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Zusammenfassung.Transiente elektrodynamische Probleme sind bekannt schwierig zu lösen. Doch f̈ur viele Probleme
gibt es quasi-statische Näherungen (Fano, Chu und Adler (1968), Haus und Melcher (1989)) die es gestatten, derartige
Probleme f̈ur schwach leitende Medien viel einfacher als bisher zu lösen. Das zeitabhängige elektrische Feld kann mittels
eines skalaren Potentials (statt eines Vektorpotentials oder eines Greenschen Tensors) berechnet werden, das einer par-
tiellen Differentialgleichung 3. Ordnung, die in manchem den Charakter einer Diffusionsgleichung hat, gehorcht. Diese
Methode wird an einigen Problemen in der Wechselstromtechnik und in der Theorie der Zähler vorgestellt. Dies sind Ein-
oder Zweischichtenprobleme; für letztere wird das Problem der Selbstadjungiertheit des Operators besonders untersucht.
Damit werden Probleme mit zeitlich anwachsenden Ladungen oder mit gleichförmig bewegten Ladungen gelöst. Einige
dieser neuen N̈aherungsl̈osungen wurden mit solchen verglichen, die mittels eines Vektorpotentials berechnet wurden.
Auf diese Weise wurde den G̈ultigkeitsbereich der neuen Näherung̈uberpr̈uft (Scḧopf and Schnizer (1992), Heubrandter
(1999)) . Dieser beträgt für die Leitf̈ahigkeitσ im Bereich von0 ≤ σ ≤ 10−3 S/m.

Abstract. Transient electrodynamical problems are notoriously difficult to solve. For many such problems a quasi-static
approximate theory for materials with low conductivity (Fano, Chu und Adler (1968), Haus und Melcher (1989)) is avail-
able permitting a much simpler solution. The time-dependent electric field may be derived from a scalar potential (in
place from a vector potential or a Green’s tensor), which is the solution of a third order partial differential equation, whose
type corresponds to that of a diffusion equation. This method is presented for some problems of alternating currents and
of particle counters. These are problems with one or two layers. The question of self-adjoint operators is very important
for the latter and is investigated. Problems with increasing or moving charges are solved. Some of these quasi-static
solutions have been compared to ones obtained by a more rigorous approach using a vector potential for time-dependent
electromagnetic fields (Schöpf and Schnizer (1992), Heubrandter (1999)). Agreement is found for conductivities in the
range0 ≤ σ ≤ 10−3 S/m.

1 Introduction

Transient electrodynamical problems are notoriously difficult to solve. In the general case, one needs Green’s tensors or a
scalar and a vector potential. The retardation contained in the equations also brings complications. Solutions depending on
roots are involved so that branch cuts must be taken into account. In media with a conductivity a static field is impossible.
The pertinent relaxation time is given by Stratton (1941) as

τR = ε0ε/σ. (1)

ε is the relative dielectric constant,σ the conductivity of the medium. This rate is very short for metals. For example, for
copperσ is of the order of107 andτR is as short as10−18 s. But nowadays materials with a much lower conductivity
are used. For example, in Resistive Plate Chambers, a new type of particle counters under developement at the European
Laboratory for Particle Physics (CERN), Geneva, the name-giving plates (Crotty et al., 1995) have a relative dielectric
constant with a value of 2 - 4 and a conductivity of about10−9 S/m. Then the decay rateτR ≈ 10−3 s is long as compared
to the other times constants as, for example, the time the electromagnetic field needs to transverse the panel,10−10 s,
or the electron cloud produced by the primary particle to be counted needs to transverse the chamber,10−7 s. So this is
field where a quasi-static theory could be applied. In fact, such a theory is available and was developed systematically
by several people working at the MIT (Fano, Chu und Adler (1963), Haus und Melcher (1989)). It was implemented in
codes for numerical field calculations by Dĕdek and Bachorec (1998) and Dĕdek (1999).
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In this paper the derivation of the fundamental equation is reported and some simple applications are shown. For a
single medium it is shown how the admittance of the time-harmonic problem is connected with the capacitance of the
static problem. If two media with different electric properties are present, the question of the self-adjoint character of
the problem is imposing due to the continuity conditions at the interface. This is solved by defining an appropriate inner
product. The method so developed is used to compute some fields induced by time-dependent charges. In particular, it
is shown that the field due to a charge newly created in an isolator at first penetrates the adjacent weakly conducting
medium but is thereafter destroyed with the relaxation timeτR defined in eq.(1).

