Problem set 5, 18.12.2015

Problem 1: Rotating dipole

Consider the radiation field of a rotating electric dipole in far-field approximation. The dipole rotates in the xy-plane,

$$\mathbf{d}(t) = d_x \cos(\omega t) \mathbf{e}_x + d_y \sin(\omega t) \mathbf{e}_y.$$

- a) Write down $\mathbf{d}(t)$ in complex notation.
- b) What is the time-dependent magnetic field $\mathbf{B}(\mathbf{r}, t)$? Write it explicitly in complex and real notation, and use Cartesian coordinates. **Hint**: Use electric dipole approximation.
- c) Calculate the Poynting vector (in Cartesian coordinates).
- d) Calculate the time average of the Poynting vector (in Cartesian coordinates).
- e) Show that in the limiting cases in spherical coordinates you will obtain
 - e1) for circular rotating dipole $(d_x = d_y = d_0)$:

$$\bar{\mathbf{S}}_{sym}(\mathbf{r}) = \frac{\mu_0 d_0^2 \omega^4}{16\pi^2 c} \frac{(1+\cos^2\theta)}{2r^2} \mathbf{N}, \quad \mathbf{N} = \mathbf{r}/r$$

e2) for linear dipole $(d_x = d_0 \text{ and } d_y = 0)$ (c.f. 16.24 in the lecture notes):

$$ar{\mathbf{S}}_{lin} = rac{\mu_0 d_0^2 \omega^4}{16 \pi^2 c} rac{\sin^2 lpha}{2r^2} \mathbf{N} \,.$$

Here α is angle between dipole (x-direction) and **N**.

e) Calculate the total flux Φ of $\hat{\mathbf{S}}(\mathbf{r})$ for both circular rotated dipole as well as for the linear dipole and determine the ratio Φ_{sym}/Φ_{lin}

Problem 2: Usage of the multipole expansion

The potential of unknown charge distribution, of infinitesimal volume (at $\mathbf{r} = 0$) is measured on the (imaginary) surface of the sphere with radius R and center at $\mathbf{r} = 0$. According the measurement

$$\Phi(R,\theta,\phi) = a(\cos\theta)^2 . \tag{1}$$

a) Calculate the potential for arbitrary r, θ and ϕ .

Hint: Φ fulfills Laplace-equation everywhere except of $\mathbf{r} = 0$ and vanishes for $\mathbf{r} \to \infty$. You can expand general solution of the Laplace-equation in spherical functions and use conditions mentioned above. (The presence of charge at $\mathbf{r} = 0$ is signaled by singularity at $\mathbf{r} = 0$). Then determine the coefficients so that Eq. (1) fulfilled. You just need terms with l = 0, 1, 2 and m = 0.

b) Now consider the same charge distribution surrounded by metallic sphere with radius ρ and center at $\mathbf{r} = 0$. The metallic sphere is grounded, therefore its potential is zero $(\Phi(\rho, \theta, \phi) = 0)$. Please calculate potential inside the sphere.

Hint: Expand potential in spherical functions. In this case total potential contains terms which you obtain in (a), plus contribution from the charge from the metallic surface. This contribution fulfills Laplace-equation, but it must be regular at $\mathbf{r} = 0$.