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Abstract. The splitting behaviour of the 2p 2P3/2 hyperfine structure levels is investigated in 6Li for

homogeneous crossed electric and magnetic fields (Stark-Zeeman effect). This is done by diagonalizing the

perturbation matrix comprising the hyperfine interaction, the electronic and nuclear magnetic interaction

and the effective electric interaction obtained by transforming the quadratic Stark effect to a first order

perturbation interaction. Symmetries are used to find analytic formulae for level shifts and crossing points if

only one external field is present. A reflection symmetry unbroken with all three interactions present permits

the decomposition of the 12 × 12 matrix into two 6 × 6 submatrices. The structure of energy eigenvalue

surfaces εF,MF (B, E) of the two subsystems is found by numeric diagonalization of the perturbation matrix

and is displayed in the ranges |B| < 1 mT, |E| < 300 kV/cm. The total angular momentum F = J+I (J =

3/2, electronic angular momentum, I = 1, nuclear spin) and the magnetic quantum number MF provide

labels for all surfaces. All crossing points of the energy surfaces have been found. Adiabatic level transfer

occurring in atoms traversing a sequence of crossed magnetic and electric fields is explained. Berry phases

occur for cycles around some crossing points. Their presence or absence is explained.

PACS. 03.65.Vf Berry phase – 32.60.+i Zeeman and Stark effects – 32.80.Bx Level crossing-atoms –

3150.Gh Surface crossings
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1 Introduction

In the past efforts have been made to investigate the Stark-

Zeeman effect of the np 2P3/2-levels of the alkalines, both

experimentally by means of laser-atomic-beam spectroscopy

in parallel and in crossed fields, and computationally by

means of a programme which determined the splitting of

the hyperfine components of the spectral lines considered,

and their expected relative transition probabilities [1] - [8].

The computed data were compared with the experimen-

tal spectra with the help of fitting procedures, resulting

in the determination of atomic parameters, like the hyper-

fine structure constants, and/or polarizabilities. This same

programme was used in the laserspectroscopic study of the

lithium and the sodium D-lines in strong magnetic fields

up to 1 T [9], [10], i.e. strong enough to observe the influ-

ence of the fine structure levels J = 1/2 and J = 3/2 of the

excited term 2P on each other. As a subsequent step, the

computation of the splitting of the hyperfine states MF of

an atom influenced by crossed electric and magnetic fields

showed that, adiabatically changing the presence and the

strength of these fields according to a well defined cycle,

atoms populated in a given hyperfine level Fi before the

start of the field cycle were found in another level Ff af-

ter experiencing the field cycle [5], [7], [8]. This kind of

level transfer, explainable as the consequence of the pres-

ence of level crossings and anticrossings, was experimen-

tally proved in a laserspectroscopic experiment on a beam

of gallium atoms, by successfully probing the population

of the levels involved [12]. However, these considerations

for energy levels with the electronic angular momentum

J = 3/2 have so far been limited to atoms with nuclear

spin I = 3/2 as 23Na, 69Ga, 71Ga [13] or 7Li [14]. For this

reason, similar investigations have been performed for 6Li,

which has an integer nuclear spin, I = 1, in order to find

differences and similarities.

These have been performed by diagonalizing the per-

turbation matrix comprising the following three interac-

tions (see Section 2): 1) the hyperfine interaction between

the valence electron and the nucleus; 2) the interaction

of the electronic and nuclear magnetic moments with the

constant external magnetic field; 3) the effective electric

interaction of the valence electron with the constant ex-

ternal electric field, developed by Schmieder [15] [16], in

which the quadratic Stark effect is represented by an equiv-

alent operator fitting the framework of first order pertur-

bation theory. Basic theory gives the analytic form of these

operators, their strengths being fixed by experimentally

accessible atomic parameters. In the case of 1) these are

the diagonal hyperfine structure constants A1 and A2, in

case of 2) the electronic and nuclear gyromagnetic ratios

gJ and ĝI , and in the case of 3) the scalar and tensor po-

larizabilities α0 and α2. In the following all the expressions

for the matrix elements of these operators needed for the

calculations are given and discussed as well as their sym-

metry properties. The eigenvalues are only approximate,

since only the subspace belonging to the 2p 2P3/2 level

is used. The nearest level is the other fine structure level,

2p 2P1/2, whose energy is 10050 MHz lower [17]. The mag-

nitude of this fine structure splitting is much larger than

the hyperfine shifts considered here. An analysis where
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this state is included has been performed for 7Li in [14] and

will be published elsewhere. The corrections to the field

values and energies of the crossing points do not exceed

17 %. Additional corrections may come from changes of

the experimental values of the atomic constants discussed

above and listed in Table.1. But all such corrections will

change our results only quantitatively, but not qualita-

tively.

For perpendicular external fields, the only unbroken

symmetry is a reflection at a plane perpendicular to the

magnetic field B and parallel to the electric field E (see

Section 3); it permits one to decompose the 12-dimensional

function space into two orthogonal 6-dimensional subspaces,

which we call the positive and the negative subsystem.

The positive subsystem is characterized by the magnetic

quantum numbers MF = 5/2, 1/2,−3/2; the negative sub-

system by MF = −5/2,−1/2, 3/2. The corresponding two

characteristic polynomials can be further decomposed if

one of the external fields is zero. In either case, each of

the polynomials separates into three polynomials, which

are linear, quadratic and cubic in either B or E2. The cor-

responding eigenvalues of the first and the second factor

are given as analytic expressions in Section 4. The cross-

ing points, which are very important for the topology of

the level subsystem, the adiabatic level transfer and the

geometric phases, are found from the resultants of these

polynomials (see Section 4). There are 7 crossing points in

each subsystem in the domain |B| < 1 mT, 0 < E < 300

kV/cm of the B,E-plane. In case of a pure magnetic field,

each subsystem possesses 5 crossing points. In case of a

pure electric field there is one crossing point. An addi-

tional crossing point has both fields different from zero.

There is a qualitative difference between the systems

with nuclear spin I = 3/2 leading to a integer total an-

gular momentum F [8], [13] and the present system with

I = 1 leading to a half odd integer F . Both systems de-

compose into two non-interacting subsystems due to the

fact that the interaction mixes only those states MF dif-

fering by ∆MF = 0,±2, enabling one to catalogue them

as the odd subsystem (MF = odd) and the even subsys-

tem (MF = even) for I = 3/2 (and presumably for other

one electron systems having a nucleus with half odd inte-

ger spin) and the positive and the negative subsystem for

I = 1. The positive and the negative subsystem are very

similar [14], whereas the odd and the even system exhibit

several qualitative differences [7], [8], [13].

