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Abstract

The reaction fields of homogeneous magnetic prolate and oblate spheroids of arbitrary
direction of the symmetry axis in a given external homogeneous magnetic field are ex-
pressed in Cartesian coordinates. At first the total potentials and fields are computed
in common prolate or oblate spheroidal coordinates for an arbitrary direction of the
external magnetic field following Kuchel and Bullimann (1989). The potentials so ob-
tained are transformed to Cartesian coordinates in such a way that their dependencies
on the invariants of rotations around the symmetry axis become obvious. These re-
sults are generalized to arbitrary directions of both the symmetry axis and of the field
axis. The fields are computed by taking gradients and expressing these again by the
invariants. – The advantage of this new approach is that it is very easy to build and
investigate structures built from spheroids with different axes and positions. There is
no need of complicated coordinate transformations. Two applications from the area of
MR-Osteodensitometry are shown: i) modelling of bone loss within plate-like trabecular
structures ; ii) microcracks in bone structures as examples of trabecular rarefication.
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1 Introduction

Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) make
use of the Larmor resonance signals emitted by protons precessing in the local magnetic
induction, which is provided by an external static magnetic field. In general, the MR
signal is highly sensitive to the magnetic properties of the matter surrounding the nuclei.
Theoretical studies of the resonance signal behaviour in situations of varying magnetic
susceptibilities and dynamic physiological processes as for instance diffusion utilize the
analytical magnetostatic solutions of specific geometrical bodies. Models of structures
like cells or blood vessels can be built up from arrays of such simple magnetic bodies.
In particular prolate and oblate spheroids are used as such building blocks to analyse
the local magnetic field distribution in the vicinity of blood cells in MRS of cells [1].
In that previous work the reaction fields are computed for spheroids with the z-axis as
the symmetry axis and a homogeneous static external field of arbitrary direction. In the
current work we derive formulas in Cartesian coordinates for arbitrary directions of both
the symmetry axis and of the external magnetic field. This grants still more freedom,
flexibility and ease for building complex structures composed of arbitrarily arranged
spheroids.

We gain these solutions starting from the expressions for the reaction field potentials
in spheroidal coordinates derived in [1]. There the expressions for the potentials and
the fields have also been expressed in Cartesian coordinates except for three functions
in cosh η (in the prolate case) or in sinh η (in the oblate case), where η is the quasiradial
variable. We succeed in replacing these hyperbolic functions by square root expressions
involving Cartesian coordinates. These square roots depend on the square of the radius,
a rotation invariant, and on z2, which is invariant under rotations around the symmetry
axis. All other terms of the potentials depend on similar invariants. This dependences
permit one to go from the z−axis to an arbitrary vector as the symmetry axis.

The gradients of the potentials are needed to determine the field expressions. For this
purpose the gradients of the three functions occuring in the potentials are computed
and simplified. In this way a toolbox for MRI and MRS resonance signal analyses with
flexible instruments is provided capable of modelling several biological tissues of interest
such as trabecular bone, microvascular network and general interfaces of adjacent tissues.

Inserting a prolate or oblate spheroid into the primary homogeneous field produces a
reaction fields within and near the spheroid. This process may be described by tensors
transforming the primary magnetic field into the reaction fields. Theses tensors are given
in Chap.5. This provides also the opportunity to give a very concise presentation of all
the formulas needed to express the reactions.

The version ITPR-2011-02rev differs from the first version (ITPR-2011-02) inasmuch
as a severe typographical error has been corrected in eq.(3.6); Arcoth(ap/cp) is replaced
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with Arcoth(cp/ap).
In addition, a new chapter has been inserted; which is numbered Chapter 5. It contains
the tensors transforming the primary potential into that of the reaction, and other
tensors transforming the primary field into the reaction field. The applications are now
in Chapter 6.

The latest version of this report and of the corresponding Mathematica notebooks are
displayed on the website [2].
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2 The Primary Field

The primary field is a homogeneous static magnetic field. In the general case this may
be written as

H0 = (H0x, H0y, H0z) (2.1)

with the corresponding potential

Φ0(x, y, z) = − (H0x x + H0y y + H0z z). (2.2)



3 A Single Prolate Spheroid in a
Homogeneous Magnetic Field

A prolate spheroid (semi-axes ap, ap, cp; cp > ap) with magnetic susceptibility µ2 =
µ0(1 + χ2) is in a medium with magnetic susceptibility µ1 = µ0(1 + χ1) and in an
external field (2.1). The solution of this boundary value problem has been very well
explained in ref. [1]. This is summarized in sect. 3.1 but the expansion coefficients are
denoted a little different from the notation used in this ref. In the subsequent sections
these results are extended to an arbitrary direction of the symmetry axis.

3.1 The reaction field in prolate spheroidal coordinates

The spheroid induces a reaction field represented by the potentials Φr1(x, y, z) in the
exterior, by Φr2(x, y, z) in the interior. This problem is solved in prolate spheroidal
coordinates (s., for example, Fig.1.06 of ref.[3])

x = ep sinh η sin θ cosψ, (3.1)
y = ep sinh η sin θ sinψ, (3.2)
z = ep cosh η cos θ; (3.3)

ep =
√
c2
p − a2

p (3.4)

for a spheroid, whose symmetry axis coincides with the z-axis. Φ0, Φ1 = Φ0 +Φr1, Φ2 =
Φ0 + Φr2 must be solutions of the potential equation in prolate coordinates. This partial
differential equation can be solved by separation.

Φ(η, θ, ψ) = H(η) Θ(θ) Ψ(ψ). (3.5)

The particular solutions of the resulting equation for the quasi-radial functions H(η)
are Legendre polynomials or functions in cosh η. The solutions Θ(θ) must be Legendre
polynomials in cos θ; Legendre functions in cos θ are singular at θ = 0, π; so they must
be excluded. Ψ(ψ) are trigonometric functions in ψ.

The interface separating the two domains is the spheroid:

x2

a2
p

+
y2

a2
p

+
z2

c2
p

= 1 ⇔ η = ηp = Arcoth(cp/ap). (3.6)

A typographical error ηp =Arcoth(ap/cp) occured in the first edition (December2011) of
this report. This error is also in ref.[4] but not in ref.[5].
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The potentials must be continuous across this interface:

η = ηp : Φ1 = Φ2; (3.7)

and there the normal derivatives must fulfil the condition:

η = ηp : µ1 ∂Φ1/∂η = µ2 ∂Φ2/∂η. (3.8)

One starts inserting the spheroidal coordinates into the primary potential (2.2). There-
after these are replaced by the corresponding particular solutions to give:

Φ0 = − ep P
1
1 (cosh η) P 1

1 (cos θ) (H0x cosψ +H0y sinψ)
− ep P

0
1 (cosh η) P 0

1 (cos θ) H0z. (3.9)

The general solutions for the total field are expressed as expansions in all the particular
solutions compatible with the following boundary conditions: 1) The total field must
be finite at the origin; 2) the reaction field must be zero at infinity. This leads to the
following series expansions:

η ≥ ηp :
Φ1 = − ep H0z P

0
1 (cosh η) P 0

1 (cos θ) −
− ep (H0x cosψ +H0y sinψ)P 1

1 (cosh η) P 1
1 (cos θ) +

+
∞∑
n=0

∞∑
m=0

1A
m
n Qmn (cosh η)Pmn (cos θ) cos(mψ) +

+
∞∑
n=1

∞∑
m=1

1B
m
n Qmn (cosh η)Pmn (cos θ) sin(mψ); (3.10)

η ≤ ηp :

Φ2 =
∞∑
n=0

∞∑
m=0

2A
m
n Pmn (cosh η)Pmn (cos θ) cos(mψ) +

+
∞∑
n=1

∞∑
m=1

2B
m
n Pmn (cosh η)Pmn (cos θ) sin(mψ). (3.11)

The series for the potentials are inserted into the continuity conditions (3.7) and (3.8). In
view of the orthogonality of the Legendre polynomials Pmn (cos θ) and of the trigonometric
functions these two conditions involving infinite sums are decomposed into an infinite
system of finite conditions each one comprising just a single pair of the parameters n
and m. For n 6= 1 and m 6= 0 nor 6= 1 these systems are linear homogeneous equations
for the unknown coefficients 2A

m
n , 2B

m
n , 1A

m
n and 1B

m
n giving zero solutions. Only for

n = 1 and m = 0, 1 one gets inhomogeneous equations with the solutions:

