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Abstract: The electric quasi-static approximation for
weakly conducting media is explained and applied. It per-
mits one to get dynamic results from electrostatic data. The
signals induced in the electrodes of particle counters are com-
puted by Ramo’s theorem relating the induced current in the
electrode to the static field (= weighting field) generated by a
static field applied to the same electrode. This theorem is gen-
eralized to weakly conducting media. - The weighting fields
are computed from integral representations, whose conver-
gence has been accelerated by extracting the source singular-
ity and those due to the first few images. This is applied to
configurations comprising several layers.
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I. I NTRODUCTION

Quasi-static approximations are very useful on account
of simplicity of solution methods and results; these are
well known for the case of isolating dielectrics and ide-
ally conducting boundaries. These methods have been ex-
tended to the case where materials have a small conduc-
tivity [1]. In that case one gets a partial differential equa-
tion for the potential resembling a diffusion equation. This
approach permits one to obtain impedances for problems
with small conductivity from purely static results [2], [3],
[4]. The signals induced in electrodes by moving charges
are computed by Ramo’s theorem [5], [6], which is an ap-
plication of the reciprocity theorem. This can be extended
to weakly conducting media by applying a Laplace trans-
form to the quasi-static equations [7].

Field evaluations may be hampered by slow convergence
of series or integrals. The evaluation is improved by ex-
tracting the singularity from the integral with the help of
known integrals [8], [9].

The relaxation time due to a weak conductivity of a ho-
mogeneous dielectric is:

τ = ε/σ. (1)

Nowadays in particle counters materials as glass or
melamine-phenolic laminate are used; their relative dielec-
tric constants are about 2 to 4; their specific resistances
amount to1011 − 1011 Ωcm, corresponding to conductivi-
ties of10−9 − 10−10/m. The resulting relaxation times lie
between0.003s and0.3s; these are long as compared to the
duration of the signals, or the times they need to pass to the
electrodes, or the time the charge cloud needs to transverse
the gap [11], [13], [3], [14]. on the other hand one wants
to know what is the influence of this weak conductivity on
the signals. The electric quasi-static approximation is a a
very useful tool for such investigations.

B.S. has become acquainted with this method at the 8-
th of these conferences, [10]. Later on he was refered to

the books [1],[2] devoted to these powerful approximation
schemes. Both authors and their students used the method
to erive results important to the theory of signal generation
and modification in particle counters. Here we give a short
survey of some of these applications.

II. T HE QUASI-STATIC APPROXIMATION

The electric quasi-static approximation is best derived
from the Laplace transform

L[ ~A(~x, t)] = ~A(~x, s), L[
∂ ~A(~x, t)
∂t

] = s~A(~x, s), (2)

(where it has been assumed that all fields and sources are
zero fort ≤ 0) of Maxwell’s equations

∇ ~D = ρ, ~D = ε~E; ∇~B = 0, ~B = µ~H; (3)

∇× ~E = −s~B ∇× ~H = ~je + σ~E + s~D.(4)

for a linear isotropic medium with permittivityε(~x, s) and
conductivityσ(~x, s). ~je is an ’externally impressed’ cur-
rent that is connected with an ’external’ charge density by
∇~je = −sρe. It is presupposed that the conductivityσ is
small so that the time-dependent magnetic field is negligi-
ble and the electric field is irrotational:

∇× ~E = −s~B = 0 ⇒ ~E = −∇Φ; (5)

and by taking the divergence of the second equation in (4)
we find

∇[σ(~x, s)∇]Φ(~x, s)+∇[ε(~x, s)∇]sΦ(~x, s) = −sρe(~x, s),
(6)

which we can write as

∇[ε(~x, s)∇]Φ(~x, s) = −ρe(~x, s) (7)

with
ε(~x, s) = ε(~x, s) +

1
s
σ(~x, s). (8)

This equation has the same form as the Poisson equation
for electrostatic problems. In order to find the potential to
a given charge density pulse

ρe(~x, t) = ρ(~x)δ(t) → ρe(~x, s) = ρ(~x) . (9)

the following equation must be solved:

∇[ε(~x, s)∇]Φ(~x, s) = −ρ(~x). (10)