In the general case where both fields are nonzero, the

energy eigenvalues εF,MF
(B,E) are found by numerical di-

agonalization of the perturbation matrix. The correspond-

ing surfaces above the B,E-plane are plotted. The insight

taken from these pictures leads to an understanding of

the adiabatic level transfer (see Section 7). In a single in-

creasing external field the phase point describing the state

of the atom passes from one energy surface to another

one through the crossing points (crossing); when this field

decreases in the presence of a second field the gap now

separating the two surfaces detains the phase point from

returning to the original surface (anticrossing). The knowl-

edge of the crossing points permits one to predict all types

of behaviour of an atom in such a sequence of fields.
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A crossing requires the coincidence of two eigenvalues

of the Hamiltonian. In a seminal paper [18] v. Neumann

and Wigner proved the following rules: A real symmetric

matrix (as is the Hamiltonian considered here), whose el-

ements depend on a number of parameters α1, α2, . . . , αn,

has a double eigenvalue if n, the number of parameters, is

at least 2. This entails: Terms belonging to the same ir-

reducible representation of the unbroken symmetry do not

cross under the influence of a one-parameter perturbation.

Haake [19] gives an extensive and thorough discussion of

the time-reversal operator, T , as well as the connections

between this and other symmetry operations and degen-

eracies. In our case T 2 = − 1, since total angular momen-

tum is a half odd integer. Haake’s [19] results will be used

below in several applications.

When there is a crossing of levels one is wondering

whether Berry (or geometrical) phases occur in field cy-

cles enclosing the crossing points. Such phases are indeed

found, but only for some of the crossing points (see Sec-

tion 8). The absence or presence of such phase changes is

correlated with the structure of the energy surfaces at the

crossing points. When the Taylor series of the εF,MF
(B,E)

around a given crossing point are linear in both B and E,

then a Berry phase occurs. The quadratic Stark effect in-

troduces a quadratic dependence of εF,MF
(B,E) on E for

the magnetic crossing points, Bp1, . . . , Bp5, Bn1, . . . Bp5,

shown in Figs. 1, 7 and 8, thereby preventing such a phase

for the corresponding field cycles.

2 The perturbation operators

In this investigation the function space is limited to the

wave functions belonging to the 2p 2P3/2 fine structure

level of 6Li. The nuclear spin and the total electronic an-

gular momentum are I = 1 and J = 3/2. These angular

momenta are assumed to remain good quantum numbers.

Their coupling gives the total angular momentum, char-

acterized by quantum numbers F = 5/2, 3/2, 1/2. So the

degeneracy of the unperturbed system, which is also the

dimension of our function space, is 12. The theory has

been collected and discussed in [1] or [14]. The matrix

elements of the perturbation operators are evaluated by

the Wigner-Eckhart theorem, choosing the coupled wave-

functions |γIγJIJFMF 〉 as a basis. The radial part of the

interaction is the same for all matrix elements and is ab-

sorbed into the atomic parameters (hyperfine structure

constants, polarizabilities) or drops out as the magnetic

interactions do not depend on the radius in our approx-

imation. Since the quantum numbers I and J are con-

stant within the subspace under study, they are omitted

in the following. By diagonalizing the sum of the pertur-

bation operators (= hyperfine structure operator + mag-

netic interaction operator + effective electric interaction

operator) within this subspace of the total Hilbert space,

one obtains the energy eigenvalues and the correspond-

ing eigenvectors of the different levels. These eigenvalues

give the energy shifts with respect to the energy of the

unperturbed state, which is put to zero by definition. The

units of the experimentally accessible atomic parameters

(see Table 1) are such that the eigenvalues (εn and ε′n)
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are given in frequency units, i.e. in the present case in

MHz. The degeneracies are totally removed (or partially

in the case of the common influence of the hyperfine and

the Stark interactions; this is explained in more detail be-

low). In the following, the three perturbation operators

are described separately.

2.1 Hyperfine structure interaction

The Hamiltonian of the hyperfine interaction can in gen-

eral be written as a sum of scalar products of spherical

tensor operators of the form

Hh =
∑
k>0

(
T(k) ·M(k)

)
. (1)

In equation (1) the operator T(k) contains only the elec-

tronic, the operator M(k) the nuclear degrees of freedom.

All the nuclear momenta are regarded as given constants.

Terms with even k represent the electric interaction, terms

with odd k the magnetic interaction. It is sufficient to limit

the sum to k ≤ 2; the influence of the higher multipoles

(k ≥ 3) is assumed to be negligibly small. k = 0 is ex-

cluded, as this interaction between the electric field of a

point nucleus surrounded by closed electron shells and the

valence electron is already contained in the unperturbed

Hamiltonian; so is the magnetic dipolar interaction be-

tween the orbital and the spin angular momentum of the

valence electron (fine structure). The k = 1 term in eq. (1)

contains the magnetic interaction between the electronic

(orbital and spin) and the nuclear magnetic moments as

well as the contact term describing the polarization of the

nucleus by the valence electron. The k = 2 term takes

into account the electric interaction between the nuclear

and electronic quadrupole distributions. The use of the

Wigner-Eckhart theorem and Racah-algebra leads to ma-

trix elements of the form

〈γIγJIJFMF |Hh|γIγJIJF ′M ′
F 〉 = (2)

=
∑

k>0(−1)I+J+F


J I F

I J k

 hAk J k J

−J 0 J


 I k I

−I 0 I


.

The atomic parameters Ak are the so-called diagonal hy-

perfine structure constants.

2.2 Magnetic interaction

The Hamiltonian of the interaction with the constant, ex-

ternal magnetic field B aligned with the z-axis is given

by the energy of the atomic and nuclear magnetic dipole

moments in that field:

Hm = − (µJ + µI)B = (gJJz − ĝIIz) µBBz. (3)

Here µB is the Bohr magneton, gJ and ĝI = gI me/mp

are the electronic and nuclear gyromagnetic ratios. These

atomic parameters are taken from experiment. In the same

basis as above the matrix elements become

〈IJFMF |Hm|IJF ′M ′
F 〉 = (4)

µBBz(−1)F−MF

 F 1 F ′

−MF 0 M ′
F

 √
(2F + 1)(2F ′ + 1) ·

·
[
gJ(−1)I+J+1+F

√
(2J + 1)(J + 1)J


J F I

F ′ J 1

−

−ĝI(−1)I+J+1+F ′√
(2I + 1)(I + 1)I


I F J

−F ′ I 1


]
.