2 Derivation of the Quasi-Static Approximation

This derivation starts from the complete Maxwell equations

∇× ~E =
∂ ~B

∂t
, (2)

∇× ~H = ~j +
∂ ~D

∂t
= σ ~E + ε0ε

∂ ~E

∂t
+~je ; (3)

∇ · ~B = 0 , ∇ · ~D = ∇ · (ε0ε ~E) = ρ . (4)

It is assumed that there is a weak current density due to the electric field and an impressed current densityje. The quasi-
static assumption is that the sources act slowly, so that the fields change slowly, and that the conductivityσ is rather
small. Therefore the magnetic field, thus the solenoidal part of the electric field, are negligibly small. For that reason the
electric field may be derived from a scalar potential:

∇× ~E =
∂ ~B

∂t
≈ 0 ⇒ ~E = −∇Φ . (5)

The last relation is inserted into the equation resulting from taking the divergence of the second Maxwell equation (3).
This yields the ”Poisson” equation for a time-dependent impressed current or charge density, which are assumed to fulfil
a continuity condition.

σ∇2Φ + ε0ε
∂

∂t
∇2Φ = −∂ρe

∂t
= div ~je. (6)

Frequently the above equation is solved by a Fourier or Laplace transform. For the latter we get:

Φ̄(~r, s) = L
[
Φ(r, t)

]
:=
∫ ∞

0

e−st Φ(~r, t) dt. (7)

From this it follows:

L
[ ∂
∂t

Φ(r, t)
]

:= s Φ̄(~r, s)− Φ(~r, t = 0); L
[ ∂
∂t
ρ(r, t)

]
:= s ρ̄(~r, s)− ρ(~r, t = 0). (8)

Φ(~r, t = 0) andρ(~r, t = 0) are the initial data of the potential and of the charge. If both are zero we get in place of eq.(6)
the follwing one:

∇2Φ̄(~r, s) = − ρ̄(~r, s)
ε0ε

with ε := ε+ σ/(sε0). (9)

In the quasi-static approximation we get an equation which resembles a Poisson equation in place of a Helmholtz equa-
tion. This is very advantangeous as the toolbox for solving the former equation is much richer than that for solving the
latter.

3 One-Layer Problems

At first some problems are solved, in which a homogeneous weakly conducting dielectric fills all space between the
electrodes. The homogeneous equation belonging to eq.(6) may be solved by separating the time dependence from that
on the space coordinates:Φ(~r, t) := Ψ(~r) T (t) . This gives the following differential equation for the time function
T (t), whose solution contains the relaxation timeτR of eq.(1):

ε0ε
dT

dt
+ σ T = 0, T = T0 e

−t/τR ; Φ(~r, t) := Ψ(~r) e−t/τR . (10)
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It is interesting to note that the time behaviour of the solution, i.e. the decay of the field in the weakly conducting medium,
is completely determined by this time factor. The geometry of the electrodes has no influence. On the other hand, for an
impressed charge density with a harmonic time dependenceejωt one gets in place of eq.(9) the following equation with
the corresponding stationary solution:

∇2Ψ(~r) = −ρ(~r)
ε0ε

with ε := ε+ σ/(jωε0). (11)