Kraiger and Schnizer ITPR-2011-021CorRev
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1A
0
1 =

ep H0z (µ2 − µ1) P 0
1 P 0′

1

µ2 P 0′
1 Q0

1 − µ1 P 0
1 Q0′

1

:= ep H0z L0, (3.12)

2A
0
1 = ep H0z µ1

(
P 0′

1 Q0
1 − P 0

1 Q0′
1

µ1 P 0
1 Q0′

1 − µ2 P 0′
1 Q0

1

)
:= ep H0z M0; (3.13)

1A
1
1 =

epH0x (µ2 − µ1) P 1
1 P 1′

1

µ2 P 1′
1 Q1

1 − µ1 P 1
1 Q1′

1

:= ep H0x L1, (3.14)

1B
1
1 = ep H0y L1, (3.15)

2A
1
1 = ep H0x µ1

(
P 1′

1 Q1
1 − P 1

1 Q1′
1

µ1 P 1
1 Q1′

1 − µ2 P 1′
1 Q1

1

)
:= ep H0x M1, (3.16)

2B
1
1 = ep H0y M1. (3.17)

The argument of all the Legendre polynomials and functions in the above equations is
cosh ηp. The solutions above and further transformations given below have been ob-
tained with the help of Mathematica.The corresponding notebook named ProlateCoeffi-
cientsRev.nb can be found at the website [2] (cf. eqs.(A21) to (A24) of ref.[1]); it is easy
to go over to the more general case where both H0x and H0y 6= 0.) In the same reference
it has been shown that the Legendre functions and polynomials may be replaced with
elementary functions ([1] , eqs.(A25) ):

η ≥ ηp :
Φr1 = ep (H0x cosψ +H0y sinψ)× (3.18)

× L1 (sinh η Arcoth(cosh η)− coth η) sin θ
+ ep H0z L0 (cosh η Arcoth(cosh η)− 1) cos θ ,

η ≤ ηp :
Φr2 = ep (M1 + 1)(H0x cosψ +H0y sinψ) sinh η sin θ (3.19)

+ ep (M0 + 1) H0z cosh η cos θ.

Making the same substitutions in the definitions of the constants L0, L1,M0,M1 above
and going over to the susceptibilities the expressions for these constants become:

Kraiger and Schnizer ITPR-2011-021CorRev
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L0 = Lp0 =
(χ1 − χ2) cosh ηp

1 + χ2 − (1 + χ1) coth2 ηp + (χ1 − χ2) cosh(ηp)Arcoth(cosh ηp)
, (3.20)

L1 = Lp1 =
χ1 − χ2

(2 + χ1 + χ2) csch2ηp sechηp + (χ1 − χ2)
(
Arcoth(cosh ηp)− sechηp

) ,
(3.21)

M0 = Mp
0 = − 1 + χ1

1 + χ1 + (χ1 − χ2) sinh2 ηp (1− cosh ηp Arcoth(cosh ηp))
, (3.22)

M1 = Mp
1 = − 2 (1 + χ1)

(2 + χ1 + χ2) − (χ1 − χ2) sinh2 ηp (1− cosh ηp Arcoth(cosh ηp))
.

(3.23)

The various functions depending on ηp may be replaced by expressions depending
only on the semi-axes ap, cp. The necessary relations are found from the coordinate
transformations (3.1) to (3.4):

sinh(ηp) → ap/ep, cosh(ηp) → cp/ep,
sech(ηp) → ep/cp, csch(ηp) → ep/ap,
coth(ηp) → cp/ap.

(3.24)

So the coefficients L0, L1,M0,M1 become finally:

Lp0 = [(χ1 − χ2)cp/ep]/D
p
0, (3.25)

Dp
0 = 1 + χ2 − (1 + χ1)c2

p/a
2
p + (χ1 − χ2) dpcp/ap;

Lp1 = [χ1 − χ2]/Dp
1, (3.26)

Dp
1 = (2 + χ1 + χ2)− (χ1 − χ2) a2

p/e
2
p (1− dpcp/ep).

Mp
0 = − (1 + χ1)/Dp

2, (3.27)
Dp

2 = 1 + χ1 + (χ1 − χ2) a2
p/e

2
p (1− dpcp/ep);

Mp
1 = [− 2 (1 + χ1)]/Dp

1. (3.28)
dp = Arcoth(cp/ep). (3.29)

Inserting eqs.(3.1) to (3.3) into the reaction potentials Φr1, (3.18), and Φr2, (3.19),
the latter may be rewritten as:

Φ1r(x, y, z) =
(
H0x x + H0y y

)
L1(f1 − f2) + H0z z L0(f1 − f3), (3.30)

Φ2r(x, y, z) =
(
H0x x + H0y y

)
(M1 + 1) + H0z z (M0 + 1). (3.31)

The functions f1, f2, f3 depend solely on the function cosh η:

f1 = Arcoth(cosh η), (3.32)

f2 =
cosh η
sinh2 η

, (3.33)

f3 =
1

cosh η
. (3.34)

Kraiger and Schnizer ITPR-2011-021CorRev
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In the exterior of the spheroid is η ≥ ηp > 1; so the three functions just introduced are
well-defined, real, finite and non-zero in the exterior of the spheroid. This is also shown
in Figs.3.1 and 3.2.

If both media are the same both reaction potentials must be zero. Indeed, the limits
of the four coefficients

χ2 → χ1 : L0 → 0, L1 → 0, M0 → −1, M1 → −1 (3.35)

ensure this.

3.2 The reaction field in Cartesian coordinates

We want expressions for the potential which depend on x, y, z only. So cosh η must be
replaced with a corresponding expression in Cartesian coordinates. From eqs.(3.1) to
(3.3) one finds:

cosh2 η =
1
2

(
1 +

r2

e2
p

±

√(
1 +

r2

e2
p

)2

− 4
z2

e2
p

)
.

Intense numerical studies show that only the plus sign applies. So we have:

cosh η =
1√
2

√
1 +

r2

e2
p

+ wp(r, ez) := up(r, ez)/
√

2, (3.36)

wp(r, ez) =

√(
1 +

r2

e2
p

)2

− 4
z2

e2
p

=

√(
1 +

r2

e2
p

)2

− 4
(ez · r)2

e2
p

, (3.37)

r2 = x2 + y2 + z2 = ρ2 + z2. (3.38)

Inserting this expression for cosh η into eqs.(3.32) to (3.34) and inserting the resulting
expressions for f1, f2, f3, namely f̃1, f̃2, f̃3:

f̃1 = Arcoth(up(r, ez)/
√

2), (3.39)

f̃2 =
√

2 up(r, ez)
up(r, ez)2 − 2

, (3.40)

f̃3 =
√

2
up(r, ez)

. (3.41)

into eq.(3.30) we get the final expression for the exterior potential as a pure function of
the Cartesian coordinates x, y, z:

Φr1(x, y, z) = (H0x x +H0y y) L1 (f̃1 − f̃2) + H0z z L0 (f̃1 − f̃3). (3.42)

As stated after eqs.(3.34) these functions encounter no problems in the exterior of the
spheroid. The interior potential, eq.(3.31), is already a simple function of the Cartesian
coordinates.

Kraiger and Schnizer ITPR-2011-021CorRev



3 A Single Prolate Spheroid in a Homogeneous Magnetic Field 14

3.3 Potential and field for an arbitrary direction of the
spheroidal symmetry axis

For applications it is necessary to consider spheroids whose symmetry axis has an ar-
bitrary direction. The corresponding expressions for the potential will be derived from
those given in eqs.(3.42) and (3.31). These are rewritten in a way suggesting a general
form:

Φr1(x, y, z) = (H0⊥ · r⊥) L1 (f̃1 − f̃2) + (H0‖ · r‖) L0 (f̃1 − f̃3),
(3.43)

Φr2(x, y, z) = (H0⊥ · r⊥) (M1 + 1) + (H0‖ · r‖)(M0 + 1).

The vectors H0‖, r‖ give the projections of the corresponding vectors on the symmetry
axis, i.e. the z-axis. Similarly, the vectors H0⊥ = (H0x, H0y, 0), r⊥ = (x, y, 0) give the
vectors corresponding to the projection onto the x,y-plane, which is perpendicular to
the symmetry axis.