.
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2.3 Effective electric interaction

In the selected basis the first order matrix elements of the

Hamiltonian describing the interaction with a constant,

external electric field

Hel = e r ·E (5)

are zero (for reasons of parity). In order to treat the sec-

ond order electric interaction still in the framework of first

order perturbation theory (together with the hyperfine

structure and the magnetic interaction) it is useful to de-

fine an effective electric operator (which is quadratic in

E). This is described in [15], [16] . The matrix elements

of the operator He in the above basis turn out to be

〈IJFMF |He|IJF ′M ′
F 〉 = (6)

− 1
2α0E

2δFF ′δMF M ′
F
− 1

2α2E
2QFMF ,F ′M ′

F

with α0 the scalar polarizability, α2 the tensor polarizabil-

ity and

QFMF ,F ′M ′
F

= (7)

=
√

15
2

√
(J+1)(2J+1)(2J+3)

J(2J−1)

√
(2F + 1)(2F ′ + 1) ·

F 2 F ′

J I J

 ∑2
q=−2

∑1
µ=−1

∑1
µ′=−1

 1 2 1

µ −q µ′

 ·

(−1)I+J−F ′+F−MF

 F 2 F ′

MF q −M ′
F

 nµnµ′ .

nµ = Eµ/E are the spherical components of the unit vec-

tor giving the field direction. In the case of crossed fields,

we take E = Eex, so that n±1 = ∓1/
√

2, n0 = 0. The

exception, where E = Eez, n±1 = 0, n0 = 1 will be noted

explicitly.

3 Fundamental symmetry properties

In the absence of external fields the fundamental rota-

tional invariance of the hyperfine structure operator of

the system leads to the natural degeneracies within the

hyperfine structure levels. The operator of this interac-

tion is also invariant against inversions and reflections. By

applying external magnetic and/or electric fields the sym-

metries of the total perturbation Hamiltonian are reduced

and the degeneracies are (partially or totally) removed.

3.1 Zeeman effect

If the magnetic field is taken to be parallel to the z-axis,

the remaining symmetries of the Hamiltonian Hh + Hm

are

1. rotations around the z-axis;

2. reflections at the plane perpendicular to the z-axis, i.e.

the x, y-plane.

The invariance under rotations around the field axis is

obvious. In considering the reflections the spins are dis-

regarded at first. Then the interaction is proportional to

B ·L = B Lz. The symmetry operations act only on the

coordinates and operators of the electrons, therefore, only

on Lz in the interaction term just given. Lz is invariant

against reflections at the x, y-plane only. The spin opera-

tors do not contain space or momentum operators, but the

symmetry properties can be taken over. This question is

treated in more detail in [20]. Rotations around a symme-

try axis commute with reflections at a plane perpendicular
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to this axis; the symmetry group C∞h is Abelian; the irre-

ducible representations of this group are one-dimensional;

so, in general, the magnetic field removes all degeneracies.

Systems with a homogeneous magnetic field are not in-

variant under conventional time reversal T . Haake [19] in-

troduces a generalization, which he calls non-conventional

time reversal; it is the product of a rotation by π around an

axis perpendicular to the magnetic field (e.g. the x−axis)

times T . The corresponding Hamiltonian commutes with

this operation.

3.2 Stark Effect

The electric field is taken to be aligned with the x-axis.

The symmetry operations that leave the Hamiltonian Hh+

He unchanged are:

1. rotations around the x-axis;

2. reflections at planes containing the x-axis, as e.g. the

x, y-plane.

The operator, eq.(5), is linear with respect to the coor-

dinate(s) along the electric field direction. This explains

the reflection invariance just listed. The effective electric

field operator, eq.(6), is quadratic in this (or these) par-

allel coordinate(s). This entails the additional invariance

against reflections at a plane perpendicular to the field.

say the y, z−plane. The generators of rotations around

the symmetry axis and reflections at the plane through

this axis anticommute; the symmetry group C∞v is non-

Abelian; its faithful irreducible representations (belong-

ing to a non-zero magnetic quantum number) are two-

dimensional. The corresponding levels are still at least

two-fold degenerate (Kramer’s degeneracy, [19]).

3.3 Perpendicular Stark-Zeeman effect

By applying both fields simultaneously, only the symme-

try operations common to both interactions remain sym-

metries of the system. These are only the reflection at the

x,y-plane. It is easy to show that this remaining symme-

try is responsible for a very important selection rule (see

[8], [13], [14], [20]) for the matrix elements of the total

perturbation Hamiltonian Hp = Hh + Hm + He:

〈IJFMF |Hp|IJF ′M ′
F 〉 =

=
{ 0 for MF −M ′

F = odd

6= 0 for MF −M ′
F = even

. (8)

This rule separates the 2p 2P3/2 level system into two non-

interacting subsystems (similarly as in 23Na, 69Ga, 71Ga

[8] and 7Li, [14]):

positive subsystem: MF =
{

5
2
,

1
2
, −3

2

}
negative subsystem: MF =

{
3
2
, −1

2
, −5

2

}
.

The subspace spanned by the six vectors |IJFMF 〉 with

values MF = {5/2, 1/2,−3/2} is called the positive sub-

system. The six vectors MF = {3/2,−1/2,−5/2} are the

basis of the negative subsystem. These names, which are

chosen somewhat arbitrarily, result from the fact that a

division modulo 4 of the numerators of the quantum num-

bers MF gives +1 for the first set and -1 for the second

set. The positive and the negative subsystems in 6Li are

more profoundly interrelated than the odd and even sub-

systems of, for example, 23Na or 7Li ([8], [13], [14]). In fact,
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the energy shifts of one subsystems are intimately related

to corresponding shifts of the other subsystem. From the

formulae for the matrix elements of the perturbation op-

erators in the decoupled basis |IJMIMJ〉 (common eigen-

vectors of the operators I2, J2, Iz and Jz) given in [1] or

[14] it is straightforward to verify the following relations

〈IJ(−MI)(−MJ)|Hh|IJ(−M ′
I)(−M ′

J)〉 =

= 〈IJMIMJ |Hh|IJM ′
IM

′
J〉 (9)

〈IJ(−MI)(−MJ)|Hm|IJ(−M ′
I)(−M ′

J)〉 = (10)

= [gj(−MJ)− ĝI(−MI)]µBBz · δ(−MI)(−M ′
I
)δ(−MJ )(−M ′

J
)

= − (gJMJ − ĝIMI) µBBzδMIM ′
I
δMJM ′

J
=

= −〈IJMIMJ |Hm|IJM ′
IM

′
J〉.

