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Abstract

A theoretical tool is provided for investigating the weighting fields and potentials in
simple models approximating the electrode configurations in Resistive Plate Cham-
bers (RPC’s). The influence of dielectrics on the signals is neglected. Formulae are
derived by conformal maps and implemented in user-friendly Mathematica programs
available on Schnizer’s website. The models are a plane condensor with a gap in the
upper electrode (left side on tension), a plane condensor with a semi-infinite upper
electrode on tension (corresponding to an infinite gap) and a plane condensor with
a strip under tension on the upper electrode (corresponding to gaps of zero width).
For the last model closed analytic expressions can be given for mapping functions,
fields and potentials. The other two require a numerical or approximate analytical
function inversion. There is also a program for comparing the results of these various
models.
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1 Introduction

Signals in particle counters are induced in the electrodes by the motion of
the electronic (or ionic) charge cloud generated by the ionizing action of the
primary particle, multiplied and set in motion by a static high voltage tension.
These signal currents are conveniently treated by Ramo’s theorem [1]. This
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theorem relates the current flowing from (or to) the grounded electrode to
the static (weighting) field excited by that electrode under tension in the ab-
sence of the charge. It has been extended to configurations containing weakly
conducting dielectries as for example Resistive Plate Chambers or Gas Mi-
crostrips by Riegler [2] using the quasi-static approximation, [3]-[5]. These
analyses show that contributions due to a weak conductivity of the media to
the signals are of the order of Dσ/vε (σ, conductivity, ε dielectric constant of
the medium, v velocity of the inducting electron (or ion) avalanche, D detector
width); in many cases this dimensionless parameter is small as compared to
unity. The influence of the capacitance of a dielectric layer (relative dielectric
constant.=εr) crossed by a signal is of the order of (εr − 1)/(εr + 1); this is
not so small, in general, but a more detailed analysis shows that additional
factors limit the magnitude of this contribution to 10% at most [6].

So it is mainly the configuration of the electrodes disregarding the media,
which determines the weighting field, in turn giving the current flowing from
the electrodes after the velocity v has been given. Since the anode strips are
long as compared to the width of the gas gap, the configurations can be re-
garded as two-dimensional. Here the fields of three simple configurations are
treated by conformal maps.

The formulae derived by this method are implemented in publicly available
Mathematica programs to calculate and plot the fields and the induced cur-
rents. The three simple models arë: a plane condensor with a gap in the upper
electrode (left side under tension), a plane condensor with a semi-infinite up-
per electrode under tension and a plane condensor with a strip under tension
on the upper electrode. The other electrodes are grounded. The position of
the strip and the edge of the semi-infinite electrode may be shifted in order
to allow a direct comparison with the ”Split Condensor” model, where the
upper electrode is split into two by a gap. Two of the above models have been
presented before [7]; but the theory has been reworked and extended; new
programs have been prepared and tested over ranges of the geometric param-
eters. Long write-up notebooks explain in detail the working of the conformal
maps and the derivation of approximations.

The ”Voltage Strip” model has the advantage that all quantities are expressed
by closed simple analytic expressions. So they are particularly useful in prob-
lems where many cases must be studied as, for example, in optimization stud-
ies. The omission of the gaps present in the real device may lead to deviations
between the theoretical and the real field values in the neighbourhood of the
gaps. The programs described here permit one to assess these errors.

The programs may be downloaded from the website given on the first page.
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2 Conformal Maps, complex fields and potentials

The real configurations (of the simple models) in the z-plane (z = x + iy) are
mapped to an infinite strip in the W -plane (W = U + iV ) by the chain of
conformal maps

z = f(W ) = f3(f2(f1(W ))), W = f−1(z) = f−1
1 (f−1

2 (f−1
3 (z))), (1)

which are described in the following sections. The electric field in this strip is
uniform.

The electric fields may be derived from real potentials in the usual way. These
potentials as well as the fields may be extended to complex ones by the Cauchy-
Riemann equations [8].