From this we can conclude the following statements:
If we know the electrostatic potential for the charge den-
sity ρ(~x) in a medium with givenε(~x) we obtain the time
dependent potential for a charge densityρ(~x)δ(t) in a
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medium with conductivityσ(~x, s) and permittivityε(~x, s)
by replacingε with ε + σ/s and performing the inverse
Laplace transform.
Since the Green’s function for the quasi-electrostatic prob-
lem is the potential for the sourceδ(~x)δ(t) the same con-
clusion applies:
If we know the Green’s function for a medium with given
ε(~x) we obtain the time dependent Green’s function for a
medium with conductivityσ(~x, s) and permittivityε(~x, s)
by replacingε with ε + σ/s and performing the inverse
Laplace transform.

In the special case where the dielectric constant and the
conductivity do not depend on space and time, one may
perform an approach similar to that just given starting from
the time-dependent Maxwell equations. Then one obtains
the following differential equation for the potential excited
by a charge densityρ, which may depend on space and
time:

σ∇2Φ + ε
∂

∂t
∇2Φ =

∂ρ

∂t
. (11)

The corresponding homogeneous equation may be solved
by separting timet from the space variables:Φ(~r, t) =
Φ(~r) T (t). This gives the following differential equation
for the time functionT (t), whose solution contains the re-
laxation timeτ defined in Eq.(1):

ε
dT

dt
+ σ T = 0; (12)

T = T0 e
−t/τ , Φ(~r, t) = Φ(~r) e−t/τ . (13)

While the solutions of Maxwell’s equation give retarded
solutions, the potentials and fields obtained from Eq.(11)
correspond to a propagation with infinite velocity.

III. O NE-L AYER PROBLEMS

The above result is applied to a few simple examples.

A. Point Charge in an Infinite Medium

The Green’s function for a homogeneous medium char-
acterized by a constant dielectric constantε is given by

G(~r) =
1

4πε|~r|
(14)

Replacingε by ε+σ/s and performing the inverse Laplace
transform we find the Green’s function for a medium with
constant conductivityσ and permittivityε as

G(~r, t) =
1

4πε|~r|

(
δ(t)− σ

ε
e−

t
τ

)
, τ =

ε

σ
. (15)

E.g. putting at timet = 0 a charge densityρ(~r) into
the medium i.e.ρe(~r, t) = ρ(~r)Θ(t) the time dependent
potential is given by

Φ(~r, t) =
∫

V

∫ t

0

G(~r − ~r′, t− t′)ρ(~r′)Θ(t′)dt′d3r′

=
e−

t
τ

4πε

∫
V

ρ(~r′)
|~r − ~r′|

d3r′ (16)

The potential is equal to the electrostatic one, but ’de-
stroyed’ with the time constantτ = σ/ε.

B. Impedance of an Infinite Plane Condensor

If an isolating dielectric is replaced by a weakly con-
ducting one then the capacitance of the circuit is shunted
by a resistance. The admittance consists of a capacitance
C = jωC and a conductance G, which is proportional to
the capacitance.

G = Cσ/ε, Y = G + jωC. (17)

This is shown for a plane condensor. One starts from the
homogeneous Eq.(11) and a time-dependenceejωt is as-
sumed. So we get:

(σ + jωε)∆Φ = jωε∆Φ = 0.

The lower electrode is grounded, the upper one at potential
V0, so the potential is:

Φ =
V0

D
z ejωt.

The charge on an electrode of areaF is:

Q = −F Dn = −εFEn = εF
V0

D
ejωt.

Dn, En respectively are the normal components of the di-
electric displacement, the electric field respectively. We
get for the current:

I = dQ/dt = jωεF
V0

D
ejωt = Y V0 e

jωt.

Comparing the sencond and the third member of this equa-
tion leads to the results given in Eq.(17).

IV. T WO-L AYER PROBLEMS

The medium is inhomogeneous inasmuch as it consists
of two homogeneous half spaces with an interface at (say)
z = 0. The relative dielectric constants and the conduc-
tivities areε1, σ1 for z < 0; ε2, σ2 for z > 0. In Eqs.(7)
to (10) these constants must get subscripts numbering the
half-spaces.