〈IJ(−MI)(−MJ)|He|IJ(−M ′
I)(−M ′

J)〉 =

= 〈IJMIMJ |He|IJM ′
IM

′
J〉. (11)

By noting that the two eigenvectors |IJMIMJ〉 and

|IJ(−MI)(−MJ)〉 always belong to different subsystems (a

result that is no longer valid for atoms with half odd in-

teger nuclear spin such as 23Na, 69Ga, 71Ga or 7Li) one is

led to identical matrix representations provided that the

magnetic field is reversed (which fact is designated by the

minus sign in front of B at the r.h.s of equation 12):

εp
i (B,E) = εn

i (−B,E) (12)

Here the superscripts p and n denote the positive and the

negative subsystems, whereas the subscript i = 1, 2, .., 6

labels the eigenvalues.

Hamiltonians containing a magnetic field are not in-

variant under time reversal T . Each of the three parts of

the perturbation Hamiltonian is invariant under Haake’s

[19] unconventional time reversal described at the end of

subsection 3.1. The eigenvectors belonging to the positive

and the negative subsystem are also eigenvectors of this

operation and assume opposite signs.

4 Pure Zeeman and Stark splittings

4.1 Pure Zeeman effect

The magnetic field removes all natural degeneracies (see

Fig.1). At first we investigate the positive subsystem. Since

eigenvectors belonging to different magnetic quantum num-

bers MF are orthogonal, the matrix of the Hamiltonian

Hh + Hm reduces to a 1 × 1 (MF = 5/2;F = 5/2), a

2 × 2 (MF = −3/2;F = 5/2, 3/2), and a 3 × 3 subma-

trix (MF = 1/2;F = 5/2, 3/2, 1/2) [20]. Therefore, the

characteristic polynomial decomposes into 3 polynomials

of order 1, 2 and 3. The roots of the first two polynomials

are easily found:

ε =
1
4
(6a + b)− µBB(ĝI −

3
2
gJ) (13)

for MF = 5/2;F = 5/2 and

ε =
1
8

(
2a− 3b + 4µBB(ĝI − 2gJ) ∓

√
X

)
(14)

X = 25(2a + b)2 +

+ 8µBB(ĝI + gJ)(2a + b + 2µBB(ĝI + gJ))

for MF = −3/2;F = 5/2, 3/2. Instead of the diagonal

hyperfine structure constants Ak appearing in eq. (2) the

traditionally used hyperfine structure constants a,b ... are
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employed:

A1 = IJa,

A2 = 1
4b.

(15)

Planck’s constant h in equation (15) is omitted since from

now on we choose to measure energies in MHz (s. Table

1).

For the 3×3 submatrix we provide the matrices of the

hyperfine structure and the magnetic perturbation opera-

tors (ordering of basis states |FMF 〉 = | 52
1
2 〉; |

3
2

1
2 〉; |

1
2

1
2 〉):

(16)
H

MF =1/2

h + H
MF =1/2
m =

=


1
4 (6a + b) 0 0

0 −a− b 0

0 0 5
4 (−2a + b)

 + µBB ×

×


1
10 (−2ĝI + 3gJ) − 3

5 (ĝI + gJ) 0

− 3
5 (ĝI + gJ) 1

30 (−4ĝI + 11gJ) − 1
3

√
5(ĝI + gJ)

0 − 1
3

√
5(ĝI + gJ) 1

6 (2ĝI + 5gJ)

 .

The energy eigenvalues and corresponding eigenvectors

are labeled uniquely by F and MF for all field strengths

under consideration (|B| ≤ 1 mT). For small field strengths,

each eigenvector coincides approximately with one of the

corresponding basis vectors |IJFMF 〉. For larger values

of B the admixtures may be substantial or dominating,

but we can retain the labels assigned for small magnetic

field strengths. By calculating the overlaps of eigenvectors

belonging to slightly different B values, it is possible to

continue the labels also to higher B values, even though,

for large B values, the decoupled basis vectors |IJMIMJ〉

match the real eigenvectors increasingly better. These la-

bels, too, are shown in Fig. 1.

For some field values two curves cross at crossing points

labelled Bpn. There we have an accidental degeneracy.

These crossing points play an important role in level cross-

ings. The curves εp
i (B,E = 0) shown in Fig. (1) obey

the J.v.Neumann-Wigner rule quoted in the Introduction:

curves belonging to the same value of F do not cross. In

view of the symmetry relation (12) the diagram for the

negative subsystem is obtained from that for the positive

subsystem by changing the signs of the magnetic field B

and of all the magnetic quantum numbers. Also the cross-

ing points Bnn are found in this way. Analytic expressions

for the corresponding field values and energies for all these

crossing points can be found, in principle. But the corre-

sponding expressions are too involved to be given here.

Numerical values for all the crossing points are given in

Table 2. Crossing points at B = 0 are disregarded.