Now it is easy to accomplish the substitutions for an arbitrary direction of the sym-
metry axis given by the unit vector n.

H0‖ = n (n ·H0), H0⊥ = H0 −H0‖ ;
(3.44)

r‖ = n (n · r), r⊥ = r− r‖ .

In wp(r, ez) and wp(r, ez), eq.(3.36) and (3.37), only the variable z = (ez · r), the
component of the position vector along ez, must be replaced by (n · r) giving:

cosh η =
1√
2

√
1 +

r2

e2
p

+ w̄p(r,n) := ūp(r,n)/
√

2, (3.45)

w̄p(r,n) =

√(
1 +

r2

e2
p

)2

− 4
(n · r)2

e2
p

. (3.46)

The functions f̃i, eqs.(3.39) to (3.41), remain the same except that up(r, ez) and wp(r, ez)
must be replaced with ūp(r,n) and w̄p(r,n) giving the new functions f̄i:

f̄1 = Arcoth(ūp(r,n)/
√

2), (3.47)

f̄2 =
√

2 ūp(r,n)(
ūp(r,n)

)2 − 2
, (3.48)

f̄3 =
√

2
ūp(r,n)

. (3.49)

Inserting all these new functions into eqs.(3.43) gives the potential for a prolate spheroid
whose symmetry axis is given by the arbitrary unit vector n:

Φr1(x, y, z) = (H0 · r) L1 (f̄1 − f̄2) + (3.50)
+ (H0 · n)(n · r) [L0 (f̄1 − f̄3) − L1 (f̄1 − f̄2)],

Φr2(x, y, z) = (H0 · r) (M1 + 1) + (H0 · n)(n · r) [M0 − M1]. (3.51)

Kraiger and Schnizer ITPR-2011-021CorRev
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The evaluation of the magnetic field requires the gradients of the functions f̄i. These
are done by symbolic computation. Since the resulting expressions consist again of
polynomials and the square roots already occuring in the potential it is possible to find
simpler expressions. These are again checked against the original gradients by symbolic
computation (notebook ProlPotDerivatives.nb [2]). All gradients are proportional to the
vector rp:

rp :=
√

2
e2
p

(
r− 2n

(n · r)
[ūp(r,n)]2

)
. (3.52)

∇f̄1 =
ūp(r,n)

[2− (ūp(r,n))2]w̄p(r,n)
rp, (3.53)

∇f̄2 = − ūp(r,n)
w̄p(r,n)

(ūp(r,n))2 + 2
[(ūp(r,n))2 − 2]2

rp, (3.54)

∇f̄3 = − 1
ūp(r,n) w̄p(r,n)

rp; (3.55)

∇f̄1 −∇f̄2 =
ūp(r,n)
w̄p(r,n)

4
[(ūp(r,n))2 − 2]2

rp, (3.56)

∇f̄1 −∇f̄3 =
2

[2− (ūp(r,n))2] ūp(r,n) w̄p(r,n)
rp. (3.57)

The corresponding checks are contained in the notebook ProlatePotDerivatives.nb.
The vector rp and all the gradients listed above are well-defined and real in the exterior

of the spheroid, including the interface, where η ≥ ηp, which is equivalent with the
condition (3.61) in Cartesian coordinates. In fact, a more detailed analysis shows that
on the interface:

ūp(r,n) =
√

2 cosh ηp, (3.58)

w̄p(r,n) =
√
z4/
(
ep cosh(ηp)

)4 − 2z2/e2
p + cosh4 ηp (3.59)

sinh2 ηp ≤ w̄p(r,n) ≤ cosh2 ηp. (3.60)

For a = 1, c = 2, (ep =
√

3) one finds
√

2 cosh ηp = 2
√

2/3 = 1.63... >
√

2; 1/3 ≤
w̄p(r,n) ≤ 4/3. For this case the surfaces up(r, ez) and wp(r, ez) are shown in Figs.3.1
and 3.2 at the end of this chapter.

3.4 Final formulas for the field

So the final formulas for the reaction field excited in an arbitray homogeneous primary
field H0 by a prolate spheroid with arbitrary symmetry axis given by a unit vector n is
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3 A Single Prolate Spheroid in a Homogeneous Magnetic Field 16

in the exterior:

r2 − (n · r)2

a2
p

+
(n · r)2

c2
p

≥ 1 : (3.61)

Hr1(x, y, z) = − H0 L1 (f̄1 − f̄2) − n(H0 · n)[L0 (f̄1 − f̄3) − L1 (f̄1 − f̄2)]

− rp (H0 · r) L1
ūp(r,n)
w̄p(r,n)

4
[(ūp(r,n))2 − 2]2

− rp (H0 · n)(r · n) L0
2

[2− (ūp(r,n))2]ūp(r,n) w̄p(r,n)

+ rp (H0 · n)(r · n) L1
4 ūp(r,n)

w̄p(r,n) [(ūp(r,n))2 − 2]2
; (3.62)

and in the interior:

r2 − (n · r)2

a2
p

+
(n · r)2

c2
p

≤ 1 :

Hr2(x, y, z) = − H0 (M1 + 1) − n (H0 · n) [M0 − M1]. (3.63)

3.5 Concluding remarks for the field of the prolate spheroid

A prolate spheroid is inserted into an external homogeneous magnetic field H0 of ar-
bitrary direction. Its susceptibility is µ2 = µ0(1 + χ2); while that of the surrounding
medium is µ1 = µ0(1 + χ1). The spheroid has semi-axes ap, ap, cp, cp > ap; these de-
termine the excentricy ep and the quasi-radial parameter ηp, eqs.(3.4) and (3.6). These
in turn determine the coefficients L0, L1,M0,M1, eqs.(3.20) to (3.23) or eqs.(3.25) to
(3.28). The spheroid’s symmetry axis is the arbitrary unit vector n. The reaction field
due to the presence of the spheroid in the external field is given in Cartesian coordi-
nates, r = (x, y, z), by eq.(3.62) in the exterior, by eq.(3.63) in the interior. The functions
f̄1, f̄2, f̄3, eqs.(3.47) to (3.49), depend on the variables ūp(r,n) and w̄p(r,n), eqs.(3.45)
and (3.46). The needed gradients of the f̄i are given in eqs.(3.56) and (3.57) . Eqs.(3.62)
and eq.(3.63) are for a spheroid, whose centre is at the origin. If the centre is at the
point r0 = (x0, y0, z0) then the vector r must replaced simply with r− r0.
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3.6 Figures

Out[127]=

Figure 3.1: The surface up(r, ez) as function of the transversal coordinate ρ and the coordinate z along the
symmetry axis ez for a prolate spheroid with a = 1, c = 2; ep =

√
3. The curve gives the projection of the

boundary ellipse η = ηp = 0.549... (an ellipse in the variables ρ and z) on the surface up(r, ez). Points in
the exterior of this spheroid correspond to points to the right of the curve on the surface.

Figure 3.2: The surface wp(r, ez) as function of the transversal coordinate ρ and the coordinate z along the
symmetry axis ez for a prolate spheroid with a = 1, c = 2; ep =

√
3. The curve gives the projection of the

boundary spheroid η = ηp = 0.549... (an ellipse in the variables ρ and z) on the surface wp(r, ez). The point
gives the minimum of the surface. Points in the exterior of this spheroid correspond to points to the right of
the curve on the surface.
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4 A Single Oblate Spheroid in a
Homogeneous Magnetic Field

An oblate spheroid (semi-axes ao, ao, co; co < ao) with magnetic susceptibility µ2 =
µ0(1+χ2) is in a medium with magnetic susceptibility µ1 = µ0(1+χ1) and in an external
field (2.1). The solution of this boundary value problem has been sketched in ref. [1].
We use a notation for the coefficients which differs somewhat from that employed in this
ref.[1]. The derivations are quite analogous to those used in the previous chapter. The
main difference is the different analytical form of the quasi-radial particular solutions.

4.1 The reaction field in oblate spheroidal coordinates

The spheroid induces a reaction field represented by the potentials Φr1(x, y, z) in the
exterior, by Φr2(x, y, z) in the interior. This problem has been solved in ref.[1] in oblate
spheroidal coordinates (s., for example, Fig.1.07 of ref.[3])

x = eo cosh η sin θ cosψ, (4.1)
y = eo cosh η sin θ sinψ, (4.2)
z = eo sinh η cos θ; (4.3)
eo =

√
a2
o − c2

o (4.4)

for a spheroid, whose symmetry axis coincides with the z-axis. Φ0, Φ1 = Φ0 +Φr1, Φ2 =
Φ0 + Φr2 must be solutions of the potential equation in oblate coordinates. This partial
differential equation can be solved by separation. The particular solutions of the sepa-
rated equations suitable for the problem under investigation are Legendre polynomials
or functions in i sinh η; Legendre polynomials in cos θ; trigonometric functions in ψ.