Ψ(W ) = Ψ1 + iΨ2 = −iV0W/π (2)

Φ(z) = Φ1 + iΦ2 := Ψ(W ) (3)

E(W ) = EU + iEV = −(dΨ/dW )∗ = −iV0/π (4)

Ez = Ex + iEy = −(dΦ/dz)∗ (5)

=−iV0/[π(dz/dW )∗] = −(dΨ/dW )∗ · (dW/dz)∗. (6)

E(W ) is the uniform complex electric field in the simple infinite plane conden-
sor. Ez is the complex electric field in the configuration under consideration in
the z-plane. In view of the conformal map W = f(z) it may be represented as
a function of either z or W . The formulae above were already given in [7]; but
in this reference the formulae representing the complex field as a derivative of
the complex potential contain an erroneous factor i.

In all cases the infinite plane condensor is mapped to the upper half of the
complex t-plane by the transformation

t = r + is = f1(W ) = eW , (7)

such that the electrode V = 0 (π) becomes the half-ray s = 0, r > (<) 0. The
real configuration (in the z-plane) is mapped to the t′-plane by t′ = f−1

3 (z)
such that the electrodes become the s′-axis. The t-plane is mapped to the t′-
plane by t′ = f2(t). f2 and f3 are typical for each configuration and are given
below in the subsections.
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2.1 Plane condensor with shifted voltage strip

A voltage V0 is impressed along a strip of width w attached to the upper
electrode y = D. The strip extends from x = c − w to x = c; the remaining
parts of this electrode and the lower one are grounded. The shift c has been
introduced so that the right edge of the strip may be matched with that of
another configuration for the sake of comparison. Closed expressions can be
given for all the mappings and their inverses, for the potentials and the fields.
The mapping functions are:

t′ = r′ + is′ = f2(t) = −(tα2 − 1)/(t− α2); α = eπw/4D, (8)

z = f3(t
′) = D/π ln(t′) + c. (9)

f2(t) maps the t-plane to the t′-plane so that the potential Φ = V0 extends
from s′ = −1/α2 to s′ = −α2. f3(t

′) is similar to f−1
1 ; it maps the half-plane

s ≥ 0 to the upper half of the z-plane. The total map and its inverse may
be given as closed analytic expressions:

z = f(W ) =
D

π
ln

[
sinh(πw/4D + W/2)

sinh(πw/4D −W/2)

]
+ c− w

2
(10)

W = f−1(z) = ln

[
cosh[π(z − c + w)/2D]

cosh[π(z − c)/2D]

]
. (11)

The complex potential is Φ(z) = −iV0W/π, where the preceding formula is
inserted for W . The complex electric field is:

Ez(z) = i
V0

2D

[
tanh[π(z∗ − c)/2D] −

− tanh[π(z∗ − c + w)/2D]
]

(12)

Ez(W ) = i
V0

2D

2 cosh(W ∗)− (α2 + 1/α2)

α2 − 1/α2
. (13)

The above formulae are used in the Mathematica notebook CondShVoSt.nb
to compute and draw field distributions. The mappings are discussed in more
detail in the long write-up notebook CondVoStLW.nb.

Putting c = w/2 gives the formulae for the strip centred at z = iD presented
in [7]. There is a special notebook for this case called CondVoSt.nb. Unfortu-
nately, there are some errors in [7]. The arguments in the expression for the
complex potential should read z̄±/2 in place of πz̄±/2D. The expression for
the real part of of Φ(z) is correct. But its range of validity is more restricted
than that given above, since the principal branch of the arctan is more limited
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than that of the logarithm. This problem does not at all apply to the real or
complex field representations.

2.2 Plane condensor with shifted semi-infinite upper electrode

The lower electrode, y = 0, extends to infinity in both directions and is
grounded. The upper electrode, y = D, is at potential V0; it is a semi-inifinite
plane extending to infinity at the left; its edge is at x = b. This parameter
has been introduced so that this edge may be matched with that of another
configuration.

z = f3(t
′) = D/π (1 + ln t′ + t′) + b (14)

= (D/π) (1 + W + eW ). (15)

The function in the first line above maps all the electrodes to the r′-axis.
The second line maps the real configuration to the infinite plane condensor
in the W -plane. No single-valued analytic expression can be given for its in-
verse. Mathematica turns out an inverse using a function ProductLog[]. How-
ever this function is not single-valued and leads to troubles. So we found it
more expedient to find the total inverse function W = f−1(z) by Newtons
method. This works without problems with the following starting values :
1.2 sign(Re(z)−D) + iπ/2.