The characteristic polynomials corresponding to eqs.(13)

- (16) with an indeterminate ε are denoted as cm1(ε),

cm2(ε) and cm3(ε). Their product gives the characteris-

tic polynomial of the total matrix. Crossing points are

obtained either from a double zero of such a polynomial

or from a common zero of two of these polynomials. The

first type of zeros is found by computing the resultant of

cm2(ε) (or cm3(ε)) and its derivative, which is denoted as

rm22 (or rm33). A zero common to cmj(ε) and cmk(ε) is

found from the resultant of these two polynomials denoted

as rmjk. All these resultants are polynomials in B; their

zeros give the field values of the wanted crossing points

as long as these values are real and in the range under

consideration. rm12 gives for the crossing points Bp3 and
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Bn3:

BBp3,Bn3 = ± (2ĝI − 3gJ) (2a + b)
2 µB (ĝI − 3gJ) (ĝI − gJ)

. (17)

Their common energy value is found by inserting the above

expression (with the positive sign) into (13):

εBp3,Bn3 =
1
4

[
6a + b− (2ĝI − 3gJ)2 (2a + b)

(ĝI − 3gJ) (ĝI − gJ)

]
. (18)

rm13 gives for the crossing points Bp4 and Bn4 the follow-

ing field value:

BBp4,Bn4 = ∓ 1
N4 µB

(
Z4 +

√
S4

)
. (19)

The corresponding energy is:

εBp4,Bn4 =
1

2N4

(
Y4 + (2ĝI − 3gJ)

√
S4

)
(20)

with the following abbreviations:

N4 = 8 ĝI (ĝI − gJ) gJ ;

Z4 = 4 a ĝ2
I + b ĝ2

I − 16 a ĝI gJ + 6 a gJ
2 ;

Y4 = 8 a ĝ3
I + 2 b ĝ3

I − 20 a ĝ2
I gJ + b ĝ2

I gJ + 36 a ĝI gJ
2 −

− 4 b ĝI gJ
2 − 18 a gJ

3 ;

S4 = (4 a + b)2 ĝ4
I − 16 b2 ĝ3

I gJ + 24 (2 a− b) b ĝI gJ
3

− 4
(
4 a2 + 17 a b− 10 b2

)
ĝ2

I gJ
2 + 36 a2 gJ

4 .

rm23 is B2 times a fourth order polynomial in B. The lat-

ter yields the field values for the crossing points Bp1, Bp2

and Bp5 as well as those of the corresponding crossing

points Bn1, Bn2 and Bn5. The values obtained by insert-

ing the values of the atomic parameters are given in Table

2.

4.2 Pure Stark Effect

At first we investigate the Stark effect for an electric field

aligned with the z-axis as quantization axis (note that in

the case of a pure Stark effect the energy shifts as func-

tions of E2 are independent of the field direction). The

effective electric Hamiltonian is composed of two terms

governed by the scalar and the tensorial polarizabilities

α0 and α2, respectively. The term containing α0 is pro-

portional to the identity operator; it does not determine

the field values at which crossings occur, since its influ-

ence on the energy levels is a global shift, quadratic in E,

towards lower energies, not influencing energy differences.

Although the effect is much stronger in magnitude than

the effect caused by the term containing α2, it is possi-

ble to diagonalize the Hamiltonian for zero α0 to get the

eigenvalues ε′n related to the ’true’ energy corrections εn

by

ε′n = εn +
1
2
α0E

2. (21)

Using the eigenvalues ε′n instead of εn has the advantage

of a more comprehensive splitting diagram.

For the electric field aligned with the z-axis, the matrix

representing the sum of the hyperfine structure and the

effective electric perturbation operators Hh + He can be

reduced in the basis |IJFMF 〉) to a 1×1 (MF = 5/2;F =

5/2), a 2 × 2 (MF = −3/2;F = 5/2, 3/2) and a 3 × 3

submatrix (MF = 1/2;F = 5/2, 3/2, 1/2). The roots of

the characteristic polynomials are

ε =
1
4
(6a + b)− 1

2
E2(α0 + α2) (22)



E. Rößl et al.: Stark-Zeeman effect in 6Li for crossed fields 11

for MF = 5/2;F = 5/2 and

ε = 1
8

(
2a− 3b− 4α0E

2+

∓
√

16α2
2E

4 + 8α2E2(2a + b) + 25(2a + b)2
)

(23)

for MF = −3/2;F = 5/2, 3/2. Again only the 3×3 subma-

trix of the effective electric perturbation operator (basis

states ordered as |FMF 〉 = | 52
1
2 〉; |

3
2

1
2 〉; |

1
2

1
2 〉) is presented

(since the same basis is used as in the case of the pure

Zeeman effect, the submatrix of the hyperfine structure

operator is the same as in eq.(16)):

(24)H
MF =1/2
e =

E2


1
10 (−5α0 + 4α2) α2

5 − α2

2
√

5

α2
5

1
10 (−5α0 + α2) α2√

5

− α2

2
√

5
α2√

5
−α0

2

 .

Fig.2 shows this effect for the positive subsystem. There

is a crossing point in each system for positive electric field;

we call them Ep1 and En1. They result from the intersec-

tion of two levels belonging to the multiplet F = 3/2. This

is at variance with the J.v. Neumann-Wigner rules quoted

near the end of the Introduction. The explanation is: This

rule has been derived under the presupposition that there

are no more relations between the matrix elements ex-

cept that the matrix is real symmetric. We surmise that

this condition is violated on a curve passing through the

points Ep1, En1 respectively. This will be the subject of a

future investigation on the dynamical symmetry groups of

this problem. These curves have been found in 23Na and

discussed by Heubrandtner [8]. In addition, a detailed in-

vestigation showed that the two-level approximation ap-

plied in [18] and many textbooks on quantum mechanics

for the discussion of avoided crossings fails in this case.

Indeed any approximation using less than 6 basis states

is inadequate. Since the level shifts are quadratic in E,

there are corresponding crossing points for negative elec-

tric field values. Taking an electric field aligned with the

x-axis and separating the system of curves into the two

aforementioned subsystems shows that the latter have the

same Stark effect (cf. again eq. (11)). So we get the same

curves as in Fig.2. But the quantum numbers assigned to

these curves differ from those given in the figure.

The field value and energy of each of these electric

crossing points can be found in the same way as described

at the end of subsection 4.1. Characteristic polynomials

ce1(ε), ce2(ε) and ce3(ε) are set up (the matrix given in

eq.(24) must be augmented by the first one of eq.(16) for

the computation of ce3(ε)) and the resultants rejk are eval-

uated. The resultant re23 is proportional to E2 times a

linear polynomial in E2. This gives the field strength of

the single crossing point of both systems:

Ep1 = En1 = ±1
2

√
−(2a− 3b)(4a− b)(2a + b)√

2a(2a− b) α2

; (25)

the corresponding energy is

εEp1 = εEn1 =
1
8
(2a− 3b) (26)

− (2a + b)(20a2 − 12ab + 3b2)
16a(2a− b)

+
(2a− 3b)(4a− b)(2a + b) α0

16a(2a− b) α2
.
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5 Perpendicular Stark-Zeeman effect - energy

surfaces

By diagonalizing the sum of all three perturbation opera-

tors one obtains the energy eigenvalues ε′n as functions of

the field values B and E. Drawing the eigenvalues ε′n as

functions of the field values B and E gives two systems

of 6 surfaces each. The quantities ε′n are the eigenvalues

of the operator Hh + Hm + He for α0 ≡ 0, which are re-

lated to the energy eigenvalues of the total Hamiltonian

(including α0) by eq. (21). For the computation of the

eigenvalues the experimental values listed in Table 1 have

been assigned to the atomic parameters, whereby assum-

ing these values to be as accurate as the computational

precision used.