3.1 The Spherical Condensor

A spherical condensor consists of two concentric spherical eletrodes of radiusr = a, b > a respectively. At the starting
time t = 0 the electrodes have charges±Q0. These decay due to the losses in the dielectric. One may assume that the
outer electrode is grounded, so that it is at potential zero. The corresponding solution is:

Φ(r, t) =
Q0

4πε0ε

(
1
r
− 1

b

)
e−t/τR ; Q(t) = Q0 e

−t/τR ; V (t) = V0 e
−t/τR ; V0 =

Q0

4πε0ε

ab

b− a. (12)

The charge and the voltage decay with the same decay rateτR defined in eq.(1). The exponential decay law is independent
of the geometry. For the current flowing one may write (withr = a or b) :

I = 4πr2jr = 4πσr2Er = −4πσr2 ∂Φ
∂r

=
Q0σ

ε0ε
e−t/τR = G V0 e

−t/τR . G =
Cσ

ε0ε
= 4π

ab σ

b− a. (13)

So one concludes there is a conductanceG which is proportional to the capacitanceC of the condensor. If an alternating
voltageV0 e

jωt is applied to the inner electrode we get the following expressions for the potential, the corresponding
charge and current:

Φ(r, t) =
V0ab

b− a

[
1
r
− 1
b

]
ejωt. Q = 4πa2 η = 4πa2ε0ε Er = ε0

(
ε +

σ

jωε0

) 4πab
b− a V0 e

jωt; (14)

I =
dQ

dt
=
(
jω ε0ε + σ

) 4πab
b− a V0 e

jωt = Y V0 e
jωt, with Y = G+ jωC. (15)

So the equivalent circuit for the stationary state consists of a capacitor and a resistor in parallel. The expressions for
capacitanceC and the conductanceG of these elements have been given in eq.(13).

3.2 More General Two-Electrode Configurations

Similar considerations apply to cases with two electrodes in less symmetric configurations as for example two spheres of
different radiia andb, whose centres have a distanced. The voltages applied to these electrodes are related to the currents
flowing through this electrodes by :

Ia =
dQa
dt

= Yaa Va e
jωt + Yab Vb e

jωt, Ib =
dQb
dt

= Yba Va e
jωt + Ybb Vb e

jωt; (16)

with

Yik = Gik + jω Cik and Gik =
σ

ε0ε
Cik . (17)

So one knows the conductance coefficients as soon as the capacitance coefficients are given. For the two spheres mentio-
ned at the beginning of this paragraph the capacitance coefficiens are computed in Noether (1961) by an infinite sequence
of reflections (α1, α2 are the two roots of the equationα2 + α (a2 + b2 − d2)/(ab) + 1 = 0):

Caa/4πε0ε = a + ab

∞∑
k=2

α1 − α2

a (αk−1
1 − αk−1

2 ) + b (αk1 − αk2)
, Cab/4πε0ε = − ab

c

∞∑
k=1

α1 − α2

αk1 − αk2
.

4 Two-Layer Problems

When the properties of the matter depend on position, eq.(6) must be rewritten as:

∇ ·
(
σ(~r)∇Φ + ε0εr(~r)

∂

∂t
∇Φ
)

= − ∂ρe
∂t

. (18)
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A frequently used special case is that where there are layers in which the matter properties are constant. Then the solutions
pertaining to these different layers are described by different functions fulfilling the corresponding ”Poisson equations”.
Their second derivatives do not exist at the interface(s). There the differential equation is replaced with two continuity
conditions following from eq.(5) and from the above condition. We consider just two layers, two halfspaces, whose
interface is the planez = 0: The system of ”Poisson equations”, to which the Laplace transform has been applied, is

∇2Φ̄i = − 1
ε0εi

ρ̄e(~r, s), with εi := εi + σi/(sε0). z < 0 : ε1, σ1; z > 0 : ε2, σ2 . (19)