No closed expression can be given for Φ(z) or Ez. Each value of these quantities
is calculated from eqs.(2) to (5) after the value W belonging to a given z has
been found according to (1). In particular, the electric field is computed by
the following formula resulting from (6):

E(W ) = −i(Vo/D) 1/(1 + eW ∗
). (16)

The expressions given above are used in the Mathematica notebook CondSh-
SemInf.nb to compute and draw potential and field distributions.

2.3 Plane condensor with a gap in the upper electrode

This model was introduced previously, [7], but, in the mean-time, it was found
necessary to correct and amend the presentation. The configuration consists of
two parallel infinite, ideally conducting planes having a distance D; the lower
one, y = 0, is continuous; the upper one, y = D, consists of two semi-infinite
planes separated by a gap extending from x = −g/2 to x = g/2. The left one
is at potential Φ = V0. The other one and that at y = 0 are grounded. The
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mapping function is given in [10]. The geometry, more precisely, the ratio g/D
determines a parameter p, which is the root of the following equation:

p2 − 1

2p
+ ln p =

πg

2D
; (17)

which in turn gives a parameter α

α := (p− 1)2/p, (18)

occuring in the mapping function

z = f3(t
′) =

D

π

[
ln t′ + α

(
1

2
− 1

1 + t′

)]
. (19)

This maps the upper half of the t′-plane to the real condensor. p, the root of
eq.(17) is found numerically. Graphs and approximate functions for p and α
as functions of g/D are given in the appendix.

The inverse function t′ = f−1
3 (z) is found numerically by Newtons method in

most cases. In order to ensure convergence, starting values t′0 are selected in
dependence on z: For y ≥ D ∧ x ≥ 0 : t′0 = −(p+1)/2+0.2i; x < 0 : t′0 =
−(1/p + 1)/2 + 0.2i; for 0 ≤ y < D ∧ x ≤ 0 : t′0 = 0.2i; x > 0 : t′0 = 1.2i.
The electrode unter tension is mapped to 0 ≤ s′ ≤ 1. This interval is mapped
in turn to the half-ray s < 0 by: t′ = f2(t) = t/(1− t). t = f1(W ) = eW , f2(t)
and f3(t

′) are used in eq.(1).

For positions z within the condensor far at the left, the numeric inversion
leading to t′ = f−1

3 (z) runs into trouble. In the appendix an approximate
analytic expression is found for that part of the z-plane:

t′ = f−1
3a (z) = (20)

=
β (2 + 8 α β − 2 α β2 + 11 α2 β2 − 2 α2 β3 + 3 α3 β3)

2 (1 + 5 α β − 2 α β2 + 9 α2 β2 − 4 α2 β3 + 6 α3 β3 − 2 α3 β4 + α4 β4)

β := eπz/2D + α/2, <(z) < −1.05g, 0 ≤ =(z) ≤ D.

No closed expressions can be given for Φ(z) or E(z). Every evaluation of these
quantities is done by calculating the value W belonging to a given value z.
Then the potential is computed from eqs.(2) and (3); the electric field from
(4) and (6):

E(z) =
iV0

D

[
p (eW − 1)

p + (p− 1)2 (eW − e2W )

]∗
. (21)
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The above formulae are used in the Mathematica notebook SplitCond.nb to
compute and draw field distributions and induced currents. More details on
the derivations and maps can be found in the Mathematica notebook Split-
CondLW.nb.

3 The Mathematica programs

The theory has been implemented in user-friendly Mathematica notebooks,
whose names have been given above, which are displayed at http://www.itp.tu-
graz.ac.at/∼schnizer/Theory of Chambers/Plane Geometries. Default values
are inserted for the values of all variables, so that these notebooks may be run
as downloaded to compute and draw the potential and field disributions, and
other interesting quantities listed below. An example of a figure prepared by
each of the program notebooks is shown in Fig.1. There are many more figures
provided in the notebooks! Indeed, the following task are performed in each
notebook.