The interface separating the two domains is the spheroid:

x2

a2
o

+
y2

a2
o

+
z2

c2
o

= 1 ⇔ η = ηo = Artanh(co/ao). (4.5)

The potential and the normal component of the magnetic induction must be continuous
across this interface. So conditions (3.7) and (3.8) apply again.

One starts with expansions in the particular solutions fulfilling the boundary condi-
tions. We already know from the previous chapter that only the parameter values n =
1, m = 0 and 1 are needed.
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η ≥ ηo :
Φ1 = i eo H0z P

0
1 (i sinh η) P 0

1 (cos θ) −
− i eo (H0x cosψ +H0y sinψ) P 1

1 (i sinh η) P 1
1 (cos θ) +

+
1∑

m=0

1A
m
1 Qm1 (i sinh η)Pm1 (cos θ) cos(mψ) +

+ 1B
1
1 Q

1
1(i sinh η)P 1

1 (cos θ) sinψ ; (4.6)
η ≤ ηo :

Φ2 =
1∑

m=0

i 2A
m
1 Pm1 (i sinh η)Pm1 (cos θ) cos(mψ) +

+ i 2B
1
1 P

1
1 (i sinh η)P 1

1 (cos θ) sinψ . (4.7)

We want to get real expansion coefficients. According to ref.[1] eqs.(A64) the Pm1 (i sinh η)
are purely imaginary, the Qm1 (i sinh η) are real. These reality properties are taken into
account in inserting the imaginary units in the above expansions for the potentials.
The sums are inserted into the continuity conditions (3.7) and (3.8). In view of the
orthogonality of the Legendre polynomials Pmn (cos θ) and of the trigonometric functions
these two conditions involving sums are decomposed into three independent systems
with the solutions:

1A
0
1 = i

eo H0z (µ1 − µ2) P 0
1 P 0′

1

µ2 P 0′
1 Q0

1 − µ1 P 0
1 Q0′

1

:= eo H0z L̄0, (4.8)

2A
0
1 = eo H0z µ1

(
P 0′

1 Q0
1 − P 0

1 Q0′
1

µ2 P 0′
1 Q0

1 − µ1 P 0
1 Q0′

1

)
:= eo H0z M̄0; (4.9)

1A
1
1 = i

eo H0x (µ1 − µ2) P 1
1 P 1′

1

µ2 P 1′
1 Q1

1 − µ1 P 1
1 Q1′

1

:= eo H0x L̄1 , (4.10)

1B
1
1 = eo H0y L̄1, (4.11)

2A
1
1 = eo H0x µ1

(
P 1′

1 Q1
1 − P 1

1 Q1′
1

µ2 P 1′
1 Q1

1 − µ1 P 1
1 Q1′

1

)
:= eo H0x M̄1 , (4.12)

2B
1
1 = eo H0y M̄1 . (4.13)

The solutions above and further transformations shown below are given in the note-
book OblateCoefficientsRev.nb [2]. The argument of all the Legendre polynomials and
functions in all of the above equations is i sinh ηo. In ref.[1], (A59), (A60) and (A64),
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it has been shown that the Legendre functions and polynomials may be replaced with
elementary functions. So one gets:

η ≥ ηo :
Φr1 = eo (H0x cosψ +H0y sinψ)×

× L̄1 (cosh η arccot(sinh η)− tanh η) sin θ
+ eo H0z L̄0 (sinh η arccot(sinh η)− 1) cos θ , (4.14)

η ≤ ηo :
Φr2 = − eo (M̄1 − 1) (H0x cosψ +H0y sinψ) cosh η sin θ

− eo (M̄0 − 1) H0z sinh η cos θ. (4.15)

Making the same substitutions as above in the definitions of the constants L̄0, L̄1, M̄0, M̄1

and going over to the susceptibilities the expressions for the constants become:

L̄0 = Lo0 =
(χ1 − χ2) sinh ηo

(1 + χ2)− (1 + χ1) tanh2 ηo + (χ1 − χ2) sinh ηo arccot(sinh ηo)
,

(4.16)

L̄1 = Lo1 = − (χ1 − χ2) cosh2 ηo sinh ηo
2 + χ1 + χ2 + (χ1 − χ2) cosh2 ηo

(
1− sinh ηo arccot(sinh ηo)

) ,(4.17)

M̄0 = Mo
0 =

(1 + χ1) sech2ηo

(1 + χ2)− (1 + χ1) tanh2 ηo + (χ1 − χ2) sinh ηo arccot(sinh ηo)
,

(4.18)

M̄1 = Mo
1 =

2(1 + χ1)
2 + χ1 + χ2 + (χ1 − χ2) cosh2 ηo

(
1− sinh ηo arccot(sinh ηo)

) . (4.19)

The various functions depending on ηo may be replaced by expressions depending only
on the semi-axes ao, co.The necessary relations are found from the coordinate transfor-
mations (4.1) to (4.4):

sinh(ηo) → co/eo, cosh(ηo) → ao/eo,
tanh(ηo) → co/ao, arccot(sinh ηo) = arccot(co/eo) := do.

(4.20)

The corresponding transformations are given in the notebook OblateCoefficientsRev.nb.
Inserting these substitutions and the abbreviation do into eqs.(4.16) to(4.19) gives:

Lo0 = [(χ1 − χ2)co/eo]/Do
0, (4.21)

Do
0 = (1 + χ2)− (1 + χ1) c2

o/a
2
o + (χ1 − χ2) doco/eo;

Lo1 = − [(χ1 − χ2) a2
oco/e

3
o]/D

o
1, (4.22)

Do
1 = (2 + χ1 + χ2) + (χ1 − χ2) (a2

o/e
2
o) (1− doco/eo).

Mo
0 = [(1 + χ1) e2

o/a
2
o]/D

o
0, (4.23)

Mo
1 = [2(1 + χ1)]/Do

1. (4.24)
do = arccot(co/eo). (4.25)
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Inserting the expressions above into the reaction potentials Φr1 and Φr2, these may be
rewritten as:

Φ1r(x, y, z) =
(
H0x x + H0y y

)
L̄1(g1 − g2) + H0z z L̄0(g1 − g3), (4.26)

Φ2r(x, y, z) =
(
H0x x + H0y y

)
(1− M̄1) + H0z z (1− M̄0). (4.27)

The functions g1, g2, g3 depend solely on the function sinh η:

g1 = arccot(sinh η), (4.28)

g2 =
sinh η
cosh2 η

, (4.29)

g3 =
1

sinh η
. (4.30)

If both media are the same both reaction potentials must be zero. Indeed, the limits
of the four coefficients

χ2 → χ1 : L̄0 → 0, L̄1 → 0, M̄0 → 1, M̄1 → 1 (4.31)

ensure this.

4.2 The reaction field in Cartesian coordinates

We want expressions for the potential which depend on x, y, z only. So sinh η must be
replaced with a corresponding expression in Cartesian coordinates. From eqs.(4.1) to
(4.3) one finds:

sinh2 η =
1
2

− 1 +
r2

e2
o

±

√(
− 1 +

r2

e2
o

)2

+ 4
z2

e2
o

 .

Since the square root is larger than the preceeding polynomial it is obvious that only
the plus sign applies. This is also confirmed by intense numerical studies. So we have:

sinh η =
1√
2

√
− 1 +

r2

e2
o

+ wo(r, ez) := uo(r, ez)/
√

2, (4.32)

wo(r, ez) =

√(
− 1 +

r2

e2
o

)2

+ 4
z2

e2
o

=

√(
− 1 +

r2

e2
o

)2

+ 4
(r · ez)2

e2
o

, (4.33)

r2 = x2 + y2 + z2. (4.34)

Inserting this expression for sinh η into eqs.(4.28) to (4.30) and inserting the resulting
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expressions for g1, g2, g3

g1 = arccot(uo(r, ez)/
√

2), (4.35)

g2 =
√

2 uo(r, ez)
[uo(r, ez)]2 + 2

, (4.36)

g3 =
√

2
uo(r, ez)

. (4.37)

into eq.(4.26) we get the final expression for the exterior potential as pure function of
the Cartesian coordinates x, y, z:

Φr1(x, y, z) = (H0x x +H0y y) L̄1 (g1 − g2) + H0z z L̄0 (g1 − g3). (4.38)

The interior potential, eq.(4.27), is already a pure function of the Cartesian coordinates.