Across the interface the potentials and their normal
derivatives must fulfil the following continuity conditions:

z = 0 : Φ1 = Φ2, ε1
∂Φ1

∂n
= ε2

∂Φ2

∂n
. (18)

The Greens function for the potential equation consists of
four piecesGik(~r, ~r′); the first (second) subscript gives the
half-space containing the point of observation (the source
point). It is found with the help of image charges [12]:

G11 =
1

4πε1

(
1
R1

− ε2 − ε1
ε1 + ε2

1
R2

)
, (19)

G22 =
1

4πε2

(
1
R2

− ε1 − ε2
ε1 + ε2

1
R1

)
, (20)

Gij =
1
4π

1
ε1 + ε2

1
Rj
, (i 6= j). (21)

DistancesR1 andR2 are shown in Fig.1.
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Figure 1. Distances:R1(R2) from source (image) point to point of
observation.Q0 primary charge,Q1, (Q2) are the images belonging to
medium 1 (2).

A. Point Charge at Interface

At time t = 0 a point chargeQ it put to the point~r = 0.
SoQGij with i 6= j gives the electrostatic solution (σ =
0):

Φ(~r) =
1

4πε0
1

ε1 + ε2

1
|~r|

(22)

This has the same form as the above solution (14). So the
solution for weakly lossy media is:

Φ(~r) =
1
4π

1
ε1 + ε2

1
|~r|

e−t/τ (23)

with
τ =

σ1 + σ2

ε1 + ε2
.

B. Point Charge Changing in Time

A point charge fixed atr = 0, z = −z0 < 0 grows from
0 toQ during a timeτ0 and stays constant afterwards, see
Fig.2. The charge density (fort ≥ 0) and its transform are:

ρ(~r, t) =
Q

2πr
δ(r)δ(z − z0)Q0(t),

Q0(t) =
t

τ0
Θ(τ0 − t) + Θ(t− τ0), (24)

ρ(~r, s) =
Q

2πr
δ(r)δ(z − z0)

1− e−sτ0

s2τ0
.

The electrostatic solution is calculated with the help of the
Green’s function found above. Thereafterεi is replaced
with εi = εi + σi/s, and the inverse Laplace transform
is done. The solution so obtained may be represented as
generated by the original chargeQ0(t), Eq.(24), and two
time-dependent image charges,Q1(t) andQ2(t). Here a
special case is presented, where the orginal charge is in
vacuum at a fixed position in front of a weakly conducting
half space; soε1 = ε1, z < 0 andε2 = ε2 + σ/s, z > 0.
The potentials in the two half spaces are:

Φ1(r, z, t) =
1

4πε1

[
Q0(t)
R1

+
Q1(t)
R2

]
, (25)

Φ2(r, z, t) =
1

4πε1
Q2(t)
R1

; (26)

Q1(t) = − Q0(t) −
2Qε1
ε1 + ε2

τ

τ0
qh(t), (27)

Q2(t) =
2Qε1
ε1 + ε2

qh(t), (28)

qh(t) = (1− e−tτ ) − (1− e−(t−τ0)τ )Θ(t− τ0);
τ = (ε1 + ε2)/σ. (29)

These expressions show that the electro quasi-static so-

1 2
t�Τ0

0.5

1
Q0HtL

Figure 2: Time dependence of primary charge.
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Figure 3. Time dependence of image charges forτ0 � τ. ε1 =
ε0, ε2 = 3.5 ε0. τ0 = 0.1 τ.
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Figure 4. Time dependence of image charges forτ0 � τ. ε1 =
ε0, , ε2 = 3.5 ε0. τ0 = 10 τ.

lution for this time-dependent problem is quite similar to
that of the electrostatic problem. In both cases two image
charges together with the primary charge produce the field,
but in the latter case all three charges are time-depedent. At
first the image charges increase as does the primary charge;
thereafter the conductivity of medium 2 destroys the field
in this half space so that in the end the field distribution is
the same as that prevailing if the conductivity of medium 2
were infinite. The potential depends on two rates, the given
growth rateτ0 and the decay rateτ . Figs.3 and 4 show the
time dependence of the image charges for large and small
decay rates (as compared to the growth rate). For large
decay rate the image charges follow the primary one faith-
fully; except thatQ1 contributing the the field in medium
1 has a sign opposite to that ofQ0. For small decay rate
the chargeQ1 shows the same behavior, whileQ2(T ) ap-
proximates the time derivative ofQ0.