Figs. 3-6 provide two different views of these surfaces

for positive magnetic (and electric) field values and for

both subsystems. For negative values of B (i.e. for the

magnetic field direction reversed) the surfaces of one sys-

tem go over into those of the other for positive B; this cor-

responds to a time reversal, so the sign of MF changes, too.

For small but finite values of the magnetic field strength

and zero electric field, the quantum numbers F and MF

are good quantum numbers, therefore they distinctively

name the eigenvectors. Each eigenvector and the corre-

sponding energy eigenvalue, which gives one of the energy

surfaces, is paired over the whole area of the B,E-plane

under study. These pairs of quantum numbers label the

surfaces in Figs. 3 and 5. In general, the connectedness

of these energy surfaces is determined by the anticrossing

always occurring when both fields, B and E, are different

from zero and not parallel to each other [6], [18]. Then

the ordering of the surfaces stays the same. This is an ad-

vantage in the numerical treatment since the labels can

be assigned just by ordering the eigenvalues according to

their values. The energy surfaces are smoothly connected

except for the section B = 0 or E = 0 and the crossing

points. If there is only one field present and if this changes

continuously, crossing occurs. This entails that spikes pro-

trude from one surface and intrude into one or several

other surfaces in the vertical planes E = 0 and B = 0.

This is visible more clearly in the colored versions of Figs.

3 to 6 (presented in the Electronic-only material and at

our website [30]) by the edges having colors different from

those of the surfaces they bound.

6 Crossing points

Crossing points are common points of two energy sur-

faces. These are the crossing points Bpn and Bnn found

in the pure Zeeman effect and the crossing points Ep1

and En1 found from the pure Stark effect. There are addi-

tional crossing points where both fields are different from

zero (called BE-crossing points). All crossing points in the

B,E−plane are shown in Figs.7 and 8. The fact that these

points of accidental degeneracy do definitely not appear

along lines (in the B,E-plane) reinforces also in this con-

text the term crossing point.

Two different methods have been used to locate points

of accidental degeneracy. For the magnetic and electric

crossing points, numerical root finding algorithms have
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been used after sketching the energy variations graphi-

cally. The application of similar methods to the BE-crossing

points did not produce satisfactory results since the root

finding methods often failed. These difficulties result from

the extremely slow approach of the two biconical energy

surfaces in the vicinity of these crossing points. The most

powerful method in this case was a method using Berry

phases developed by Heubrandtner: the evolution of the

eigenvectors is followed using overlap calculations along

closed curves enclosing those areas to be checked for a

crossing point within the plane of the field parameters; the

comparison of the transported eigenvectors to the original

ones shows in some cases a change in sign of some pairs of

vectors. These changes can be interpreted as the appear-

ance of geometric phases (Berry phases, which are treated

in more detail in section 8). Only a real phase factor (= - 1)

turns up here, since all perturbation matrices are real and

symmetric. It was possible to locate the crossing points

with increasing accuracy by shrinking the curves without

loosing the change in sign. This method, however, has its

limits, as not all crossing points show Berry phases.

The appearance of Berry phases (for certain crossing

points) is closely related to the form of the energy surfaces

in the neighborhood of these points [21]. Berry phases

are observed only when the Taylor series expansion of the

function ε(B,E) developed around the field values of the

crossing point under study has terms linear in both B

and E. Then the energy surfaces appear to form a bicone

whose vertex is the crossing point. Fig. 9 illustrates this

behavior for the crossing point Ep1. In the neighbourhood

of the magnetic crossing points the energy values of the

crossing levels depend on B and E2; therefore the energy

surfaces do not resemble to a bicone, even not to a conic

section. A field cycle around such a crossing point does not

lead to a Berry phase (cf. Fig. 10 for the crossing point

Bp1).

7 Adiabatic hyperfine level transfer

Adiabatic hyperfine level transfers similar to those de-

scribed in [5], explained in [7],[8], [13] and observed in

[12] occur in 6Li, too [14]. By performing adiabatic varia-

tions of the external electric and magnetic fields, starting

and ending at zero field values, it is possible to achieve

a level transfer; i.e. the atom’s angular momentum and

energy may change while the atom traverses a sequence

of crossed partially overlapping static fields. In the atom’s

proper system the fields either vary linearly with time or

stay constant, as indicated in Fig. 12 below the curves

representing the energy levels. In this context adiabatic-

ity means that the time intervals during which the field

variations take place are large as compared to the times

given by the reciprocals of the Bohr frequencies involved.

The fact that the combination of pairs of crossing and an-

ticrossing points is a prerequisite for observing adiabatic

hyperfine level transfer is confirmed once more.

This combination of crossings and anticrossings lead-

ing to a level transfer is best understood by looking at

an example where the field values and their increments

are such that the phase point traverses only one crossing

point, say Bn1, Fig. 11, which is an enlarged section of
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the system of energy surfaces shown in Fig. 6. As long as

(from the atom’s point of view) E = 0 and B increases

from a value just below BBn1 to a value just beyond BBn1

(cf. Fig. 8), the phase point passes from the energy surface

(F, MF ) = (5/2, 3/2) through the crossing point to the

surface (3/2, −1/2). The ongoing electric field leads the

phase point on the latter surface away from the (vertical)

plane E = 0 into domains where both fields are nonzero.

When B decreases towards its initial value the phase point

now finds a gap separating the two surfaces. It therefore

cannot return to the original energy surface and quantum

numbers. The same game is played for cycles with higher

magnetic field strength, with the difference that the phase

point may traverse several crossing points. Thus all level

transfers are completely understood as soon as the system

of energy surfaces with all crossing points is known. Sim-

ilar considerations apply to the electric crossing points.