4.3 Potential and field for an arbitrary direction of the
spheroidal symmetry axis

For applications it is necessary to consider spheroids whose symmetry axis has an ar-
bitrary direction. The corresponding expressions for the potential will be derived from
those given in eqs.(4.38) and (4.27). These are rewritten in a way suggesting a general
form:

Φr1(x, y, z) = (H0⊥ · r⊥) L̄1 (g1 − g2) + (H0‖ · r‖) L̄0 (g1 − g3), (4.39)
Φr2(x, y, z) = (H0⊥ · r⊥) (1− M̄1) + (H0‖ · r‖)(1− M̄0). (4.40)

The vectors H0‖, r‖ give the projections of the corresponding vectors on the symmetry
axis, i.e. the z-axis. Similarly, the vectors H0⊥ = (H0x, H0y, 0), r⊥ = (x, y, 0) give the
projection of the corresponding vectors onto the x,y-plane, which is perpendicular to the
symmetry axis. Now it is easy to accomplish the substitutions for an arbitrary position
of the symmetry axis given by the unit vector n as given in eqs.(3.44)

In wo, eq.(4.33), only the variable z, the component of the position vector along the
z-Axis, i.e. the symmetry axis, must be replaced by (n · r) giving:

sinh η =
1√
2

√
− 1 +

r2

e2
o

+ w̄o(r,n) := ūo(r,n)/
√

2, (4.41)

w̄o(r,n) =

√(
− 1 +

r2

e2
o

)2

+ 4
(n · r)2

e2
o

. (4.42)

The functions gi, eqs.(4.35) to (4.37), remain the same except that uo(r, ez) and wo(r, ez)
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must be replaced with ūo(r,n) and w̄o(r,n) giving the new functions ḡi:

ḡ1 = arccot(ūo(r,n)/
√

2), (4.43)

ḡ2 =
√

2 ūo(r,n)
[ūo(r,n)]2 + 2

, (4.44)

ḡ3 =
√

2
ūo(r,n)

. (4.45)

Inserting all these new functions into eqs.(4.40) gives the potential for an oblate spheroid
whose symmetry axis is given by the arbitrary unit vector n:

Φr1(x, y, z) = (H0 · r) L̄1 (ḡ1 − ḡ2) + (4.46)
+ (H0 · n)(n · r) [L̄0 (ḡ1 − ḡ3) − L̄1 (ḡ1 − ḡ2)], (4.47)

Φr2(x, y, z) = (H0 · r) (1− M̄1) + (H0 · n)(n · r) [M̄1 − M̄0]. (4.48)

The evaluation of the magnetic field requires the gradients of the functions ḡi. These
are done by symbolic computation (OblPotDerivatives.nb [2]). Since the resulting ex-
pressions consist again of polynomials and the square roots already occuring in the
potential it is possible to find simpler expressions. These are again checked against the
original gradients by symbolic computation. All these derivatives are proportional to
the vector ro

ro :=
√

2
e2
o

(
r + 2n

(n · r)
(ūo(r,n))2

)
. (4.49)

∇ḡ1 = − ūo(r,n)
[2 + (ūo(r,n))2]w̄o(r,n)

ro, (4.50)

∇ḡ2 =
ūo(r,n)
w̄o(r,n)

2− (ūo(r,n))2

[(ūo(r,n))2 + 2]2
ro(r,n), (4.51)

∇ḡ3 = − 1
ūo(r,n) w̄o(r,n)

ro; (4.52)

∇ḡ1 −∇ḡ2 = − ūo(r,n)
w̄o(r,n)

4
[(ūo(r,n))2 + 2]2

ro, (4.53)

∇ḡ1 −∇ḡ3 =
2

[2 + (ūo(r,n))2] ūo(r,n) w̄o(r,n)
ro. (4.54)

The corresponding checks are contained in the notebook OblatePotDerivatives.nb.
The vector ro and all the gradients listed above are well-defined and real in the exterior

of the oblate spheroid, where η ≥ ηo; which is equivalent with the condition (4.58) in
Cartesian coordinates. In fact, a more detailed analysis shows that on the interface:

ūo(r,n) =
√

2 sinh ηo, (4.55)

w̄o(r,n) =
√
z4/
(
eo sinh(ηo)

)4 + 2z2/e2
o + sinh4 ηo (4.56)

sinh2 ηo ≤ w̄o(r,n) ≤ cosh2 ηo. (4.57)
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For a = 1, c = 2, (eo =
√

3) one finds
√

2 sinh ηo =
√

2/3 = 0.816... ; 1/3 ≤ w̄o(r,n) ≤
4/3. For this case the surfaces uo(r, ez) and wo(r, ez) are shown in Figs.4.1 and 4.2 at
the end of this chapter.

4.4 Final formulas for the field

So the final formulas for the reaction field excited in an arbitray homogeneous primary
field H0 by an oblate spheroid with arbitrary symmetry axis given by a unit vector n is
in the exterior:

r2 − (n · r)2

a2
o

+
(n · r)2

c2
o

≥ 1 : (4.58)

Hr1(x, y, z) = − H0 L̄1 (ḡ1 − ḡ2) − n(H0 · n)[L̄0 (ḡ1 − ḡ3) − L̄1 (ḡ1 − ḡ2)]

+ ro (H0 · r) L̄1
ūo(r,n)
w̄o(r,n)

4
[2 + (ūo(r,n))2]2

− ro (H0 · n)(r · n) L̄0
2

[2 + (ūo(r,n))2] ūo(r,n) w̄o(r,n)

− ro (H0 · n)(r · n) L̄1
4 ūo(r,n)

w̄o(r,n) [(ūo(r,n))2 + 2]2
; (4.59)

and in the interior:

r2 − (n · r)2

a2
o

+
(n · r)2

c2
o

≤ 1 :

Hr2(x, y, z) = H0 (1− M̄1) + n (H0 · n) [M̄1 − M̄0]. (4.60)

4.5 Concluding remarks for the field of an oblate spheroid

An oblate spheroid is inserted into an external homogeneous magnetic field H0 of ar-
bitrary direction. Its susceptibility is µ2 = µ0(1 + χ2); while that of the surrounding
medium is µ1 = µ0(1 + χ1). The spheroid has semi-axes ao, ao, co, co < ao; these de-
termine the excentricy eo and the quasi-radial parameter ηo, eqs.(4.4) and (4.5). These
in turn determine the coefficients L̄0, L̄1, M̄0, M̄1, eqs.(4.16) to (4.19) or eqs.(4.21) to
(4.24). The spheroid’s symmetry axis is the arbitrary unit vector n. The reaction field
due to the presence of the spheroid in the external field is given in Cartesian coordi-
nates, r = (x, y, z), by eq.(4.59) in the exterior, by eq.(4.60) in the interior. The functions
ḡ1, ḡ2, ḡ3, eqs.(4.43) to (4.45), depend on the variables ūo(r,n) and w̄o(r,n), eqs.(4.41)
and (4.42). The needed gradients of the ḡi are given in eqs.(4.53) and (4.54) . Eqs.(4.59)
and eq.(4.60) are for a spheroid, whose centre is at the origin. If the centre is at the
point r0 = (x0, y0, z0) then the vector r must replaced simply with r− r0.
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4.6 Figures

Out[93]=

Figure 4.1: The surface uo(r, ez) as function of the transversal coordinate ρ and the coordinate z along the
symmetry axis ez for an oblate spheroid with a = 2, c = 1; eo =

√
3. The curve gives the projection of the

boundary spheroid η = ηo = 0.549306 (an ellipse in the variables ρ and z) on the surface uo(r, ez). Points
in the exterior of this spheroid correspond to points to the right of the curve on the surface.