The two continuity conditions at the interface are (n denotes the normal to the interface) :

z = 0 : Φ1 = Φ2 and σ1
∂Φ1

∂n
+ ε0ε1

∂2Φ1

∂t∂n
= σ2

∂Φ2

∂n
+ ε0ε2

∂2Φ2

∂t∂n
or ε1

∂Φ̄1

∂n
= ε2

∂Φ̄2

∂n
. (20)

4.1 Selfadjoint Problem and the Scalar Product

In the discussion of the selfadjointness of the two-layer problem the two continuity conditions above must be taken into
consideration together with the ”Poisson equations” (19) for the two media. It will be shown that the solutions can be
found best by an appropriate definition of the inner product. This is not the common definition

(Φ,Ψ) := (Φ1,Ψ1) + (Φ2,Ψ2); (Φ1,Ψ1) :=
∫∫

dS

∫ 0

−∞
dz Φ1Ψ1, (Φ2,Ψ2) :=

∫∫
dS

∫ ∞
0

dz Φ2Ψ2 , (21)

wheredS denotes the transverse surface element (saydS = ρ dρdϕ in polar coordinates), which leads to the following
form of Green’s theorem:

(Φ,∇2Ψ)− (Ψ,∇2Φ) =
∫∫

dS
[
Φ
∂Ψ
∂n
−Ψ

∂Φ
∂n

]
z=0

=
∫∫

dS
[(

Φ2
∂Ψ2

∂n
−Ψ2

∂Φ2

∂n

)
−
(

Φ1
∂Ψ1

∂n
−Ψ1

∂Φ1

∂n

)]
z=0

.

The domain of the volume integration consists of two hemispheres (of infinite radius) touching each other along the
interfacez = 0. The surface integrals are over the two planes atz = 0+ andz = 0− respectively, which complete these
hemispheres. It is assumed that the fields vanish at infinity such that the surface integrals over the remaining surfaces are
zero. The surface integral on the rhs of the above equation does not become zero, even if the continuity conditions (20)
are inserted so that the operator∇2 is not selfadjoint. However with the following definition of the inner product

< Φ,Ψ > := ε1

∫∫
dS

∫ 0

−∞
dz Φ1Ψ1 + ε2

∫∫
dS

∫ ∞
0

dz Φ2Ψ2 = ε1 (Φ1,Ψ1) + ε2 (Φ2,Ψ2) (22)

we get

< Φ,∇2Ψ > − < Ψ,∇2Φ > =
∫∫

dS
[
ε2

(
Φ2
∂Ψ2

∂n
−Ψ2

∂Φ2

∂n

)
− ε1

(
Φ1
∂Ψ1

∂n
−Ψ1

∂Φ1

∂n

)]
z=0

= 0. (23)

The integrand of the surface integral becomes zero if the continuity conditions (20) are inserted; so the operator∇2 is
selfadjoint.

4.2 Green’s functions

In this paper only the Green’s function for a point source in a static two-layer problem is needed. This can be found by
the method of images (Jackson, 1975). Its expressions are solutions of the following equations:

∇2Ḡij = − 1
ε0εi

δij
δ(r)
2πr

δ(z − z′); z = 0 : Ḡ1j = Ḡ2j , ε1
∂Ḡ1j

∂n
= ε2

∂Ḡ2j

∂n
. (24)

Ḡ11 =
1

4πε0ε1

( 1
R1
− ε2 − ε1
ε1 + ε2

1
R2

)
, Ḡ22 =

1
4πε0ε2

( 1
R2
− ε1 − ε2
ε1 + ε2

1
R1

)
, Ḡij =

1
4πε0

2
ε1 + ε2

1
Rj

(i 6= j). (25)

with R1,2 =
√
r2 + (z ∓ z′)2. The functionsḠij(r, r′; z, z′) are scalars and just different expressions representing one

and the same Green’s function; the first (second) subscript denotes the half-space containing the point of observation (the
source point). Substituting the Green’s functionG for Ψ in eq.(23), eliminating the Laplacians with the help of eqs.(19)
and (24) and using the definitions (21) the Laplace transform of the potential is given as:

Φ̄i(~r) =
2∑
j=1

(
Ḡij(~r, ~r′), ρ̄j(~r′)

)
. (26)
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4.3 Fixed Point Charge Generated in an Instant

Some problems are solved, in which charges are generated or moving in one half-space, which is assumed to be an
isolator,σ1 = 0. So we have:ε1 = ε1; ε2 = ε2 + σ/(sε0). It will turn out that the relaxation time is now given by

τR = ε0(ε1 + ε2)/σ. (27)

A single point charge is generated in the isolator at the point(r = 0, z = z′ < 0). Though the creation of a single charge
violates the law of charge conservation, such an approach is admissible in a quasi-static theory. The charge density and
its transform are:

ρ(~r, t) =
Q

2πr
δ(r) δ(z − z′), t > 0+ ; ρ̄(~r, s) =

Q

2πrs
δ(r) δ(z − z′). z′ < 0. (28)

Inserting the transformed charge density into eq.(26) and doing all the evaluations including the inverse Laplace transform
gives for the potential:

Φ1(r, z, t) =
Q

4πε0ε1

[ 1
R1

+
( 2ε1

ε1 + ε2
e−t/τR − 1

) 1
R2

]
, z ≤ 0; (29)

Φ2(r, z, t) =
Q

4πε0ε1

2
ε1 + ε2

1
R1

e−t/τR , z ≥ 0. (30)

As in the static case also in the quasi-static case the solution is completely described by the fields (or potentials) due to the
source and some image charges. In the quasi-static case all these charges are time-dependent. The fields propagate with
infinite speed. Immediately after the charge has been created, a field distribution (and corresponding image charges) are
established which correspond to those for two isolating half-spaces with relative dielectric constantsε1, ε2 respectively,
which also result from the static theory (Jackson, 1975). Thereafter the conductivity starts its action to transform the field
into one belonging to an ideally conducting half-space2; the images change accordingly with the time constantτR.

4.4 A Point Charge Changing in Time

Now the charge fixed at(r = 0, z = z′ < 0) is assumed to grow from zero to the valueQ during a timeτ0 and to stay
constant afterwards. The charge density and its Laplace transform are:

ρ(~r, t) =
Q

2πr
δ(r) δ(z − z′)

[ t
τ0

Θ(τ0 − t) + Θ(t− τ0)
]
, t ≥ 0 ; ρ̄(~r, s) =

Q

2πrs
δ(r) δ(z − z′)1− e−sτ0

s2τ0
. (31)

The potential is computed in a manner analogous to eqs.( 29) and ( 30 ):

Φ1(r, z, t) =
Q

4πε0ε1

[( 1
R1
− 1
R2

)[ t
τ0

Θ(τ0 − t) + Θ(t− τ0)
]

− 1
R2

2ε1

ε1 + ε2

τR
τ0

[(
1− e−t/τR

)
−
(
1− e−(t−τ0)/τR

)
Θ(t− τ0)

]]
, z ≤ 0; (32)

Φ2(r, z, t) =
Q

4πε0ε1

1
R1

2ε1

ε1 + ε2

τR
τ0

[(
1− e−t/τR

)
−
(
1− e−(t−τ0)/τR

)
Θ(t− τR)

]
, z ≥ 0. (33)

The potential now depends on two rates, the growth rateτ0 and the decay rateτR; their ratio has a strong influence on
the shape of the time dependence of the field. IfτR ¿ τ0 then the image charge located atz = −z′ > 0 giving the
field in halfspace2 behaves the same way as the primary charge as long as the latter increases; when the latter stays
constant, the former slowly decreases reflecting the slow decay of the field within the weakly conducting dielectric. The
lossy dielectric behaves like a circuit, which gives the derivative of the primary field. In fact:

Φ2(r, z, t) ∝ (1− e−t/τR) ≈ 1 for τR ¿ t ≤ τ0; Φ2(r, z, t) ∝
(
e−t/τR − e−(t−τ0)/τr

)
≈ 0 for τR ¿ τ0 ¿ t.