C. A Moving Point Charge

A point chargeQ starts at timet = 0 at r = 0, z =
−z0 < 0 and runs with constant velocity~ezv towards the
interfacez = 0 separating the two media.The charge den-
sity and its transform are:

ρ(~r, t) =
Q

2πr
δ(r)δ(z − z0 − vt), (30)

ρ(~r, s) =
Q

2πrv
δ(r)Θ(z − z0) e−s(z−z0)/v. (31)
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In particular, it is assumed that medium 1, in which the
charge moves, is vacuum, while medium 2 is a weakly
conducting dielectric. The solution method described in
the preceding subsection leads to the following potentials:

Φ1(r, z, t) =
1

4πε1

[
Q

R1(t)
+

Q1

R2(t)
+
ε1
ε2

Φ1nl

]
,

z ≤ 0; (32)

Φ2(r, z, t) =
1

4πε2

[
Q2

R1(t)
+ Φ2nl

]
, z ≥ 0; (33)

Q1 = Q
ε1 − ε2
ε1 + ε2

, (34)

Q2 =
2Qε2
ε1 + ε2

; (35)

R1,2(t) =
√
r2 + (z ∓ z0 ∓ vt)2, (36)

R3(t) = R1(t); (37)

Φinl(r, z, t) = −Q2

τ

∫ t

0

dt′
e−(t−t′)/τ

Ri+1(t′)
. (38)

The above representation shows that the field belonging
to a moving constant charge may be more complex than
that due to a changing charge with fixed position. In fact,
also the moving charge induces moving images but with
constant charge; however, there is an additional non-local
term embracing the history of the field, i.e. the losses due
to the weak conductivyσ of medium 2.

Some graphs should convey an overview over the influ-
ence of the electrical parameters. In Fig.5 the magnitude
of the relaxation time is shown for various values of the
relative dielectric constants and of the conductivity.

3 5 7 10
-Σ @S�mD

1. ´ 10-6

0.0001

0.01

1

Τ @secD

¶r2 = 2

¶r2 = 20

Figure 5. The relaxation timeτ , Eq.(), versus conductivityσ of
medium 2 for various values of the relative dielectric constantεr2(=
2, 4, 10, 20); εr1 = 1..

As long as the non-local term is small as compared to
those stemming from the images the latter give a good ap-
proximation and a very simple and compact description of
the field. In order to get a feeling for the magnitude of this
non-local term, we shall endeaver to make a numeric esti-
mate for this term in Eq.(33). We extract the first term of
the square bracket; in the resulting square bracket the first
term equals unity. The second term of the square bracket
is then:

I = −β e−βγ
√
ρ2 + (ζ + 1− γ)2 ×

×
∫ γ

0

dα eαβ/
√
ρ2 + (ζ + 1− α)2.

Here new dimensionless variables have been introduced:

α = t′/βτ, β = |z0|/vτ, ρ = r/|z0|, ζ = z/|z0|.

t = γ|z0|/v, 0 ≤ γ < 1.

So we get for eq.(33):

Φ2(r, z, t) =
1

2π(ε1 + ε2)
1

R1(t)
[1− |I|]. (39)

For r ∼ ρ = 0 the integral may be evaluated analytically:

|I(β, γ, ζ)]| = (ζ + 1− γ)βe−β(ζ+1−γ) × (40)

× [Γ(0, β(1− γ + ζ)− Γ(0, β(1 + ζ))] ;

Γ(a, z) =
∫ ∞

z

ta−1 e−t dt. (41)

Γ(a, z) is the incomplete Gamma function (function pro-
gram available inMathematica).

As long asI is small as compared to unity, the first term
depending only on the image charge and the distance gives
a good approximation to the total potential. So we give
some graphs for|I(β, γ, ζ)|. It is seen that the non-local
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Figure 6. |I(β, γ, ζ)]|versusγ (= dimensionless time) and the conduc-
tivity σ.
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Figure 7. |I(β, γ, ζ)]|versusγ (= dimensionless time) and the conduc-
tivity σ.

term is small if the conductivityσ is smaller than10−4S/m.
But if the conductivity becomes larger than this value, the
non-local term grows quite fast.