Out[96]=

Figure 4.2: The surface wo(r, ez) as function of the transversal coordinate ρ and the coordinate z along the
symmetry axis ez of an oblate spheroid with a = 2, c = 1; eo =

√
3. The curve gives the projection of the

boundary spheroid η = ηo = 0.549306 (an ellipse in the variables ρ and z) on the surface wo(r, ez). Points
in the exterior of this ellipse correspond to points to the right of the curve on the surface.
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5 Tensors for the Reaction Fields

Inserting a prolate or oblate spheroid into the primary homogeneous magnetic field
produces a reaction field within and near the spheroid. This reaction may be represented
by a tensor transforming the primary field into the reaction field. We succeeded in
preparing formulas representing these tensors in a very concise way. In a way this is
just a rewriting the formulas given in the previous two chapters. But this shows the
similarities between the formulas for the prolate and the oblate case more clearly.

The values ηp, ηo respectively determining the boundaries of the spheroids are the
same as defined in eqs.(3.6), (4.5) respectively.

ηp = Arcoth(cp/ap), (5.1)
ηo = Artanh(co/ao). (5.2)

5.1 The potentials of the reaction fields

The presence of a spheroid induces a reaction field with potential (r = (xβ)) :

Φσ
k(x, y, z) =

3∑
α,β=1

H0αt
σ,k
αβ xβ = H0 ·Tσ,k · r (5.3)

with σ = p (= prolate) or = o (= oblate) and k = e (= external) or i (= internal) to the
ellipsoid

Eσ :=
r2 − (n · r)2

a2
σ

+
(n · r)2

c2
σ

= 1. (5.4)

For a prolate spheroid, ap < cp, the excentricity is ep =
√
c2
p − a2

p; for an oblate one,

co < ao, and the excentricity is eo =
√
a2
o − c2

o.

5.1.1 The coefficients Lσ
0 , Lσ

1 , Mσ
0 , Mσ

1

The coefficients Lσ0 , L
σ
1 ,M

σ
0 ,M

σ
1 depend only on the geometric shape of the spheroids,

i.e. on ησ or on the semi-axes aσ, cσ, and on the magnetic susceptibilites χ1, χ2. These
constant parameters determine the coefficients Lσ0 , L

σ
1 ,M

σ
0 ,M

σ
1 . The corresponding for-

mulas have been given in eqs.(3.20) to (3.23) (or (3.25) to (3.28)) for the prolate case
and in eqs.(4.16) to (4.19) (or (4.21) to (4.24)) for the oblate case.
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5.1.2 The tensors for the scalar potential of the reaction

In the exterior, Eσ ≥, 1 the tensor Te,σ = (T e,σαβ ) is:

T e,σαβ = δαβ L
σ
1 (fσ1 − fσ2 ) + nαnβ[Lσ0 (fσ1 − fσ3 )− Lσ1 (fσ1 − fσ2 )]. (5.5)

This formula is the concise presentations of eqs.(3.62), eqs.(4.59 ) respectively.
In the interior, Eσ ≤ 1, the field is homogeneous:

T i,σαβ = δαβ (1±Mσ
1 )± nαnβ (Mσ

0 −Mσ
1 ). (5.6)

This formula is the concise presentations of eqs.(3.63), eqs.(4.60) respectively.
Above and below the upper (lower) signs apply for σ = p (o).

fp1 = Arcoth
(
up(n, r)/

√
2
)

(5.7)

fo1 = arccot
(
uo(n, r)/

√
2
)

(5.8)

fσ2 =
√

2 uσ(n, r)/[
(
uσ(n, r)

)2 ∓ 2] (5.9)

fσ3 =
√

2/uσ(n, r) (5.10)

up,o(n, r) =
√
±1 + r2/e2

p,o + wp,o(n, r) (5.11)

wp,o(n, r) =
√(
± 1 + r2/e2

p,o

)2 ∓ 4(n · r)2/e2
p,o. (5.12)

5.2 The magnetic reaction fields

For the evaluation of the signals the magnetic reaction fields are needed. The tensors
Kσ,k = (Kσ,k

αβ ) transform the primary field H0 = (H0β) into the reaction fields Hσ
k =

(Hσ,k
α ) :

Hσ,k
α (x, y, z) =

3∑
β=1

Kσ,k
αβ H0β, σ = p, o; k = e, i. (5.13)

The tensors are found in Chapters 3 and 4 by computing the gradients of the reaction
potentials. This requires also the gradients of the functions fσn ; which are evaluated
by symbolic computation [2] using Mathematica. Since the resulting expressions consist
again of polynomials and the square roots already occuring in the exterior potentials
it is possible to find simpler expressions. These are again checked against the original
gradients by symbolic computation [2]. All gradients are proportional to the vectors
rp(= xpα), ro(= xoα) respectively:

rp,o :=
√

2
e2
p,o

(
r ∓ 2n

(n · r)
[up,o(r,n)]2

)
:= (xσα). (5.14)

The expressions for the reaction tensors of prolate or oblate spheroids with symmetry axis
n in an extermal homogeneous magnetic field H0 in the exterior are found in eqs.(3.62),
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(4.59) respectively:

Eσ ≥ 1 :
Kσ,e
αβ (x, y, z) = − δαβ L

σ
1 (fσ1 − fσ2 ) − nαnβ [Lσ0 (fσ1 − fσ3 ) − Lσ1 (fσ1 − fσ2 )]

∓ xσα xβ L
σ
1

uσ(r,n)
wσ(r,n)

4
[(uσ(r,n))2 ∓ 2]2

(5.15)

− xσα nβ (r · n) Lσ0
2

[2∓ (uσ(r,n))2]uσ(r,n) wσ(r,n)

± xσα nβ (r · n) Lσ1
4 uσ(r,n)

wσ(r,n) [(uσ(r,n))2 ∓ 2]2
.

The upper, lower signs respectively apply to prolate (σ = p), oblate (σ = o) spheroids
respectively. The fields in the interior are homogeneous, but are not parallel to the
primary field, in general; they are found in eqs.(3.63), (4.60) respectively:

Eσ ≤ 1 :
Kσ,i
α,β(x, y, z) = − δαβ (Mσ

1 ± 1)− nαnβ (Mσ
0 −Mσ

1 ). (5.16)

The theory above has been derived under the assumption that the spheroid is centred
at the origin. If the centre is at the point r0 then r must be replaced by r − r0 in all
formulas.
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6 Application: Modelling trabecular bone

6.1 Introduction

Generally, in magnetic resonance experiments disturbances of the homogeneous main
magnetic field have an essential impact on the formation of the resonance signal. In
principle magnetic inhomogeneities can be classified with respect to their origin and
strength, and their influence on the formation of the signal decay [6]. Susceptibility
effects in MRI/MRS are of great interest. Especially in MR-Osteodensitometry in-
formation about the status of cancellous bone can be gained [7, 8]. In the presence of
trabeculae the relaxation properties of bone marrow are changed due to the inhomogene-
ity of the magnetic field, induced by the discontinuities of the magnetic susceptibility
across the surface of the bone [9]. In several studies direct relations between the effective
transversal relaxation time T ∗2 with bone mineral density (BMD) [10, 11, 12] and with
mechanical competence of trabecular bone! [13, 14, 15] were reported.

The signal decay in a gradientecho experiment due to additional local field inhomo-
geneities follows the empirical expression:

S(TE) ∝ e−R∗2TE with R∗2 = 1/T2 +R′2 , (6.1)

with T2 giving the intrinsic transversal relaxation time and TE the echo time. The
quantity R′2 accounts for the additional contribution, originating from the local field
inhomogeneities, to the effective transversal relaxation rate R∗2 = 1/T ∗2 . In the simplest
case the inhomogeneous magnetic field varies linearly across the sample, thus R′2 ≈ γ∆B
with ∆B representing the field variation and γ the gyromagnetic ratio.

Computer simulations modelling the susceptibility induced magnetic field distortion
make it possible to gain insight into the interrelationship between the temporal behaviour
of the resonance signal caused by histomorphometrical parameters of the spongious mi-
croarchitecture. The aim is to analyse effects on the induced line broadening of the
resonance spectra evoked through important morphometric quantities such as intertra-
becular distance, trabecular thickness and bone volume fraction.

6.2 Modelling: Computersimulation

The evaluation of the magnetic field distribution was performed utilizing a two-compart-
ment model, consisting of bone marrow and the mineralized bone. In a three-dimensional
unit cell representing the region of interest the two types of ellipsoids were arranged
appropriately to model the known trabecular microstructure [16]. For the simulation of
architectures made up by plate-like trabeculae, as they can be found in the epiphysis of
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long bones like the femur, oblate spheroids were used. For the study of trabecular cracks
within a vertebra the unit cell was set up by prolate spheroids.

