
Chapter 19

Green’s Function for Problems with
Layers

19.1 Continuity conditions

The medium comprises two or more straight or curved layers. The properties of the medium
are constant within each layer; they change discontinuously across the interface separating two
layers. Within each layer the phenomena are described by a differential equation; the latter cease
to be valid in the interface. There they are replaced by continuity conditions. For example in
electrostatics, magnetostatics and electrodynamics the field components must fulfil the following
continuity conditions: The tangential components of the electric and of the magnetic field must
be continuous as well as the normal components of the dielectric displacement and of the magnetic
induction. These conditions are cast into the following formulas:

~n× ( ~E2 − ~E1) = 0, ~Et1 = ~Et2; (19.1)
~n× ( ~H2 − ~H1) = 0, ~Ht1 = ~Ht2; (19.2)
~n · ( ~D2 − ~D1) = 0, ~Dt1 = ~Dt2; (19.3)
~n · ( ~B2 − ~B1) = 0, ~Bt1 = ~Bt2. (19.4)

19.2 Green’s functions for two-layer problems

It is convenient though not obligatory to ornate the scalar Green’s function with two subscripts:

Gik(~r, ~r ′) i label of layer containing the field point
k label of layer containing the source point

This is written out in more detail for a problerm with two layers as:

G11(~r, ~r ′) : ~r ∈ L1, ~r ′ ∈ L1;
G12(~r, ~r ′) : ~r ∈ L1, ~r ′ ∈ L2;
G21(~r, ~r ′) : ~r ∈ L2, ~r ′ ∈ L1;
G22(~r, ~r ′) : ~r ∈ L2, ~r ′ ∈ L2. (19.5)

It is essential to write the differential equations with selfadjoint operators. Even if the parameters
describing the physical properties of the layers are constant within the layers, one should write
the differential equations as if these parameters were functions of the space coordinates. If there
are n layers then the labels i, k run as 1, 2, ..., n .
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19.2.1 The electrostatic two-layer problem

The Poisson equation for the potential in a problem with a layered dielectric should be written
as:

div
(
ε(~r)gradΦ

)
= − ρ(~r). (19.6)

The corresponding differential equation for the Green’s function for two layers each consisting of
a constant dielectric (labelled as ε1, ε2 respectively) is:

∇
(
εi · ∇Gik

)
= − δik δ(~r − ~r ′). (19.7)

There is no summation over the repeated subscript i ! The pieces of the Green’s function having
equal subscripts are the solutions of inhomogeneous differential equations, those bearing different
subscripts are solutions of homogeneous equations. Still, the latter, too, are determined uniquely
by the continuity conditions. In the present case these are eqs.(19.1) and (19.3). We assume that
the potential consists also of two pieces, each one valid in the corresponding layer. The boundary
conditions then connect these two pieces and their normal derivatives. The relations are then
taken over for the pieces of the Green’s function. The points of the interface are denoted as ~r12.
So we get from the first condition:

~Ei = − ∇Φi, ~Eit = − ∇tΦi. (19.8)

For points in the interface ~r12 we find:

~r ∈ ~r12 : ~Eit = − ∇tΦi = ~Eit = − ∇tΦi,

⇒ Φ1 = Φ2 ⇒ G1k = G2k, k = 1, 2. (19.9)

Condition (19.3) gives:

~r ∈ ~r12 : D1n = − ε1
∂Φ1n

∂n
= D2n = − ε2

∂Φ2n

∂n
,

⇒ ε1
∂Φ1

∂n
= ε2

∂Φ2

∂n
⇒ ε1

∂G1k

∂n
= ε2

∂G2k

∂n
, k = 1, 2. (19.10)

19.2.2 The source representation

In order to derive the source representation, it is most convenient to start where the dependence
of the dielectric constant and of the Green’s function is taken into account in the dependence
on the variables. At the end, the constancy of the dielectric constant in each layer is shown by
constants with subscripts. Then also the other quantities are provided with the corresponding
labels. We start from Green’s second theorem in the generalized form for the primed variable
and we identify one function with the potential Φ(~r ′) the other one with G(~r, ~r ′):∫ ∫ ∫