(1) Drawing the equipotential and field lines of the interesting parts of the
configuration. Drawing the normal electric field component along the
(lower and upper) electrodes.

(2) Drawing the equipotential and field line through a point selected by the
user. The values of the potential and of the electric field components at
that points are printed.

(3) The currents induced on the main electrode for a list of vertical trajec-
tories of the point charge representing the electronic or ionic cloud in
uniform motion.

(4) The current induced on the main electrode for a vertical trajectory of the
point charge selected by the user.

(5) A perspective drawing of the absolute value, | ~E|, and of the vertical
electric field component Ey of the interesting parts of the configuration.

The user may change the voltage and the geometric paramters of the electrode
configuration to his own needs in each notebook. The corresponding cells of
the notebook are shaded in cyan. The variables and commands are commented
extensively to guide the unacquainted user. The variables in different programs
have got different names inasmuch as the first two letters of each name are
typical for the notebook: vs for the Voltage Strip model, cv for the Shifted
Voltage Strip model, sc for the Split Condensor, hu for the Semiinfinite model.
So several programs may be run in the same kernel without interference and
the pictures or values may be juxtaposed or superimposed for comparison. But
the programs of these four different notebooks have very similar structure; so
it is easy to switch mentally from one notebook to the other; also the names of
corresponding variables or commands performing the same tasks have names

7



with the same ending. Some results of these notebooks are shown in the next
section.

A long write-up notebook, whose name ends with LW, is provided for two of
the program notebooks, in which the derivations and the maps are explained
extensively. But in these notebooks the naming of variables has not been done
in the discriminating fashion adopted for the other program notebooks so that
it is recommended to use these completely alone in a kernel.

The three notebooks, each one belonging to one of the three configurations,
have been named at the end of the corresponding subsection of sect. 2.

A notebook comparing the results of all three notebooks got the name Com-
parisons.nb. This notebooks contains the essential parts of the three notebooks
just mentioned. Though the contents of these sections are hidden, the instruc-
tions contained therein are executed. At the beginning of the notebook Com-
parisons.nb there is a head containing parameters of the configurations to be
compared. All these variables and commands start with the letters com. The
input cells (marked in red, the user may change the numbers at will) control
the input cells of the notebook sections corresponding to the three models;
this ensures that the geometries of these match; in particular, the position of
the edge common to all is the same as can be seen from the figures.

A notebook called Animation.nb shows the evolution of the potential and field
distribution as the gap widths grows and shrinks; the same figures are also
contained in Animation.gif.

4 Comparisons and discussion

Most figures rendered by the programs are in colors; so they are easier to view
and comprehend than those given here in black, gray and white.

In the left column of Fig.1 the potential and field distributions in the three
models are displayed for a given configuration, whose parameters are given
in the caption. The model with the gap is the most realistic of the three;
the other two represent the two limiting cases with zero gap width, infinite
gap width respectively. The lower two figures of the right column display the
superposition of the field distributions of two configurations. Some inaccuracies
which may occur are explained in the caption.

In Fig.2 the field and potential line passing through a given point (which
may be selected by the user) are plotted. The program prints the values of
the potential and the electric field components at this point; these numbers
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are given in the caption. These values agree quite well for points whose x-
coordinate is around that of the centre of the strip. The field values computed
from the Voltage Strip model differ appreciably from those resulting from the
other two models if this x/coordinate is near that of the edge or outside the
strip. This is understandable since the Voltage Strip model has a conducting
plane above the charge, whereas the other models are open to free space.

In Fig.3 and 4 the values of the normal field components at the electrodes are
plotted. These become infinite at the edges. So the values at and near these
points are certainly too large. If one has got a realistic estimate of the radius
of curvature of the edges one may drop those parts of the curves exceeding
field values above those corresponding to a cylinder with that radius.

