines
then an N-soliton solution of KdV which is called the N-soliton solution associated to
q.
Now fix ε > 0. Then

lim
t→±∞

(
sup
±x>±εt

|q(x, t)− qN(x, t)|
)

= 0.

Ordering the eigenvalues of q according to κN > ... > κ1 one also has

lim
t→±∞

(
sup
±x>±εt

|q(x, t)−
N∑
j=1

s(x− 4κjt− δ±j , 4κ2j)|

)
= 0

where the δ±j are given in Theorem 30.
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