V. SIGNALS IN COUNTERS

The signal currentsI induced in grounded electrodes by
moving charges (as e.g. in particle counters) are calculated
with the help of Ramo’s theorem, [5], [6]:

I = q0~v · ~E/V
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(q0 charge moving with low velocity~v, ~E weighting field
= electric field generated by voltageV applied to the elec-
trode in the absence of the inducing charge). This theorem
entails a considerable simplification of the task to calculate
the current flowing from or to a counter electrode as it is in-
duced by a charge moving in the device. To see this, imag-
ine a point charge slowly moving in a simple plane con-
densor; one want’s to calculate the current flowing from
one plate. Without Ramo’s theorem, one must solve the
boundary value problem to get the field generated by the
charge (distribution) in the device; the field component
normal to the electrode integrated over the whole electrode
gives the charge or the current, if the charge is moving. Us-
ing Ramo’s theorem one needs just the homogeneous field
excited in the empty condensor by the voltage applied to
the electrodes.

A. Extension of Ramo’s theorem to weakly conducting me-
dia

Ramo’s theorem [5], [6] is valid for non-lossy media
only. It has been generalized to the case of dielectrics with
a small conductivity and a number of applications have
been considered, [7]. This generalization is:
The Voltage induced by a dime-depedent charge distribu-
tion ρ(~x, t) on an electrode embedded in a medium of per-
mittivity ε(~x, s) and conductivityσ(~x, s) can be calculated
in the following way: remove the charge, apply a delta cur-
rent q0δ on the electrode in question which defines a time-
depedent potentialψ(~x, t) (called the weighting potential)
in the space between the electrodes from whichV (t) can
be calculated according to:

V (t) =
1
q0

∫ t

0

∫
V

ψ(~x′, t− t′) ∂ρ(~x
′, t′)

∂t′
d3x′ dt′. (42)

For small values of the relative D.K. (εr), the changes
introduced by the real part of the dielectric constant are of
the order of(εr − 1)/(εr + 1), [13].

The changes due to the conductivity are of the order of
Dε/vσ, (σ, ε conductivity, D.K. of the medium,v velocity
of the inducing electron (or ion) avalanche,D layer width,
[11].

In the treatment of resistive plate chambers containing
several layers the method described permitted W.R.[7] to
show rigorously the influence of the conductivity on the
signal. A highly conducting layer attached to an electrode
becomes just part of that electrode. A floating (i.e. not
grounded) highly coducting layer does not screen off the
field. Opposite charges accumulate at opposing sides of
that layer; and so the field is transmitted. These are obvious
things, but they are rarely proved by explicit calculations.

VI. C OVERGENCE ACCELERATION OF INTEGRAL

REPRESENTATIONS OF GREEN’ S FUNCTIONS

For some kinds of field computations one may evaluate
analytic field representations containing Green’s functions
numerically. In most boundary value problems it is not
possible to get closed expressions representing the Green’s
functions. So one must use integral representations or in-
finite series of particular solutions obtained by solving the
potential equation by separation of variables. The Green’s
function is singular at~r = ~r′ but regular elsewhere, in

priciple. However, in the series or integral representa-
tions one encounters a memory effect due to the singu-
larity: There are curves or surfaces passing through the
singular point, on which the series or integrals fail to con-
verge although there is~r 6= ~r′. Even in the neighbourhood
of these manifolds convergence will be slow, too slow for
numerical evaluations. In many cases there is a remedy.
One subtracts from the integral functions having the same
asymptotic behavior as the deleterious terms but which are
so simple that the corresponding integrals over the sanitiz-
ing functions can be evaluate analytically. This remedy is
displayed below in two examples, where we deal only with
the Green’s functions.