4.5 A Moving Point Charge

A chargeQ starts at timet = 0 at the pointz = z0 < 0 and moves with constant speedv0 down the negativez-axis. The
charge density and its transform are:

ρ(~r, t) =
Q

2πr
δ(r) δ(z − z0 + v0t), ρ̄(~r, s) =

Q

2πrv0
δ(r) Θ(z0 − z) e−s(z−z0)/v0 . (34)
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The potential is computed by the same methods as above:

Φ1(r, z, t) =
Q

4πε0ε1

[
1

R1(t)
− 1
R2(t)

ε2 − ε1

ε1 + ε2
− 2

(ε1 + ε2) τR

∫ t

0

dt′
1

R2(t′)
e−(t−t′)/τR

]
, z ≤ 0; (35)

Φ2(r, z, t) =
Q

4πε0ε1

2ε1

ε1 + ε2

[
1

R1(t)
− 1
τR

∫ t

0

dt′
1

R1(t′)
e−(t−t′)/τR

]
, z ≥ 0 (36)

withR1,2(t) :=
√
r2 + (z ∓ z0 ± v0t)2 . The moving primary charge induces image charges at the corresponding image

points similar to the two cases treated above; that in the uper halfspace (2) moves in the opposite direction. In addition
there is also an integral over all previous times, which represents a trail of the field shed by the motion of the image
charge through the lossy dielectric.

4.6 A Model for Resistive Plate Chambers, Comparison of the Two Theories

An important application of the theory described above is to Resistive Plate Chambers (RPC’s), Crotty et al. (1995),
Heubrandtner et al. (1998). This model is an infinite plane condensor. The space between the electrodes is filled by two
layers; one is vacuum representing the gas gap of the RPC, in which the electron cloud is generated, which induces the
signals on the anode strip. The other layer is a weakly conducting dielectric representing a pane of melamine-phenolic
laminate or glass, which confines the gas gap and supports the anode strips. The problem has been treated by an appro-
ximate dynamic theory starting from the full Maxwell equations and the resulting series solutions for the signal strength
have been summed numerically (Schöpf and Schnizer, 1992). Now the problem has been treated again by the quasi-static
theory in a much simpler way (Heubrandtner, 1999). The advantages are serveral: The expressions are simpler, the set
of continuity conditions at the interface between the two layers contains 2 in place of 4 conditions, the resulting series
solutions are simpler and amenable to convergence acceleration (Weniger (1989), Singh et al. (1990), Krebs (1997)).
Heubrandter (1999) compares the signals computed by the dynamics and the quasi-static theory. The curves are indi-
stinguishable for the conductivity range0 ≤ σ ≤ 10−3 S/m. The analogous model describing a counter, namely a
coaxial circular tube with an inner lining consisting of a weakly conducting dielectric has also been solved; results will
be published elsewhere.
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Scḧopf, H., and Schnizer, B., Theory Describing Cathode Signals from Charges Moving in Counters with a Poorly Conducting Cathode, Nucl. Instr.

and Meth. A 323, 338 - 344, 1992 b.
Singh, S., Richards, W.F., Zinecker, J.R., Wilton, D.R., Accelerating the convergence of series representing the free space periodic Green’s function.

IEEE Trans. AP38, 1958-1962, 1990.
Stratton, J.A., Electromagnetic Theory. McGraw-Hill, New York, 1941. p.15.
Weniger, J., Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series. Computer Physics Reports

10 (1989) 189 - 371.
Wolfram, St., The Mathematica Book, Cambridge Univ.Press, Cambridge 1996.