The developed computer simulations analysing the MR signal evolution are based
on an approach described by Bakker et al. [17]. Hence, in a first step the reaction
fields induced by the susceptibility difference between the ellipsoids (trabeculae) and the
background (bone marrow) were computed. Subsequently a Fourier Transformation of
the spatial magnetic field distribution with respect to time yielded the signal curve [18].

The precession frequency of spins in a homogeneous magnetic field is determined
through the magnetic induction B. Introducing a sample with a different susceptibility
the resulting magnetic induction Bz can be generally written:

Bz = µ (H0z + ∆Hr1,z (r)) = (1 + 4πχ) (H0z + ∆Hr1,z (r)) , (6.2)

∆Hr1,z characterizing the induced reaction field. Further, throughout the simulations
the CGS-system was applied, susceptibility units are per unit mass.

The resulting magnetic field distribution within the unit cell was determined as the
sum of the individual contributions Hzi originating from all ellipsoids n:

∆Hr1,z (r) =
n∑
i=1

Hzi (r) . (6.3)

Interactions between the trabeculae have been neglected. This assumption is valid, since
interactions between such structures include susceptibility effects of the second order,
which will give rise to field contributions of the order of H0 (∆χ)2, or ≈ 10−6 H0.

In a simple MR experiment, excitation followed by an acquisition period, the signal
of the free induction decay (FID) can be written as:

S(t) = const
∫
d3r e−iω(r)t e−t/T2 ; (6.4)

with ω(r) = γBz(r) it follows:

S(t) = const
∫
d3r e−iγBz(r)t e−t/T2 . (6.5)

Using again expression (6.2) the following expression in ∆Hr1,z can be found:

S(t) = const
∫
d3r e−iγt(1+4πχ)(H0z+∆Hr1,z(r)) e−t/T2 . (6.6)

This integral must be extended over the entire unit cell enclosing the ellipsoids.
In order to compare the simulation results with MR images the magnitude of S(t)

must be found. Except for the dissipative relaxation phenomenon e−t/T2 the expressions
in (6.6) are purely oscillatory in H0z. Hence, for the analysis of the signal course the
essential decay can be expressed as:

|S(t)| = const
∫
d3r e−iγt(1+4πχ)∆Hr1,z(r). (6.7)

∆Hr1,z(r) can be computed according to (6.3) as the sum over all the reactions fields
of the individual ellipsoids, where (1 + 4πχ) describes the magnetic permeability at the
location r.
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6.2.1 Algorithm

Utilizing the expressions developed for the reaction fields (3.62) and (4.59) two sets of
simulations were implemented in Mathematica (Wolfram Research, Inc.). The program
computed the field distribution of ∆Hr1,z(r) in the sense of a histogram and generated
the MR signal curve according to (6.7).

As input parameters of the simulations the spacing of the trabeculae in x-, y- and
z-direction, the dimensions of the ellipsoids and the position of the symmetry axis with
respect to the z-axis of the coordinate system had to be defined. Further, the sus-
ceptibilities of the bones and the background as well as the orientation of the applied
homogenous main magnetic field had to be set. The results of the simulations were the
histograms of the magnetic field distribution and the signal curve, which was further
utilized within a fitting-procedure yielding the relaxation constant R′2.

6.2.2 Data fitting

Utilizing the simulated signal curves a Gaussian signal model was applied in order to
approximate the relaxation time T ′2 [19, 20]. The computed signal intensities (6.7) at
the echo times ranging from 0 to 50 ms, 2.5 ms increment, were used to generate a single
T ′2 value by means of a non linear least-squares-approximation to a three parameter fit
function:

S(t) = A+B e−t
2/(2T ′2

2) . (6.8)

The fitting model is equivalent to a bi-Gaussian function with one term having a de-
cay constant greater than the maximum TE (50 ms). A high value of the ratio A/B
corresponds to a decay that deviates significantly from a single Gaussian [21, 20].

6.2.3 Model I

The effect of the loss of bone mass within a three-dimensional plate-like trabecular model
was analysed using oblate ellipsoids. Hence, stepwise decreasing of the bone volume frac-
tion ς = BV/TV , bone volume (BV )/total volume (TV ), was performed. In accordance
with the findings of Hildebrand et al. [16], ς values ranging from 0.530–0.406 were in-
vestigated. The bone remodelling was simulated through a simultaneously decreasing
by 12.5 µm of the thickness of the horizontal and vertical arranged ellipsoids. The ex-
ternal field H0 was applied setting α = 5◦ and β parallel to the z-coordinate axis. The
configuration of the three-dimensional unit cell and the parameter settings are shown in
Fig.6.1 and Tab.6.1-6.2.

6.2.4 Model II

The impact of trabecular cracks on the MR signal evolution was studied using a simple
two-dimensional model of vertebrae. Thus, the unit cell was composed out of four prolate
ellipsoids, mimicing the initial intact trabeculae. The interruptions were simulated in the
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Figure 6.1: a.) Schematic depiction of the six oblate ellipsoids forming the three-dimensional plate-like
microstructure of Model I; b.) Detailed view of the applied unit cell, where the dimensions are given in mm.
The centres of the ellipsoids are indicated by crosses, the subscripts v, h are denoting the horizontal and
vertical arranged trabeculae; C is indicating the origin.

Model I

Trabecula Vector n (x,y,z) Center T (x,y,z)

nv nh Tv Th

left/top [sin (10◦), 0, cos (10◦)] [0, sin (95◦), cos (95◦)] (-400,0,0) (0,0,-700)
middle [1, 0, 0] [0, 0, 1] (0,0,0) (0,0,0)
right/bottom [sin (15◦), 0, cos (15◦)] [0, sin (95◦), cos (95◦)] (400,0,0) (0,0,700)

Table 6.1: Parameters of the oblate ellipsoids utilized in Model I. Units of the centres are given in µm. The
susceptibility of the trabecular bone and the bone marrow were set to χ1 = −0.62·10−3 and χ2 = −0.9·10−3,
respectively [22]. A main magnetic field of H0 = 30000 Gauss, α = 5◦ and β = 0◦ was applied.

way, that each trabecula was replaced by two ellipsoids, which were displaced along the z-
axis by 25 µm forming a crack. The configuration of the two-dimensional vertebra model
and the applied parameter setting are given in Fig.6.2 and in Tab.6.3-6.2, respectively.

Dimensions

Model I Model II

ellipsoids av,h = 3000 µm bv,h = 100 µm av = 3000 µm bv = 150 µm
unit cell volume = 3.92 mm3 area = 4.00 mm2

initial BV/TV ς0 = 0.482 ς0 = 0.35

Table 6.2: Dimensions of the ellipsoids, the unit cells and the initial bone volume fractions BV/TV.
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Figure 6.2: a.) Schematic depiction of the four prolate ellipsoids forming the intact two-dimensional rod-
like vertebra model; b.) Detailed view of the applied unit cell modelling four trabecular cracks, where
the dimensions are given in mm. Trabecular microfractures were simulated by replacing each of the intact
trabecula with two opposed shifted versions; C is indicating the origin.

Model II

Trabecula Vector n (x,y,z) Center T (x,y,z)

ncrackA ncrackB TcrackA TcrackB

Nr. 1/2 [0,0,1] [0,0,1] (-700,0,3500) (-700,0,-2525)
Nr. 3/4 [0,0,1] [0,0,1] (-250,0,1500) (-250,0,-3525)
Nr. 5/6 [0,0,1] [0,0,1] (250,0,3000) (250,0,-3025)
Nr. 7/8 [0,0,1] [0,0,1] (700,0,3500) (700,0,-2525)

Table 6.3: Parameters of the prolate ellipsoids utilized in Model II. Units of the centres are given in µm. The
susceptibility of the trabecular bone and the bone marrow were set to χ1 = −0.62·10−3 and χ2 = −0.9·10−3,
respectively [22]. A main magnetic field of H0 = 30000 Gauss, α = 30◦ and β = 0◦ was applied.