A. Plane condensor containing one medium

The Green’s function of the potential equation∆G =
−δ(~r − ~r′) fulfilling the boundary conditionsz = 0, D ∨
ρ → ∞ : G = 0, may be represented in cylindrical coor-
dinatesρ, φ, z as:

G(ρ, φ, z; ρ′, φ′, z′) = (43)

=
1
πD

∞∑
n=0

sin(knz) sin(knz
′) K0(knP );

P = (x− x′)2 + (y − y′)2

= ρ2 + ρ
′2 − 2ρρ′ cos(φ− φ′),

kn = nπ/D. (44)

It is obvious that each term of the series (43) is singular on
the lineP = 0 ⇔ ρ = ρ′. The integral representation

G(ρ, φ, z; ρ′, φ′, z′) = (45)

=
1
2π

∫ ∞

0

dκ J0(κP ) g(κ; z<, z>),

g(κ; z<, z>) =
sinh(κz<) sinh[κ(D − z>)]

sinh(κD)
(46)

runs into trouble in the following three planes: 1.z = z′

2. z = z′ = 0 3. z = z′ = D. The physics of these three
cases is: 1. source and observation point are in the same
plane; The obervation point and the image point below the
conducting planez = 0 coalesce; 3. Similarly, but at the
planez = D. This is seen by rewriting the amplitude (46)
as:

g(κ; z<, z>) = Z/N ; (47)

Z = e−κ(z>−z<) − e−κ(2D−z>−z<)

−e−κ(z>+z<) − e−κ(2D−z>+z<),

N = 1− e−2κD.

It is obvious that the exponent of one of the four exponen-
tials in the numeratorZ becomes zero in the three cases
just listed. The square rootκ occuring in the denominator
of the aymptotic representation of the Bessel function to-
gether with the oscillations still permits convergence, but a
prohibitvely slow one. This is illustrated in Fig.8.

The remedy is to subtract fromg(κ; z<, z>) the three
dangerous exponentials:

gs = 2g − [e−κ(z>−z<) − e−κ(z>+z<)

−e−κ(2D−z>−z<)]
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Figure 8. Dependence of the amplitude functiong, Eq.(46),47, of
Eq.(45) on the integration variableκ for fixed z′ and variousz. For
z = z′ g no longer decreases asκ →∞.

= Zs/N ; (48)

Zs = e−κ(2D−z+z′) + e−κ(2D+z−z′)

−e−κ(2D+z+z′) − e−κ(4D−z−z′).

This new amplitude functiongs converges fast for any val-
ues ofz andz′ in the interval[0, D]. The integrals con-
taining the dangerous exponentials times the Bessel func-
tion J0(κP ) can be done by Sommerfelds integral. So the
completely sanitized representation of the Greens function
is:

G(ρ, φ, z; ρ′, φ′, z′) = (49)

=
1

4π
√
P 2 + (z − z′)2

− 1
4π

√
P 2 + (z + z′)2

− 1
4π

√
P 2 + (2D − z − z′)2

+
1
4π

∫ ∞

0

dκ J0(κP ) gs(κ; z, z′).

1 2 3 4
Κ

0.1

0.2
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0.4
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gsHΚ;z,z’= 0.3L�2

Figure 9. Dependence of the amplitude functiongs, Eq.(48), of Eq.(49)
on the integration variableκ for fixed z′ = 0.3 and the samez’s as in
Fig.8.

More details for the derivations and evaluations de-
scribed here very briefly have been presented in a report
[8]. There the computation times needed for the evalu-
ations of the two representations (43) and (49) are com-
pared.

The method is also useful in applications where differ-
ence methods are used. It is difficult to represent a point
charge in a mesh. The Green’s function yields a repre-
sentation of the field due to this point charge. Further the

Green’s function and the corresponding field components
must be evaluated in the neighbourhood of the singularity.
The methods jsut described helps in these evaluations.

B. Plane condensor containing two plane media

The integral representation of the Greens function for a
plane condensor filled with two dielectrics has been treated
by the method explained in the preceding subsection. Be-
sides the planes: 1.z = z′ 2. z = z′ = 0 3. z = z′ = D
listed above also the plane of the interface between the two
media has a deleterious effect on the convergence; so addi-
tional image charges must be extracted from the integrand.
The integral representations so sanitized have been used in
simulations studying the influence of space charge on the
growth of the charge avalanche in a resistive plate chamber,
[15].

VII. C ONCLUSIONS

Quasi-static methods are very useful in applied electro-
magnetics for obtaining formulas permitting semi-analytic
evaluations; the expressions are somewhat involved, but
their numeric evaluation is fast and not difficult. The books
by Haus and Melcher [1] and by Fano, Chu and Adler [2]
are excellent references for these approximation schemes.
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