In Figs.5 and 6 the current induced in the gray electrode by a moving charge
is shown. In Fig.5 this is done for a single trajectory having the same distance
from the right hand edge of the electrode; the results of all three models
are superimposed in the lower plot of this figure. In Fig.6 several trajectories
and the corresponding currents are shown. Corresponding trajectories have
been selected so that they have the same distance from the gray edge in
each model. The corresponding currents are displayed below each model. It
is impossible to collect all currents into one plot here. But in the notebook
Comparisons.nb this can be done by distinguish the trajectories by color and
the models by the type of dashing. From the pertinent plot in this notebook
we draw some rough conclusions in comparing the current induced on the
left electrode of the Split Condensor to that obtained from the corresponding
trajectory in the other models. If the charge moves under the left electrode,
the other models give good agreement. If the trajectory hits the edge, then the
Voltage Strip model underestimates the current, while the Semiinfinite model
gives good agreement. If the charge is at the centre of the gap separating the
electrodes, then the Semiinfinite model overestimates the current a little, while
the Voltage Strip model severely underestimates the current. If the trajectory
is pointed to the edge of the right hand electrode, then the Semiinfinite model
overestimates the current, the Voltage Strip model underestimates it. The
deviations are about the same, except for the case where the charge is in
the immediate neighbourhood of the edge. But one expects that there the
Split Condensor model gives a value, which is to high, since in reality the
curvature of the strip edge will not be infinite. If the charge moves under
the grounded elctrode, the current induced in the gray electrode is in good
agreement with the Voltage Strip model, while the Semiinfinite model gives a
large overestimate. All this results may also be gleaned from Fig.6. They are
in agreement with physical expectations.

Of course, the relative magnitude of the two parameters D and g will influence
the domains of validity of the other two models appreciably. It is just the aim
of the programs prepared by the authors and published on the website to
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enable users to perform their own checks for their own configurations.

It is planned to develop the programs in several directions. In particular, we
are trying to implement a routine giving a perspective plot of the deviations.
So users are encouraged to check our website periodically. They may request
to be put on our mailing list, so that they will be informed of changes in the
programs.
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A Formulae for the condensor with a gap in the upper electrode

A.1 The parameters p and α as functions of g/D

The parameter p is found by numeric solution of eq.(18). The starting value
is not critical. α is found from p through eq.(19). Both parameters in their
dependence on g/D are shown in Fig.A.7. Good approximations for these
dependences are given by:

0.05 ≤ g/D ≤ 5 :

p = 1.0702 + 0.0128668 g/D + 1.13868 (g/D)1.5 − 0.113642 (g/D)2;

α = 0.0929788 g/D + 0.563494 (g/D)2 − 0.0440619 (g/D)3.

5 ≤ g/D ≤ 20 :

p = 2.58775− 4.44539
√

g/D + 3.69056 g/D − 0.00420454 (g/D)2;

α = −4.70107 + 2.67758 g/D + 0.0102293 (g/D)2.

A.2 Derivation of the approximate inverse function f−1
3a

The problem to be treated here concerns models with large gaps between the
electrodes; say g/D > 3, or so. Then far to the left (<(z) < −g/2) within
the condensor (0 ≤ =(z) ≤ D) the numeric solution of eq.(19) for a given
value of z runs into trouble; FindRoot[] indicates irrecoverable accuracy loss.
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Therefore it was necessary to find an approximate analytic expression valid in
this part of the complex z-plane.

Eq.(19) is rewritten with z̄ := πz/D as:

z̄ +
α

2
:= ẑ = ln t′ + α

(
1− 1

1 + t′

)
(A.1)

= ln t′ + αt′ − αt
′2 + . . . (A.2)

The dangerous part of the z-plane is mapped to the neighbourhood of t′ = 0.
So the lhs. of eq.(A.1) is large as is the logarithm on the rhs. The second
term of the rhs. is small as compared to the other terms and is treated as a
correction. The smallness of t’ permits one to expand the fraction as shown
in eq.(A.2). In the zeroth approximation one gets:

t′(0) = eẑ := β = eπz/2D+α/2.