6.3 Results

6.3.1 Simulating bone loss

In this subsection the results of the analysis studying the impact of loss of bone mass
on the field distribution and the resulting relaxation constant T ′2 are presented. The
histogramms in Fig.6.3 are reflecting the effect of decreasing the bone volume fraction
on the field distribution of the reaction fields. Depending on the fraction ς the reaction
field Hr1 approximately varried between -0.6 and -0.05 Gauss. As a consequence of the
modelled bone loss the reaction field became more homogeneous, hence the broadness
of the histogram narrowed, whereby its maxima was shifted in the direction of a more
positive field strength. The simulated signal curves as a function of ς together with the
estimated relaxation times are presented in Fig.6.4. The parameters of the least-squares
approximation are given in Tab.6.4. The applied Gaussian signal model responded with
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Figure 6.3: Resulting field distributions of the reaction field Hr1,z induced by the susceptibility effect between
bone and bone marrow. The fields were computed within the entire volume of Model I as a function of ς. A
main magnetic field H0 = 30000 Gauss with α = 5◦ and β parallel z-axes, and values of χ1 = −0.62 · 10−3

and χ2 = −0.9 · 10−3 were applied.

Figure 6.4: Simulated impact of the computed reaction field Hr1,z on the MR signal decay. The signals are
normalized to the values at the first echo time TE and presented for various bone volume fractions ς. Markers
are indicating the computed signal values at TE , whereby the green curve was obtained using the estimated
parameters of the Gaussian fit-function.

Kraiger and Schnizer ITPR-2011-021CorRev



6 Application: Modelling trabecular bone 35

a moderate increase of T ′2 with decreasing ς. Further, the Gaussian approach exhibited
an almost linear relation between loss of bone mass and the increase of T ′2, as can be
concluded from Tab.6.4.

In the case of bone disorders such as osteoporosis annual changes of the bone mass
between 2–5 % were reported [23, 24]. Applying the presented novel analytical field
expressions, such realistic alterations in conjunction with their effects on the MR re-
laxation parameter T ′2 can be studied. In the current simulations minor alterations of
∆ς = 0.025 were successfully modelled, yielding variations of the MR relaxation param-
eter T ′2 in a measurable range of ms. The presented results are qualitatively comparable
with previously reported studies, whereby either a different size of the volume of interest
or different trabecular elements, rod-like structures, were utilized [19, 25].

6.3.2 Simulating trabecular microcracks

The simulation of the impact of the field disturbances in the vicinity of trabecular cracks
on the MR signal time course was carried out through computing the reaction fields along
the equatorial plane of the prolate ellipsoids. The interruption was mimiced by forming
a gap of 25 µm distance between two opposing trabeculae.

The resulting reaction fieldsHr1 pre- and post bone rarefication are depicted in Fig.6.5.
Note, that in the situation of trabecular microfractures significant distortions of the
almost homogeneous initial reaction field can be seen. At the transition from the intact
to the impaired oseous network significant field variations appear. The field distribution
is directly affected by the shape of the microcracks, whereby sharp edges lead to the
observed major field distortions. The trabecular rarefication led to an abrupt broadening
of the initial narrow resonance spectra. Additionally, around -0.35 Gauss a second local
maxima appeared. Prior rarefication, the inital field distribution ranged approximately
around ±0.075 Gauss, afterwards field values from almost −1.5 to 0.4 Gauss were found
within the two-dimensional vertebra model.

The effect of the interrupted bone mesh on the MR signal and the resulting estimated
relaxation time T ′2 is presented in Fig.6.6. The modelled cracks gave rise to a change of
the initial T ′2 of 196 ms to approximately 15.8 ms.

BV/TV Agau Bgau T ′2 (ms) RMSE

0.530 -0.021 1.021 36.10 0.12 ·10−3

0.505 -0.029 1.030 38.86 0.10 ·10−3

0.482 -0.035 1.035 42.12 0.07 ·10−3

0.457 -0.035 1.035 45.78 0.05 ·10−3

0.431 -0.038 1.038 49.99 0.03 ·10−3

0.406 -0.035 1.035 54.88 0.02 ·10−3

Table 6.4: Resulting parameter estimates of the non-linear least-squares approximation of the simulated
signal decay to a Gaussian function. The approximations were performed for various ς.
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Figure 6.5: Resulting field plot and field distribution depicting the reaction field Hr1,z of the applied two-
dimensional vertebra model. The situation prior bone rarefication is given in a.) and c.), the impact of
trabecular cracks is clearly notable in b.) and d.). A main magnetic field H0 = 30000 Gauss with α = 30◦

and β parallel z-axes, and values of χ1 = −0.62 · 10−3 and χ2 = −0.9 · 10−3 were applied.

Figure 6.6: Resulting resonance signal decay affected by the reaction field Hr1,z within the equatorial x-z
plane of the vertebra model. As a consequence of the inhomogeneous reaction field the rapid signal decay is
shown in b.). Markers are indicating the computed signal values at TE , whereby the green curve was obtained
using the estimated parameters of the Gaussian fit-function. Further, the signals are normalized to the values
at the first echo time TE .
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6.4 Discussion

The analytical solutions of the Laplacian potential problem of spheroids in Cartesian co-
ordinates were successfully applied. Two- and three-dimensional magnetostatic problems
in the area of MR-Osteodensitometry were analysed. The performed field simulations
are based on previous work of Ford et al. and Selby et al. [18, 19]. Especially the
analytical expressions simplified the modelling of arbitrary orientated trabecular bone
models in an arbitrary orientated main magnetic field.

To the authors best knowledge for the first time oblate ellipsoids were used to mimic
the field effects of plate-like structures more realistically. Such structures made it possible
to study the effects of bone mass loss in a basic model of oseous bone. In principle there
are no restrictions concerning the amount and orientation of the used oblate spheroids,
hence even complex architectures are accessible for modelling.

In a simplified model of a vertebra the susceptibility effects in the vicinity of mi-
crocracks were studied. Within vertebrae affected by pathologies such as osteoporosis
horizontally arranged structures get typically interrupted at first. The novel expressions
make it possible to study the bone rarefication along such pathologies, whereby either
cracks of the horizontal, the vertical or arbitrary structures are accessible for modelling.
In generall, the use of the analytical field expressions enables the investigation of the
induced field distortions in the surrounding of the trabecular microfractures. In an ad-
ditional study using a more realistic 3D bone model the variations of the reaction fields
along the progression of pathological bone remodelling are under investigation. The
results of the ongoing study will be published elsewhere.
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7 Conclusions

1. Expressions for the potential and field of a prolate spheroid in a homogeneous exter-
nal field of arbitrary direction have been derived in prolate spheroidal coordinates.
These expressions have been transformed to Cartesian coordinates. The resulting
expressions have been generalized to an arbitrary direction of the symmetry axis
while the external field axis may still have another arbitrary direction.

2. The same has been done for an oblate spheroid with arbitrary symmetry axis and
an other arbitrary field axis.

3. Since the magnetic susceptibilites of biological tissues are small (≈ −10−6 [26]) it
is easy to construct models of trabecular bone structures by arrays of spheroids
as described in the two previous items. The total magnetic induction is that
of the primary field plus that of all the spheroids in the array to a very good
approximation which disregards the small magnetic interaction of the spheroids
among themselves.

4. This modelling is particularly easy since all field dependences may be expressed in
the same general Cartesian coordinate system.

5. As examples of the method following configurations are treated. Oblate spheroids
are used in a 3D model to study the impact of trabecular bone loss on the MR signal
decay characteristic. The influence of bone rarefication on the resonance signal is
investigated in a simplified 2D model of a vertebra utilizing prolate spheroids.

6. In the present work just one application of the analytical expressions, the modelling
of bone disorders in the area of MR-Osteodensitometry, was given. For example in
the field of functional MRI the devoloped toolbox eases the analysis of the BOLD
(blood oxygenation level-dependent) contrast, where induced reaction fields in the
surrounding of vascular networks are of great interest [27]. A fast and precise
computation of the magnetic distortion is essential for improving the precision of
the temperature determination in techniques using the proton resonance frequency
(PRF) shift method [28, 29]. Temperature mapping in the vicinity of the needle
electrode is a crucial determinant of MRI guided interventional radiofrequency
ablations [30]. Further, in the field of metabolism studies using NMR spectroscopy
(MRS) the expressions can be used in order to model specific cells introduced in
solutes differing in magnetic susceptibility ! [31].

7. The authors believe that the novel formulation of solutions depending solely on
the Cartesian coordinates will facilitate the modelling of countless magnetostatic
problems.
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