G(~r ′, ~r) ∇′
(
ε(~r ′) · ∇′Φ(~r ′)

)︸ ︷︷ ︸
=− ρ(~r r′)

d~r ′ −
∫ ∫ ∫

Φ(~r ′)∇′
(
ε(~r ′) · ∇G(~r ′, ~r)

)︸ ︷︷ ︸
=− δ(~r−~r ′)

d~r ′ =

=
∫ ∫

dF ′~n ·
(
G(~r ′, ~r) ε(~r ′)∇′Φ(~r ′)

)
−
∫ ∫

dF ′~n ·
(
Φ(~r ′)ε(~r ′)∇′G(~r ′, ~r)

)
.

We do the integration over the delta-distribution and use the symmetry of the scalar Green’s
function. Rearranging the resulting equation gives:

Φ(~r) =
∫ ∫ ∫

G(~r, ~r ′) ρ(~r ′) d~r ′ + (19.11)

+
∫ ∫

dF ′ ε(~r ′)
(
G(~r, ~r ′)

∂Φ(~r ′)
∂n′

− Φ(~r ′)
∂G(~r, ~r ′)

∂n′

)
.

2



Now we assume that the charge density ρ is given in a volume V extending over both layers. The
surface F12 is in the interface separating the two layers; it splits the volume V into a part V1

lying in layer 1 and a part V2 lying in layer 2. The surfaces S1, S2 respectively cover the volumes
V1, V2 respectively so that S1 +S12 encloses V1; similarly S2 +S12 encloses V2. Now we specialize
the dielectric constants as being constant in each layer. We use the labels belonging to the layers
as defined for the Green’s function in eqs.(19.5) and we attach corresponding labels to Φ and ρ.
So we get:

Φ1(~r) =
∫ ∫

V1

∫
G11(~r, ~r ′) ρ1(~r ′) d~r ′ +

∫ ∫
V2

∫
G12(~r, ~r ′) ρ2(~r ′) d~r ′ +

+
∫
F1

∫
dF ′ ε1

(
G11(~r, ~r ′)

∂Φ1(~r ′)
∂n′

− Φ1(~r ′)
∂G11(~r, ~r ′)

∂n′

)
+ (19.12)

+
∫
F2

∫
dF ′ ε2

(
G12(~r, ~r ′)

∂Φ2(~r ′)
∂n′

− Φ2(~r ′)
∂G12(~r, ~r ′)

∂n′

)
.

Φ2(~r) =
∫ ∫

V1

∫
G21(~r, ~r ′) ρ1(~r ′) d~r ′ +

∫ ∫
V2

∫
G22(~r, ~r ′) ρ2(~r ′) d~r ′ +

+
∫
F1

∫
dF ′ ε1

(
G21(~r, ~r ′)

∂Φ1(~r ′)
∂n′

− Φ1(~r ′)
∂G21(~r, ~r ′)

∂n′

)
+ (19.13)

+
∫
F2

∫
dF ′ ε2

(
G22(~r, ~r ′)

∂Φ2(~r ′)
∂n′

− Φ2(~r ′)
∂G22(~r, ~r ′)

∂n′

)
.

19.2.3 Two dielectric half-spaces separated by a plane interface

The formulas of the previous section are specialized to this case (no summation over i)

εi∆Gik = − δik δ(~r − ~r ′). (19.14)

G1k = G2k, (19.15)

ε1
∂G1k

∂z
= ε2

∂G2k

∂z
; (19.16)

lim
z→+∞

G1k = 0, lim
z→−∞

G2k = 0. (19.17)

There are several methods to calculate this Green’s function. One uses image charges. Another
one uses integral representations including the Sommerfeld integral.