A small correction τ1 is added at the rhs. to give t′(1). This is inserted into
eq.(A.2) after nonlinear powers in t′ have been omitted. After expansion w.r.t.
τ1 up to the first order one gets:

t′(1) = β

(
1− β

1 + β

)
.

A still smaller correction τ2 is added at the rhs. to give t′(2). This is inserted into

eq.(A.2) with the term −αt
′2 included. The resulting expression is expanded

in τ2 (τ1) up to the first (second) order. This gives:

t′(2) = β

(
1− β

1 + β
+

β2 α(2 + α)

2(1 + 4βα− 2β2α + 5β2α2 − 2β3α2 + β3α3)

)
.

Putting all the terms on a common denominator gives eq.(20). The repre-
sentation above gives insight into the convergence behavior of the iterative
procedure. More details can be found in the notebook SplitCondLW.nb, sub-
sect.3.5.
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Fig. A.1. Comparison of potential and field distribution in the three models. Con-
densor width D = 10mm, gap widths g = 10mm, strip width w = 30mm � g.
The edge under comparison is at x = −5mm, so b = c = −5mm. Column at left
gives the distribution in a single model; from top to bottom: Voltage Strip, Split
Condensor, condensor with semiinfinite upper electrode. The upper two pictures
show some small inaccuracies for medium or large positive x: The field lines are not
exactly perpendicular to the electrodes; another field line displays a kink. Also the
equipotentials may show such defects. These are not very serious since potential
and field is rather small at these places. At least a part of them can be remedied
by increasing the number of plot points. Right hand column: bottom: Voltage Strip
and Split Condensor; middle: semininfinite and Split Condensor. Top: Voltage Strip
with a width w = 10mm with right edge at x = −4mm; other parameters as before.

13



!20 !15 !10 !5 5 10 15 20
x !mm"5

10

15

20
y !mm"

" # 1 Volt

!20 !15 !10 !5 5 10 15 20
x !mm"5

10

15

20
y !mm"

Φ # 1 Volt

!20 !15 !10 !5 5 10 15 20
x !mm"5

10

15

20
y !mm"

Φ # 1 Volt

!20 !15 !10 !5 5 10 15 20
x !mm"5

10

15

20
y !mm"

Φ # 1 Volt

!20 !15 !10 !5 5 10 15 20
x !mm"5

10

15

20
y !mm"

" # 1 Volt

!20 !15 !10 !5 5 10 15 20
x !mm"5

10

15

20
y !mm"

" # 1 Volt

Fig. A.2. Field and equipotential line through a selected point (x = 2mm, y = 5mm)
in the three models. Dimensions are the same as in Fig.1. Potential and field values
of each model are given below. Column at left gives result for a single model; from
top to bottom:

Voltage Strip Φ = 0.035V (Ex, Ey) = (11.0,−1.2)V/m

Split Condensor Φ = 0.153V (Ex, Ey) = (28.3,−27.1)V/m

semiinfinite upper electrode Φ = 0.231V (Ex, Ey) = (18.6,−43.1)V/m.

Right column: top: Voltage Strip and Split Condensor; middle: semininfinite
and Split Condensor. bottom: all three models together.
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Fig. A.3. Normal electrical field, Ey, along upper electrode for all three models.
D = g = 10mm; b = c = −5mm. — Split Condensor, − · − · − condensor with
Voltage Strip, − · · − · · −, Semiinfinite condensor .
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Fig. A.4. Normal electrical field,Ey, along lower electrode for all three models. Di-
mensions and dashing the same as in preceeding figure.
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Fig. A.5. Current I induced in gray electrode of all three models by charge q moving
with velocity v on trajectory indicated in upper line of figures. D = g = 10mm;
b = c = −5mm. — Split Condensor, −·−·− condensor with Voltage Strip, −··−··−,
Semiinfinite condensor .
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Fig. A.6. Current I induced in gray electrode of all three models by charge q moving
with velocity v on trajectories indicated in upper line of figures. D = g = 10mm.
Corresponding curves have same type of dashing.
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Fig. A.7. The parameters p and α versus g/D. D is the distance between the two
planes containing the electrodes. g is the width of the gap between the upper two
electrodes of the Split Condensor.
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