The preceding description by the motion of the phase

point on energy surfaces is still too ”classical”. From the

quantum mechanical point of view transition probabili-

ties for adiabatic changes of the external fields must be

considered. This has been started in [8] and studied ex-

tensively by Pfleger [21] for 23Na. We believe that their

results can be taken over for the other elements and also

for 6Li. Roughly speaking, the crossing points can be di-

vided into two classes. The first one contains those points,

in whose neighbourhood the energy functions ε′n(B,E)

of the levels concerned are linear in both B and E, and

this neighbourhood has the shape of a bicone (s. Fig. 9,

11); all the electric crossing points of 6Li and all the BE-

crossing points belong to this class. Simultaneous changes

of both external fields correspond to trajectories in the

B,E-plane. For such trajectories passing through a cross-

ing point of this kind the crossing probabilities are nearly

the same, independent of the direction of the trajectory.

On the contrary, for most of the magnetic crossing points,

which make up the second class, the crossing probabilities

depend strongly on the direction of the trajectory: on the

one hand they are nearly unity for trajectories traversing

the crossing point in the magnetic direction, i.e. if B in-

creases (or decreases) while E = 0; on the other hand the

crossing probability is very small if the trajectory traverses

the crossing point along the electric field direction, i.e. if

B = BBpn or B = BBnn while E changes from negative

to positive values or vice versa. In 23Na this picture shows

some individual variations so that the true situation is less

clear-cut than the description just given.

8 Berry Phases

If at least two external parameters of a system (in our case

the magnetic field B and the electric field E) adiabatically

pass through a closed cycle (so that at the end they have

the same values as at the beginning), the wave function

may not have the same value at the end which it had at the

start, though the quantum numbers and energy may be

the same. This change of the wave function is a phase eiγ ,

where, in general, γ may assume any value. This geometric

or Berry phase and its occurrence in different physical

systems is reviewed in [22], in which Berry’s papers are
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also contained. An introduction into the subject is given

in [23] or [24].

Herzberg and Longuet-Higgins [25] dealt with energy

surfaces in polyatomic molecules already before Berry, and

investigated the sign of the wavefunction in a two-level

model. In this case the Hamiltonian may be represented

as a real symmetric matrix with real eigenvectors. An

eigenvector changes its sign if the two external parameters

(there the relative positions of the nuclei) pass through a

closed cycle around a crossing point of the energy surfaces.

Heubrandtner detected that the same applies to the Stark-

Zeeman effect for crossed fields. The theory of [25] may be

adapted to a two-level approximation of the systems con-

sidered here. In a corresponding adiabatic treatment of

an isolated diatomic molecule there is only one external

parameter. If such a molecule is located in a homogenous

magnetic field, then this system depends on two more ex-

ternal parameters, namely the field strength and the axis

between the molecular and the field axis. For constant

magnetic field the energy surfaces have biconical crossing

points [26].

Here this phase change does not occur for each crossing

point. In fact, only the eigenvectors of those levels change

sign, whose energy surfaces meet at an electric or a BE

crossing point, for trajectories passing around it. These

crossing points (marked by circles in Figs.7 and 8) are

exactly those points, in whose neighbourhood the energy

functions ε′n(B,E) of the levels concerned are linear in

both B and E, so that the energy surfaces are connected

in a bicone.

This change in sign has also been established by nu-

merical investigations of the positive and the negative sys-

tem. The program developed to perform the ”analytic con-

tinuation” of the eigenvectors for changing external fields

was modified: after it has found the related eigenvectors

by evaluating the overlap, it ensures that the largest com-

ponents of two related eigenvectors have the same sign.

So it was possible to check the phase of all eigenvectors

while the external fields B and E pass through a closed

cycle. The corresponding trajectory is a rectangle in the

B,E−plane. This program was again extended so that it

used this property to locate unknown crossing points (s.

2nd paragraph of section 6). It remains still a challenge

to devise an experiment capable of detecting this phase

change directly.

9 Conclusions

The splitting behaviour of the 2p 2P3/2 hyperfine struc-

ture levels in 6Li for homogeneous crossed electric (E)

and magnetic fields (B) has been investigated by analyti-

cal and numerical methods and the structure of the energy

surfaces (i.e. frequency shifts) has been obtained from the

eigenvalues εF,MF
(B,E) inside the domain |B| < 1 mT,

0 < E < 300 kV/cm of the B,E-plane . For these field

values the hyperfine, the Stark and the Zeeman interac-

tions are of about the same strength. It has been found

that:

1. If the two fields are perpendicular, the system of lev-

els decomposes into two non-interacting subsystems
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due to the remaining symmetry under reflection at a

plane perpendicular to the magnetic field direction and

parallel to the electric field direction. One subsystem

changes into the other one under time reversal.

2. There are 7 crossing points in each subsystem; 5 with

B 6= 0 and E = 0 (magnetic crossing points); 1 with

E 6= 0 and B = 0 (electric crossing point); 1 with

E 6= 0 and B 6= 0 (BE-crossing point).

3. The structure of the energy surfaces gives complete

insight into the level transfer behaviour of the system.

4. Berry phases with a value ±π occur for field cycles

enclosing a crossing point with linear field dependence

(here the electric and BE-crossing points).

The researches presented were stimulated by experimental in-

vestigations performed in the group of L.Windholz. He pro-

vided the impetus and the experimental data, without which

these investigations would not have been possible. The au-

thors also profited from the original, clarifying results and pro-

grams of Th. Heubrandtner, which he shared generously. B.S. is

obliged to B. Thaller for helpful remarks in the initial phase of

this line of research. Thanks go to the anonymous referee(s) for

hinting to important references and suggesting improvements.
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Fig. 1. Upper picture: Splitting of the 2p 2P 3
2

hyperfine energy

levels εn of 6Li in the positive subsystem due to the Zeeman

effect. The values of the atomic parameters used are given in

Table 1 of the paper. There are five crossing points, which do

not show a Berry phase; their labels (Bp1,. . . , Bp5) are located

just below each one in the line at ε′n = −12MHz.