Computing the Green’s function by image charges

The problem is a standard exercise in electrostatics as an example that the method of image
charges well-known for ideally conducting planes of infinite extent works also for dielectric half
spaces, e.g. [19.1]. We introduce cylindrical coordinates We assume a source point location
ρ′ = 0, z = z′. The four pieces of the corresponding Green’s function are:

G11(ρ, z, ρ′ = 0, z′) =
1

4πε1

[
1
R1
− ε2 − ε1
ε1 + ε2

1
R2

]
, (19.18)

G22(ρ, z, ρ′ = 0, z′) =
1

4πε2

[
1
R2
− ε1 − ε2
ε1 + ε2

1
R1

]
, (19.19)

Gij(ρ, z, ρ′ = 0, z′) =
1

2πε2
1

ε1 + ε2

1
Rj
, (i 6= j); (19.20)

R1,2 =
√
ρ2 + (z ∓ z′)2. (19.21)
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For a source position ρ′, φ′ off the z-axis, one need only replace ρ2 by ρ2 − 2ρρ′ cos(φ− φ′) + ρ2′

in the last expressions above. Details of the calculations are presented in the notebook quoted
in §19.4.1.

Computing the Green’s function by integral representations

The Sommerfeld integral (15.30) is used to represent the source term:

1√
ρ2 + c2

=
∫ ∞

0
e−ζ|c| J0(ζρ) dζ. (19.22)

Correspondingly, the following integral representations are set up for the four pieces of the Green’s
function:

Gii =
1

4πεi

∫ ∞
0

J0(ζρ)
[
e−ζ|z∓z

′| + hii(ζ) e∓ζz
]
dζ, (19.23)

=
1

4πεi

∫ ∞
0

J0(ζρ) gii(ζ) dζ, (19.24)

Gij =
1

4π

∫ ∞
0

J0(ζρ) gij(ζ) e∓ζz dζ; gij(ζ) = hij(ζ). (19.25)

The signs of the exponentials have been chosen to satisfy the boundary conditions at z = ±∞,
eqs.(19.17), the minus sign for i =1, the plus for i = 2. These expressions are inserted into the
continuity conditions (19.15) and (19.16). The resulting linear equations for the four amplitudes
hij are solved and the amplitudes are inserted into the integrals given above. So we get:

G11(ρ, z, ρ′ = 0, z′) =
1

4πε1

∫ ∞
0

dζ J0(ζρ)
[
e−ζ|z−z

′| +
ε1 − ε2
ε1 + ε2

e−ζ(z+z
′)

]
, (19.26)

G12(ρ, z, ρ′ = 0, z′) =
1

4π
2

ε1 + ε2

∫ ∞
0

dζ J0(ζρ) e−ζ(z+|z
′|), (19.27)

(19.28)

G21(ρ, z, ρ′ = 0, z′) =
1

4π
2

ε1 + ε2

∫ ∞
0

dζ J0(ζρ) e−ζ(|z|+z
′), (19.29)

(19.30)

G22(ρ, z, ρ′ = 0, z′) =
1

4πε2

∫ ∞
0

dζ J0(ζρ)
[
e−ζ|z+z

′| − ε1 − ε2
ε1 + ε2

e−ζ(z+z
′)

]
. (19.31)

The calculation and the results are presented in the notebook displayed in AnMe14-4-2.pdf. All
the above integrals may be transformed into closed expressions with the help of the Sommerfeld
integral (19.22). The resulting expression agree with those given in eqs.(19.18) - (19.21).

19.3 Green’s function for the three-dimensional potential equa-
tion with two layers

We consider the three-dimensional potential equation for a problem with two plane layers. The
thickness of the upper (lower) layer is p (q), s. Fig.19.3. The Green’s function is a scalar
comprising four pieces distinguished by the two labels i, k. The first (second) label denotes the
layer containing the point of observation (the source point).
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===================   z = p:     G1 k = 0;

          G1 k
!1                                             

______________________   z = 0:      !2 HG 'L2 k  =  !1 (G 'L1 k , HGL2 k =   HGL1 k.

!2            G2 k

===================  z = -q < 0:  G2 k  =   0

The Greens functions of the diffusion equation   !i D gik(z,zp) -  k2 gik = - d(z - zp) dik is computed for a two-layer

problem. 

This equation results from the potential equation if the transverse coordinates are treated by 

Fourier transforms. The Green's function consists of 4 pieces denoted by gikHz, zpL ; the first subscript belongs to

z, 

the coordinate of the point of observation (i =1,2  for  0  < z < p,  -q <  z < 0); the second subscript to the source

point 

coordinate zp  (k = 1, 2  for    0  < zp < p,  -q <  zp < 0). The Green's function is symmetric in z and zp. 

!(z)  is piecewise constant as shown in the figure above.

Figure 19.1: An infinite plane condensor comprising two layers with permeability ε1 and ε2. It is
bounded by planes of ideal conductivity. The primes of the continuity conditions at z = 0 denote
derivations with respect to z.

The Green’s function Gik(~r, ~r ′) is a solution of the following inhomogeneous differential equation
:

εi∆Gik(~r, ~r ′) = − δik δ(~r − ~r ′) (19.32)

p ≥ z, z′ ≥ −q, −∞ < x, x′ <∞, −∞ < y, y′ <∞. (19.33)

The Green’s function is represented as a Fourier integral in the transverse directions x, y:

Gik(~r, ~r ′) =
1

4π2

∫ ∞
−∞

dkx

∫ ∞
−∞

dkxe
i(kx(x−x′)+ky(y−y′)) gik(kx, ky; z, z′). (19.34)

Inserting this and the Fourier integral representations of the Delta-distribution in the transverse
coordinates gives the following differential equation for the amplitude function gik(kx, ky; z, z′) =
gik(κ; z, z′):

εi

(
d2

dz2
− κ2

)
ḡik(κ; z, z′) = − δik δ(z − z′) (19.35)

with
κ =

√
k2
x + k2

y. (19.36)

A particular solution of the inhomogeneous equations is:

ḡik(κ; z, z′) = δik
1

2κεi
e−κ|z−z

′|. (19.37)

The general solution for each piece of the Green’s function is:

ḡik(κ; z, z′) = δik
1

2κεi
e−κ|z−z

′| +
aik
κ

eκz +
bik
κ

e−κz. (19.38)

These solutions are inserted into the integral representation (19.34). In addition, plane polar
coordinates are introduced for the transverse variables in coordinate and in k-space:

x = ρ cosφ, y = ρ sinφ; (19.39)
x′ = ρ′ cosφ′, y′ = ρ′ sinφ′; (19.40)
kx = κ cosψ, ky = κ cosψ. (19.41)

R =
√

(x− x′)2 + (y − y′)2 =
√
ρ2 − 2ρρ′ cos(φ− φ′) + ρ′2. (19.42)
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In place of the integral representation (19.34) we get:

Gik(~r, ~r ′) =
1

4π2

∫ ∞
−∞

dκ κ

∫ 2π

0
dψ eiκR cos(φ−φ′−ψ)ḡik(κ; z, z′), (19.43)

Gik(ρ, φ, z; ρ′, φ′, z′) =
1

2π

∫ ∞
−∞

dκ J0(κR) gik(κ; z, z′), (19.44)

gik(κ; z, z′) = δik
1

2εi
e−κ|z−z

′| + aik e
κz + bik e

−κz. (19.45)

The integral over ψ is an integral representation of the Bessel function J0(κR):

J0(κR) =
1

2π

∫ 2π

0
dψ eiκR cos(φ−φ′−ψ). (19.46)

If the source is on the z′−axis then R = ρ. Most of the derivations below will be done for this
special case. The transition to the general case just requires the replacement r → R.

19.3.1 An integral representation for the four pieces of the Green’s function

In preparation.

19.3.2 Expressions for the cured Green’s function

In preparation.

19.4 Further examples of Green’s functions for problems with
several layers

The approach to find Green’s functions in problems with several layers explained in the first
sections of this chapter has been used to treat models of counter configurations comprising up
to three layers [19.2]. The corresponding Green’s functions encounter convergence troubles if the
field point is in the same plane as the source point. Similar difficulties arise also from image
points. All these problems are cured by subtracting terms in the integral representations to
compensate convergence problems.

19.5 Mathematica notebooks

19.5.1 Point charge q with two dielectrica: Method of images

AnMe19-4-1.pdf , 6 pages.

19.5.2 Greens function for two dielectric halfspaces. Method of integral rep-
resentations

Greens function for two dielectric halfspaces. Computation of the amplitudes in the integral
representations of the four pieces.
AnMe19-4-2.pdf , 4 pages.
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19.5.3 Greens function for a condensor with two layers. Convergence accel-
eration by removing slowly convergent terms in the integral represen-
tation

In preparation .
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