Lower picture: The same for the negative system with the cross-

ing points: (Bn1,. . . , Bn5)



18 E. Rößl et al.: Stark-Zeeman effect in 6Li for crossed fields

50 100 150 200 250 300

-20

-10

10

20

E � kV�cm

Ε' � MHzn

F�1�2
F�3�2

F�5�2

Ep1

MF�1�2

MF�1�2
MF��3�2
MF�5�2

MF�1�2

MF��3�2

20 40 60 80 100
E � kV�cm

1.125

1.15

1.175

1.2

1.225

1.25

1.275

1.3

Ε'n � MHz
Crossing Ep1

F � 3�2, MF � 1�2

F � 3�2, MF � � 3�2

Fig. 2. Upper picture: Splitting of the 2p 2P 3
2

hyperfine energy

levels ε′n of 6Li in the positive subsystem due to the Stark effect.

The term proportional to the scalar polarizability α0 was put to

zero before diagonalizing the perturbation matrix. The values

of the other atomic parameters are given in Table 1 of the

paper. The position of the single electric crossing point Ep1 is

indicated. Lower picture: Zoom on the two levels crossing at

Ep1.

Table 1. Experimental values of atomic constants in 6Li:

a, b = hyperfine structure constants, α0, α2 scalar, tensorial

polarizability, gJ = 2p 2P 3
2

Landé factor, ĝI = nuclear

g-factor (Bohr magnetons)

Symbol Value Ref.

a [MHz] -1.155, [27]

b [MHz] -0.1 [27]

α0

[
MHz/(kV/cm)2

]
0.03163 [28]

α2

[
MHz/(kV/cm)2

]
4.06·10−4 [28]

gJ 1.335 [29]

ĝI 4.47654·10−4 [29]

Table 2. Listing of crossing point data for the positive subsys-

tem in 6Li. The corresponding table for the negative subsystem

is obtained by the following changes: 1) the sign of each mag-

netic field value must be reversed. 2) The sign of each magnetic

quantum number labelling the magnetic crossing points Bpn

must be reversed. 3) The labels of the electric and the BE-

crossing points, which show a Berry phase, must be changed

according to Fig. 8 .

Name B [mT] E [kV/cm] ε [MHz] (F, MF )-(F ′, M ′
F )

Bp1 -0.10335 0. -0.26564 ( 3
2
, 1

2
)-( 5

2
,− 3

2
)

Bp2 -0.04978 0. 2.34180 ( 1
2
, 1

2
)-( 3

2
,− 3

2
)

Bp3 0.06451 0. 0.05000 ( 3
2
,− 3

2
)-( 5

2
, 5

2
)

Bp4 0.12622 0. 1.77922 ( 3
2
, 1

2
)-( 5

2
, 5

2
)

Bp5 0.23458 0. -2.23480 ( 3
2
,− 3

2
)-( 5

2
, 1

2
)

Ep1 0. ± 51.390 -40.52359 ( 3
2
, 1

2
)-( 3

2
,− 3

2
)

BEp -0.13029 ± 127.430 -254.8313 ( 3
2
, 1

2
)-( 3

2
,− 3

2
)
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Fig. 3. Energy surfaces in the positive subsystem of 6Li. The

magnetic crossing points Bp1, . . . , Bp3 are seen on the left.

0
0.25

0.5
0.75

1

0
100

200
300

-20

0

20

40

B ê mTE ê kVêcm

e’ ê MHzn

0.25
0.5

0.75
1

Fig. 4. Energy surfaces in the positive subsystem of 6Li. The

electric crossing point Ep1 is seen on the left side, the magnetic

crossing points Bp1, . . . , Bp3 on the right side.



20 E. Rößl et al.: Stark-Zeeman effect in 6Li for crossed fields

0

0.25

0.5

0.75

1
0

100
200

300

�40

�20

0

20

40

B � mT E � kV�cm

Εn
' � MHz

� 1
����
2

,�
1
����
2
�

� 3
����
2

,
3
����
2
�

� 3
����
2

,�
1
����
2
�

� 5
����
2

,
3
����
2
�

� 5
����
2

,�
1
����
2
�

� 5
����
2

,�
5
����
2
�0

0.25

0.5

0.75

1

�4

�2

0

Fig. 5. Energy surfaces in the negative subsystem of 6Li. The

magnetic crossing points Bn1 and Bn2 are seen on the left. The

arrow points to the crossing point BEn.
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Fig. 6. Energy surfaces in the negative subsystem of 6Li. The

magnetic crossing points Bn1 and Bn2 are clearly visible on

the right, the electric crossing point En1 on the left.
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Fig. 7. Crossing diagram of the positive subsystem of 6Li. The

crossing points showing a Berry phase are marked by circles.

The labels (F, MF ) of the two crossing levels are given at the

corresponding crossing point.
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Fig. 8. Crossing diagram of the negative subsystem of 6Li. The

crossing points showing a Berry phase are marked by circles.

The labels (F, MF ) of the two crossing levels are given at the

corresponding crossing point.
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Fig. 9. Energy surface in the neighbourhood of the crossing

point Ep1, which shows a Berry phase. ε′n is linear in both B

and E. The resulting bicone is cut in half in the plane B = 0.
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Fig. 10. Energy surfaces in the neighbourhood of the crossing

point Bp1, which does not show a Berry phase. ε′n is linear in B

and quadratic in E. The resulting surfaces are no longer conic

sections. They are cut along the plane B = BBp1 = 0.1033508

mT.
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Fig. 11. View of the magnetic crossing point Bn1. The black

rectangle at the bottom shows the cycle of fields in the B, E-

plane. The black curve gives the corresponding phase curve of

the atom on the two parts of the energy surfaces. It starts at

B = 0.093 mT, E = 0 in the surface labelled (F = 5/2; MF =

3/2) and ends at the point B = 0.093 mT, E = 0 on the upper

surface with labels (F = 3/2; MF = −1/2).
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Fig. 12. Upper picture: Sample field cycle of the electromagnetic field with the corresponding splitting of the 2p 2P3/2 hyperfine

levels of 6Li in the positive subsystem. For lack of space, the magnetic quantum numbers are written in the second interval;

they are only valid in the first interval, where there is only a magnetic field present. The total angular momentum numbers F

as well as the corresponding magnetic number MF are assigned to the level and curve by analytic continuation, i.e. according

to the overlap of the eigenvectors found by in- or decrementing the field values in sufficiently small steps. There are crossings

(anticrossings) within the continuous (dashed) circles.

Lower picture: The same for the negative system.


